
EUROGRAPHICS ‘98 Tutorial

© 1998 Institute of Scientific Computing, Department of Computer Science, Swiss Fed-
eral Institute of Technology (ETH) Zurich, Switzerland.

Multiresolution Compression and Reconstruction

Oliver G. Staadt, Markus H. Gross, Roger Weber

Department of Computer Science, ETH Zürich

Email: {staadt, grossm, weber}@inf.ethz.ch
WWW: http://www.inf.ethz.ch/department/WR/cg

Abstract

This paper presents a framework for multiresolution compression and geometric reconstruction of arbitrarily
dimensioned data designed for distributed applications. Although being restricted to uniform sampled data,
our versatile approach enables the handling of a large variety of real world elements. Examples include non-
parametric, parametric and implicit lines, surfaces or volumes, all of which are common to large scale data
sets. The framework is based on two fundamental steps: Compression is carried out by a remote server and
generates a bitstream transmitted over the underlying network. Geometric reconstruction is performed by the
local client and renders a piecewise linear approximation of the data. More precisely, our compression scheme
consists of a newly developed pipeline starting from an initial B-spline wavelet precoding. The fundamental
properties of wavelets allow progressive transmission and interactive control of the compression gain by
means of global and local oracles. In particular we discuss the problem of oracles in semiorthogonal settings
and propose sophisticated oracles to remove unimportant coefficients. In addition, geometric constraints such
as boundary lines can be compressed in a lossless manner and are incorporated into the resulting bit-stream.
The reconstruction pipeline performs a piecewise adaptive linear approximation of data using a fast and easy
to use point removal strategy which works with any subsequent triangulation technique. As a result, the pipe-
line renders line segments, triangles or tetrahedra. Moreover, the underlying continuous approximation of the
wavelet representation can be exploited to reconstruct implicit functions, such as isolines and isosurfaces more
smoothly and precisely than commonplace methods. Although it scales straightforwardly to higher dimensions
the performance of our framework is illustrated with results achieved on data very popular in practice: para-
metric curves and surfaces, digital terrain models, and volume data.

Keywords: wavelets, isosurfaces, volumes, triangulation, tetrahedralization, meshing, oracles.

1. Introduction

1.1. Motivation and Previous Work

Geometry compression is an attractive and emerging sub-
field in computer graphics research which has gained much
importance in recent years. Especially when aiming at dis-
tributed, interactive rendering and visualization applica-
tions, many of which are closely related to the WWW,
efficient data encoding is an essential prerequisite for both
storage efficiency and real time performance. In this con-
text, we often face client server setups where a remote
server maintains complex data sets which have to be
browsed, inspected, analyzed or rendered with low latency
by a local client. Apart from rendering complex scenes,
consider the case of visualizing large digital terrain or med-
ical volume data sets located somewhere in a remote data
base: For fast searching and browsing it is often sufficient to

generate a low level of detail representation. Conversely, it
is sometimes desirable to preserve interesting features such
as boundaries, isolines, or spatially appealing regions in full
detail while keeping the overall through-put of the commu-
nications channel as low as possible. Fig. 1 illustrates some
examples where different criteria hold for a meaningful data
representation.

Hence, the underlying data representation should be
flexible and has to encompass both global and local level of
detail while accounting for constraints imposed by special
data features. Obviously, as opposed to standard image
compression methods, information loss is a manifold prob-
lem and has to be controlled much more carefully in graph-
ics applications. As a consequence, elaborate data encoding
and compression methods are called for which successfully
address the situations featured above. While, on the client
side, visual data inspection and analysis is tightly related to

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

the computation of geometric reconstructions from the data,
mostly in terms of piecewise linear elements such as line
segments, triangles, or tetrahedra. It is therefore desirable to
perform reconstructions efficiently from the bitstream of
incoming data. Moreover, geometry should be refined pro-
gressively as more and more data arrives at the client. All
representations have to be adaptive, in the way that the
number of triangles has to vary as a function of the client’s
performance and interest while still providing a meaningful
representation.

It is clear that much successful research effort has been
spent on developing appropriate methods for geometry
compression. Early approaches go back to Douglas
et. al. [6] who proposed a simplification method for line
segments. We can also find a vast amount of literature on
mesh representation strategies, a good survey of which is
provided by Heckbert et. al. [11]. Later, Deering [5] for
instance, proposed a scheme to compress triangular shapes
and their attributes. Hoppe [12] and Popovic et. al. [16]
suggested the concept of progressive meshes for triangu-
lated shapes where edge split and collapse techniques lead
to a continuous hierarchy of levels of detail of an object and
constraints may be imposed easily. Others [15], [7] dis-
cussed representation and parametrization strategies for
meshes of arbitrary topology using linear wavelets. How-
ever, high compression gain along with continuous approxi-
mation requires smooth, higher order polynomial wavelets,
which are difficult to define over arbitrary meshes. The spe-
cial case of digital terrain data was addressed, for instance,
by Lindstrom et. al. [14] and Gross et. al. [10]. The latter
one used an underlying wavelet representation to govern
mesh refinement and featured both global and local levels
of detail.

In summary, much effort has been spent on finding
appropriate mesh simplification and representation methods
which allow for fast and progressive transmission and ren-
dering of complex scenes. However, little attention has been
spent on the following issues:

• Many technical applications in practice, such as
medical imaging systems, produce raw data sam-
pled over uniform grids. Due to their complexity,
these data sets have to be compressed and stored in
a remote database server. Thus, visual inspection
and browsing requires computation of piecewise
linear geometric reconstructions from the com-
pressed data set.

• Up to now compression was mostly considered a
mesh representation problem. The manifold aspects
of a full compression pipeline such as precoding,
global and local oracles, quantization, and optimal
bit allocation have rarely been discussed in full
detail.

• Compression and reconstruction should be embed-
ded in a framework which provides an interface for
the client and offers a testbed for individual meth-
ods. In particular, both lossy and lossless compres-
sion must be combined to satisfy demands arising
from geometric reconstructions.

1.2. Our Approach

The research presented in this paper was stimulated by the
issues discussed above. The goal was to provide an efficient
and versatile compression and reconstruction pipeline
which accounts for client-server setups. The framework is
hybrid in the sense that it combines both lossy and lossless
compression. Being restricted to uniform sampled data, we
can use bounded B–spline wavelets, such as in [20] and
[18], for data precoding. Some of their relatives have suc-
cessfully been used in image compression [22]. The under-
lying approximation features high compression gain,
elimination of boundary problems, multiresolution progres-
sive setups, and both global and local oracles within the
error bounds of . Furthermore, B–spline wavelets allow
one to build linear time decomposition and reconstruction
schemes forming a basis for fast compression and decom-
pression. The geometric reconstruction of the data essen-
tially combines a generalized point removal/insertion
strategy with a subsequent triangulation. We restrict our
attention to vertex removal and keep it independent of the
meshing. That is, we consider a meaningful triangulation as
a plug-in, such as provided by theqhull library [1]. Special
emphasis, however, is given to implicit reconstruction tasks
which occur in many applications. For this, we exploit the
smoothness properties of the underlying approximation
which allows more smooth and precise computation of
implicit intersections than current methods. Again, triangu-
lation algorithms, such as marching tetrahedra [2], are pro-
vided as plug–ins from other sources. Thus, our framework
features modular and object oriented design, currently
embedded inAVS/Express.

Fig. 2 depicts an overview of the framework. The indi-
vidual components can be combined according to require-
ments of the application. The remote server performs data
compression and is governed by parameter settings for glo-
bal and local oracles, and a bitstream received by a client is
produced. It is at this step where geometric reconstruction
and interactive visualization are computed. The quality of
the geometric reconstruction computed by the client can be
controlled depending on network performance, computa-
tional and storage capabilities of the client, or on the data
themselves.

We are aware that the restriction to uniform sampled
data might be considered a major drawback. We believe,
however, that the rich variety of applications covered by our
approach justifies the presented research.

Figure 1: Illustration of situations arising from visual inspection
of data sets: a) 2D nonparametric surface. b) 2D parametric sur-
face. c) 3D implicit isosurface.

a) b) c)

L2

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

The remainder of our contribution is organized as fol-
lows: In Section 2 we describe the fundamentals of the mul-
tiresolution data precoding emphasizing new methods for
the construction of global oracles for semiorthogonal B–
spline wavelets. Section 3 addresses all relevant issues
related to our compression strategies for quantization and
bit allocation. A fast and easy to use geometric reconstruc-
tion technique based on progressive point removal/insertion
is explained in Section 4. The special problem of implicit
interpolation for isolines and -surfaces is elucidated in Sec-
tion 5. Finally, we illustrate the versatility of our framework
with various examples ranging from different surface types
to volume data.

2. MR Approximations

In this section we discuss the mathematical fundamentals of
the preprocessing we employ for data preconditioning. As
stated earlier, B–spline wavelets are used as a precoding
transform since they combine various advantageous fea-
tures, such as vanishing moments, continuous approxima-
tion, bounded interval definition, linear time algorithms,
and localization. For reasons of readability, we first review
some basics of cardinal B–spline wavelets. However, our
attention is mostly directed to the definition of global ora-
cles, that is, schemes to reject unimportant coefficients. Our
global oracle consists of a greedy algorithm resulting from
an elaborate analysis of errors in semiorthogonal set-
tings [9], an excerpt of which is given in Section 2.2. Addi-
tionally, we will demonstrate how local oracles reject
coefficients in unimportant spatial regions and thus enable
the construction ofelectronic magnifying glassesfor inter-
active data inspection. For reasons of simplicity, we per-
form all computations for 1D functions, but the results
extend straightforwardly to higher dimensions.

2.1. B-Spline Wavelets

B–spline wavelets were initially introduced by Chui [4],
and were extended to bounded intervals by [18] and [20],
while nonuniform knot sequences were addressed for
instance by [3]. Due to a rich variety of literature in this

area, we restrict our introduction to those topics essential
for an understanding of our framework.

B–spline wavelets can be constructed from a multireso-
lution hierarchy of cardinal B–spline scaling functions.
Semiorthogonality invokes an additional degree of freedom,
however. Thus, approaches as in [18] or [20] end up in
slightly different construction schemes. We adapted the
methods of Quak et. al. [18] to construct B–spline wavelets
of arbitrary order bounded to the interval.

Assuming the reader is familiar with some fundamen-
tals of discrete wavelet transforms (DWT), the implementa-
tion of the forward transform is carried out by sequences of
projection operators , where stands
for the decomposition level. An initial function is
mapped from the higher resolution approximation space

onto a lower resolution space and onto its
orthogonal complement space . Given the coeffi-
cient vectors and for the scaling functions ,
and wavelets in the 1D setting, with

(1)

,

the decomposition is performed by matrix operations

. (2)

Due to the semiorthogonality, we require the inverse
operators and to compute the reconstruction with

. (3)

It can be easily proven [18] that the operators relate to
each other by

. (4)

In the case of cardinal B–spline wavelets, sparse opera-
tors and come along with dense matrices and

. In order to construct linear time algorithms for both
decomposition and reconstruction, it is sufficient to know
the sequences and to perform an additional base
transform of the coefficients into their duals and
using the inner product matrices and . This results
in a decomposition and reconstruction scheme as depicted
in Fig. 3.

Note that the decomposition involves solutions of the
sparse linear systems of type for each itera-
tion and for the last iteration step. Fortu-
nately, this can be accomplished in linear time as well. For
brevity we abandon all mathematical details associated with
the construction of these transforms and refer the reader to
[18]. Instead, we direct our attention in the following sec-
tion to the problem of global oracles.

2.2. Global Oracles

A global oracle rejects unimportant wavelet coefficients
from the transform while minimizing a given error norm. It
is clear that the global oracle controls the compression and

Figure 2: Illustration of the conceptual components of our com-
pression and reconstruction framework embedded into a client-
server setup

Data

Wavelet Transform

Oracle

Compression

Constraints

Decompression / WT-1

Point Removal

Meshing

Rendering

compression pipeline decompression pipeline

clientserver
progressive

compressed bitstream

transmission

L2

Am Bm, m 1…M=
f x()

Vm Vm 1+

Wm 1+

cm dm φi
m

x()
ψ i

m
x()

ci
m

f φi
m,〈 〉= di

m
f ψ i

m,〈 〉=

i : 1…N 2m⁄ order 1– , order: B-Spline order+

c
m 1+ Amcm

= dm 1+ Bmcm
=

Pm Qm

cm Pmcm 1+ Qmdm 1+
+=

Am

Bm
------- Pm

|Qm[]
1–

=

Pm Qm Am

Bm

Pm Qm

c̃m d̃m

Φm Ψm

Ψm dm⋅ d̃
m

=
ΦM cM⋅ c̃

M
=

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

is essential for information loss. In orthogonal settings,
optimal oracles can be constructed easily by sorting coeffi-
cients according to their magnitude, and by rejecting the
smallest ones from the list [20]. This strategy is common-
place in many applications and offers good results [8].
Unfortunately, in semiorthogonal spaces, construction
becomes more difficult and has hardly been addressed in
depth. Maximum distance norm oracles have been proposed
by [21] for biorthogonal wavelets. Mathematical analysis of
the behavior of approximation errors for semiorthogonal
wavelets is closely related to signal energy computations.

The computational scheme for the global oracle is
based on the observation that the energy of a function
expanded by semiorthogonal wavelets is obtained by the
following sum of scalar products:

(5)

• : scalar product operator.

Due to the orthogonality of different complement
spaces it is sufficient to analyze the error norm of a single
space . In order to derive an incremental method we
assume out of coefficients in this
space to vanish. The approximation error is determined by
the following relation:

(6)

where represents the residual approximation and
denotes the set of all coefficients being rejected

from the initial transform. In a next step we compute how
the upper error behaves when rejecting an arbitrary ,

assuming coefficients to have already been rejected in
previous procedures. That is, we compute an expression for
the error increment generated by a single coefficient.

(7)

Equation (7) expresses the dependence of the error on
an increment of the rejection set. We will refer to it as the
conditional approximation errorin all subsequent discus-
sions. The factor of 2 follows immediately from the sym-
metry of the inner product matrix. Apparently, the
conditional increment is computed by adding one row and
one column to the matrix type structure representing the
double summation of (6), such as depicted in Fig. 4. In
summary, the error can be updated by adding the products
of the coefficient and the elements of the rejection set
times the associated entry of the inner product matrix. Note
that this error can be considered a score which reflects the
conditional importance of an individual coefficient.

The relations derived represent an essential step
towards the development of an oracle. They allow one to
predict how the approximation error changes when reject-
ing an individual wavelet coefficient under the precondition
that K other coefficients have been rejected earlier. Based
on this fundamental relationship, it is possible to develop a
greedy rejection algorithm which optimizes locally and
computes a minimum error rejection set of coefficients. In
essence, the greedy oracle operates as follows: It first
assigns an initial score to all wavelet coefficients of all iter-
ations . The score is defined by the overall conditional
approximation error, which governs the oracle. In a second
step, the oracle iteratively selects the coefficient with the
minimum score, rejects it, and recomputes the scores of all
other coefficients. The iteration loop runs up to a predefined
number of cycles or up to a predefined error bound .
As with equation (7), the score can be recomputed by an
appropriate increment after each iteration. Thus we end up
with a simple reject–and–update scheme for our oracle. The
pseudocode is provided below:

Figure 3: Linear time decomposition and reconstruction pyra-
mids for cardinal B–spline wavelet transforms a) decomposition. b)
reconstruction.

cm c̃mΦmcm PM()T
c̃M 1–

c̃M 1– c̃M

QM()T
c̃M 1–

d̃
M

ΨMdM d̃
M

=

dM

…

cM

ΦMcM c̃M
=

a)

c̃m d̃
m

: coefficient vectors in dual space, T: transpose,

…

cM

dM

PMcM

QMdM

…
Pm 1+ cm 1+

Qm 1+ dm 1+

cm

…

cm 1+

dm 1+
b)

…

L2

f x()

f x()
L

2
2 cM c̃

M• dm d̃
m

•
m 1=

M

∑+=

W
m

K N 2
m

order 1–+⁄

∆ f
m

x() ∆ f '
m

x()– L
2

2

Rej K()

di
mψ i

m
x()

i Rej K()∈
∑ di

mψ i
m

x()
i Rej K()∈

∑,=

di
m

d j
m

j Rej K()∈
∑

i Rej K()∈
∑ ψ i

m
x() ψ j

m
x(),〈 〉⋅=

∆ f '
m

x()
Rej K()

dk
m

0≠

Figure 4: Illustration of the conditional approximation error in-
crement.

K

∆ f
m

x() ∆ f '
m

x()– L
2

2

Rej K k,()

∆ f
m

x() ∆ f '
m

x()– L
2

2

Rej K()
dk

m()
2

2+ dk
m

di
m

i Rej K()∈
∑ ψk

m
x() ψ i

m
x(),〈 〉⋅ ⋅

+=

dk
m

dk
m

di
m ψk

m
x() ψ i

m
x(),()

dk
m()

2

∆ f
m

x() ∆ f 'm x()– L
2

2

Rej K()

m

K Eb

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

Initialize : score[i,m] ← d[i,m] d[i,m];
for i ← 1 to K

for m ← 1 to M do
Search : coefficient[i rej ,mrej]| score[irej,mrej] = min ≠ 0;

Reject : d[i rej ,mrej] ← 0;
if m = m rej && score[i,m] ≠ 0 then

increment[i,m] ← 2 d[i,m] d[i rej ,mrej] y[i,i rej ,m]
+ score[i rej ,mrej] - old_score

else if score[i,m] ≠ 0
increment[i,m] ← score[i rej ,mrej] - old_score;

Update : score[i,m] ← score[i,m] + increment[i,m];
end ;

After each step, thescore[i,m] of a coefficient
d[i,m] represents the overall conditional approximation
error when rejectingd[i,m] . Note that the time–complex-
ity of the oracle equals and applies only on forward
compression.

2.3. Local Oracles and Selective Refinement

A local oracle allows one to control the approximation
locally in interesting regions. Here, the spatial localization
of the basis functions enables us to accentuate particular
wavelets while suppressing the influence of others. In this
understanding, a straightforward local oracle consists of a
weighting function which operates on the coefficients of the
transform. A first approach to this is given in Gross et. al.
[10] who employed a Gaussian weighting. The basic idea is
to assume some ellipsoidal weighting area as a local region
of interest in the spatial domain. Localization of the wavelet
transform enables the projection of scaled and translated
versions of it into wavelet space, where individual coeffi-
cients are influenced. The initial version presented in [10],
however, did not consider the support regions of individual
basis functions, and can lead to some artifacts by rejecting
wavelets ranging into the region of interest. Therefore, we
extended the method with the computation of support and
bounded wavelets.

An illustration for geometry based image representation
is given in Fig. 5. In Fig. 5a, we computed a mesh of the
IEEE Computer Society logo using the approach explained
subsequently. Selectively refined meshes using Gaussian
weighting are presented in Fig. 5b and Fig. 5c respectively,
where the areas of interest are located around different
areas of the logo. For illustration, the mesh was kept artifi-
cially dense.

3. Compression Strategies

This section explains in detail all essential processing steps
associated with the definition of appropriate compression
strategies. We first give an overview of the compression and

decompression pipelines, which are hybrid, in the sense that
they combine both lossy and lossless methods depending on
the type of feature to encode.

Data compression has a long tradition and has been
studied intensively [19]. However, the individual require-
ments of a geometry based approach encouraged us to
design the pipeline explained subsequently. For instance, in
the context of lossy compression, issues of floating point
data handling and quantization must be adapted to our
needs where the structure of the wavelet representation
plays an important role. Furthermore, additional effort has
to be spent on progressive settings. Since the preservation
of constraints, such as iso- or boundary values or lines, is
desirable in many applications we propose a lossless com-
pression strategy for these features.

3.1. Overview

Based on the wavelet precoding steps explained previously,
we designed a compression/decompression pipeline as
depicted in Fig. 6. The forward compression proceeds as
follows: After extraction of constraints, the data set is nor-
malized, wavelet-transformed and both local and global
approximation errors are controlled by the oracles intro-
duced above. Sorting of the individual channels of the WT
transforms the multidimensional array into a 1D data vector
which is quantized and encoded subsequently. Line-con-
straints, as extracted earlier, are fed into a lossless compres-
sion scheme. Conversely, the decompression pipeline
inverts the procedure and prepares the data for subsequent
geometric reconstruction.

3.2. Progressive Lossy Compression

Handling of Floating Point Values First the data is nor-
malized, i. e. the values are scaled to . We decided
to carry this outbefore transformation, because post–nor-

Figure 5: Illustration of the effect of a local oracle on a triangu-
lated image. a) Initial triangulation. b), c) Local oracle is centered
at the upper and central area of the triangulation.

O N2()

a) b) c)

Figure 6: Compression pipeline including both lossless and los-
sy data compression. For decompression, all of the above steps
have to be reversed.

Normalization

Wavelet Transform

Channel Weighting

Oracle

Channel Sorting

C
om

pr
es

si
on

Quantization

Encoding

Input Data

Constraint Extraction

D Coding D Coding D Coding

Arithmetic
Coding

Arithmetic
Coding

Arithmetic
Coding

Merge Bitstream

C
on

st
ra

in
t

C
om

pr
es

si
on

x y data

Merge Bitstream

lo
ss

y

lo
ss

le
ss

0 … 1,,[]

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

malization maps an offset onto small wavelet coefficients
and is more difficult to handle upon compression.

In order to prepare the data for bandwise progressive
transmission, we sort the multidimensional coefficient array
into a 1D vector as displayed in Fig. 7. Here, the array is
traversed from the most significant scaling function coeffi-
cients to the high frequency bands representing fine grained
detail.

Note that the vector contains floating point values and
has to be converted into an array of integers.

Quantization The quantization step comprises a multipli-
cation of the initial floating point coefficients with a factor
of , where represents the number of bits to be
assigned for each coefficient. Subsequent rounding opera-
tions transform the floating point value into signed integer
formats of size . Let be a coefficient, we obtain it’s
quantized version by

. (8)

Note that strongly affects the quantization error and
appears as noise after reconstruction. Lossless quantization
would typically require 23 bits on a 32 bit machine for sin-
gle precision due to the IEEE–754 floating point format.

Coding and Bit Allocation The major task in the pro-
posed compression is to convert the quantized integer vec-
tor into a bitstream of data. Therefore, we employ an
entropy coding scheme in the spirit of JPEG [23]. Assum-
ing that many of the coefficients will equal zero, encoding
is carried out as follows: All nonzero coefficients are repre-
sented by 2–tuples, where the first element represents the
number of bits of the second one. The second element con-
tains the data value itself. All negative numbers are thus
replaced by their absolute values, where in the case of a
positive number the first bit is cleared. This enables the
encoding of the sign. Let’s say to encode a value of 17 we
get (5, 00001), whereas to encode -17 we obtain (5, 10001).
Similarly, 5 is represented by (3, 001), whereas -5 is con-
verted to (3, 101). Note specifically that since the number of
bits is known in advance, the representation is unique and
the additional encoding of the sign bit in the most signifi-
cant bit is possible.

Zero valued coefficients are encoded differently. Here
we recommend a runlength coding up to a length of

which generates a set of 32 new symbols. These

symbols, together with the first part of our 2-tuples, are
stored in a Huffman–table which has essentially 64 entries.
The Huffman symbols are as follows:

• Symbols 0 – 30: First element of a 2–tuple minus 1

• Symbol 31: ‘EOB’ (End Of Bitstream)

• Symbols 32 – 63: Runlength of ‘zero’–coefficients

The scheme proposed here compromises the complex-
ity of the Huffman–table with the maximum number of zero
coefficients (32) to be encoded in one symbol. The ‘EOB’
Symbol usually allows the encoding of long sequences of
‘zero’–coefficients in the least significant positions of our
data vector. However, it is only used where the Huffman
table has not been built individually. The following pseudo-
code illustrates the procedural flow of the scheme:

// N:total number of integer coefficients
// d i : coefficient i
// hufflen i : length of Huffman–code for symbol i
// huffcode i : Huffman-code for symbol i
// WriteBits (l,i):
// appends the last l bits of i to bitsream
// Make2Tupel (i,first,second):
// converts integer into 2-tuple
i ← 0;
while i < N do

if d i = 0 then
j ← 0;
while j<32 && d i ← 0 do inc (i); inc (j); end ;
WriteBits (hufflen j+31 , huffcode j+31);

else
Make2Tupel (d i ,first,second);
WriteBits (hufflen first-1 ,huffcode first-1);
WriteBits (first,second);
inc (i);

end ;
end ;
WriteBits (hufflen 31,huffcode 31);

For brevity we do not explain the construction of the
Huffman–table and refer to standard literature, such as [19].
However, in our framework the Huffman–table is generated
individually for each data set upon compression and is
transmitted along with the data and header information,
which is presented in Table 2. Since the size of the table is
fixed to 64 entries, this does not lead to a notable overhead.
Another solution would be the employment of a generic
table, such as in image compression which, however, drops
the compression gain and, due to the variety of geometric
data, is much more difficult to construct. An example of
encoding a sequence of coefficients is given in Fig. 8.

Figure 7: Conversion of the multidimensional array into a 1D
coefficient vector depicted for a 2D WT.

ψ2 1,

ψ2 3,

ψ2 2,

φ2

ψ2 1,

ψ1 1,

ψ1 3,

ψ1 2,

φ2ψ1 1,ψ1 2, ψ2 3, ψ2 2,

M 2=

direction of transmission

2
n 1–

n

n cfloat
cquant

cquant round 2n 1– cfloat⋅()=

n

25 32=
Figure 8: Example of encoding a sequence of coefficients and
the resulting bitstream.

0.037 0.147 0.000 0.000 0.000 0.439Wavelet Coef

Quantization

2–tuples

1011 0001100 11 000101101 100010 1011 0111101

Huffman symbol value ‘zero’ Huffman symbol

Bitstream

76 301 0 0 0 899

(7,76) (9,301) 0 0 0 (10,899)

(256 bits)

with 12 bits

(67 bits)

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

It should be stated again that progression is achieved
channel by channel. That is, we transmit the low frequency
scaling function coefficients first followed by the wavelet
coefficient channels in order of ascending frequency.

Some results of the lossy compression of a B–spline
surface with different parameter settings are depicted in
Fig. 9. In order to decompose the control points of this B–
spline surface we used the pipeline explained in detail in
Section 4.3.

Finally, Table 1 compares the proposed encoding
scheme (encode) with some of the most popular lossless
compression methods, likezip, arc, urbon and compress.
Note that information loss occurs only upon coefficient
removal and quantization. Thus, all subsequent steps in our
pipeline are lossless and can be compared with some stan-
dard algorithms. Results are given for a 3D volume data set,
where the data was prequantized with 8 bits and 16 bits
respectively. Interestingly, even in lossless mode our
method competes with popular algorithms in overall perfor-
mance.

3.3. Compression of Constraints

In many cases it is desirable to compress spatially interest-
ing features, such as boundary- or isolines and individual
vertices in a lossless manner. We call these dataconstraints,
since they usually constrain subsequent geometric recon-
struction. In our pipeline we represent constraints as poly-
lines or polygons. Fig. 10 illustrates the use of constraints in
a digital terrain data set of the Swiss Alps. Here the geomet-
ric reconstruction, i. e. triangulation of the surface, was
simplified up to a given bound. The constraints invoked by

the polygon force the reconstruction to keep the triangula-
tion dense, however. The constraint is imposed in terms of a
terrain following polyline of a given extent.

Assuming the polyline constraint is represented as a
stream of vertices of type(x, y, data) , we employ a
lossless compression strategy, as shown in Fig. 6.

The position and the data value are encoded sep-
arately using both delta and higher order arithmetic com-
pression algorithms. For details see [19].

The resulting bitstream format is presented below in
Fig. 11, where two headers are followed by the individualx-
, y- and data-streams.

Figure 9: Compression of a B–spline surface with different
quantizations. No additional point removal is performed ().
Some triangles degenerate due to quantization. a) 50% coefficients,
23 bit quantization, compression gain 1:1.33. b) 10 bit, 1:4. c) 7 bit,
1:5. d) 5 bit, 1:10.
(Data source: Courtesy Advanced Visual System Inc.)

Table 1: Comparison of the proposed method (encode) with
some popular compression algorithms (3D volume data set of
Fig. 19 and Fig. 20: 128x64x64 voxels).

8 BIT QUANT. 16 BIT QUANT.
CPU
(IN S)

50%
COEFF.
(IN KB)

10%
COEFF.
(IN KB)

50%
COEFF.
(IN KB)

10%
COEFF.
(IN KB)

ENCODE 568 245 1,835 466 2
ZIP 618 290 2,399 660 5
ARC 711 300 2,727 764 13

URBAN 501 233 1,888 496 69
COMPRESS 533 253 2,407 607 3

UNCOMPRESSED 2,248 2,248 4,496 4,496 0

a) b) c) d)

ε 0=

Figure 10: Illustration of constraints in a digital terrain data set.
a) Interactive specification of the constraint path. b) Mesh after
constraint insertion.
(Data source: Courtesy Bundesamt für Landestopographie, Bern,
Switzerland)

Figure 11: Data format of the bitstream for constraint compres-
sion. The individual header formats are given in Table 2.

Table 2: Header formats of bitstream.

NAME TYPE DESCRIPTION

G
E

N
E

R
A

L
H

E
A

D
E

R

magic_number byte ASCII ‘67’
stream_size integer total size

xValues_size integer size of x-stream
yValues_size integer size of y-stream

info byte misc info
width float constraint width

field_dims integer[2] mesh dimension
npoints integer # points of constraint

ndata integer # extracted data values
xFirstValue float first x-coordinate
yFirstValue float first y-coordinate

H
E

A
D

E
R

F
O

R
A

R
IT

H
M

E
T

T
IC

C
O

D
IN

G

arithFirstValue float first extracted data value
maxValue float maximal value
minValue float minimal value

nIntBits integer multiplication factor
huffFirstValue integer 1st integer value

H
E

A
D

E
R

F
O

R
E

N
C

O
D

E

iterationDepth short iteration depth
weightArr float[] array of weights
huffTable integer[64] Huffman–table
quantBits short quantization (# of bits)

degree short degree of B–spline bases
minValue float minimum coefficient value
maxValue float maximum coefficient value

nDim short # of dimensions
dimArr short[] dimension array

a) b)line constraint path

x y,()

general headerAC headerx-streamy-streamdata-stream

transmission

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

4. Vertex Removal Strategies

The following section is dedicated to vertex removal meth-
ods, which enable the client to compute geometric recon-
structions adaptively and progressively from the incoming
bitstream of data. When seeking an appropriate algorithm,
computational performance and invariance to the dimen-
sionality are important considerations. Due to the rich liter-
ature on vertex removal in graphics and computational
geometry we found that the well-known algorithm of Dou-
glas et. al. [6] is a good starting point. First, we briefly
explain its initial form in a nonparametric 1D setting and
illustrate its application in multiresolution representations.
Here, special emphasis is given to extension of the method
for progressive reconstruction. Next, we generalize the
method to multidimensional and parametric cases and give
some examples of how it works. The versatility of the intro-
duced method imposes no restriction on subsequent trian-
gulation methods, which can range from constraint
Delaunay [17] to fast look–up tables [10].

4.1. 1D Settings

In order to construct a point removal strategy, let’s first con-
sider the 1D setting. Here, the problem reduces to finding a
strategy for the reduction of line segments in piecewise lin-
ear approximations. Inspired by the algorithm of [6] we
extended these ideas and modified the method to a recursive
and progressive algorithm, illustrated in Fig. 12. It starts by
connecting the first point of a curve, , with the last point

. All intermediate points representing the curve are com-
pared against the line segment and the point with the
largest distance, for instance , is identified. If its distance
exceeds a predefined threshold , the vertex is considered
importantand labeled. We split the initial line segment in
two halves, on each of which the algorithm can be applied
recursively. Obviously, the quality of the removal can be
controlled by the distance threshold. The advantage of this
extension to the original method lies in the tree type refine-
ment of the vertex analysis coming along with the recur-
rence relations.

The distance can be computed in different ways, where,
however, the computation of the vertical distance, such as
depicted in Fig. 12c, is computationally much more expen-

sive for general multidimensional settings. Therefore, we
recommend computation of they-distance (see Fig. 12a)
approximating nonparametric data. The problem of para-
metric data sets will be discussed in upcoming sections.

4.2. Generalizations to Multiple Dimensions

Generalizations of the method towards multidimensional
nonparametric data is straightforward. Starting from an ini-
tial grid, as in Fig. 13, the algorithm seeks the vertex
with the maximum distance and subdivides the field into 4
(in 2D) or 8 (in 3D) subcells on which the method is applied
recursively. In these cases the distances to the bilinear and
trilinear interpolants of the cell vertices are computed,
respectively.

Recalling the multiresolution B–spline approximation
of the data motivates the extension of the algorithm towards
a channelwise progressive point insertion. Therefore, the
algorithm analyzes mesh vertices progressively and labels
unimportant points as new data comes in. In 2D, for
instance, the basic idea is to start from an initial vertex field
of resolution in each direction, where represents
the maximum iteration. The vertices are provided by the
scaling function approximation and are processed
further by our algorithm. To define a distance metric, we
assume a bilinear interpolant between the vertices which
approximates the B–spline scaling function representation.
If the difference signal is received, the resolu-
tion is refined by 2 and all newly inserted vertices are
checked conforming to our distance metric. If required,
they will be inserted.

In order to compute the intermediate vertices for each
iteration, an inverse wavelet transform has to be applied on
all coefficients of a given iteration as soon as they are
received and decompressed.

An apparent drawback of this approach, however,
deserves some attention: Once a vertex is labeled as impor-
tant there is no way to reject it in subsequent steps. Obvi-
ously, the detail signals added during progression influence
the importance of each vertex. Therefore, we recommend

Figure 12: a) Recursive algorithm assuming a smooth represen-
tation of the underlying curve: a) P2 has largest vertical distance.
b) new approximation after insertion of P2. c) example for vertical
distance measure. d) final result.

P0
Pk

P0Pk
P2

ε0

curve

approximation
a)

y-distance

vertical distance

b)

c) d)

P0 Pk

P2

P0

P2

Pk

P0

P2

PkP1
P3 P0

P2

PkP1

P3

Figure 13: Extension towards multiple dimensions exemplified
for nonparametric data: 2D version. The underlying B–spline patch
is outlined in bold. A new vertex is inserted at position and the
distance is computed with respect to the bilinear-interpolant of

.

P

Pi j

Pi j 1+

Pi 1 j 1+ +

Pi 1 j+

P

surface patch

distance to the
bilinear interpolant

P

Pi j Pi j 1+ Pi 1 j+ Pi 1 j 1+ +, , ,

2m M– M

f M x y,()

∆ f m x y,()

m

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

an exponential alignment of the threshold to the itera-
tion. That is if stands for the current iteration step, the
associated threshold is computed by

(9)

: global threshold governing the point removal.

In our implementation we employ a tree type data struc-
ture to maintain the individual cells representing the mesh.
The tree grows iteratively as progression proceeds. After
iteration, the leaves of the tree represent the remaining cells
and can be triangulated with appropriate methods. Fig. 14
further elucidates the data representation.

For subsequent triangulations we employed theqhull
library from [1] in 2D and 3D. Note, that theN–tree type
cell structure enables computation of very fast meshings
using look–up tables, such as the ones presented in [10]. An
example of progressive point removal is depicted in Fig. 18,
where the mesh is refined gradually with each wavelet
channel arriving at the client side.

4.3. Parametric Data Sets

A parametric version of the introduced algorithm can be
constructed as elucidated below. For reasons of simplicity,
we restrict our description to 2D parameter spaces, however
higher dimensional spaces can be easily generalized from
that. The conceptual components of our pipeline are illus-
trated in the diagram of Fig. 15. We assume an initial para-
metric B–spline surface to be defined by its vector
valued control points at iteration

.

(10)

: number of tensor product B–spline scaling functions.

Thus compression has to proceed separately on thex, y
andz components of the control vertices. Specifically, the
WT and the oracles operate for now independently on the
individual coordinates.

However things become more complicated upon recon-
struction, which operates again in parameter space
independently for the spatial coordinates , ,
and . As a result three binary label fields are gener-
ated indicating the importance of individual vertices in

parameter space for subsequent triangulation. Unfortu-
nately, different results are obtained for , ,
and and we have to decide on the final removal.
This decision is accomplished by applying a BooleanOR
operator over the individual vertex fields a motivation of
which is given as follows: As explained earlier the non-
parametric version of our removal strategy holds for linear
approximations in terms of triangulations and thus refines
the mesh in spatial regions, where the underlying function
features nonlinear behavior. In the parametric setting simi-
lar criteria are valid for a linear approximation of a surface.
The mesh has to be refined in those regions where the sur-
face shows nonlinear behavior, that is where the local cur-
vature does not equal zero. This however happens if either

, or indicate nonlinearity. Obvi-
ously, the BooleanOR of the label fields considers a vertex
important if one or more of the three coordinates behave
locally nonlinear. The usefulness of this approach can be
seen in Fig. 17, where a parametric surface is compressed
and reconstructed with different parameter settings. Here,
we end up with a dense mesh in spatial regions of high cur-
vature and simplification occurs in regions of local planar-
ity.

5. Implicit Interpolation

In the following section the problem of implicit reconstruc-
tion is addressed. In practice, implicit structures are mostly
isolines or isosurfaces. An advantageous feature coming
along with the multiresolution B–spline representation is

Figure 14: Construction of a 1D tree data structure with 64 verti-
ces and its growth during progression. The equivalent list structure
is given below. a) First segment at the beginning. b) Insertion of P29
causes split into two segments. c) Final tree after inserting all
points.

ε0
m

ε m()

ε m() ε0 e
M m–⋅=

ε0

begin end
1 64

root

a) b) c)

1 64root root 1 28 29 64 root

1 28 29

641

64

root
active segment

root

s u v,()
ci j

0
ci j x,

0
ci j y,

0
ci j z,

0, ,()
T

=
m 0=

s u v,() ci j
0 φ j

0
v()φi

0
u()

j 1=

J

∑
i 1=

I

∑=

J I⋅

u v,()
sx u v,() sy u v,()

sz u v,()

Figure 15: Illustration of the conceptual components for para-
metric compression and reconstruction.

u

v

1011100110011100101101100010111111110110

WT

OracleC
om

p.
 z

WT

OracleC
om

p.
 y

u

v

cij{ }

cij y,{ } cij z,{ }cij x,{ }

WT

OracleC
om

p.
 x

bitstream

Decomp. x Decomp. y Decomp. z

Removal x Removal y Removal z

u

v

u

v

label fields

OR

Meshing

u

v

adaptive mesh in u

v

control mesh of a
parametric surface

in parameter
space

parameter space

triangulated surface in
spatial domain

Merge Bitstream

sx u v,() sy u v,()
sz u v,()

sx u v,() sy u v,() sz u v,()

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

the higher order continuous approximation of the underly-
ing data. Although any computation bases on adaptive tri-
angulations obtained from previous procedures, this
property can be exploited to reconstruct implicit structures
more precisely. For instance, in 2D data sets, piecewise lin-
ear representations of isolines can be recovered by immedi-
ate computation of the intersections along the triangle edges
from the B–spline approximation. Similar procedures hold
for isosurface reconstructions from tetrahedralizations. The
cubic polynomials perform data smoothing and cancel out
most of the jags and discontinuities commonplace in stan-
dard methods.

5.1. Isolines

In order to handle isolines we start from the initial B–spline
description of the underlying 2D height function
and obtain an implicit formulation by

(11)

: isovalue.

Recalling the approximation properties of B–splines we
recommend to precompute an interpolation problem to get
the appropriate coefficients related to the data samples
to be interpolated. These types of interpolations are exten-
sively investigated and relate tightly to inverse B–spline fil-
tering problems which perform in linear time [22].

For (11) we provide a polyline approximation using a
marching triangle-like look-up table which operates on a
triangle mesh representing . A slight extension of
the look-up table enables the extraction of those parts of the
surface which are interior to the isoline, that is whose func-
tion values . The vertices of the describing
polygonal hull are given by the intersections of the isoline
with triangle edges, such as shown in Fig. 16a.

Note that in cases 011, 101, and 110 the initial triangle
representing the surface is split into 2 primitives. The inter-
section of the isoline, implicitly defined by (11), with the
triangle edge is calculated using a binary search along the
edge. Here we exploit the regional separation with respect
to provided by the isoline.

Fig. 18 illustrates the performance of the method on
digital terrain data. We employed progressive triangular
approximations of different quality to compute both isoli-
nes and to extract interior regions. Comparing the isolines
computed by our method with those of a linear interpolation
reveals the superiority of the approach.

5.2. Isosurfaces

Similar relations hold for the generation of isosurfaces and
interior or exterior volumes. Here we start from a B-spline
volume approximation of :

(12)

: number of tensor product volume B–splines.

After solving the initial B–spline interpolation problem
the isosurface is obtained by a marching tetrahedron [2]
algorithm, where the intersections of the surface with the
tetrahedral edges are computed using the binary search on
the B–spline volume. Again, a little work on the look-up
table enables one to extract interior or exterior volume seg-

f x y,()

f x y,() cij
0 φ j

0
y()φi

0
x()

j 1=

J

∑
i 1=

I

∑ τ= =

τ

cij
0

f x y,()

f x y,() τ>

Figure 16: Polyline approximation of isolines: a) Isoline as computed by intersections with the triangle edges and look-up table to extract
interior or exterior parts of the surface. b) Generation of isosurfaces and interior volumes using a marching tetrahedron algorithm: 5 basis
cases arising upon triangulation. The connectivity table for generation of interior volumes is presented in Table 3.

10

11
12

14

24

25 26

27
13

001 010

100

011

101 110

000

111

positive negative

v0

v2

v1 v0

v2

v1
v3

v5

v0

v2

v1

v0

v2

v1 v0

v2

v1

v0

v2

v1 v0

v2

v1 v0

v2

v1

v4

a)

isoline positive

negativecase 0 case 1

case 2 case 3

case 4

v3

v2

v1v0

v7 v8

v6
v5

v4

v9

b)

τ

f x y z, ,()

f x y z, ,() cijh
0 φh

0
z()φ j

0
y()φi

0
x()

h 1=

H

∑
j 1=

J

∑
i 1=

I

∑ τ= =

H J I⋅ ⋅

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

ments which are important for many applications, such as
finite element simulations [13]. Fig. 16b exploits symmetry
and illustrates the 5 out of 16 cases arising upon triangula-
tion giving the connectivity for the extraction of interior
volumes.

Note especially that individual tetrahedra may split up
into three primitives for representing the bounding surface
of the interior volume.

The results given in Fig. 19 and Fig. 20 illustrate the
approximation behavior of the method, where standard
marching cubes and marching tetrahedron with linear inter-
polation are contrasted to the B-spline binary search algo-
rithm. Although intersection computation is more
expensive we observe that the resulting isosurface is figured
out more precisely and smoothly using the new approach.

6. Results

In this section we demonstrate the versatility of the intro-
duced compression and reconstruction framework by inves-
tigating its performance on different data sets. First, Fig. 17
shows a series of triangulations of a parametric interpolat-
ing B-spline surface generated in accordance to the diagram
in Fig. 15. The initial control mesh of points
was decomposed and reconstructed using 60% of the coeffi-
cients. By fixing the quantization to 10 bits we achieved a
compression gain of 1:5. We observe that the quality of the
reconstruction is governed by the parameter . The trian-
gulation was computed using theqhull library from [1].
Interestingly, our method generates numerousslivers, long
thin triangles, which are mostly located along the shaft of
the object. This effect can be explained easily by analyzing
the curvature in those regions. We find that it differs signifi-
cantly inu andv direction in parameter space and therefore
long, thin structures provide an efficient planar approxima-
tion.

Further progressive mesh refinements and isoline
reconstructions are depicted in Fig. 18 for a digital terrain
data set of the Swiss Alps, Matterhorn region. The initial
grid consists of vertices and 168,000 triangles.
We applied a forward compression by keeping only 5% of
the coefficients at a decomposition level of , which
corresponds to a compression gain of 1:40 at 10 bits quanti-
zation. The series reveals how the mesh is refined progres-
sively and adaptively upon reconstruction with each
incoming wavelet channel. The extracted isolines were
computed using the method of Section 5.1 and are con-
trasted against the bilinear interpolations of Fig. 18e. By
comparing them to Fig. 18a we note that artifacts coming
along with linear interpolation are avoided in our approach

using the binary search technique. Further pictures from
this series illustrate the extraction of interior and exterior
regions and variations of the compression gain. Especially
Fig. 18h illustrates the quality of the approximation at a
compression gain of 1:100.

A set of 3D isosurface reconstructions is presented in
Fig. 19. Here a voxels subset of the CT–
VHD (Fig. 20a) was decomposed, compressed and tetrahe-
dralized adaptively to obtain a fraction of the skull surface.
We fixed the parameters to and achieved a com-
pression gain of 1:15 at 20 bits. In this picture our method is
compared to a standard marching cubes technique and to a
trilinear interpolating marching tetrahedron, as included in
the libraries ofAVS/Express 3.0. Again, the higher order
interpolation provided by the cubics smooths out most arti-
facts striking in the reconstruction of Fig. 19c, where conti-
nuity is lost and the surface “breaks up”. Moreover, we
avoid even some of the “voxel-like” artifacts of the march-
ing cubes reconstruction shown in Fig. 19b.

Reconstructions of interior and exterior volumes from
the same data set are depicted in Fig. 20b and Fig. 20c. We
observe that our point removal strategy keeps the tetrahedra
dense in those regions, where the underlying volume fea-
tures high spatial frequencies. The adaptive tetrahedralizati-
ons were computed using the look–up table extensions
proposed in Section 5.2. This allows one to extract ana-
tomic substructures for further processing, such as FEM.
Finally, the computing times of some of the examples are
listed in Table 4.

7. Conclusion and Future Work

We presented a versatile framework for multiresolution
compression and reconstruction of non-parametric, para-
metric and implicit data which bases on wavelet approxima-
tions. Although being restricted to uniform grids the
scheme handles many real world data types and features
numerous advantageous properties, such as both lossless
and lossy compression or progressive and selective mesh
refinement. However the current implementation only sup-
ports channelwise progressive mesh refinement. Hence,
future research activities have to comprise the development
of a true “coefficient-wise” progressive mesh refinement
procedure, which improves the approximation as data
comes in. The extension of the framework toward nonuni-
form sample grids is still interesting, in spite of the fact that
appropriate WTs have already been introduced to the com-
munity [3]. In addition the inclusion of 2D and 3D texture
compression and reconstruction is an important issue for
ongoing investigations.

8. Acknowledgment

This research was supported in parts by the ETH research
council under grant No. 41–2642.5. We are grateful to the

Table 3: Connectivity table for generation of interior volumes
(see Fig. 16b).

NO. V0 V1 V2 V3 TETRAHEDRA (VERTEX LIST)
0 - - - - {}
1 - - - + { {v4, v7, v8, v3} }

2 - - + + { {v8, v5, v6, v2}, {v5, v8, v7, v3},
{v8, v5, v2, v3} }

3 - + + + { {v7, v5, v9, v2}, {v3, v1, v2, v7},
{v7, v2, v9, v1} }

4 + + + + { {v0, v1, v2, v3} }

100 100×

ε0

701 481×

M 7=

Table 4:Computing times for various steps of our compression
and reconstruction framework.

STEP
B-SPLINE SURFACE

(FIG. 17)
DTM

(FIG. 18)
VHD

(FIG. 19/20)
Compression 0.1 sec. 1.5 sec. 2 sec.

Decompression 0.1 sec. 1.5 sec. 2 sec.
Point Removal 1 sec. 2 sec. 2 sec.

128 64 64××

M 4=

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

Bundesamt für Landestopographie, Bern, Switzerland, for
the digital terrain data and to the NLM for providing the
VHD set. Our special thanks to R. Kisseleff, U. Hengart-
ner, J.–P. Hofstetter, and P. Ruser for implementing parts of
the framework.

9. References

[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. “Qhull,”
1996. http://www.geom.umn.edu/locate/qhull.

[2] J. Bloomenthal. “An implicit surface polygonizer.” In
P. Heckbert, editor,Graphics Gems IV, pages 324–349.
Academic Press, Boston, 1994.

[3] M. D. Buhmann and C. A. Micchelli. “Spline prewavelets
for non-uniform knots.” Numerische Mathematik,
61(4):455–474, May 1992.

[4] C. Chui. An Introduction to Wavelets. Academic Press,
1992.

[5] M. F. Deering. “Geometry compression.” In R. Cook, edi-
tor,SIGGRAPH 95 Conference Proceedings, Annual Con-
ference Series, pages 13–20. ACM SIGGRAPH, Addison
Wesley, Aug. 1995. held in Los Angeles, California, 06-11
August 1995.

[6] D. Douglas and T. Peucker. “Algorithms for the reduction
of the number of points required to present a digitized line
or its caricature.”The Canadian Cartographer, 10(2):112–
122, December 1973.

[7] M. Eck, T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. “Multiresolution analysis
of arbitrary meshes.” In R. Cook, editor,SIGGRAPH 95
Conference Proceedings, Annual Conference Series,
pages 173–182. ACM SIGGRAPH, Addison Wesley, Aug.
1995. held in Los Angeles, California, 06-11 August 1995.

[8] S. J. Gortler, P. Schroder, M. F. Cohen, and P. Hanrahan.
“Wavelet radiosity.” InComputer Graphics Proceedings,
Annual Conference Series, 1993, pages 221–230, 1993.

[9] M. H. Gross. “L2 optimal oracles and compression strate-
gies for semiorthogonal wavelets.” Technical Report 254,
Computer Science Department, ETH Zürich, 1996. http://
www.inf.ethz.ch/publications/tr200.html.

[10] M. H. Gross, O. G. Staadt, and R. Gatti. “Efficient triangu-
lar surface approximations using wavelts and quadtree data
structures.”IEEE Transactions on Visualization and Com-
puter Graphics, 2(2):130–143, June 1996.

[11] P. S. Heckbert and M. Garland. “Survey of polygonal sur-
face simplification algorithms.” Technical report, CS

Dept., Carnegie Mellon U., to appear. http://
www.cs.cmu.edu/~ph.

[12] H. Hoppe. “Progressive meshes.” In H. Rushmeier, editor,
Computer Graphics (SIGGRAPH ’96 Proceedings), pages
99–108, Aug. 1996.

[13] R. M. Koch, M. H. Gross, F. R. Carls, D. F. von Büren,
G. Fankhauser, and Y. I. H. Parish. “Simulationg facial
surgery using finite element models.” In H. Rushmeier,
editor, Computer Graphics (SIGGRAPH ’96 Proceed-
ings), pages 421–428, Aug. 1996.

[14] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges,
N. Faust, and G. A. Turner. “Real-time, continuous level
of detail rendering of height fields.” In H. Rushmeier, edi-
tor, Computer Graphics (SIGGRAPH ’96 Proceedings),
pages 109–118, Aug. 1996.

[15] J. M. Lounsbery.Multiresolution Analysis for Surfaces of
Arbitrary Topological Type. PhD thesis, University of
Washington, Seattle, 1994.

[16] J. Popovic and H. Hoppe. “Progressive simplicial com-
plexes.” InComputer Graphics (SIGGRAPH ’97 Proceed-
ings), to appear, Aug. 1997.

[17] F. P. Preparata and M. I. Shamos.Computational Geome-
try. Springer, New York, 1985.

[18] E. Quak and N. Weyrich. “Decomposition and reconstruc-
tion algorithms for spline wavelets on a bounded inverval.”
Applied and Computational Harmonic Analysis, 1(3):217–
231, June 1994.

[19] K. Sayood.Introduction to Data Compression. Morgan
Kaufmann, San Francisco, 1996.

[20] E. J. Stollnitz, T. D. DeRose, and D. Salesin.Wavelets for
Computer Graphics. Morgan Kaufmann Publishers, Inc.,
1996.

[21] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin. “Wavelets
for computer graphics: A primer.”IEEE Computer Graph-
ics and Applications, 15(3):76–84, May 1995 (part 1) and
15(4):75–85, July 1995 (part 2).

[22] M. Unser, A. Aldroubi, and M. Eden. “Fast b–spline trans-
forms for continous image representation and interpola-
tion.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(3):277–285, Mar. 1991.

[23] G. K. Wallace. “The jpeg still picture compression stan-
dard.” Communications of the ACM, 34(4):30–44, Apr.
1991.

Figure 17: Compression and reconstruction of a parametric B–spline surface for different levels of linear approximation. a) , 19602
triangles (100%). b) , 43% triangles. c) , 34% triangles. d) , 22% triangles.

a) b) c) d)

ε0 0=
ε0 0.005= ε0 0.01= ε0 0.02=

Staadt et al. / Multiresolution Compression and Reconstruction

© 1998 Department of Computer Science, ETH Zurich.

Figure 18: Extraction of isolines and interior surfaces from a digital terrain model of the Swiss Alps and progressive mesh refinement: 3
isolines are extracted for , and , respectively. a) , Wavelet channel 1, 0.1% triangles. b) Channel 3, 1.15%
triangles. c) Channel 5, 5.80% triangles. d) Channel 7, 15.83% triangles. e) Standard isoline algorithm for channel 1. f) DTM split into interior
and exterior regions at . g) 5% coeff., compression gain 1:33, , 62% triangles. h) 1% coeff., compression gain 1:100,

, 62% triangles.

Figure 19: Extraction of isosurfaces volume data. Isovalue (skull). a) Our method, 20% coefficients, , 124,343 tetrahedrons,
compression gain 1:15. 51,970 triangles b) Marching Cubes, same compression settings, 540,800 cells, 40,522 triangles. c) Marching Tetra-
hedron (as provided by AVS/Express 3.0), same settings as a). Data source: Visible Human Project. Courtesy National Library of Medicine.

Figure 20: Extraction of interior and exterior volumes. a) Initial CT volume data set with 2,704,000 tetrahedrons. b) Interior and exterior
volumes, (skin surface), 133,091+ 34,290 tetrahedrons. c) Interior volume, (skull), 124,491 tetrahedrons.

a) b) c) d)

e) f) g) h)

τ 120= τ 125= τ 130= ε0 0.01=

τ 130= ε0 0.0035=
ε0 0.0035=

a) b) c)

τ 75= ε0 0.1=

a) b) c)

τ 42= τ 75=

