
Reusing Motions and Models in Animations

Akanksha, Z. Huang, B. Prabhakaran, and C. R. Ruiz, Jr.

School of Computing
National University of Singapore

fakanksha, huangzy, prabha, conradodg@comp.nus.edu.sg

Abstract. Computer animated 3D models have been increasingly used
in multimedia presentations because they can be viewed and manipulated
directly in 3D. In this paper, we propose a database approach for this
problem. Our main objective is to help authors create multimedia pre-
sentations by reusing existing animations. In our approach, animations
are stored in databases. We de�ne a set of metadata that describe the
animations. Authors can search on these databases by issuing queries.
A set of motion editing operations are de�ned and used to manipulate
the query results to create new ones according to the requirements of the
presentations. We have developed an animation toolkit implementing the
approach and the results are promising.

Keywords: Multimedia presentations, animation, database, reuse, meta-
data

1 Introduction

Computer animated 3D models have been used increasingly in multimedia pre-
sentations. One main reason for this is that the computer animated 3D models
can be viewed and manipulated directly in 3D.

However, users who require animations in the presentations may �nd it diÆ-
cult to produce the desired motion sequences. Creating animations of good qual-
ity needs considerable e�ort of skilled animators, actors, and engineers. Thus,
reusing the existing animations to create new ones becomes an appealing prob-
lem.

The major idea of reusing animations is to adjust the existing motion se-
quences for the new requirements while at the same time, retain the
avor of
the original motion. One method was proposed by Bruderlin and Williams [3],
who treated motions as signals and applied techniques of signal processing to
adapt them. A variant of their method, motion-displacement mapping, was in-
troduced by Popovic and Witkin [10]. Other works include Gleicher [4], Hodgins
[5], and Monzani et al.[9]. All these methods address the reuse for a speci�c type
of animation and manipulate on low level kinematic or dynamic structures of
geometric models.

Using database in computer animation is not a new concept. Thalmann et
al. [12] presented an Informed Environment that creates a database dedicated

http://www.eg.org
http://diglib.eg.org

to urban life simulation. Using a set of manipulation tools, the database permits
integration of the urban knowledge in order to simulate more realistic behaviors.
Ayadin et al. [1] used databases to guide the grasp movement of virtual actors.
Their approach creates a database based on divisions of the reachable space of a
virtual actor. Kakizaki [7] proposed a multimedia presentation framework using
animation databases. It uses a scene graph and an animated agent in multimedia
presentations. The motion of the agent is categorized into three classes: pointing,
moving, and gesturing. The reuse of animation has not been addressed in any of
these three database methods.

Our Approach: We propose a database approach for using animations in mul-
timedia presentations. The major contributions include the following technical
aspects:

{ Augmented scene graphs (with the incorporation of Interpolator Nodes) as data
structure for representing animations of 3D models.

{ A set of metadata for describing the animations.
{ Similarity measures for computing the relevance factor of an animation to resolve

queries on the databases.
{ A set of operations applied on the query results that help in reusing animations.
{ An animation toolkit implementing the approach.

A speci�c area, where animations can be applied in a multimedia presenta-
tion, is a document produced for the hearing impaired. The toolkit can be used
to generate animations of sign language. The sign language can be translated
from the audio clips.

We will focus on the database aspects of the approach without the details of
speci�c animation techniques such as inverse kinematics [6, 13]. We will present
them separately. The remaining part of the paper is organized as follows:

Section 2 describes the storage of animations as databases. Section 3 dis-
cusses the operations the user can invoke to retrieve, insert, and adjust geo-
metric models and motion, to create an animation. Section 4 shows, by means
of examples, the di�erent ways in which the query results can be manipulated.
Section 5 brie
y describes the implementation. Section 6 provides a conclusion
of the work done and discusses possibilities for future work.

2 The Animation Databases

Now, we describe how we organize animations as databases. The major idea is
to use the augmented scene graphs. A standard scene graph is a hierarchical
structure to describe geometric models. We augment it in order to represent
motion sequences of the geometric models by introducing a new node for the
motion. We specify a set of metadata to describe motion sequences and geometric
models that are associated with the augmented scene graph model. The metadata
is then organized together with animations as a relational database. We provide
a set of operations that can be used to query the animation databases. Finally,
the query results can be adjusted in temporal and spatial domains according to
the new speci�cations of the query metadata.

2.1 The Scene Graph

The scene graph was originally designed for real-time 3D graphics system Per-
former [11]. The Performer scene graph is a tree structure. The nodes in the
tree have di�erent types. Typically, leaves in the scene graph represent geomet-
ric models and interior nodes represent transformation objects. It also contains
data about the geometric models in a scene, such as their shape, size, color and
position. Each piece of information is stored as a node in the scene graph.

An animation object consists of two fundamental elements: geometric models
and their motion sequences. A geometric model is a mathematical representation
of 3D scenes in the world. It can be as complex as a human body model com-
prising sophisticated shapes with hundreds of degrees of freedom (DOFs). The
motion sequences represent the kinematic information of the geometric models.
A typical representation is keyframe.

To represent a motion sequence of a speci�c geometric model we incorporate
the motion node: Interpolator. An Interpolator node is associated with a geo-
metric model of multiple DOFs. In an Interpolator node, keyframes are de�ned
for all DOFs: fkey [k1; k2; :::; ki; :::; km], keyvalue [v1; v2; ..., vi; :::; vm]g, where ki
is the key frame number or key frame time. vi is a vector in the motion con�gu-
ration space: vi = [ui;1; ui;2; :::; ui;j ; :::; ui;n], where ui;j is a key value of DOF j

(in displacement for translational DOFs and angle value for rotational DOFs) at
ki, and n is the number of DOFs of the model. The key and keyvalue together
form one motion sequence for a model.

In our implementation, the scene graph is represented in VRML format.
VRML is a text-based language used to model virtual environments [14]. One
VRML �le can be decomposed into many smaller VRML Text Descriptions
which represent individual geometric models and motion sequences. These Text
Descriptions are then stored in the VRMLText table of the database. The an-
imation objects are linked to the VRMLText table by a Has-A relationship. In
the case of geometric models the table stores the prototypes and nodes which
are used, where as, for motion sequences it contains the Interpolator nodes and
Event Routing.

One simple example of a scene graph representing an animated blue cube is
shown in Figure 1 whose VRML description is given below.

Shape

Appearance Geometry

Material

PositionInterpolator

keyValuekey

Fig. 1. An example of the scene graph of an animated blue cube. Three key frames are
de�ned in the PositionInterpolator node.

Shape{

geometry Box { size 1 2 3 }

appearance Appearance { material Material { diffuseColor 0 0 1 } }

}

PositionInterpolator {

key [0.0 0.5 1.0]

keyValue [2.0 0.5 2.0, 2.0 0.5 3.0, 2.0 0.5 3.0] }

2.2 Animation Metadata and Database Organization

Metadata is widely used in the query of multimedia databases [2]. We have
de�ned content-descriptive metadata for geometric models and their motion se-
quences. Their storage and querying are dealt with in a similar manner. The
queries are performed based on the metadata and result in animation object(s)
best matching the user requirements. We consider the following types of anima-
tion metadata.

{ Metadata describing the geometric models: Type, Size, Position, Color, and Ori-
entation.

{ Metadata describing motion information: Motion Type, Motion Speed, Start Time,

End Time, and Style.

For database organization, we use a relational database management system,
MS Access, to store the animation databases. Scene graphs are stored and in-
dexed. The metadata are stored in the �elds of the database. (In the current
implementation, the metadata for each animation object are manually added to
the scene graph). By doing it in this manner, we can use SQL-like queries to
retrieve animation objects. The �elds of the database for the geometric models
and the motion sequences are shown in Table 1 and Table 2, respectively. The
geometric models and motion sequences of each animation object are stored in
two separate tables of the database and are linked by the Object ID being the
primary key.

Table 1. Database �elds for a geometric model.

Field Name Description

Object ID A unique ID for the geometric model and its motion sequences

Category ID A unique ID of the category the geometric model belongs to

Model Name The name of the geometric model

Model Type The type of the geometric model

Size The scaling factor of the geometric model

Position The location of the geometric model

Color The color of the geometric model

Model TextID The unique ID linking to the VRML Text Description

Proto TextID The unique ID linking to the VRML Prototype

Table 2. Database �elds for the motion sequence.

Field Name Description

Object ID A unique ID for the geometric model and its motion sequences

Motion Name The name of the motion sequence

Motion Type The type of the motion sequence

Motion Speed The speed of the motion sequence

Start Time Motion starting time sequence

End Time Motion ending time sequence

Style Motion style, e.g., brisk

Motion TextID The unique ID linking to the VRML Text Description

Besides the geometric model table and the motion sequence table, the scene
also has its table in the database, which is linked to the geometric model table
by a Has-A relationship. Models are also linked to a Model Component table
which links records on the model table to other models if it is a complex model.
A complex model is made up of simple models (or atomic models). Here also
there exists a Has-A relationship. We also have a category class and each model
belongs to a certain category. In our database the model table is linked by an Is-
A relationship to the category table. Generally relational databases are designed
based on an Entity-Relation (ER) diagram. The ER diagram of our framework
is given in Figure 2.

Metadata

Name
Metadata

N

1

Category

Scene

1

Has-A

Is-A

Has-A

1

1

1

Object ID
Category ID

Category ID

Has-A

N1

VRML Text

Text ID

Text Description
Has-A

Motion

Object ID
Name
Metadata

1

1

Metadata

Scene ID

1

1

Model

Fig. 2. The ER diagram of RDBS for the scene graph.

Using this design we can index the database by propagating the metadata of
the animation objects upward, thus a scene would have all the metadata for its
child animation objects. The searching would �rst be conducted at the higher

levels of the scene graph and will descend to lower levels only if a match is
found. An alternative is by using categories as indexes, where animation objects
or scenes are also assigned categories.

A query on the animation database is resolved by making use of a generic
multi-attribute equation to compute the relevance of each motion sequence. A
record satis�es the query on the condition that the relevance is equal to or higher
than a prede�ned threshold.

Similarity measures are speci�ed for the Motion Type, Style, Interval, Speed,
etc. as well as metadata of the Geometric Models. Conceptually, a similarity
measure SIM(i; q; k) (normalized) is the similarity of an animation Ai, with
query q, based on metadata k. It will be 0 if k does not occur in the metadata
of Ai. The higher the occurrence rate and the closer the values are, the higher
the similarity measure.

The overall similarity measure is the weighted sum of the individual similarity
measures. The weights have a signi�cant e�ect on the outcome of a query. For
an animation, default weights are assigned based on the relative diÆculty of
readjustment of the metadata, such that the summation of weights is 1. The
user has an option to change the weights if required.

Table 3 depicts an example of query results when a user performs the follow-
ing query: Motion Type: running; Motion Style: normal; Motion Interval: 0-5;
Motion Speed: 5. Given a threshold value of 0.5, only the top three records will
be retrieved.

Table 3. The relevance scoring for a multiple result query.

Rank Type Style Start Time End Time Speed ID Score

1 Run fast 15 25 5 Nancy 0.60

2 Run happily 0 20 2.5 Girl 0.50

3 Run merrily 0 5 2.5 Nancy 0.65

4 Walk normal 0 10 10 Andy 0.45

5 Wave normal 6 18 15 Andy 0.42

6 Walk sluggish 5 10 12 Man 0.24

3 Operations for Reusing Animations

This section discusses the operations a user can invoke to retrieve, insert, and ad-
just animation objects to scene graphs in order to create a new motion sequence.
These operations are performed on the output of a user query. The metadata
are used to adjust the queried results for a new animation. The operations can
be divided into three categories: spatial operations, temporal operations, and
motion adjustment operations.

3.1 Spatial Operations

Spatial operations on motion sequences involve changing the position, size, and
orientation of geometric models. The operations used to query and manipulate
the spatial attributes of an animation, are as follows:

1. Insert Operation: this operation inserts a geometric model into a scene under spec-
i�ed conditions. The user can include the new x, y, z coordinates of the model,
and/or the time frame when the model will be shown.

2. Delete Operation: this operation deletes a geometric model from a scene. This can
help the user eliminate unnecessary models from a retrieved result.

3. Extract Operation: this operation extracts a geometric model from a scene. It could
also be used to extract an atomic geometric model from a complex model.

4. Edit Operation: this operation edits the metadata of a geometric model. The user

can edit the position, size, and orientation of the model.

3.2 Temporal Operations

Motion is an integral part of any animations. Temporal operations help in retar-
geting motion for new characters and scenes. The operations for manipulating
motion are use, get, and disregard.

1. Use Operation: this operation utilizes a motion to a character. We have adapted
the motion-mapping approach to re-use existing motion to other models. The user
maps the interpolator points of the motion to the joints of the geometric model to
be applied to.

2. Get Operation: this operation extracts motion from a character. In a scene graph,
motion is de�ned by keyframe animation and by the nodes: OrientationInterpolator
and PositionInterpolator, among others. We simply search for the interpolators
that are linked to the speci�ed model and copy the keyframes.

3. Disregard Motion: this operation deletes the motion of a geometric model. This
can be done by searching for the keyframes that are used on the model and by
deleting them, including the timer node that was used.

4. Project Operation: this operation projects a speci�c time interval from a motion
sequence based on the user's speci�ed conditions. For example, if the user queried
and found an animation matching all the requirements, except for time constraints,
the user may opt to project a portion of the animation.

5. Join Operation: the operation allows the user to join two key frame sequences

together. This provides the user with the ability to generate more complex motion

from standard motion. The time base will be automatically adjusted.

3.3 Motion Adjustment Operations

In most cases, when a motion of a geometric model is reused by another one, it is
necessary to adjust the motion to the new scene. Motion is usually very speci�c
and hence we propose a set of operations to help the user adjust the motion to
the new scene.

1. Crop Motion: operation cuts the motion into a smaller motion sequence by deleting
the keyframes and calculating the appropriate substitutions.

The crop operation edits all the Interpolator nodes (described in Subsection 2.1) for
a particular motion, based on the crop value �. If � falls between two consequent
keyframes ki and ki+1, the key frames from ki+1 to km will be deleted. The new
ending key value k0

m can be computed using the key frame interpolation if it is not
an existing one.

2. Duplicate Motion: operation duplicates the key frames to expand the duration of
the motion. This helps if the user requires the same animation as what is retrieved
but with a longer period.

The duplicate operation adjusts all the Interpolator nodes for a particular motion,
based on the duplicate value �. The old key frames will be duplicated � times.

3. Change Speed: operation changes the speed of the motion. It is implemented by
scaling the key time base, i.e., the period represented in fkey [k1; :::; km]g of a
PositionInterpolator node. So the duration of the motion will be changed. In order
to keep the same duration, the new motion can be used in conjunction with the
previous two operations.

4. Retarget: operation allows the user to adapt an existing motion sequence to meet

the new constraints. Our current implementation uses inverse kinematics [6, 13]

for articulated 3D models. The position and orientation of the end e�ectors are

speci�ed automatically by the new constraints or interactively by users. The inverse

kinematic algorithm can compute the new position and orientation values of other

internal joints automatically in real time.

To facilitate ease in using the system, a series of operations is automatically
generated, depending on the speci�cations of user in the Animation Toolkit. The
series is then applied to the query results to meet the requirements. The users
do not need to know the operation syntax. They interact with the system, via
the toolkit.

4 Examples of Manipulating the Query Results

Now, we present examples of using the operations described in Section 3 to ma-
nipulate the query results for reusing animations. Using the operations, three
di�erent types of reuse are possible: adjusting the motion sequence of a model
(Subsection 4.1), applying motion to a di�erent model with a similar structure
(Subsection 4.2), and generating complex motion sequences for a model (Sub-
section 4.3). Using our database approach, the resulting motion will take the

avor of the original ones. Together with the operations de�ned in Section 3, the
following clauses are also used.

FROM : used to specify the �le in which motion/model is present

TO : used when applying a motion to a model or inserting a geometric model in a

scene

WHERE : used to specify the condition of the query

WHEN : used to specify the duration in which the model is presented

4.1 Adjusting Motion of a Model

In this type of motion reuse, the motion needs to be modi�ed. For example, the
user can change the speed of motion and the duration. The modi�ed motion
is applied to the same geometric model that the motion was applied to previ-
ously. In a more general manner, the user can adjust motion to meet the new
constraints. For example, the user wants to adjust an existing wiping motion
to �t the new table in the scene. The following operations can be applied: EX-
TRACT woman FROM scene; GET wiping FROM woman; EXTRACT table
FROM scene; INSERT table; EDIT table translation(10,5,8); USE wiping TO
woman; RETARGET wiping. The result is shown as a snapshot in Figure 3.

(a) (b)

Fig. 3. Retargeting an existing motion to the new geometric model in the scene: (a)
wiping a table; (b) bending to wipe a lower table.

4.2 Applying Motion to a Di�erent Model

This type of reuse is needed in the case when the motion and model required,
in the presentation, are not available in the same scene of the database.

For example, the user intends to create an animation of a man walking in
a room. The query results are a room, a walking woman, and a model of man
from three scenes respectively (Figure 4).

To generate the animation, according to the requirements, from the query
results, the following steps will be conducted: (1) INSERT the model of man into
the room, (2) EDIT to make the model of man well scaled and located in the
room, (3) EXTRACT the walking motion sequence from the walking woman,
and �nally (4) USE the motion sequence to the model of man (Figure 5).

The motion mapping technique we use is based on the work of Lee et al. [8]
and Gleicher [4], without the restriction that the two models should have the
same structures. Since the interpolator nodes of one model can be connected
by the user, using the GUI, to another model it o�ers much more versatility.
For example, the walking woman described in the previous example can be re-
mapped to an animal such as a cow. Since the scene graph provides a hierarchical

(a) (b) (c)

Fig. 4. Query results from three scenes: (a) a room; (b) a walking woman; (c) a man.

Fig. 5. Applying a walking sequence of a woman to man.

structure of both the human and the cow, the user can connect the respective
segments of the cow with the interpolator nodes of the walking woman (Figure
6).

4.3 Generating Complex Motion Sequences

Complex motion can be derived by combining two or more motion sequences
into a single sequence. The motion sequences may be from a single model or
multiple models. The resulting complex motion may be applied to one of the
original models or to a di�erent model. An example of complex motion could
be a man \walking" (lower body) and \waving" his hand (upper body) at the
same time. In Figure 7, the snapshots show the individual motion sequences and
the new motion sequence created. The following operations are applied to reuse
the animations: GET walking FROM Andy; GET waving FROM Andy; JOIN
Andy.walking WITH Andy.waving.

5 Implementation

We have developed an animation toolkit based on the proposed database ap-
proach using Visual Basic 6.0 (VB). Access 97 was used as the primary database

(a) (b) (c) (d)

Fig. 6. Mapping the motion of a walking woman to a cow: (a) frame 1 of woman; (b)
frame 1 of cow; (c) frame 2 of woman; (d) frame 2 of cow.

Fig. 7. An animation reuse example combining two sequences.

for the storage of the animations represented in scene graph. The scene graph
can be rendered by Open GL Optimizer, IRIS Performer, and VRML browser.
To parse and browse the animations we used the ActiveX object Web Browser,
which invokes the default web browser of the system with the installed VRML
browser, such as Cosmo Player or MS VRML viewer.

The GUI of the system uses a Multiple Document Interface with menus and
toolbars. The major GUI components are the Query, Scene Graph, VRML Text
Document, and VRML Browser windows. The user can create a new animation
by choosing the new operations through the menu or the toolbar.

6 Conclusion and Future Work

Using animations of 3D models has been receiving more interest in multimedia
presentations. In this paper, we have addressed this problem by a database
approach. We have implemented an authoring toolkit using the approach and
our experimental results are promising.

We are still working on a uni�ed multimedia presentation system to integrate
the animation toolkit with those of other types of media to support authoring

a more complex multimedia presentation. We are considering more applications
for usability study.

Presently the toolkit is in the early stages of development. It is possible to
incorporate a standard form of metadata description, e.g., XML at a later stage.
We also will do the comparison study between our framework and MPEG-4.

7 Acknowledgments

The 3D models of the woman, the man, and the barmaid are available from http:
//www.ballreich.net, http: //www.seamless-solutions.com, and http: //www. ge-
ometrek.com respectively. We thank the anonymous EGMM 2001 reviewers for
the suggestions to improve the paper.

References

1. Ayadin, Y., Takahashi, H. and Nakajima, M. Database Guided Animation of Grasp
Movement for Virtual Actors. Proc. Multimedia Modeling '97. (1997) 213-225

2. Bohm, K. and Rawok. T. C. Metadata for Multimedia Documents. SIGMOD-Record
Special Issue on Metadata for Digital Media. Vol. 23, No. 4, Dec. 1994.

3. Bruderlin, A. and Williams, L. Motion Signal Processing. Proc. ACM SIGGRAPH
'95. (1995) 97-104.

4. Gleicher, M. Retargeting Motion for New Characters. Proc. ACM SIGGRAPH '98.
(1998) 33-42.

5. Hodgins, J. and Pollard, N. Adapting Simulated Behaviors For New Characters.
Proc. ACM SIGGRAPH '97. Los Angeles, CA. (1997) 153-162.

6. Huang Z., Boulic R., Magnenat-Thalmann N., and Thalmann D. A multi-sensor
approach for grasping and 3D interaction. Proc. CGI '95. Leeds, UK. (1995) 235-
254.

7. Kakizaki, K. Generating the Animation of a 3D Agent from Explanatory Text.
Proc. ACM MM '98. (1998) 139-144.

8. Lee, W.M. and Lee M.G. An Animation Toolkit Based on Motion Mapping. IEEE
Computer Graphics International. (2000) 11-17.

9. Monzani J. S., Baerlocher P., Boulic R., and Thalmann D. Using an Intermediate
Skeleton and Inverse Kinematics for Motion Retargeting. Proc. Eurographics 2000.

10. Popovic, Z. and Witkin, A. Physically Based Motion Transformation. Proc. ACM
SIGGRAPH '99. (1999) 11-19 .

11. Rohlf J. and Helman J. IRIS Performer: A High Performance Multiprocessing
Toolkit for Real-Time 3D Graphics. Proc. ACM SIGGRAPH '95. 550-557.

12. Thalmann D., Farenc N., and Boulic R. Virtual Human Life Simulation and
Database: Why and How. Proc.International Symposium on Database Applications
in Non-Traditional Environments (DANTE'99). IEEE CS Press, 1999.

13. D. Tolani, A. Goswami, and N. Badler. Real-time inverse kinematics techniques
for anthropomorphic limbs. Graphical Models 62(5), Sept. 2000, 353-388.

14. The VRML Consortium Incorporated. The Virtual Reality Modeling Language.
http://www.vrml.org/Speci�cations/VRML97/. International Standard ISO/IEC
14772-1: 1997.

