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Mapping textures onto surfaces of computer-generated objects is a 
technique which greatly improves the realism of their appearance. 
In this paper, we describe a new method for efficient and fast texture 
filtering to prevent aliasing during texture mapping. 

This method, called Fast Footprint MIPmapping, is very flexible 
and can be adapted to the internal bandwrdth of a graphrcs system. 
It adopts the prefiltered MIPmap data structure of currently avail- 
able trilinear MIPmapping implementatrons, but exploits the texels 
fetched from texture memory in a more optimal manner. Further- 
more, like trilinear MIPmapping, fast footprint MIPmapping can 
easily be realized in hardware. 

It is sufficient to fetch only eight texels per textured pixel to 
achieve a significant improvement over classical trilinear MIPmap- 
ping. 

CR Categories: I.3 [1.3.3 Picture/Image Generation]: 
Antialiasing-Bitmap and framebuffer operationsVrewing algo- 
rithms I.3 [1.3.7 Three-Dimensional Graphics and Realism]: Color, 
shading, shadowing, and texture 

Keywords: texture mapping 

1 INTRODUCTION & PREVIOUS WORK 

During the rasterization process, mapping images onto objects can 
be considered as the problem of determmmg a screen pixel’s pro- 
jection onto the image (which is usually called footprint) and com- 
puting an average value which best approximates the correct pixel 
color. We have adopted the notation of [7] for the following discus- 
sion. In real-time environments, where several tens of millions of 
pixels per second are issued by a fast rasterizing unit, hardware ex- 
penses for image mapping become substantial and algorithms must 
therefore be chosen and adapted carefully. Thus, the straightfor- 
ward approach of taking the mean of all image pixels t (or texels) 
inside the footprint for the screen pixel’s color C(z, y) 

(1) 
a=1 

or, more generally, defining a filter kernel h, which is convolved 
over the image t(cr, p) (see also [l]) 
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Figure 1: Summed-Area Table. 

C(5Y) = JJ (h(s - Q, Y - P) . t(a, PI) da@ (2) 

can be excluded from further discussions due to the long com- 
puting times. Summed-area tables [2] are an attempt to simplify 
and speed up the above operation by creating an appropriate data 
structure, the summed-area table, for holding prefiltered data. This 
data structure is then accessed during rendering. This can be done 
with different access schemes, for example with a single access per 
footprint comer, or a 4-access bilinear interpolation per footprint 
comer. Instead of the color value, each cell of a summed-area table 
holds the sum of all values in a certain region, usually the rectan- 
gle defined by the position of the cell and the origin as indicated in 
Figure 1. 

Given the bounding box of a footprint, C(Z, y) is then approxi- 
mated by accessing the table four times and performing the follow- 
ing operation: 

C(z,y) = T4 - T3 - T2 + Tl. (3) 

However, since the footprint of a pixel is not rectangular, but can 
be considered as a quadrilateral in the general case, a potentially 
large number of texels within the bounding box contributes without 
reason to the pixel color. Glassner proposes a solution in [3] to 
incrementally remove rectangles within the bounding box to best 
approximate the footprint at the cost of increased computing time. 

For two reasons, summed-area tables are not well suited for di- 
rect hardware implementation: 

1. For each pixel, four accesses must be made that can have 
very different locations, depending on the bounding box of 
the footprint. This limits the achievable texturing speed. 

2. If  the color components are 8-bit quantitres, a 1024 x 1024 
summed-area table requires entries as wide as 28 bus for each 
color component. 

Another approach is to create a set of prefiltered images, which 
are selected according to the level of detail (the size of the foot- 
print) and used to interpolate the final pixel color. The most com- 
mon method is to organize these maps as a MIPmap as proposed by 
Williams [9]. In a MIPmap, we denote the original image as level 
0. In level 1, each entry holds an averaged value and represents the 
area of 2 x 2 texels of level 0. This is continued, until we reach the 
top-level, which has only one entry holding the average color of the 
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whole texture. Thus, m a square MIPmap, level n has one fourth of 
the size of level n - 1. 

The shape of the footprmt IS assumed to be a square of srze q2, 
where q 1s suggested m [4] as 

(4) 
In equation (4), u and w denote texture coordinates and z and y  

are screen coordmates 
The MIPmap IS accessed by the texture coordinate pair (u, V) 

of the pixel center and the level X whrch m the general case is a 
function of log, q. X can be expressed with its integer part X, and 
its fractional part Xf as 

(5) 

Nearest-neighbor sampling is inadequate due to severe ahasmg 
artifacts. Instead, the levels X and X + 1 are accessed and billnearly 
interpolated at (u, u). The final pixel value is lmearly interpolated 
from the result m both levels according to Xf . 

Trrlmear MIPmappmg is a reasonable candidate for a hardware 
implementation due to its regular access pattern. Due to thts, 
there exist approaches and architectures (for example [7]) to rmple- 
ment this directly into logic-embedded memories. Due to the high 
costs of chip development and chip productions, these approaches 
weren’t realized for a broad range of systems. Nevertheless, trihn- 
ear MIPmapping is the classrcal filtermg approach used over the last 
decade m graphics systems and it is nowadays available m nearly 
every PC graphics card. But the approximation of the footprmt with 
a square hmits the MIPmap approach severely and people will try to 
improve it as graphics systems get more powerful on the one hand 
and the increasing demand for high quality, but cheap visualizahon 
on the other hand. 

One filtering approach, called Footprint Assembly, is described 
in detail m [7]. Its basic idea is the approxrmation of the projection 
of the pixel on the texture by a number N of square nupmapped 
texels. The pixel’s deformation is neglected and it is approximated 
with a parallelogram given by 

rl=[g,$j andra= e,$ [ 1 (6) 

The pixels center p m the texture map is the mtersection pomt 
of the diagonals dl and da of the parallelogram. The direction r in 
whrch to step from the pixel center to best approximate the footprmt 
is determined from the larger of the two vectors rl and ra and 

mNr1 I , b-al , dl , da) 

(7) 

rounded to the nearest power of two as the number of square 
mipmapped texture elements for the footpnnt. A difference vector 
Ar = (AU, AU) is constructed and a sequence of sample points 1s 
generated to cover the footprint. 

Footprint assembly 1s able to produce high quality texture fil- 
tering, but it has the drawback of bemg computationally intensive 
Therefore, [7] proposes a hardware for a logic embedded memory 
device, which can perform this filtering method during memory ac- 
cess. 

P * 

a P. 
I 

. 

Figure 2. Defimtion of the footpnnt 

This approach has been adopted m the TALISMAN architecture 
which uses a weighted anisotropic filtering, see 183. 

All of these approaches are difficult and costly to be integrated 
into current rastenzmg hardware, since they either require a great 
amount of computatronal power or are based on very special system 
architectures. 

It is the goal of thus paper to develop a method, which provides a 
filter quality comparable with footprint assembly but which can be 
more easily integrated into actual graphics architectures. 

2 FAST FOOTPRINT FILTERING 

Startmg from the classrcal trilmear MIPmappmg, we can easily de- 
tect that this filtering method wastes texel mformatron by approxi- 
mating the footprint by a square, where the footprint 1s an arbitrary 
quadrilateral. 

Improving filtermg means to find a tradeoff between loading 
more texels to texture a screen pixel and using the loaded texels 
more efficiently. 

The number of texels that can be loaded for real-time filtermg 
is restricted due to strict constants like memory bandwidth or bus 
width. We will call this limit M. We have to respect tlus limrt, 
smce otherwise system performance will decrease heavily. 

Therefore, we will use the MIPmap data structure to be able to 
precalculate filtermg levels. We will access this filtering pyrarmd 
with a hfferent approach which we call Fast Footprint MIPmap- 
ping. 

2.1 Calculating a MlPmap level 

The first problem we have to solve is depicted in Figure 2 which 
shows a footprmt [Pa, 9, Pz, F’s]. Its bounding box has m texture 
coordmates the extension (u, w). We want to load a rectangle of 
a x b texels from MIPmap level X to cover the footpnnt and to 
respect at the same time the limit M. 

For calculating a, b, and X, we start with the following consrder- 
ations: 

From (u, u), we get the aspect ratio f  = % of the boundmg box. 
Then we can calculate 

a b=Mandf=+~= 
f  

M+a=JMf. (8) 

We set 

(9) 
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Q1 
Figure 3: Transformation of comer points to integer positions. 

These values can be used to calculate two MlPmap levels m and 
n for a’ and b’ 

U 
- = a’ 

V 

2" 
-=b’=,m=~,n=!$$ (lo) 

'2" 

From this, we get X as 

X = [max(m, n)] (11) 

With this, we know which level we have to access to get the 
maximum amount of texture information to cover the footprint and 
to respect M. 

2.2 Definition of the weighting table 

To do a correct filtering, the contributions of the single texel values 
to the final pixel value have to be calculated. This is done with a 
precalculated lookup table, since calculating this on the fly would 
be too expensive. 

We first transform the comer points of the footprint to the integer 
positions of the texel grid in level X. This is shown in Figure 3 and 
generates the quadrilateral [Qc, Qi, Qz, Qa]. Using the orientation 
of the quadrilateral [Qc, Qi, Qs, Qs], we can ensure a non empty 
Interior of the transformed points by either adding 0.5 or subtracting 
0.5 before snapping to an integer position. 

The contribution of a texel to the footprint is now a fixed value. 
We can calculate for each possible footprint a vector w consisting of 
M weights which represent the footprint’s coverage for each texel. 
Computing the weights 1s a preprocessing step and once it is done, 
we can store the result in a lookup table. With the help of these 
weights, a filtering can be performed, since they represent the cov- 
erage of the footprint. We store the texels fetched from memory in 
a linear array T and the weighting vectors in a weighting table W. 

The filtered pixel value C can then be calculated as 

M 

C = c WI. WI)). (12) 
a=1 

The weighting vectors allow an easy and efficient computation of 
the footprint’s coverage, but since a footprint is a quadrilateral hav- 
ing four comer points, a huge amount of weighting vectors has to 
be calculated and stored. For the situation in Figure 3, where we 
have M = 16, precalculating the weighting vectors for all possible 
footprints would result in 25.24.23.22 = 303,600 vectors, since 
we have 4 x 4 texels, but we have 5 x 5 possible comer positions. 

Each vector has 16 entries and we would have to provide storage 
for 4,857,600 weights. 

Figure 4: Divide footprint for table lookup. 

By dividing the quadrilateral [&a, Qi, Qz, Qs] into two triangles 
A i and Aa and filtering each of them separately, we can reduce the 
number of needed weights significantly, see Figure 4. For the given 
example, we need only 25 . 24 . 23 = 13,800 vectors requiring 
220,800 weights. 

This amount can be reduced even further, if we don’t transform 
the comers to integer positions of the texel grid, but directly to the 
mid-points of the texels they lie in. This is not as accurate as using 
the integer positions, since if a comer point of a texel lies on such an 
integer position, it can be snapped to up to four possible neighbor- 
mg mid-points. Therefore, this snapping is no longer a unique solu- 
tion and we have to use a heuristic to ensure a consistent snapping 
if a comer point is snapped more than once in successive footprints. 
We choose always the mid-point to the top and the right for comer 
points on integer positions. With this, aliasing due to inconsistent 
mid-point snapping can be prevented and the error is in maximum 
the half of a texel. In the example from Figure 2 are 4 x 4 mtd-point 
locations possible and we end up with 16.15 . 14. 16 = 53,760 
weights. 

The weighting table W is depicted in Figure 5. It is accessed 
in three stages with a multi-stage lookup structure, one for each 
comer point. For the example above, the lookup structure consists 
of 16+16.15+16.15.14 = 3616 pointers formtd-point snapping. 
In Figure 5, a single byte value in the range [0..255] represents the 
weight that will be linearly scaled to [O..l] during the weighting 
calculation. 

Currently, we are numbering the comer positions regularly as de- 
picted in Figure 4. Some combinations of comer points can never 
occur. There he always more than two comer points on the bor- 
ders of T respectively on the mid-points of border texels, since 
T can be ortented this way when covering the footprint in level 
X. By exploiting this fact, the two comer points on the border 
can be placed at 12 respectively 11 different positions in the ex- 
ample above. We can therefore reduce the amount of necessary 
weights again to 12 * 11 * 14 * 16 = 29,568 values. Especially 
when M is small, we can calculate a whole series of weighting ta- 
bles in advance for all possible bounding boxes with a . b = M. 
For M = 16, the table size needed is 3036 vectors *16 weights 
= 48,576 wetghts for the table with 4 x 4 texels. The one for 2 x 8 
needs 139,840 weights (2 x 8 and 8 x 2 are the same due to sym- 
metry, tables with height or width of only one texel make no sense). 
With this, we can better approxtmate elongated and distorted foot- 
prmts. 

Table 1 summarizes the sizes of W and the pointer structures 
for different values of M. The values are calculated for integer 
positions (I) and for mid-point snapping (MS). Since in current ar- 
chitectures, A4 will realisttcally be restrtcted to be 5 16, we have 
no space problem with having more than one table, since W and 
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Figure 5: Accessing the weighting table. 

M size of W (in bytes) 

8 (MS 2x4) 8 * 7 * 6 *8=2,688 
8 (I 3x5) 12*11*13 *8=13,728 
16 (MS 4x4) 12*11*14 *16=29,568 
16 (MS 2x8) 16*15*14 *16=53,760 
16 (15x5) 12*11*23 *16=48,576 
16 (I 3x9) 20*19*23 *16=139,840 
32 (MS 2x16) 32*31*30 *32=952,320 
32 (MS 4x8) 20* 19*30 *32=364,800 
32 (I 3x17) 36*35*49 *32=1,975,680 
32 (I 5x9) 24*23*49 *32=865,536 
64 (MS 8x8) 28*27*62 *64=2,999,808 
64 (I 9x9) 32*31*79 *64=5,015,552 

number of 
pointers 
400 
2,955 
3,136 
3,136 
14,425 
18,279 
30,784 
30,784 
127,55 1 
87,165 
254,080 
518,481 

Table 1: Sizes of the structures needed for fast footprint MIPmap- 
ping. 

the pointer structures needed to access W have still feasible sizes. 
But even if we increase M to 32 or 64, we need approximately 2.5 
MB or 7 MB of memory to store W and the pointer structures (one 
pointer is assumed to be 3 bytes to address 224 possible values). 
These sizes could be already realized, but eventually they are not 
economically feasible in current low cost graphic cards. Extrapo- 
lating the advances in chip technology that can be seen for example 
in the rapidly growing size of texture memory on these low cost 
cards, weighting tables with 32 or 64 can be feasible in the near 
future. Using the lookup table W, two weighting vectors wi and 
wa belonging to the triangles Ai and As can be generated. The 
filtered pixel value C can now be calculated as 

M 

c = c (T[z] (Wl[Z] + w2[4) . (13) 
a=1 

2.3 HARDWARE REALIZATION 

The algorithm shown above can be realized with standard hardware 
components and is organized in a pipeline having the following suc- 
cessive stages: 

l Determination of the weighting vector 
Here we need a multi-stage lookup unit consisting of multi- 
plexers and decoders and a ROM for the vectors. The umt 
converts the indices of the comer vertices into an access to 
the ROM table. As already depicted, not all combinations of 
comer indices can occur. This is coded in the structure and 
saves memory in the ROM table. We have currently not used 
the symmetry of triangles covering the weighting mask to fur- 
ther reduce the number of necessary vectors, since this would 
mean a reordering of the footprint comers that would need ad- 
ditional hardware. We want this design to be stream-line, only 

consisting of lookups, texel fetches and the final evaluation of 
the convolution in Equation (13). This ensures speed and can 
be realized more economically. 

l Texel Array T 
The values that are read from texture memory are stored here 
before they are combined with the weights. The texture mem- 
ory access itself can be greatly accelerated by using banking 
and caching techniques, since adjacent footprints have a co- 
herent memory access pattern (see [6]). 

l Evaluation of Equation (13) 
This evaluation can be performed with the help of a scalar vec- 
tor multiplication unit and a second vector unit for calculating 
the sum of a vector’s components. 

For our approach, we need no interpolation units, which are nec- 
essary for a good quality bilinear MIPmapping. Instead we use 
lookup tables and a unit which calculates the final pixel value given 
m equation (13). In our opinion, this hardware effort is comparable 
to the one needed for trilinear MIPmapping and can also deliver a 
similar performance, since only basic arithmetic functions are used. 

3 RESULTS AND DISCUSSION 

We have produced our measurements with a software prototype of 
the algorithm built into a ray tracing system. Also the other filters, 
trillnear MIPmapping and footprmt assembly, were implemented. 

To compare the approaches not only visually, but also statisti- 
cally. we show in Figure 16, Figure 17 and Figure 18, how our algo- 
rithm behaves in selecting MIPmap levels. The pixels are rendered 
in this ray tracer from the top row to the bottom row. Therefore, we 
can report, when switches between MIPmap levels occur, since our 
test scene consists of a textured, flat plane which is sampled with 
the ray tracer. In these diagrams, the horizontal direction represents 
the pixel number as the calculation proceeds. In vertical direction, 
the used MIPmap level is depicted. It turns out, that our method 
switches earlier to lower levels compared to trilinear MIPmapping, 
and a bit later than foot print assembly. This is mainly due to the 
effect explained in Figure 6. Rather distorted footprints extend the 
bounding box as depicted for the left footprint and we are therefore 
forced to switch to a higher MIPmap level, but will still sample the 
footprint correctly with the help of the weighting vectors. It can be 
clearly seen, that increasing the table size M reduces this behavior 
and for M = 16 and M = 32, fast footprint MIPmapping catches 
up with footprint assembly. 

Setting M to 32 is reasonable, since modem graphics chips like 
the Riva TNT chip produced by NVidia don’t load any longer only 
the 8 texels necessary for a trilinear MIPmapping. This special 
chip supports anisotropic filtering and takes up to 8 bilinear samples 
from up to two adjacent mipmap levels and supports anisotropy of 
up to 2: 1, With this, already 32 texels have to be loaded. 

The current implementation has following features: 

l Anisotropic filtering is only necessary for a small amount of 
footprints with heavy distortions. It is therefore possible, to 
combine trilinear MIPmapping and fast footprint MIPmap- 
ping and to use the later one to filter only distorted footprints. 
This reduces the amount of texture data accessed, since for tri- 
linear MIPmapping, only eight texel values have to be loaded. 

l We have currently not a fixed limit M for texel fetching, but 
we adopt this limit to the footprint characteristics. I f  foot- 
prints with a difficult shape have to be sampled, we raise the 
size of M up to 2 * M which results in a slower sampling due 
to two steps of fast footprint MIPmapping, but means also im- 
proved sampling quality. Footprints, that are more isotropic, 
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Figure 6: Using two arrays for distorted footprints. 

are sampled with smaller tables having less than A4 texels or 
they are filtered with trilinear MIPmapping. Furthermore, we 
use normal bilinear interpolation to access the first level of the 
MIPmap, if the size of a footprint is smaller than the pixel size 
at the finest level. 

With this we get a better sampling quality without increasing 
the overhead as much as fixing A4 on a high level. 

We have analyzed this for Figure 9 and the following distribution 
of texture accesses can be measured: 

Pixels to be filtered 1 275,334 
Pixels that can be I 
filtered with trilinear MIPmapping 
Pixels that have to be 

246,678 

filtered with Fast Footprint MIPmapping 28,656 
Pixels with T between M and 2 * M 8,836 

In Figures 7 - 15, we show the visual behavior of our algorithm 
compared to the other two. The images are all calculated with a 
screen resolution of 600 x 600 pixel. Setting M = 16 results in 
an improvement compared to trilinear MIPmapping, but is still a 
little bit lower m quality than footprint assembly. M = 32 reaches 
the quality of footprint assembly. This can be clearly seen at the 
checker board pattern, which has a resolution of 1024 x 1024 and 
is therefore a little bit blurry in the foreground due to interpolation, 
since its resolution is not sufficient in the foreground area. 

In Figures 11 - 15, a scene with a map texture having 2048 x 
2048 texels was used. The resolution is sufficient even for the fore- 
ground and it turns out, that for such a “real-world” texture which 
is no artificial test pattern like the checker board, fast footprint 
MIPmapping with M = 16 is sufficient to get a comparable re- 
sult as with footprint assembly. The difference to M = 32 can only 
be seen in a difference image. Nevertheless, even with fixing M to 
eight texels we get a significant improvement compared to trilinear 
MIPmapping in terms of the image being less blurred, see Figure 
13. Eight texels is the amount of texture information which has to 
be fetched for the actual trilinear MIPmapping. 

It is important to mention the smooth, not visible transition be- 
tween the MIPmap levels without interpolating between MIPmap 
levels as it is done using tnlinear MIPmapping. This is necessary to 
prevent aliasing during animation. We have also confirmed this by 
calculating animations for the checkerboard scene showing smooth 
transitions between the frames without aliasing. In figures 19 - 21, 
the histogram of the difference image of an epsilon change in cam- 
era position is shown (the intensity is scaled logarithmically). The 
camera was viewing the checker board scene in a diagonal direction 
which generated rather anisotroptc footprints. In the histograms of 
fast footprint MIPmapping, no peaks due to aliasing can be found 
in the right area of the histogram. Furthermore, the extension of the 

non-zero values is more or less the same for trilinear MIPmapping 
and fast footprint MIPmapping. Therefore, we can claim frame-to- 
frame coherence. 

4 CONCLUSIONS AND FUTURE WORK 

We have presented a new approach for texture filtering to prevent 
aliasing during texture mapping. In contrast to classical approaches, 
our method exploits the texels fetched from texture memory in a 
more optima1 way but still remains feasible for implementation in 
hardware. Furthermore, it is scalable to respect the internal band- 
width of a graphics system. 

The next step concerning this interesting project will be to en- 
hance the filtering quality further. Currently, we investigate, how 
to access not only one MIPmap level, but to sample the footprint 
with a number of independent and smaller arrays on different lev- 
els of the MIPmap. This seems to be especially useful for pixels 
which have extended footprints. We can further reduce the loading 
of texels which are not needed, but contained in the loaded texel 
rectangle, if we adopt T better to the shape of the footprint, see 
Figure 6. On the other hand, this will cost addttional hardware and 
introduce latency, since the footprint has to be divided temporarily. 
Doing this is therefore a tradeoff decision between the cost of the 
fast footprint structure dictating how much weighting tables and in 
which size can be realized, the bandwidth of texture memory, and 
additional costs and latency introduced by footprint subdivision. 

Another approach will be to use a compression scheme for stor- 
ing the weighting table. On one hand, we can further use symmetry 
arguments to reduce the number of vectors. On the other hand, 
compressing the vectors themselves is also possible. Furthermore, 
we consider building a hardware prototype implementation to ver- 
i fy the algorithm not only as a software prototype. 
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Figure 7: Trilinear MIPmapping. Figure 9: Fast footprint MIPmapping using M = 16. 

Figure 8: Footprint assembly. Figure 10: Fast footprint MIPmapping using M = 32. 
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Figure 11: Trilinear MIPmapping. Figure 13: Fast footprint MIPmapping using A4 = 8. 

Figure 12: Footprint assembly. Figure 14: Fast footprint MIPmapping using M = 16. 
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Figure 19: Histogram of trilinear MIPmapping. 

Figure 21: Histogram of fast footprint MIPmapping, A4 = 16. 

Figure 20: Histogram of fast footprint MIPmapping, A4 = 8. 
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