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Abstract
Path-traced global illumination (GI) becomes increasingly important in movie production. With offscreen ele-
ments considerably contributing to the path traced image, geometric complexity increases drastically, requiring
geometric instancing or a variety of manually created and baked LOD. To reduce artists’ work load and bridge
the gap between mesh-based LOD (Mip-maps) and voxel-based LOD (brickmaps), we propose to use an SVO
with averaged BRDF parameters, e.g. for the Disney-BRDF, and a normal distribution per voxel. During shading
we construct a BRDF from the averaged BRDF parameters and evaluate it with a random normal sampled from
the distribution. This is simple, memory-efficient, and handles a wide variety of geometry scales and materials
seamlessly, with proper filtering. Further it is efficient to construct, which allows quick artist iterations as well as
automatic and lazy generation on scene loading.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

As production rendering is moving towards physically based
GI, existing ray tracing approaches have to be able to handle
heavy production scenes in reasonable time. Existing ren-
derers focus on ray sorting, which allows for coherent ray
traversal and shading [ENSB13] increasing the overall ren-
dering performance for in-core scenes. However, in a pro-
duction environment, the need for highly detailed geome-
try in large-scale scenes grows fast and many of the current
scenes exceed main memory forcing out-of-core processing.
Memory requirements become a serious issue for efficient
rendering as in [YLM06] accurately described. Solutions
such as geometric instancing are neccessary and currently
widely used. However, geometric instancing exposes diffi-
culties as it leads to undesirable repetitions. Geometric sim-
plification with according Mip-Map textures is possible, but
usually involves artist intervention. Alternative voxel based
approaches, e.g. Brickmaps [CB04], involve difficult data
setups and long baking processes, which hinders quick artist
iterations. Further, managing those data structures has shown
difficult in a production environment where assets change
frequently and prior bakes become quickly outdated.

In this paper, we propose a simple LOD approach. First,
during scene loading, appropriate LOD candidates are se-
lected based on a view-dependent criteria. Then, we gener-

ate our compact LOD data structure from these candidates
and use this for path tracing, while discarding the underly-
ing geometry. This allows us to reduce the memory footprint
and increase the overall performance due to less out-of-core
scenarios for large-scale environments. Further, we achieve
good quality by approximating the geometry within a voxel
with tight slabs and capturing the surface reflectance by ap-
propriate material filtering of the Disney BRDF parameters.
We use these parameters during shading as well as a ran-
domly selected normal from our fitted normal distribution to
build up a BRDF and sample from it. This approach is sim-
ple and efficient and allows for soft highlights filtering of
fine grained surface variation.

2. Related Work

Level of Detail is a broad field in computer graphics. In this
section we differentiate between mesh-based LOD, such as
geometric simplification or Mip-Mapping, and voxel-based
LOD, which include point-based approaches.

Mesh-Based LOD For an extensive survey on polygonal
simplification of complex geometries see [LWC∗02]. A sim-
ilar approach is R-LOD [YLM06], which approximates the
geometry inside each BVH node with a plane. This works
well for primary visibility, however, especially for highly
curved geometry, the plane approximation introduces holes,
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Figure 1: Our LOD approach reduces memory requirements for ray tracing complex environments. With our simple filtering
of BRDF parameters and normal distribution we maintain reasonable results and allow complex scenes to stay longer in-core.
The observed memory savings are dependent on the input geometry and acceptable quality degradation: For the city scene
(left), mainly consisting of large textured polygons we reduce memory footprint by 50% without noticeable image differences.
For the highly tessellated T-Rex with displacement (right) we reduce the memory footprint from 20.4 MB to only 0.4 MB (top)
and 0.08 MB (bottom).

leading to uncontrollable light leaking when used with full
GI. Different mesh based simplification approaches tar-
get specifically aggregate geometry as in i.e. [LBBS08] or
[CHPR07]. Lacewell et al. [LBBS08] prefilter aggregate ge-
ometry from different view points resulting in less variance
in soft shadows. Cook et al. [CHPR07] on the other hand
discard parts of aggregate geometry and adjust the remain-
ing objects to have similar lighting behaviour. However, both
approaches are targeted to aggregate geometry only.

When simplifying geometry, material reflectance has to
be considered as well. In real-time graphics often simple
and fast linear filtering approaches are employed, e.g.texture
mip-mapping [Wil83]. However, when applied on normal or
displacement maps they fail to correctly capture reflectance
properties coming from microfacetted surfaces. In such case
nonlinear prefiltering methods, as surveyed in [BN12], are
more accurate. Bruneton et al. [BNH10] for instance, ap-
proximate high frequency geometric detail with a rough
BRDF model when viewed from afar and smoothly transi-
tions between geometry and the BRDF model. They apply
this technique for realtime realistic ocean rendering. A more
recent approach is Linear and Efficient Antialised Displace-
ment Rendering (LEADR) as introduced in [DHI∗13]. They
use simple Gaussian distributions to approximate geometric
detail and self shadowing from displacement maps. Their ap-
proach is closely related to Linear and Efficient Antialiased
Normal (LEAN) mapping ( [OB10]) which handles normal
maps only. However, both approaches filter in the tangent
space and not over geometric boundaries, thus are restricted
to single-bounce filtering. Other approaches which handle
multi-lobe distributions ( [HSRG07], [TLQ∗08]) suffer from
expensive pre-processing when searching for appropriate fil-
tering lobes.

Voxel-Based LOD In the past years, brickmaps as intro-
duced in [CB04] and thouroughly presented in [Chr10] have
been extensively used to compute diffuse global illuminatio

for highly complex environments in movie production. Re-
cently, Kontkanen et al. [KTO11] improved this approach
by allowing efficient processing of out-of-core point clouds.
However, in both approaches setting up those point clouds,
generating brickmaps and managing those data structures
requires manual intervention. Voxel octrees have been ex-
tensively used in many computer graphics applications, e.g.
Benson et al. [BD02] introduced octree textures for simple
3D painting. Later, GigaVoxels were proposed by Crassin
et al. [CNLE09], which efficiently compute only primary
visibility for large volumetric data sets. Another efficient
voxel structure are Sparse Voxel Octrees (SVO), proposed
by Laine et al [LK10], which have been used in many in-
teractive illumination approaches, such as in the voxel cone
tracing framework [CNS∗11] as well as in production en-
vironments [PMA14]. Filtering approaches, which consider
fine surface detail( [HN12]) improve on that. Our work is
closely related to the work of Laine et al. [LK10] as we use
an SVO to encode the geometry. However, we store addi-
tional parameters for each voxel to reconstruct accurate ma-
terial reflectance to be able to derive secondary paths for ray
tracing.

3. Overview

We use SVOs [LK10] as a main data structure for LOD in a
ray tracing environment. SVOs are well suited for LOD; they
implicate simple filtering by their hierarchical data struc-
ture and, most importantly, their memory footprint is much
smaller compared to geometric representations.

On scene loading, we automatically detect appropriate
candidates for aggregation (Section 4). These groups are
then approximated (Section 5) and stored in a compact data
structure (Section 6). We use this LOD approximation for
primary as well as secondary rays, and present according re-
sults in Section 7 before concluding the paper (Section 8).
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4. LOD Aggregation

For our LOD selection we use a view-dependent metric. We
compute the voxel resolution based on the object’s bounding
box b with edge lengths bx,by,bz and ray diameter d:

vres =
max(bx,by,bz)

d(||e−b||) . (1)

Similar to [YLM06] d(||e− b||) describes the ray diameter
at the shortest distance between the camera position e and
box b, which is an isotropic approximation of ray differen-
tials [Ige99].

For larger and close objects this can lead to SVOs with
high resolution, and memory footprint larger than the orig-
inal geometry. To avoid the expense of computing such
high-resolution SVO, we use a simple threshold vmax: If
the SVO requires a higher resolution than vmax we do not
compute the SVO, and render the original geometry instead.
vmax = 256 has shown to be a good trade-off between qual-
ity, performance and memory consumption. In addition, we
expose a user-defined LOD tolerance factor λ, which denotes
the maximal voxel extent in pixels. In order to determine
whether an LOD is appropriate for an object we then use

vres ≤ λ · vmax. (2)

For offscreen objects, we assume that they are hit by wide
secondary rays only, thus we apply an additional multiplier
on λ to allow more aggressive simplification.

To account for spatial as well as logical grouping, i.e. sim-
ilar elements should be grouped into one LOD object in or-
der to preserve shading context and exploit cache coherency,
we apply the above selection scheme in a recursive two-step
algorithm. We first create a logical scene hierarchy Hlog and
check the current node nd, e.g. in the first iteration this is
the scene’s root node itself, whether it satisfies Equation (2).
If this is the case we apply our LOD scheme on nd; other-
wise, we build a spatial hierarchy Hspa(ndchild) over all first
descendants of nd. Hspa(ndchild) is then traversed in a top-
down manner in order to find spatially nearby aggregation
partners. If there are leaf nodes of Hspa(ndchild) left after the
traversal we return to Hlog and proceed with the next finer
level. Each group satisfying Equation (2) is converted into a
separate SVO while the underlying geometry is discarded.

5. LOD Filtering

To build our LOD structure, we generate points by casting
rays orthogonal to the six sides of the bounding box. This
gives us uniform samples and prevents color leaking be-
tween nearby geometry and also allows us to discard invisi-
ble geometry leading to less memory consumption. At each
sampled point we then compute its position p, its geometric
normals ngeom, as well as its shading normal nshade. Further,
each point contains also material properties, such as color,
e.g. from texture, and a set of BRDF parameters.

Figure 2: From left to right: input geometry, SVO approxi-
mation without and with contour planes.

5.1. Filtering geometry

Similar to [LK10], we use additional contour planes to im-
prove geometric detail, where we restrict the planes’ direc-
tion to the average normal n̄geom. During traversal of the
SVO we additionally intersect rays against the approximat-
ing planes. Figure 2 shows the T-Rex model, the voxelized
approximation at a resolution of 643 without and with con-
tour planes. Besides improving the overall silhouette of the
model, the plane approximation additionally removes unde-
sired self-shadowing caused by nearby voxels. Notice, by
using two planes the voxel approximation stays watertight,
guaranteeing no light leaking, which may lead to undesirable
fireflies under full GI.

5.2. Filtering material properties

We choose a subset of ten parameters from the Disney
BRDF [Bur12]. This material model can approximate a wide
range of physical materials. Further, its parameters are de-
signed to be perceptually linear and produce a plausible
BRDF when blending the parameters of different materials.

To obtain a filtered material for each voxel, we simply
average those Disney BRDF parameters and texture colors.
Note that this filters the material properties and not the ma-
terial response. The response of the average material will be
different from the average response of the original asset.

5.3. Normal Filtering

In order to capture high-frequency detail, e.g. from displaced
surfaces, a proper description of the surface normal varia-
tion is required. We use the n̄geom from Section 5.1 to define
a normal distribution around it. To compute the distribution
for each voxel we use all shading normals nshade, which may
come from displaced geometry or bump maps within that
voxel. As opposed to normal filtering approaches described
in [OB10], or [HSRG07], where the normal distribution is
integrated into the BRDF model, we use the normal distri-
bution to randomly draw a normal during shading. This ap-
proach is simple and allows us to use any, even more com-
plex shading system, without any further modifications. In
the following we describe three different distributions.
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The simplest normal distribution is an isotropic Gauss dis-
tribution, which can be efficiently described by a von Mises-
Fisher (vMf) distribution [Sra12]. The function features two
parameters: the average normal direction n̄geom and κ, the
variance around n̄geom.

For anisotropic input normals, we can use a 3D Gaussian
distribution, which requires a covariance matrix, that can be
computed linearly as in [YLM06]. However, storage require-
ments are heavy, because in addition to n̄geom we have to
store the covariance matrix. Alternatively, we can use an el-
lipse distribution, which captures anisotropy and only needs
little additional memory. We first project all normals ni in-
side a voxel onto the tangent plane defined by n̄geom result-
ing in the projected normals ni,proj (see Figure 3). Then, we
perform a principal component analysis (PCA) on ni,proj, re-
trieving the Eigenvalues σ0 < σ1 < σ2, out of which σ1 and
σ2 define the extents of the 2D ellipse. Storing these two val-
ues as well as the angle α between the Eigenvector umax and
the x-Axis of the oriented system around n̄geom is sufficient.
When shading, we sample according to the ellipse defined
by σ1 and σ2, transform the sampled normal to the local co-
ordinate system around n̄geom and normalize the vector.

Figure 4 shows the histogram of input normals (a) and
compares the histograms of randomly selected normals
based on the according distributions. Notice, the 3D Gauss
as well as the Ellipse distribution capture the anisotropy of
the input, while the isotropic vMf distribution fails.

To evaluate our distributions more accurately we use the
Jensen Shannon divergence (JSD), which is a symmetric
similarity metric for probability distributions. For each pixel,
we compute the JSD by ray casting 512 samples on the ap-
proximation and comparing the resulting histograms with
the ground truth histogram, which is the five times sub-
divided and displaced T-Rex model in Figure 1. Figure 5
shows the heatmap coded JSD (red indicating high JSD and
blue low JDS) from left to right for a low-poly approxima-
tion, as well as for our LOD scheme using the vMf, ellipse,
and 3D Gaussian. The ellipse distribution matches closely
the results of the 3D Gauss distribution, and both show lower
JSD (back of the T-Rex) than the low-poly approximation.
The row below displays the rendered results. Notice, we use

n̄geom

ni,proj

ni

umax

Figure 3: Fitting the ellipse distribution: Input normals ni
(blue) are projected to the tangent plane defined by n̄geom
resulting in ni,proj (red), upon which we perform a PCA anal-
ysis in order to obtain the ellipse parameters.

(a) Input (b) vMf (c) Ellipse (d) Gauss

Figure 4: Histograms of sampled normals using the param-
eters obtained by analyzing the input normals from (a).

Figure 5: Comparison of our LOD approach with different
normal distributions using JSD and final rendering, where
from left to right: low polygon approximation, our LOD ap-
proach using the vMF, ellipse, and Gauss distribution.

a uniform color on the T-Rex to highlight the material re-
flectance, however, we are by no means restricted to uniform
colors, e.g. as in Figure 2.

6. LOD Data Layout

Table 1 gives a detailed list of all data which is stored for
each voxel. Material properties, such as the Disney BRDF
parameters, are clustered and stored independently. Specifi-
cally, we compress the 10 BRDF parameters by storing half
of them as half floats, whereas the other half can be linearly
quantized to 8 Bit per parameter, resulting in 15 Byte per
parameter set.

The SVO linking uses 4 Byte per node, whereas its geom-
etry is encoded using 8 Byte: 2 Byte for each plane offset,
4 Byte for the geometric normal, which is compressed as
in [MSS∗10], and 2 Byte to index the correct BRDF param-
eters. The memory requirements for the normal distributions

Data Structure Size [Byte] T-Rex[KB]

Inner Nodes 4 5.2
Geometry 10 50.7

Normal (vMF) 2 10.4
Normal (Ellipse) 6 31.4
Normal (Gauss) 12 62.9

Table 1: LOD data consumption per voxel, and total for the
T-Rex model in Figure 2 at a resolution of 643. The origi-
nal geometry requires 20.43 MB, whereas our LOD structure
needs 0.08 MB only. Construction time took 2.9 sec.
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Figure 6: From top to bottom: car model using increasing
λ=1,2, and 7 requiring 62%, 55%, and 0.16% of the origi-
nal geometry with an RMSE=0.08, 0.10, and 0.12. From left
to right: the rendered result (700x500,512 SPP), the aggre-
gation groups and corresponding difference images.
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Figure 7: Timings for traversal, shading and memory con-
sumption at different λ for the car model in Figure 6.

differ. With half-float precision, the vMf needs 2 Byte, the
3D Gauss distribution is encoded using 12 Byte, whereas
the Ellipse distribution requires 6 Byte: 2 Byte encode the
angle, whereas the ellipse extents require 2 Byte each.

7. Results

We have integrated our LOD scheme into the Embree CPU
raytracing framework [WWB∗14]. All results were rendered
using 8 bounces of indirect light on a 8-core i7-2600 CPU.
We include additional heat map coded difference images
comparing our approximation to the ground truth render.

Figure 6 shows the car model for different λ, where from
top to bottom we have increased λ. The middle row images
depict the different aggregation groups, where each color in-
dicates a separate group and grey the original geometry. For
instance, in the top image each tire is divided into a separate
aggregation group, whereas in the middle both front tires be-
long to one group and in the bottom image the entire car is
represented by one single SVO. Clearly, using a higher λ has
impact on the overall appearance resulting in coarser approx-
imations, but less memory. The according timings and mem-
ory requirements are shown in Figure 7. Notice that, already
for small λ, we reduce the memory footprint by 38% with
almost unnoticably quality decrease (RMSE=0.08) and only

λ RMSE Memory [GB] Time Build
Geometry Material [sec] [sec]

0 0 1.21 3.53 109.8 0.0
1 0.03 0.46 1.97 113.2 22.3
3 0.08 0.39 1.25 136.1 28.1
5 0.12 0.38 0.72 162.4 21.5

Table 2: RMSE, render times and memory consumption for
different λ for the city scene in Figure 8.

slight traversal slowdown. With larger λ, memory is further
reduced up to 84% and image quality is degrading. How-
ever, there is no noticeable error in the shadow of the car
on the ground plane, indicating that for objects outside the
viewing frustum, which are hit by wide secondary rays only,
this aggressive approximation is already sufficient. When the
scene fits in-core, the LOD traversal slows down the overall
rendering performance. However, our main concern is to fit
scenes into main memory which avoids swapping of data,
which increases render times by several orders of magni-
tude [YLM06].

Figure 8 displays the city model along with its aggrega-
tion groups from the camera view as well as from afar for
λ = 1,2,7 (top to bottom). The according rendering times
and memory requirements are shown in Table 2. In this par-
ticular scene, we reduce the overall memory footprint of
4.74 GB to 2.74 GB with no significant image degradation
(λ = 1). This is due to aggressive simplification of objects
outside the viewing frustum. With more aggressive LOD the
image quality suffers more noticeably. However, using λ as
an artist-controllable parameter, different objects, which are
more sensible to minification (e.g. power poles), can be as-
signed different values of λ. According LOD build times are
stated in Table 2. Notice that for λ = 5 build time is reduced
compared to λ = 3, which is due to the fact that more geom-
etry is aggregated into one SVO, thus, there are less SVOs
built.

8. Conclusions and Future Work

We have presented a simple LOD approach for path trac-
ing complex environments. Our approach is well-behaved
for geometric approximation as well as material filtering.
Using the Disney BRDF and its perceptually linear param-
eters allows very simple material filtering, which limits our
approach to the Disney BRDF model. However, this model
can approximate a broad variety of different physical ma-
terials. Further, with our normal distribution, we have pro-
posed a simple filtering approach which allows filtering of
the Disney BRDF model as well as underlying complex dis-
placement. With this LOD approach we can decrease model
complexity and allow even complex scenes to stay longer
in-core, thus increasing rendering performance.
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Figure 8: We show rendered images (700x700, 128 SPP) for
the city scene as well as aggregation and difference images
for increasing λ=1,3, and 5. Memory requirements and ren-
der times are stated in Table 2.

Our current approach does not consider view-dependent
material properties. However, this can be solved easily by
additional material parameter per voxel, similar to [BD02].
Further, our approach mainly concentrates on static and non-
aggregated geometry as is present in large environments. Fu-
ture work involves expanding our approach for time-aware
objects for motion blur, as well as for aggregate geometry,
i.e. hair and fur.
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