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Parallel Processing on 
a Transputer-based Graphics Board 

Joijo Pereira, Francisco Reis, Carlos Vinagre, and Mario R. Gomes 

Th.s paper discusses the design of a graphics board with parallel architecture based on Transputers and a resolution 
of 1024 x 1024 x 8 [VIN88], namely: Ihe processing unit (il plays the role of a display processor), the organization of 
the frame buffer and the video outpul hardware which includes the video controller and a RAMDAC (lookup-table + 
DACs). 

Display Processor 

Parallel processing can be successfully applied as a solution to the Computer Image 
Generation (CIG) Problem. In fact, the parallelism may be obtained by decomposing the 
eIG problem into a number of smaller, simpler tasks which can be executed in parallel 
[MAY86]. 

One of these tasks is a process called "transformer" that transforms the Objects defined in 
Real World coordinates into viewing coordinates (Image Space) according to the viewing 
position and direction. Objects are represented by planar and convex polygons. In this 
way the viewing transformation of objects is reduced to the transformation of points, 
namely the vertices of the polygons. The transformer process will perform (4 X 4)-vector­
matrix multiplication using homogeneous coordinates, clipping and, then, perspective 
transformation to obtain the illusion of depth. 

Each object transformed is passed to a drawing process (the pixel processing part of the 
CrG pipeline). Additional transformers may be used to increase the throughput of the 
system. As a transformer becomes free, the object store can send another object to 
transform (see Figure 1). N-transformers can process data at up to N-times the rate one 
transformer can. This speed-up depends on the rate at which the object store is able to 
supply objects and on the drawing process being able to draw objects fast enough. The 
later factor can, again, be achieved by introducing parallelism in the drawing process. This 
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TRANSFORMER 

Figure 1: Parallel processes in Computer Image Generation. 

parallelism is reached by considering Image Space partitioning or Object Space 
partitioning [STR86]. 

Facing these considerations, IMS-T800 Transputers (20 MHz version) from INMOS 
(INM87] were chosen to implement a concurrent display processor. The concurrency of 
the display processor has two levels: the software level (existence of concurrent processes 
in each transputer) and the hardware level (several transputers processing concurrently). 

The IMS-T800 transputer is a CMOS microcomputer which integrates a 32-bit IO-MIPS 
integer CPU (20 MHz version), a full 32/64 bit IEEE 754 floating point processor capable 
of a sustained 1.5 MFLOPS, 4 Kbytes on-chip fast static RAM which can be accessed at 
80 Mbytes/s, a memory interface with integral DRAM controller to address up to 4 
Gbytes of external memory at a data rate up to 26.6 Mbytes/s and four full-duplex 
interprocessor communications links on a single chip. High performance graphics support 
is provided by microcoded block move instructions which operate at the speed of memory. 
These kind of instructions can be used in graphics operations such as windowing, 
zooming, text manipulation and screen updating. The transputer is designed to implement 
the OCCAM language, but also efficiently supports other languages such as C, Pascal and 
Fortran. 

Its four serial links provide a simple way to connect multiple transputers together, thus 
allowing concurrent operation. Interprocessor communications is implemented by 
connecting a link interface on one transputer to a link interface on the other transputer by 
two uni- directional signal lines. Each of these interprocessor links has two on-chip DMA 
engines associated with it, one for input and the other for output. Each links runs at to 20 
Mbits/s, providing sustained data rates of 2.35 Mbytes/s, independent of the processor 
and the other links. So, the four links can run simultaneously, providing data transfers at 
up to 9.4 Mbytes/s. The existence of these links together with an extremely fast hardware 
scheduler on-chip (switching processes takes on the order of IJ.!S) allows the power of 
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parallel processing to be exploited. Taking advantage of the transputer capability to form 
networks easily, a ring network with four transputers was implemented [VIN88] (Figure 2). 

~ 

~ 


Figure 2: Transputers in a ring network. 

All transputers are connected to the system bus, so an arbitration on the access to the bus 
must be done. Each one of them has its own local memory. Using its local memories and 
its links the problem of saturation is avoided because the transputers accesses to the 
system bus decrease (Figure 3). 

R G B 

Figure 3: Block diagram of the graphics system. 

Let us examine the splitting of the CIG problem into several tasks and how these are 
distributed among the four transputers. 
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For the drawing part it was decided to implement image space partitioning which leads to 
several processes, each one responsible for a region of the screen. This partitioning is 
suitable to implement the Z-buffer. If object space partitioning was used, there would be a 
lot of dependency between the processors which must be avoided. To take full advantage 
of the CIG pipeline, there will be four "transformer" processes whose outputs 
(transformed polygons) will be delivered, in a FIFO scheme, to a pipeline of image 
processes (Figure 4). For this we need a scheduler process that, according to the 
throughputs of the geometrical and drawing parameters, will control the rate at which 
transformed polygons are fed to the image generating pipeline. 

Object 
Transformed 
'polygon 

Figure 5: The transformer process. 

The picture is defined by a display file, containing 3D polygons definitions. To simplify 
the implementation, the polygons will be restricted to triangles. The display list is located 
in local DRAM memory and is loaded by the host. At each vertex of the polygon depth 
and intensity are stored. The scheduler process traverses the display file and distributes the 
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polygons among the "transformer" processes. Each one of these processes can, in tum, be 
distributed over a pipeline. Then, the scheduler process determines if the FIFO is ready 
to accept the transformed polygon. In the positive case, the polygon is passed and the 
"transformer" process receives another polygon to transform. If not, the "transformer" 
process must wait. 

The display will be broken up into 16 regions. So, in each transputer there will be four 
image processes (IP) each one with its own local Z-buffer and local frame-buffer (64K X 2) 
occupying a total of 112 Mbyte of local memory. The remaining 256K (see Figure 3) will 
mainly be reserved for geometrical transformations and for the scan-conversion algorithm. 

The operations required to render a scene includes: 

• scan-conversion 

• hidden surface removal 

• shading 
Simple Gouraud shading will be incorporated in the scan-conversion algorithm, since it 
involves only linear interpolation between intensities defined at polygon vertices. The 
hidden line removal is performed by the Z-buffer algorithm. 

Now, it can be seen what operations an image process (IP) will perform. At first, details of 
the edges of a polygon will be calculated so that for each pixel it can be decided whether 
it is inside or outside the polygon. Only pixels inside the polygon are eligible for 
subsequent depth comparison. Each IP has its own local Z-buffer, so it will compute the 
depth of the polygon at the pixel and will store it if it is less than the previous minimum. 
In this case, the IP will calculate the intensity at the pixel by interpolation between values 
stored at the polygon vertices and will store it in its local frame-buffer. 

Again, parallelism can be exploited. In fact, each IP can be split into three tasks and 
distributed over a pipeline (Figure 6). 

Transformed Translormed 
polygon polygon 

Figure 6: An image process. 
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After a transformed polygon has been processed by an IP, it is fed into another image 
process which can run on the same transputer or in one of the following transputers of the 
ring. 

When the last polygon had been processed by the last IP of the image pipeline, the 
scheduler will spawn a display process that copies the sixteen local frame-buffers to the 
final frame-buffer. This copy operation involves system bus access by the four transputers, 
so that arbitration is needed. This is simply solved by a "token" which travels around the 
ring. The display process which has the token is allowed to send its local frame buffer. At 
that time, the others cannot access the system bus. After the display process has finished 
sending, it passes the token to the following transputer which in turn will start to send its 
local frame buffer. 

Frame Buffer 
The systems design for real-time graphics performance is expensive and difficult because it 
implies to generate moving images on a computer screen in real time, i.e. the system must 
be able to recalculate and redraw the image 30 to 60 times per second to give the illusion 
of smooth motion. An analysis of the architccture of a graphics system shows that the 
major performance problem is the organization method used to implement the frame 
buffer [WHI84J. This memory is accessed by the display processor, which writes data into 
the memory, and by the video refresh controller, which reads from the memory and routes 
the pixel data to the video output circuitry and CRT monitor. For the viewing image to be 
stable, the video controller must supply the data to the monitor according to strict timing 
requirements. To meet this required data rate, the video controller must have adequate 
access to the memories. As a result, the display processor and the video controller 
contend for a finite number of available memory cycles. 

So, three problems have to be considered in the design of the frame buffer: the first is the 
contention for memory cycles and the others two are the adequate bandwidths required 
for the image memory by the display processor and by the video controller. 

The contention of the frame buffer is totally eliminated with the use of double-buffering 
and almost eliminated by using video Rams (VRAMs). OUf implementation of the frame 
buffer comprises double buffering and VRAMs. One of the goals of this design was the 
possibility of obtaining real time animation. Only double buffering enables that feature. If 
double buffering was not used, some images would be composed of parts of the previous 
frame and parts of the current frame. 

The reason to use VRAMS was simply because it was necessary to guarantee the 
bandwidth which the video controller needs to do the display refresh. In fact, the VRAM 
internal shift-registers provide a means to get the necessary pixel rate. The alternative 
-but more expensive- solution would have been to use faster memories. 
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The frame buffer uses TMS4461 64K X 4 memories from Texas Instruments [TI86]. With 
a 1024 X 1024 display, 32 chips are required to implement one buffer (so, in total, 64 
chips are required for the two buffers) which are organized in 4 rows of 8 memories each, 
as illustrated in Figure 7. The address lines are the same to every line except the upper 
two bits which are used to select what row is active. 

00 07 

ADDRESS 0-7 common to all memories 

SOO-SD3 $04-$07 

!CAS common to aU memories 

SOO-3' 

IRAS 

< IOE 

It is essential to know how often a new pixel must be supplied to the video output 
hardware in order to determine how fast the frame buffer must be accessed to support 
display refresh. In this case, a 1024 X 1024 display with a refresh rate of 60 Hz implies a 
pixel time of 11.42 ns [WHI84]; so that a bandwidth of 87.57 Mbytes/s (8 bits per pixel) 
is needed. 

Looking again at Figure 7, it can be seen that a read operation of the frame buffer by the 
video controller, taking advantage of its internal shift-registers, occurs only once every four 
scan lines. So only one memory cycle is sufficient for the video controller to access 4096 
pixels (this read operation generates the data transfer from memory to internal shift­
registers). It is important to note that between two read operations, generated by the video 
controller, data are shifted out at a rae controlled by the shift on TMS4461, which can 
handle a maximum shift frequency of 25 MHz (equivalent with 40 ns). Since with this 
configuration 16 pixels can be aceessed per shift operation, the maximum bandwidth that 
the frame buffer ean guarantee is 400 Mbytes/8, whieh is more than enough. 

The overall arehitecture of the system is represented in Figure 3. 

Figure 7: Frame buffer organization. 
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Video Output Hardware 
A TMS-34061 from Texas Instruments [TI85] plays the role of the video refresh controller. 
This device controls the video display and the dynamic memory of a bit-mapped graphics 
system. Primarily designed to provide control of VRAMs, it also controls the conventional 
64K DRAMs. Beside generating the video timing signals necessary to interface to a raster 
scan CRT display, it relieves the processing unit of the burden of controlling the system 
memory, refreshing video memory and reloading VRAM internal shift-registers. It has 18 
programmable registers and an arbiter which determines whether the host. the video shift­
register reload logic or the DRAM-refresh logic can access the memory. 

When the video controller accesses the frame buffer it fetches and stores multiple pixels in 
a video buffer. In this case the VRAMs internal shift-registers function as a large video 
buffer with a organization of 1024 X 4 pixels (Figure 7). Then, it is necessary to convert 
the data stream from parallel pixels to serial pixels. This function is performed by the 
BT4581l25 MHz CMOS RAMDAC from Brooktree [BR086j. 

PIXEL 

CLOCK 

90MHt 

are!< 

Figure 8: Functional block diagram of video output hardware. 

The architecture of this device enables display resolutions up to 1280 X 1024 pixels (up to 
8 bits per pixel plus up to 2 bits of overlay information), minimizing the use of costly ECL 
interfacing, as most of the high speed (pixel clock) is contained on chip. The multiple pixel 
ports (it may operate either with four pixel ports or five pixel ports) and internal 
multiplexing (serialization) enables TTL compatible interfacing (up to 32 MHz) to the 
frame buffer, while maintaining the high video data required for the graphics board. It 
also has a 256 X 24 colour lookup-table with triple 8-bit video DIA converters, supporting 
up to 256 simultaneous colours from a 16.8 million colour palette. As illustrated in 
Fignre 8, 4: 1 multiplexing is required because four of the pixeJ inputs of the RAMDAC 
are used. 
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Due to the high clock rates at which BT458 can operate (90 MHz in this case), it is 
designed to accept differential clock signals (CLOCK and CLOCK*). These clock inputs 
are designed to be generated by ECL logic operating at + 5 Volts. They must be 
differential signals due to noise margins of the CMOS process. On the rising edge of the 
signal LOAD, four pixels are latched into the device. This signal is derived by externally 
dividing the signal CLOCK by four (Figure 8). 

There were two alternatives to generate the CLOCK and CLOCK* signals: designing a 
Pixel Clock at TTL levels and translate these to ECL input levels or directly implementing 
an ECL Pixel Clock. The first method was chosen. 

Although, the use of ECL is minimized, some rules must be followed in the design with 
this high speed logic. The major extra design constraint of ECL systems as compared to 
any other lower speed logic is that the gate propagation delays and output transition times 
(;:::;2 ns) are comparable with the signal "round-trip" time along typical on-card 
interconnections. In these conditions the interconnections exhibit transmission line 
properties. This has two results. First, propagation delays along interconnections now 
become a significant part of the total propagation time of signals between circuits nodes. 
Circuit layouts must be designed to minimize interconnect distances on critical paths, and 
most important, clock line lengths must be matched in synchronous systems to ensure that 
conflicts do not occur. 

The second effect is that reflections which always occur at the end of a mismatched line 
are no longer concealed in the transition of the driving rate. A gate with a rise time of 2 
ns driving a one foot long interconnection has almost completed its transition before the 
voltage at the end of the remote end of the line starts to change. Reflections manifest 
themselves as overshoot and undershoot at the end of the line. Excessive overshoot must 
be avoided in ECL, because it can cause the input transistor to saturate, and hence slow 
the circuit down. Equally important, the undershoot can put the voltage into the threshold 
region and cause false transitions at the output of a driven gate. The solution to this 
problem is to use constant impedance and properly terminated transmission lines so as to 
minimize reflections. 

One of the greatest advantages of ECL is the availability of both true and complementary 
output functions with, essentially, matched delays; these outputs are required to drive the 
signals CLOCK and CLOCK* of the RAMDAC. ECL circuits normally operate with 
ground on VCC pins and a negative -5.2 Vdc power supply on VEE pin. While ECL may 
be used with ground on VEE pin and + 5 Vdc on VCC pins, the negative supply 
operation has noise immunity advantages and is recommended for larger systems. 
However, according to the BT458 technical specifications ECL must operate on a single 
+5 Volts supply. ECL works well in this mode if care is taken to isolate the TTL 
generated noise from the ECL + 5 volts supply line. Translators for interfacing TTL and 
ECL in this mode are built with discrete components since integrated circuit translators do 
not operate on a single +5 volts supply (except the lOH350 from Motorola). The TTL to 
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ECL translator shown in Figure 9 consists of three resistors in series to attenuate TIL 
output to ECL inputs requirements [BL083]. 

Vee 

180 

A 270 

TTl 
CLOCK 

82074LS04 

Vee 

220 

.------t----.. CLOCK 
330 

'5' 

Vee 

220 

'----+--_e CLOCK 
330 

Figure 9: Interfacing the BT458 to the TTL clock. 

As said before, to minimiz,e the reflections, both the CLOCK and the CLOCK * lines 
require standard ECL termination and equal length. A typical ECL parallel termination 
to a l20n transmission would be the Thevenin equivalent resistor pair (2201330) to + 3 
volts, as shown in Figure 9, 

Conclusions 

The parallel architecture was designed to reach real time performance. However, this 
requirement depends on the software used in the implementation of the visualization 
pipeline. In fact, the performance of the display processor is highly dependent on the 
degree of parallelism that is possible to get from algorithms (concurrent programming) and 
how efficiently the tasks are distributed over the four transputers. 

In order to estimate the performance of the geometrical part of the visualization pipeline. 
the figure of a "typical" image with approximately 1000 triangles, each one with an 
average size of ISO pixels base by ISO pixels height, can be used, 

The viewing transformation which performs scaling, translation and rotation involves, in 
the most general case, 30 FLOPS (16 multiplications, 12 additions and 2 divisions) for 
each vertex [STR86]. The clipping process will be implemented by the Sutherland­
Hodgman algorithm [SUT74]. This algorithm requires one floating-point compare per 
clipping plane, 6 compares per vertex in a 3D system, In total, each "transformer" process 
will involve, in average, 36 FLOPS per vertex, 

Table 1 summarizes the performance, considering floating-point operations either in single 
or double length precision and the Typical/Maximum processor cycles involved in each 
one [INM87]. The processor cycle time are SO ns, 
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Multiplication cycles 

Addition cycles 

DIvision cycles 

! Compare cycles 

Time to transform 1 vertex 
r--...... 
T,me to transform 3000 vertIces 

Single Double • 

Tyolcal I Maximum Typical! Maximum 

11 I 18 20 I 27 

6 I 9 6! 9 

17 I 28 I 32 I 43 

3 / 6 3/6 

(300) 151'5 / (488) 24.4l's (474) 241'5 ! (662) 331'5 

45ms I 73ms 72ms I 99ms 

Achievable images per second 22.2 I 13.6 13.89 I 10.1 

Table 1: Performance of the transformation process (all cycles are floating point instruction 
cycles). 

Assuming an optimistic estimate that the FIFO will never fill up (this implies that the first 
IP of the image pipeline is always ready to accept a transformed polygon whenever a 
"transformer" process sends its output to the queue), then, the four "transformers" 
processes (each one in each transputer) can process data at up to 4-times the rate of one. 
To be more realistic, we can assume that the four processes will perform at 2-times the 
rate of one. Therefore, considering the worst conditions (FLOPS in double precision and 
the Maximum processor cycles), it will be possible to reach a number of 20 "typical" 
images per second. 

It's a well-known fact that the rasterization is much more computation demanding than 
the geometric transformations. To estimate the performance of this stage, let us consider, 

the same "typical" image for which 11.25 million pixels 1000 triangles of ~ 1 

pixels) have to be drawn. 

Table 2: Performance of the drawing process. 

Assuming a very optImistIc approach that the software can modify four pixels every 
instruction, the best possible performance is summarized in Table 2. The IMS-T800 
memory interface cycle has six timing states, referred to as Tstates [INM87]. The duration 
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of each Tstate is configurable to suit the memories devices used and can range from one to 
four Tm periods. One Tm period is half the processor cycle time, i.e. 25 ns. In our case 
each Tstate is configured to one Tm period, so that the memory cycle time is 150 ns. 

The drawing process however, is implemented by a pipeline of 16 IPs, each one 
responsible for 64K of the display. So, it is realistic to estimate that these 16 processes can 
improve the drawing process, at least, by a factor of 8, which results in 18 images per 
second. 

However, these operations are done in transputers local memories, so it remains to 
account for the time needed to perform the data transfer to the frame buffer. There are 
sixteen 256 X 256 words blocks move. Each block move involves (2 X 256 + 23) X 256 
processor cycles, i.e. 6.85 ms [IMS87]. Thus, the average time to rasterize a "typical" 
image is: 

0.421875 + 16 X 6.85 X 10-3 = 0.163 s 
8 

which results in 6 images per second. 

It can be seen that if there were more IPs, for instance 32, the following number would be 
obtained: 

0.421875 + 32 X (2 X 128 + 23) X 128 X 50 X 10-9 = 0.084 s 
16 

or 1l.9 images per second. 

References 
[BL083] Blood, William l.R., "MECL System Design", Motorola INC, 1983 

[BR086] Brooktree Corporation:"Preliminary Information BT 458/451", 1986 

[INM87] INMOS Limited, "Preliminary Data: IMS T800 Transputer", April 1987 

[MAY86] May, David, and Roger Shepherd, "Communicating Process Computers", 
Technical Note 22, INMOS, 1986 

[STR86] Strasser, W., "Tutorial Bl: VLSI-Oriented Graphics System Design", 
Eurographics 1986 

[SUT74] SUTHERLAND, I. E., G. W. Hodgman, "Reentrant Polygon Clipping", 
Comm. ACM, vol. 17, no. 1, lanuari 1974. 

[TI85] Texas Instruments, "TMS34061: User's guide", 1985 

[TI86] Texas Instruments: "MOS Memory DataBook European Edition" 

[VIN88] Vinagre, c., F. Reis, l. Pereira, "Placa grafica baseada em 
transputers",3,d Simp6sio da Electr6nica das Telecomunica(:oes, May 1988. 

[WHI84] Whitton, M. C. :"Memory Design for Raster Graphics displays", IEEE 

Computer Graphics & Applications, March 1984 




