
Abstract

Fast Footprint MlPmapping

Tobias Hiittner, Wolfgang Strafier

WSI/GRIS, University of Tiibingen

Mapping textures onto surfaces of computer-generated objects is a
technique which greatly improves the realism of their appearance.
In this paper, we describe a new method for efficient and fast texture
filtering to prevent aliasing during texture mapping.

This method, called Fast Footprint MIPmapping, is very flexible
and can be adapted to the internal bandwrdth of a graphrcs system.
It adopts the prefiltered MIPmap data structure of currently avail-
able trilinear MIPmapping implementatrons, but exploits the texels
fetched from texture memory in a more optimal manner. Further-
more, like trilinear MIPmapping, fast footprint MIPmapping can
easily be realized in hardware.

It is sufficient to fetch only eight texels per textured pixel to
achieve a significant improvement over classical trilinear MIPmap-
ping.

CR Categories: I.3 [1.3.3 Picture/Image Generation]:
Antialiasing-Bitmap and framebuffer operationsVrewing algo-
rithms I.3 [1.3.7 Three-Dimensional Graphics and Realism]: Color,
shading, shadowing, and texture

Keywords: texture mapping

1 INTRODUCTION & PREVIOUS WORK

During the rasterization process, mapping images onto objects can
be considered as the problem of determmmg a screen pixel’s pro-
jection onto the image (which is usually called footprint) and com-
puting an average value which best approximates the correct pixel
color. We have adopted the notation of [7] for the following discus-
sion. In real-time environments, where several tens of millions of
pixels per second are issued by a fast rasterizing unit, hardware ex-
penses for image mapping become substantial and algorithms must
therefore be chosen and adapted carefully. Thus, the straightfor-
ward approach of taking the mean of all image pixels t (or texels)
inside the footprint for the screen pixel’s color C(z, y)

(1)
a=1

or, more generally, defining a filter kernel h, which is convolved
over the image t(cr, p) (see also [l])

Permwlon to make dIgIta or hard copses of all or part of this work for
pc~sonal or classroom use 1s granted wthout fee prowded that copies
are not made or dlstrlbuted for profit or commercial advantage and that
copses bear this nutice and the full c~tallon on the first page To copy
othcrwse, to republish, to post on servers or to redlstnhute to hsts.
lequnes pnor spcc~fic pcrmwslon and/or a fee

1999 Eurographics LosAngeles CA USA
Copyright ACM 1999 1-58 113-I 70-4/99/08 $5 00

Figure 1: Summed-Area Table.

C(5Y) = JJ (h(s - Q, Y - P) . t(a, PI) da@ (2)

can be excluded from further discussions due to the long com-
puting times. Summed-area tables [2] are an attempt to simplify
and speed up the above operation by creating an appropriate data
structure, the summed-area table, for holding prefiltered data. This
data structure is then accessed during rendering. This can be done
with different access schemes, for example with a single access per
footprint comer, or a 4-access bilinear interpolation per footprint
comer. Instead of the color value, each cell of a summed-area table
holds the sum of all values in a certain region, usually the rectan-
gle defined by the position of the cell and the origin as indicated in
Figure 1.

Given the bounding box of a footprint, C(Z, y) is then approxi-
mated by accessing the table four times and performing the follow-
ing operation:

C(z,y) = T4 - T3 - T2 + Tl. (3)

However, since the footprint of a pixel is not rectangular, but can
be considered as a quadrilateral in the general case, a potentially
large number of texels within the bounding box contributes without
reason to the pixel color. Glassner proposes a solution in [3] to
incrementally remove rectangles within the bounding box to best
approximate the footprint at the cost of increased computing time.

For two reasons, summed-area tables are not well suited for di-
rect hardware implementation:

1. For each pixel, four accesses must be made that can have
very different locations, depending on the bounding box of
the footprint. This limits the achievable texturing speed.

2. If the color components are 8-bit quantitres, a 1024 x 1024
summed-area table requires entries as wide as 28 bus for each
color component.

Another approach is to create a set of prefiltered images, which
are selected according to the level of detail (the size of the foot-
print) and used to interpolate the final pixel color. The most com-
mon method is to organize these maps as a MIPmap as proposed by
Williams [9]. In a MIPmap, we denote the original image as level
0. In level 1, each entry holds an averaged value and represents the
area of 2 x 2 texels of level 0. This is continued, until we reach the
top-level, which has only one entry holding the average color of the

35

whole texture. Thus, m a square MIPmap, level n has one fourth of
the size of level n - 1.

The shape of the footprmt IS assumed to be a square of srze q2,
where q 1s suggested m [4] as

(4)
In equation (4), u and w denote texture coordinates and z and y

are screen coordmates
The MIPmap IS accessed by the texture coordinate pair (u, V)

of the pixel center and the level X whrch m the general case is a
function of log, q. X can be expressed with its integer part X, and
its fractional part Xf as

(5)

Nearest-neighbor sampling is inadequate due to severe ahasmg
artifacts. Instead, the levels X and X + 1 are accessed and billnearly
interpolated at (u, u). The final pixel value is lmearly interpolated
from the result m both levels according to Xf .

Trrlmear MIPmappmg is a reasonable candidate for a hardware
implementation due to its regular access pattern. Due to thts,
there exist approaches and architectures (for example [7]) to rmple-
ment this directly into logic-embedded memories. Due to the high
costs of chip development and chip productions, these approaches
weren’t realized for a broad range of systems. Nevertheless, trihn-
ear MIPmapping is the classrcal filtermg approach used over the last
decade m graphics systems and it is nowadays available m nearly
every PC graphics card. But the approximation of the footprmt with
a square hmits the MIPmap approach severely and people will try to
improve it as graphics systems get more powerful on the one hand
and the increasing demand for high quality, but cheap visualizahon
on the other hand.

One filtering approach, called Footprint Assembly, is described
in detail m [7]. Its basic idea is the approxrmation of the projection
of the pixel on the texture by a number N of square nupmapped
texels. The pixel’s deformation is neglected and it is approximated
with a parallelogram given by

rl=[g,$j andra= e,$ [1 (6)

The pixels center p m the texture map is the mtersection pomt
of the diagonals dl and da of the parallelogram. The direction r in
whrch to step from the pixel center to best approximate the footprmt
is determined from the larger of the two vectors rl and ra and

mNr1 I , b-al , dl , da)

(7)

rounded to the nearest power of two as the number of square
mipmapped texture elements for the footpnnt. A difference vector
Ar = (AU, AU) is constructed and a sequence of sample points 1s
generated to cover the footprint.

Footprint assembly 1s able to produce high quality texture fil-
tering, but it has the drawback of bemg computationally intensive
Therefore, [7] proposes a hardware for a logic embedded memory
device, which can perform this filtering method during memory ac-
cess.

P *

a P.
I

.

Figure 2. Defimtion of the footpnnt

This approach has been adopted m the TALISMAN architecture
which uses a weighted anisotropic filtering, see 183.

All of these approaches are difficult and costly to be integrated
into current rastenzmg hardware, since they either require a great
amount of computatronal power or are based on very special system
architectures.

It is the goal of thus paper to develop a method, which provides a
filter quality comparable with footprint assembly but which can be
more easily integrated into actual graphics architectures.

2 FAST FOOTPRINT FILTERING

Startmg from the classrcal trilmear MIPmappmg, we can easily de-
tect that this filtering method wastes texel mformatron by approxi-
mating the footprint by a square, where the footprint 1s an arbitrary
quadrilateral.

Improving filtermg means to find a tradeoff between loading
more texels to texture a screen pixel and using the loaded texels
more efficiently.

The number of texels that can be loaded for real-time filtermg
is restricted due to strict constants like memory bandwidth or bus
width. We will call this limit M. We have to respect tlus limrt,
smce otherwise system performance will decrease heavily.

Therefore, we will use the MIPmap data structure to be able to
precalculate filtermg levels. We will access this filtering pyrarmd
with a hfferent approach which we call Fast Footprint MIPmap-
ping.

2.1 Calculating a MlPmap level

The first problem we have to solve is depicted in Figure 2 which
shows a footprmt [Pa, 9, Pz, F’s]. Its bounding box has m texture
coordmates the extension (u, w). We want to load a rectangle of
a x b texels from MIPmap level X to cover the footpnnt and to
respect at the same time the limit M.

For calculating a, b, and X, we start with the following consrder-
ations:

From (u, u), we get the aspect ratio f = % of the boundmg box.
Then we can calculate

a b=Mandf=+~=
f

M+a=JMf. (8)

We set

(9)

36

Q1
Figure 3: Transformation of comer points to integer positions.

These values can be used to calculate two MlPmap levels m and
n for a’ and b’

U
- = a’

V

2"
-=b’=,m=~,n=!$$ (lo)

'2"

From this, we get X as

X = [max(m, n)] (11)

With this, we know which level we have to access to get the
maximum amount of texture information to cover the footprint and
to respect M.

2.2 Definition of the weighting table

To do a correct filtering, the contributions of the single texel values
to the final pixel value have to be calculated. This is done with a
precalculated lookup table, since calculating this on the fly would
be too expensive.

We first transform the comer points of the footprint to the integer
positions of the texel grid in level X. This is shown in Figure 3 and
generates the quadrilateral [Qc, Qi, Qz, Qa]. Using the orientation
of the quadrilateral [Qc, Qi, Qs, Qs], we can ensure a non empty
Interior of the transformed points by either adding 0.5 or subtracting
0.5 before snapping to an integer position.

The contribution of a texel to the footprint is now a fixed value.
We can calculate for each possible footprint a vector w consisting of
M weights which represent the footprint’s coverage for each texel.
Computing the weights 1s a preprocessing step and once it is done,
we can store the result in a lookup table. With the help of these
weights, a filtering can be performed, since they represent the cov-
erage of the footprint. We store the texels fetched from memory in
a linear array T and the weighting vectors in a weighting table W.

The filtered pixel value C can then be calculated as

M

C = c WI. WI)). (12)
a=1

The weighting vectors allow an easy and efficient computation of
the footprint’s coverage, but since a footprint is a quadrilateral hav-
ing four comer points, a huge amount of weighting vectors has to
be calculated and stored. For the situation in Figure 3, where we
have M = 16, precalculating the weighting vectors for all possible
footprints would result in 25.24.23.22 = 303,600 vectors, since
we have 4 x 4 texels, but we have 5 x 5 possible comer positions.

Each vector has 16 entries and we would have to provide storage
for 4,857,600 weights.

Figure 4: Divide footprint for table lookup.

By dividing the quadrilateral [&a, Qi, Qz, Qs] into two triangles
A i and Aa and filtering each of them separately, we can reduce the
number of needed weights significantly, see Figure 4. For the given
example, we need only 25 . 24 . 23 = 13,800 vectors requiring
220,800 weights.

This amount can be reduced even further, if we don’t transform
the comers to integer positions of the texel grid, but directly to the
mid-points of the texels they lie in. This is not as accurate as using
the integer positions, since if a comer point of a texel lies on such an
integer position, it can be snapped to up to four possible neighbor-
mg mid-points. Therefore, this snapping is no longer a unique solu-
tion and we have to use a heuristic to ensure a consistent snapping
if a comer point is snapped more than once in successive footprints.
We choose always the mid-point to the top and the right for comer
points on integer positions. With this, aliasing due to inconsistent
mid-point snapping can be prevented and the error is in maximum
the half of a texel. In the example from Figure 2 are 4 x 4 mtd-point
locations possible and we end up with 16.15 . 14. 16 = 53,760
weights.

The weighting table W is depicted in Figure 5. It is accessed
in three stages with a multi-stage lookup structure, one for each
comer point. For the example above, the lookup structure consists
of 16+16.15+16.15.14 = 3616 pointers formtd-point snapping.
In Figure 5, a single byte value in the range [0..255] represents the
weight that will be linearly scaled to [O..l] during the weighting
calculation.

Currently, we are numbering the comer positions regularly as de-
picted in Figure 4. Some combinations of comer points can never
occur. There he always more than two comer points on the bor-
ders of T respectively on the mid-points of border texels, since
T can be ortented this way when covering the footprint in level
X. By exploiting this fact, the two comer points on the border
can be placed at 12 respectively 11 different positions in the ex-
ample above. We can therefore reduce the amount of necessary
weights again to 12 * 11 * 14 * 16 = 29,568 values. Especially
when M is small, we can calculate a whole series of weighting ta-
bles in advance for all possible bounding boxes with a . b = M.
For M = 16, the table size needed is 3036 vectors *16 weights
= 48,576 wetghts for the table with 4 x 4 texels. The one for 2 x 8
needs 139,840 weights (2 x 8 and 8 x 2 are the same due to sym-
metry, tables with height or width of only one texel make no sense).
With this, we can better approxtmate elongated and distorted foot-
prmts.

Table 1 summarizes the sizes of W and the pointer structures
for different values of M. The values are calculated for integer
positions (I) and for mid-point snapping (MS). Since in current ar-
chitectures, A4 will realisttcally be restrtcted to be 5 16, we have
no space problem with having more than one table, since W and

37

Figure 5: Accessing the weighting table.

M size of W (in bytes)

8 (MS 2x4) 8 * 7 * 6 *8=2,688
8 (I 3x5) 12*11*13 *8=13,728
16 (MS 4x4) 12*11*14 *16=29,568
16 (MS 2x8) 16*15*14 *16=53,760
16 (15x5) 12*11*23 *16=48,576
16 (I 3x9) 20*19*23 *16=139,840
32 (MS 2x16) 32*31*30 *32=952,320
32 (MS 4x8) 20* 19*30 *32=364,800
32 (I 3x17) 36*35*49 *32=1,975,680
32 (I 5x9) 24*23*49 *32=865,536
64 (MS 8x8) 28*27*62 *64=2,999,808
64 (I 9x9) 32*31*79 *64=5,015,552

number of
pointers
400
2,955
3,136
3,136
14,425
18,279
30,784
30,784
127,55 1
87,165
254,080
518,481

Table 1: Sizes of the structures needed for fast footprint MIPmap-
ping.

the pointer structures needed to access W have still feasible sizes.
But even if we increase M to 32 or 64, we need approximately 2.5
MB or 7 MB of memory to store W and the pointer structures (one
pointer is assumed to be 3 bytes to address 224 possible values).
These sizes could be already realized, but eventually they are not
economically feasible in current low cost graphic cards. Extrapo-
lating the advances in chip technology that can be seen for example
in the rapidly growing size of texture memory on these low cost
cards, weighting tables with 32 or 64 can be feasible in the near
future. Using the lookup table W, two weighting vectors wi and
wa belonging to the triangles Ai and As can be generated. The
filtered pixel value C can now be calculated as

M

c = c (T[z] (Wl[Z] + w2[4) . (13)
a=1

2.3 HARDWARE REALIZATION

The algorithm shown above can be realized with standard hardware
components and is organized in a pipeline having the following suc-
cessive stages:

l Determination of the weighting vector
Here we need a multi-stage lookup unit consisting of multi-
plexers and decoders and a ROM for the vectors. The umt
converts the indices of the comer vertices into an access to
the ROM table. As already depicted, not all combinations of
comer indices can occur. This is coded in the structure and
saves memory in the ROM table. We have currently not used
the symmetry of triangles covering the weighting mask to fur-
ther reduce the number of necessary vectors, since this would
mean a reordering of the footprint comers that would need ad-
ditional hardware. We want this design to be stream-line, only

consisting of lookups, texel fetches and the final evaluation of
the convolution in Equation (13). This ensures speed and can
be realized more economically.

l Texel Array T
The values that are read from texture memory are stored here
before they are combined with the weights. The texture mem-
ory access itself can be greatly accelerated by using banking
and caching techniques, since adjacent footprints have a co-
herent memory access pattern (see [6]).

l Evaluation of Equation (13)
This evaluation can be performed with the help of a scalar vec-
tor multiplication unit and a second vector unit for calculating
the sum of a vector’s components.

For our approach, we need no interpolation units, which are nec-
essary for a good quality bilinear MIPmapping. Instead we use
lookup tables and a unit which calculates the final pixel value given
m equation (13). In our opinion, this hardware effort is comparable
to the one needed for trilinear MIPmapping and can also deliver a
similar performance, since only basic arithmetic functions are used.

3 RESULTS AND DISCUSSION

We have produced our measurements with a software prototype of
the algorithm built into a ray tracing system. Also the other filters,
trillnear MIPmapping and footprmt assembly, were implemented.

To compare the approaches not only visually, but also statisti-
cally. we show in Figure 16, Figure 17 and Figure 18, how our algo-
rithm behaves in selecting MIPmap levels. The pixels are rendered
in this ray tracer from the top row to the bottom row. Therefore, we
can report, when switches between MIPmap levels occur, since our
test scene consists of a textured, flat plane which is sampled with
the ray tracer. In these diagrams, the horizontal direction represents
the pixel number as the calculation proceeds. In vertical direction,
the used MIPmap level is depicted. It turns out, that our method
switches earlier to lower levels compared to trilinear MIPmapping,
and a bit later than foot print assembly. This is mainly due to the
effect explained in Figure 6. Rather distorted footprints extend the
bounding box as depicted for the left footprint and we are therefore
forced to switch to a higher MIPmap level, but will still sample the
footprint correctly with the help of the weighting vectors. It can be
clearly seen, that increasing the table size M reduces this behavior
and for M = 16 and M = 32, fast footprint MIPmapping catches
up with footprint assembly.

Setting M to 32 is reasonable, since modem graphics chips like
the Riva TNT chip produced by NVidia don’t load any longer only
the 8 texels necessary for a trilinear MIPmapping. This special
chip supports anisotropic filtering and takes up to 8 bilinear samples
from up to two adjacent mipmap levels and supports anisotropy of
up to 2: 1, With this, already 32 texels have to be loaded.

The current implementation has following features:

l Anisotropic filtering is only necessary for a small amount of
footprints with heavy distortions. It is therefore possible, to
combine trilinear MIPmapping and fast footprint MIPmap-
ping and to use the later one to filter only distorted footprints.
This reduces the amount of texture data accessed, since for tri-
linear MIPmapping, only eight texel values have to be loaded.

l We have currently not a fixed limit M for texel fetching, but
we adopt this limit to the footprint characteristics. I f foot-
prints with a difficult shape have to be sampled, we raise the
size of M up to 2 * M which results in a slower sampling due
to two steps of fast footprint MIPmapping, but means also im-
proved sampling quality. Footprints, that are more isotropic,

38

Figure 6: Using two arrays for distorted footprints.

are sampled with smaller tables having less than A4 texels or
they are filtered with trilinear MIPmapping. Furthermore, we
use normal bilinear interpolation to access the first level of the
MIPmap, if the size of a footprint is smaller than the pixel size
at the finest level.

With this we get a better sampling quality without increasing
the overhead as much as fixing A4 on a high level.

We have analyzed this for Figure 9 and the following distribution
of texture accesses can be measured:

Pixels to be filtered 1 275,334
Pixels that can be I
filtered with trilinear MIPmapping
Pixels that have to be

246,678

filtered with Fast Footprint MIPmapping 28,656
Pixels with T between M and 2 * M 8,836

In Figures 7 - 15, we show the visual behavior of our algorithm
compared to the other two. The images are all calculated with a
screen resolution of 600 x 600 pixel. Setting M = 16 results in
an improvement compared to trilinear MIPmapping, but is still a
little bit lower m quality than footprint assembly. M = 32 reaches
the quality of footprint assembly. This can be clearly seen at the
checker board pattern, which has a resolution of 1024 x 1024 and
is therefore a little bit blurry in the foreground due to interpolation,
since its resolution is not sufficient in the foreground area.

In Figures 11 - 15, a scene with a map texture having 2048 x
2048 texels was used. The resolution is sufficient even for the fore-
ground and it turns out, that for such a “real-world” texture which
is no artificial test pattern like the checker board, fast footprint
MIPmapping with M = 16 is sufficient to get a comparable re-
sult as with footprint assembly. The difference to M = 32 can only
be seen in a difference image. Nevertheless, even with fixing M to
eight texels we get a significant improvement compared to trilinear
MIPmapping in terms of the image being less blurred, see Figure
13. Eight texels is the amount of texture information which has to
be fetched for the actual trilinear MIPmapping.

It is important to mention the smooth, not visible transition be-
tween the MIPmap levels without interpolating between MIPmap
levels as it is done using tnlinear MIPmapping. This is necessary to
prevent aliasing during animation. We have also confirmed this by
calculating animations for the checkerboard scene showing smooth
transitions between the frames without aliasing. In figures 19 - 21,
the histogram of the difference image of an epsilon change in cam-
era position is shown (the intensity is scaled logarithmically). The
camera was viewing the checker board scene in a diagonal direction
which generated rather anisotroptc footprints. In the histograms of
fast footprint MIPmapping, no peaks due to aliasing can be found
in the right area of the histogram. Furthermore, the extension of the

non-zero values is more or less the same for trilinear MIPmapping
and fast footprint MIPmapping. Therefore, we can claim frame-to-
frame coherence.

4 CONCLUSIONS AND FUTURE WORK

We have presented a new approach for texture filtering to prevent
aliasing during texture mapping. In contrast to classical approaches,
our method exploits the texels fetched from texture memory in a
more optima1 way but still remains feasible for implementation in
hardware. Furthermore, it is scalable to respect the internal band-
width of a graphics system.

The next step concerning this interesting project will be to en-
hance the filtering quality further. Currently, we investigate, how
to access not only one MIPmap level, but to sample the footprint
with a number of independent and smaller arrays on different lev-
els of the MIPmap. This seems to be especially useful for pixels
which have extended footprints. We can further reduce the loading
of texels which are not needed, but contained in the loaded texel
rectangle, if we adopt T better to the shape of the footprint, see
Figure 6. On the other hand, this will cost addttional hardware and
introduce latency, since the footprint has to be divided temporarily.
Doing this is therefore a tradeoff decision between the cost of the
fast footprint structure dictating how much weighting tables and in
which size can be realized, the bandwidth of texture memory, and
additional costs and latency introduced by footprint subdivision.

Another approach will be to use a compression scheme for stor-
ing the weighting table. On one hand, we can further use symmetry
arguments to reduce the number of vectors. On the other hand,
compressing the vectors themselves is also possible. Furthermore,
we consider building a hardware prototype implementation to ver-
i fy the algorithm not only as a software prototype.

Acknowledgements

We want to thank Ralf Sonntag for supporting us with his RadioLab
system to produce the images. Furthermore, we would like to thank
Andreas Schilling for our interesting and fruitful discussions about
this topic.

References

[ll

PI

[31

[41

PI

%I

171

PI

PI

ANDREW& H C , AND HUNT, B R. Dlgltal unage restoration, 1977

CROW, F, C Summed-area tables for texture mappmg. In Computer Graphrcs

(SIGGRAI’H ‘84 Pmceedmgsj (July 1984). H Chnstlansen, Ed, vol 18, pp. 207-

212.

GLASSNER, A Adapttve preclslon in textare mapping In Computer Gmphrcs

(SIGGRAPH ‘86 Pmceedzngs) (August 1986). D C Evans and R. J. Athay, Eds ,

vol 20, pp. 297-306

HECKBERT, P S. Texture mapping polygons m peqectlve. Th4 13, NYIT Com-

puter Graphics Lab, April 1983

HECKBERT. P. S. Survey of texture mappIng IEEE Computer Graphrcs and

Applrcatrons (Nov 1986). 56-67

IGEHY, H , ELDRIDGE, M , AND PROUDFOOT. K Prefetchlng m a textare cache

architecture In Eumgraphcs/SlGGRAPH Hardware Workshop ‘98 Pmceedmgs)

(1998)

SCHILLING, A , KNITTEL, G , AND STRASSER, W. Texram: A smart memory

for texturing IEEE Computer Graphrcs & Applrcatrons 16.3 (May 1996). 32-ll.

TORBORG. J , AND KAIIYA, J Tahsman. Commothty Real-time 3D graphics for

the PC In SIGGRAPH 96 Conference Pmceedrngs (Aug 1996). H Rushmeler,

Ed, Annual Conference Series, ACM SIGGRAPH, Addison Wesley, pp. 353-

364 held m New Orleans, Loanlana, 04-09 August 1996

WILLIAMS, L Pyranudal parametncs. In Computer Graphrcs (SIGGRAPH ‘83

Pmceedmgs) (July 1983). pp l-l 1

39

Figure 7: Trilinear MIPmapping. Figure 9: Fast footprint MIPmapping using M = 16.

Figure 8: Footprint assembly. Figure 10: Fast footprint MIPmapping using M = 32.

40

Figure 11: Trilinear MIPmapping. Figure 13: Fast footprint MIPmapping using A4 = 8.

Figure 12: Footprint assembly. Figure 14: Fast footprint MIPmapping using M = 16.

41

Figure 19: Histogram of trilinear MIPmapping.

Figure 21: Histogram of fast footprint MIPmapping, A4 = 16.

Figure 20: Histogram of fast footprint MIPmapping, A4 = 8.

43

Flgu~e 1 I MIPmap filtrlmg Flglue 13 Fast footplmt filtelmg usmg .\I = 8

-*.. . .

Flpmr 12 Footplmt assembl! Flgmr 11 Fast footplmt filtetmp usmg .\I = 16

Fast Footprint MIPmappmg
Tobias Huttner, Wolfgang StraRer

139

