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Abstract

While computer performance increases and computer generated images get
ever more realistic, the need for modeling computer graphics content is beco-
ming stronger. To achieve photo-realism detailed scenes have to be modeled
often with a significant amount of manual labour. Interdisciplinary research
combining the fields of Computer Graphics, Computer Vision and Scientific
Computing has led to the development of (semi-)automatic modeling tools
freeing the user of labour-intensive modeling tasks. The modeling of anima-
ted content is especially challenging. Realistic motion is necessary to convince
the audience of computer games, movies with mixed reality content and aug-
mented reality applications. The goal of this thesis is to investigate automated
modeling techniques for time-varying natural phenomena. The results of the
presented methods are animated, three-dimensional computer models of fire,
smoke and fluid flows.

Kurzfassung
Durch die steigende Rechenkapazität moderner Computer besteht die
Möglichkeit immer realistischere Bilder virtuell zu erzeugen. Dadurch entsteht
ein größerer Bedarf an Modellierungsarbeit um die nötigen Objekte virtuell
zu beschreiben. Um photorealistische Bilder erzeugen zu können müssen
sehr detaillierte Szenen, oft in mühsamer Handarbeit, modelliert werden.
Ein interdisziplinärer Forschungszweig, der Computergrafik, Bildverarbeitung
und Wissenschaftliches Rechnen verbindet, hat in den letzten Jahren die
Entwicklung von (semi-)automatischen Methoden zur Modellierung von
Computergrafikinhalten vorangetrieben. Die Modellierung dynamischer In-
halte ist dabei eine besonders anspruchsvolle Aufgabe, da realistische
Bewegungsabläufe sehr wichtig für eine überzeugende Darstellung von
Computergrafikinhalten in Filmen, Computerspielen oder Augmented-Reality
Anwendungen sind. Das Ziel dieser Arbeit ist es automatische Modellierungs-
methoden für dynamische Naturerscheinungen wie Wasserfluß, Feuer, Rauch
und die Bewegung erhitzter Luft zu entwickeln. Das Resultat der entwickelten
Methoden sind dabei dynamische, dreidimensionale Computergrafikmodelle.
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Summary

The generation of images and animations that are virtually indistinguish-
able from real-world photographs is one of the primary goals of computer
graphics. The existence of adequate scene descriptions suitable for processing
by a computer is a prerequisite for the achievment of this goal.

Traditionally computer models are generated by a human modeler. Re-
cently researchers have started to use real-world images taken by conven-
tional photographic or video cameras to automatically generate digitized de-
scriptions of objects and material characteristics that are difficult to model
manually. The work so far concentrates on static or dynamic opaque objects.
Limited research has been done in the area of static transparent object ac-
quisition. A large class of difficult to model, optically complex effects that
cannot be captured by current image-based techniques, is comprised of natu-
ral phenomena. This dissertation is a first step towards automatic modeling of
dynamic, transparent phenomena like fire, smoke, and fluid flows from video
content.

The work presented in this thesis utilizes recent advances in camera hard-
ware. Today it is possible to record scenes from different view points simul-
taneously using a number of synchronized cameras. The ability to record this
imagery is of paramount importance for the task of automated 3D-modeling.
All acquisition techniques described here use multi-video footage as their input
data.

The 3D acquisition techniques developed in this work are based on the
principle of tomographic reconstruction, very similar to its application in
medical imaging. The challenging aspect, however, is the small number of
available viewpoints for our work since the video data must be captured si-
multaneously to enable the acquistion of dynamic effects. Whereas the medical
imaging community can rely on hundreds of views of a quasi-static object to
reconstruct its interior we have to be content with a very limited number
of cameras due to the cost of the recording systems. We are interested in
the automatic reconstruction of a sufficiently accurate computer model to en-
able photo-realistic view extrapolation. This turns out to be possible, and we
present algorithms for the acquisition of dynamic, three-dimensional models
of flames, thin smoke, free-flowing water columns, and heated air flows. Fi-
nally, since the goal is photo-realistic image synthesis, we present a real-time
rendering approach for a large class of transparent objects that enables the
display of all effects that have been reconstructed by the methods presented
in this thesis and more.
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Zusammenfassung

Eines der Hauptziele der Computergrafik ist die Erzeugung photo-
realistischer Bilder und Animationen. Photorealismus beschreibt in der
Computergrafik die Berechnung künstlicher Bilder, die für das menschliche
Auge nahezu ununterscheidbar von realen Photos sind. Die rechnergestützte
Erzeugung solcher Bilder erfordert geeignete digitale Modelle der darzu-
stellenden Objekte.

Herkömmlicherweise werden diese Modelle von Menschen, am Rech-
ner, mittels geeigneter Software, in mühevoller Handarbeit erstellt. In den
letzten Jahren gab es jedoch Bemühungen seitens der Forschung, diese
Arbeit durch sogenannte bildbasierte Modellierungsverfahren zu vereinfachen.
Dabei werden herkömmliche Photographien oder Videos als Eingabedaten
für rechnergestützte automatische Modellierungsverfahren verwendet, um
komplexe, schwierig in Handarbeit zu modellierende Objekte zu digitalisieren.
Der Schwerpunkt der Forschung lag dabei bisher auf der Rekonstruktion
statischer oder dynamischer, lichtundurchlässiger Objekte. In begrenztem
Umfang wurde auch an der Digitalisierung von statischen, transparenten
Objekten geforscht. Einen großen Bereich von Objekten, die mit heutzutage
bekannten Methoden nicht digitalisiert werden können, bilden Naturer-
scheinungen wie Feuer, Rauch, Wasser und durch Hitze hervorgerufene Luft-
bewegungen. Diese Dissertation stellt einen ersten Schritt in Richtung auto-
matischer Modellierung dieser Phänomene dar.

Die in dieser Arbeit vorgestellten Verfahren bedienen sich neuester Ent-
wicklungen in der Kameratechnik. Es ist heutzutage, unter Zuhilfenahme
einer Anzahl synchronisierter Kameras, möglich, eine Szene gleichzeitig aus
verschiedenen Blickwinkeln aufzunehmen. Diese Informationen ermöglichen
eine automatische Modellierung des Szeneninhalts durch rechnergestützte
Verfahren. Alle in dieser Arbeit vorgestellten Ansätze zur Rekonstruktion von
Naturerscheinungen bedienen sich dieser Aufnahmetechnik.

Der Grundansatz aller hier vorgestellten Rekonstruktionsverfahren ist die
Computertomographie. Das tomographische Bildgebungsverfahren basiert auf
der Aufnahme von sogenannten Projektionen des Objekts aus verschiedenen
Blickrichtungen. Dabei durchdringen elektromagnetische Wellen das Objekt
und werden abgeschwächt. Diese Abschwächungen ermöglichen, wie aus der
medizinischen Bildverarbeitung bekannt, die Rekonstruktion des Objekt-
inneren. Der anspruchsvolle Aspekt dieser Arbeit besteht in der geringen An-
zahl der zur Verfügung stehenden Blickpunkte, aus denen das Geschehen auf-
genommen wird. Diese Beschränkung ist durch die hohen Kosten eines großen
Kamerasystems gegeben. Während in der medizinischen Bildverarbeitung
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hunderte von Aufnahmen eines quasi-statischen Objektes zur Verfügung
stehen, muß unsere Anwendung mit einer sehr geringen Anzahl von Blick-
punkten auskommen. Der Grund hierfür liegt in der praktischen Anordnung
eines Versuchsaufbaus sowie in der dynamischen Natur der zu rekonstruieren-
den Phänomene.

Die in dieser Arbeit vorgestellten Algorithmen zeigen die Durchführbarkeit
dieser Art von Rekonstruktion für verschiedene Naturerscheinungen. Es
werden Methoden zur bildbasierten Modellierung von Feuer, Rauch, Wasser
und heißen Luftströmungen aufgezeigt. Abschließend betrachten wir auch
eine Methode zur Echtzeitdarstellung der mit Hilfe dieser Algorithmen digi-
talisierten Modelle.
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Introduction
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Introduction

1.1 Motivation

People have always been fascinated by the looks of the phenomena of nature.
This led computer graphics researchers very early to the attempt of modeling
these effects on the computer. The simulation methods to model the appear-
ance of natural phenomena have become very sophisticated to the degree that
the laws of physics governing the burning of fire, the rise of smoke columns,
the behavior of fluid flows, the look of the sky and the stars and nearly all
other effects imaginable have been simulated on computing machines to im-
itate these effects on a computer screen, decoupled from reality, observable
for everybody in the possession of these machines to view them under arbi-
trary self-chosen conditions. However, although the physical processes can be
simulated very realistically on today’s computing hardware, there is still an
artificial feel to the animations generated in this way. The computations are
predictable, they lack the chaotic behavior of real-world environments where
e.g. a small motion of air can drastically change the appearance of a rising
smoke column or a burning flame. The motion of these phenomena can be sim-
ulated realistically as long as the physical boundary conditions are modeled
appropriately. The difficulty of modeling these ’imperfections’ mathematically
has led to the development of image-based acquisition techniques, where real-
world images are used as an input for automatic modeling techniques that try
to capture the real-world appearance of objects and make them appear more
life-like.

In the context of natural phenomena, surprisingly, this approach has not
been followed to a great extent. Our goal in this thesis is to close the gap and
capture three-dimensional, time-varying models of transparent natural phe-
nomena such as fire, optically thin smoke, and fluid flows to provide computer
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graphics models not only for direct rendering but also for analysis purposes
that might lead to improved future models of these effects. A promising re-
search direction is the automatic analysis of example data and the extraction
of key-features defining the phenomenon. The techniques presented in this
thesis are a prerequisite to attempt this kind of research in the context of
natural phenomena, and I hope they will find their application in the future.

1.2 Major Contributions

Parts of the techniques discussed in this dissertation have already been pre-
sented at various conferences and journals [85, 87, 88, 86, 89, 57, 90]. These
publications form the core of the thesis and are presented here in a revised
and extended form. Chapter 8 contains yet unpublished work that has been
submitted for publication. The major contributions of this dissertation can be
stated as follows:

• The development of a sparse view tomographic reconstruction technique
that performs well with a very restricted number of camera views. It is
based on a reduction of the degrees of freedom of the reconstruction prob-
lem by employing conservative information about the shape of the object.

• An adaptive grid tomographic reconstruction technique that yields higher
quality reconstructions in terms of effective resolution and RMS error com-
pared to ground truth.

• The development of a pixel accurate visual hull algorithm for arbitrarily
shaped basis functions covering the reconstruction volume.

• An error projection method between the codomain and the domain of a
linear operator.

• A reconstruction technique for fully three-dimensional, dynamic water sur-
faces.

• A new formulation of refractive index tomography, properly taking curved
light paths into account.

• A versatile real-time rendering method for refractive objects enabling the
use of anisotropic, volumetric material properties. The method can be
used to simultaneously render a superset of the effects acquired by the
reconstruction methods presented in this thesis.

• An efficient light propagation scheme for refractive objects enabling a fast
pre-computation of volumetric light distributions, including light direc-
tions, caused by inhomogeneous refractive index fields.
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Fig. 1.1. Examples of computer models of natural phenomena acquired using the
algorithms described in this thesis. From left to right: flames, thin smoke, water and
heated air flow.

1.3 Outline of the Thesis

The thesis is structured as follows: In the remainder of Part I we discuss
needed concepts and terminology, Chapter 2. In Chapter 3 we review the
work related to our goal of reconstructing and rendering three-dimensional,
dynamic models of natural phenomena. The part concludes with a description
of our acquisition setup and the necessary pre-processing steps for the raw
data, Chapter 4.

In Part II we develop reconstruction methods for non-refractive natural
phenomena. It starts with the presentation of the basic visual hull-restricted
tomography algorithm with an application to the reconstruction of time-
varying flame models, Chapter 5. This algorithm is used and extended in
the following chapters. Chapter 6 introduces an adaptive version of the basic
algorithm with an application to smoke reconstruction. It turns out that the
increased peak resolution of an adaptive representation comes at the price of
a less stable reconstruction algorithm. We investigate this issue and present a
remedy for this behavior.

In Part III we turn our attention to natural phenomena exhibiting refrac-
tive properties. Chapter 7 introduces a reconstruction method for free-flowing
bodies of water. We present a new experimental setup that allows for the
measurement of the optical path length in refractive objects. Based on these
measurements we introduce a photo-consistency constraint that is used to op-
timize a weighted minimal surface representing the boundary between air and
water. The method is suited for the reconstruction of volumes with a constant
refractive index different from air. Chapter 8 eases this constraint by consid-
ering the acquisition of time-varying, inhomogeneous refractive index fields.
However, the maximum refractive index magnitude that can be reconstructed
is smaller than that of the water reconstruction approach. Examples of com-
puter models acquired by the methods presented in this thesis are shown in
Fig. 1.1.
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Part IV consists of Chapter 9 only and discusses real-time rendering of
the acquired models. The method presented in this chapter is much more
general than previous approaches and can render refractive objects with highly
complex material properties. A fast light propagation technique is presented
as well that lends itself to the pre-computation of volumetric lighting effects
like volume caustics, volumetric shadows and the like.

Finally we conclude with Chapter 10, summarizing the thesis and present-
ing directions for future work.
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Background

In this thesis we are concerned with the acquisition of computer models of
three-dimensional, time-varying natural phenomena such as fire, smoke, and
fluid flows. This chapter provides some background information on the opti-
cal characteristics of these phenomena, Sec 2.1. The reconstruction of these
time-varying models from a sparse set of images is a so called inverse prob-
lem. These types of problems are often not well-posed. A short introduction
to inverse problems is given in Sec. 2.2. The acquisition of these phenomena
is performed using multi-view video setups. The details of our experimental
setups as well as preliminary steps for the preparation of the raw data are
given in Chapter 4. In Sec. 2.3 we review fundamental concepts of multi-view
geometry and their application to the type of problems considered in this the-
sis. Finally, in Sec. 2.4, we introduce the concept of photo-consistency which
is the fundamental error measure for the optimization methods employed for
the reconstruction techniques presented in this text.

2.1 Optical Characteristics of Natural Phenomena

Natural phenomena such as fire, smoke and fluid flows exhibit a wide variety of
optical effects when interacting with light. Fire is often a self-emitting effect1.
Fuel particles become luminous due to the heat produced by the combustion
reaction. The particles approximate black-body radiators [72, 209] that also
emit light in the visible wavelengths. Simultaneously, absorption takes place.
When cooling off, the fire reaction products stop glowing and become visible
as smoke. Here the major effects influencing the visible image are absorption
and scattering. For smoke particle size is of the order of the wavelength of

1 There are also fires that burn without a visible flame.
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Fig. 2.1. The major optical effects occurring in natural phenomena are self-emission
like in visible flames, absorption, (anisotropic) scattering most prominently visible
in smoke columns, refraction at object boundaries occurring, e.g., at water surfaces,
and continuous refraction often visible above heated surfaces or fires.

visible light, therefore Mie scattering is the determining factor for smoke ap-
pearance [129]. If that the smoke is optically thin, single scattering can be
assumed to be sufficient to describe the scattering properties of the medium.
For thick smoke multiple-scattering has to be taken into account. Further-
more the heat generated by the combustion process influences the density of
the surrounding air. Changes in air density result in refractive index varia-
tions. Under normal real-world conditions these refractive index changes can
be related to the change in density of the medium by the Gladstone-Dale
equation [55]. The inhomogeneous refractive index distribution in hot gases
leads to bent light rays as appearing, e.g., in mirages. The same effect is ob-
servable above heated surfaces or fires. When light from a strong light source
is refracted and cast onto a surface the effect is called a shadow graph [180].
In case of objects with a higher refractive index like water or glass, the images
caused by the convergent and divergent light rays are referred to as caustics.
An illustration of the major optical effects present in natural phenomena is
shown in Fig. 2.1.

The reconstruction methods presented in this thesis deal with a single ef-
fect at a time. Three-dimensional reconstruction of flames, Chapter 5, consid-
ers self-emissive phenomena. For the acquisition of thin smoke, Chapter 6, we
neglect absorption and scattering effects, resorting to a trick while recording
the phenomenon. The smoke is recorded under uniform diffuse illumination
and thus the scattering can be assumed to be uniform. Furthermore since
we are dealing with thin smoke we consider the absorption to be negligible.
These two assumptions let us treat the smoke in the same way as a self-
emissive phenomenon. However, the smoke columns exhibit slowly evolving,
fine, turbulent structures. To resolve these in a volumetric reconstruction we
develop an adaptive version of the fire reconstruction method. Refraction at
well defined interfaces is treated in Chapter 7 in the context of reconstruction
of free-flowing water surfaces. A technique for the acquisition of continuously
varying refractive index fields is presented in Chapter 8. We reconstruct time-
varying models of heated air-flows above candles and more turbulent flames.
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2.2 Inverse Problems

In forward problems the task is to simulate a physical phenomenon given a
number of parameters of a model describing its behavior. Inverse problems,
on the other hand, consist of inferring model parameters from actual mea-
surements of a physical process. These problems are often much more difficult
to solve than the corresponding forward problem. In computer graphics these
types of problems are known as inverse rendering [123, 158] or image-based
acquisition techniques, e.g. [112]. Inverse problems are encountered in many
areas of science such as geophysics, medical imaging, astronomy, oceanogra-
phy, combustion analysis and tele-communications to name just a few. Usually
a forward mathematical model for the physical effect is developed and then
inverted. There is a whole class of algorithms that use the forward model di-
rectly to infer model parameters. These are known as Analysis-by-Synthesis
approaches. Unfortunately, the inversion process is often ill-posed and unsta-
ble. A problem is ill-posed if it does not satisfy the following three criteria:

• A solution exists,
• The solution is unique, and
• The solution depends continuously on the data.

These properties are often referred to as existence, uniqueness and con-
tinuity requirements. This definition of a well-posed problem is due to
Hadamard [67]. In inverse problems often the continuity requirement is vio-
lated. The model parameters, also called the solution of the problem, may be
varied hugely while causing only slight changes in the measurements. This is of
course undesirable since measurement noise which cannot be controlled gives
rise to exactly these kinds of changes in the measurement data. The counter-
strategy is to impose additional constraints on the solution, e.g., smoothness
constraints or other a-priori information. These regularization strategies are
usually problem-specific but there exist methods that are broadly applica-
ble. Regularization details are discussed in Sect. 6.3. A good introduction to
inverse problems based on a probabilistic approach is given in [194]. Regular-
ization issues are discussed in [69] and numerical methods for performing the
inversion are treated, e.g., in [23, 12].

Inverse problems can be divided into two classes: linear inverse problems
and non-linear inverse problems. Linear problems are inherently simpler to
solve than non-linear ones. They are characterized by a linear mapping be-
tween the model parameters and the measurement quantities. This linearity
allows to model the forward problem as a linear mapping between metric
spaces. After discretization, the linear operator describing the mapping can
be represented by a linear system of equations, and the mapping takes place
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between the model vector space and the measurement vector space. For all
reconstruction methods presented in this thesis the model vector space is the
discretized 3D world space, and the measurement space is the union of the
camera image planes of all cameras observing the scene. Unfortunately, the
ill-posedness of inverse problems results in ill-conditioned linear operators,
i.e., they exhibit a (numerical) null space; thus, families of solutions exist that
produce very similar measurements, i.e., images. Ill-conditioned linear systems
can be identified by their condition number, i.e., the ratio between the largest
and the smallest eigenvalue of the linear system. A high condition number in-
dicates instability of the inversion. The ill-posedness can be alleviated slightly
by taking more measurements, but for inherently ill-posed problems it cannot
be removed completely. The methods presented in Part II deal with linear
inverse problems.

Non-linear inverse problems, on the other hand, are defined by non-linear
operators between model space and measurement space. The refractive index
reconstructions performed in Part III are an example of this. The non-linear
nature of light transport in the case of varying refractive indices makes these
problems much harder to solve than the linear ones considered in Part II. We
resort to iterative, ray-tracing based approaches to deal with these phenom-
ena, i.e., free-flowing water and refractive air flows.

Three of the approaches presented in this thesis are tomographic recon-
struction methods. The computerized form is known as computed tomogra-
phy (CT). Computed tomography is a classical inverse problem. The mea-
surements for CT techniques are line integrals of some function or operator
of the quantity to be reconstructed:

m =

∫

c

f(p,x)ds. (2.1)

Here m denotes the measured quantity, p are the model parameters, x is
a positions in space, f is a function(al) of these quantities, and the integral is
taken along a curve c which is usually the line-of-sight. Curve c is not required
to be a straight line. If p is a function instead of a discrete set of parameters,
f is an operator. The quantity m is commonly referred to as the projection of
f(p). Distributing m or some function g(m) evenly over the curve c is called a
back-projection of m. Back-projection forms the basis of the most commonly
used CT reconstruction algorithm, Filtered Back-Projection (FBP). Implic-
itly, projection and back-projection are the underlying principles of all tomo-
graphic reconstruction algorithms. Note that projection and back-projection
have different meanings in the computer graphics and computer vision litera-
ture from the one just introduced for the tomography problem. To differentiate
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Fig. 2.2. Projection of an object O onto the image plane of a camera, forming
silhouette S. The back-projected cone C is depicted as well.

between the two, we will use the terms tomographic projection and tomographic
back-projection whenever we refer to line-integrals as in Eq. (2.1).

2.3 Multi-View Basics

A projection in computer graphics and computer vision typically specifies a
mapping π : R

3 → R
2 from world space to image space. Determining this

mapping for a number of cameras Ci, i > 0 is the task of camera calibration.
For real cameras πi is usually non-linear due to lens distortions. The major
lens distortions are due to radially symmetric imperfections around the optical
axis of the camera. Algorithms estimating these distortions and upgrading
the non-linear projections πi to linear projective mappings Pi are known as
radial undistortion methods. We discuss practical camera calibration issues
in Chapter 4. With a linear relationship between world and image space in
place, projections of points can be written as matrix-vector multiplications:

xi = PiX. (2.2)

The projections xi of the 3D point X into the different camera’s image
planes are performed using homogeneous coordinates introduced by August
Ferdinand Moebius [135]. In homogeneous coordinates points in R

n are repre-
sented as a family of points in R

n+1: (x1, . . . ,xn) → (wx1, . . . , wxn, w), for all
w 6= 0. To obtain the Euclidean image coordinates xi of the projected points,
we have to perform the division xi = xi/xi

n+1. Homogeneous coordinates
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Fig. 2.3. left: multiple view geometry of a simple sphere and 3 cameras, right: the
corresponding visual hull V is the intersection of the generalized cones of the sphere’s
back-projected silhouettes.

enable the formulation of projective mappings in terms of linear transforma-
tions.

In computer vision back-projection is the process of computing the subset
C of R

3 that projects to a subset Si of R
2, i.e. the image plane of camera Ci.

Conceptually it can be written as

C = π−1
i Si. (2.3)

C is a generalized cone with its apex at the camera center, Fig. 2.2. In
case Si contains only a single point, C is a ray passing through the camera
center and the point in the image plane. We refer to this ray as a pixel’s back-
projected ray. The ray is given by a position in space T and a ray direction
D. All points X = sD + T project to the pixel at x. To achieve this, T is
typically chosen as the camera center and D is computed by

D = P+x. (2.4)

We will use a pixel’s back-projected ray as curve c in Eq. (2.1) for the
linear inverse problems considered in Part II and as an initialization for the
bent light rays in the non-linear problems, Part III.

2.3.1 Visual Hull

Previously, we defined the generalized cone C as the set of 3D points projecting
to a subset Si of the image plane without actually specifying Si, Eq. (2.3).
Of particular interest is the choice of Si as the set of points contained in the
silhouette of an imaged object. Let O denote the subset of R

3 that is occupied
by the object, then Si = πi(O) is the silhouette of the object in the image
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plane, Fig. 2.2. Now the image-based visual hull [124] of the object is defined
as the intersection of the generalized cones generated by the back-projections
of the silhouettes Si, see also Fig. 2.3,

V :=
⋂

i

π−1
i Si. (2.5)

The image-based visual hull is an approximation to the visual hull which
was introduced by Laurentini [111] as the limit of V for i→ ∞. The visual hull
as defined in [111] is the intersection of the infinite number of back-projected
cones Ci generated by infinitely many cameras placed in the space outside the
convex hull of the object O.

In general, O ⊂ V, i.e., the object is fully contained in the visual hull
which therefore serves as a conservative approximation of the object. We use
the visual hull for all reconstruction algorithms presented in this thesis either
as an initialization of the true shape, Chapter 7, or as a restriction of the
solution space, Chapters 5, 6 and 8.

In practice, we discretize the solution space and compute either a voxelized
version of the visual hull by projecting all voxels into the recorded views,
checking whether they fall into the silhouette of the object, or, for more general
basis functions we identify whether they are contained in the visual hull. The
latter is especially important in the adaptive tomography algorithm presented
in Chapter 6.

2.3.2 Discretization of Space

As was mentioned before, all reconstruction algorithms presented in this text
use measurements of line integrals of some quantity of interest for input data.
For computations in a computer with finite memory, the measurements as
well as the reconstructed model have to be discretized. Our strategy in Chap-
ters 5, 6 and 8 will be to discretize the function f of Eq. (2.1) using a linear
combination of basis functions

f =
∑

i

fiφi. (2.6)

This discretization of f is then inserted into the forward equation,
Eq. (2.1),

m =

∫

c

fds =

∫

c

∑

i

fiφids =
∑

i

fi

∫

c

φids. (2.7)

The resulting equation is a linear combination of the coefficients fi and the
factors

∫

c
φids. Function f can be vector-valued, e.g a tuple of RGB-values,
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Chapters 5 and 6, or describe a vector field, Chapter 8. In the case of vector-
valued functions f , the coefficients fi are vectors and the basis functions φi

remain scalar functions.
The linear equation (2.7) describes one measurement, i.e., one pixel in

terms of the unknown discretized function f . Since we measure a large number
of pixels simultaneously, we arrive at a linear system of equations that must
be satisfied by the unknown function f . We will compute estimates of this
function by inverting the linear system(s) of equations obtained from Eq. (2.7)
in a least-squares sense.

The discretization of the problem decouples the unknowns fi from the
tomographic projection, Eq. (2.1). Instead, we can compute the tomographic
projections of the basis functions and invert a linear system to compute a
discretized version of f . To obtain the model parameters p we still have to
invert f . In Chapters 5 and 6, f will simply be unity, whereas in Chapter 8
it will be the gradient operator. Inversion is carried out by integrating the
reconstructed function.

2.3.3 Computation of Tomographic Projections of the Basis

Functions

An important task in this framework is the efficient computation of the to-
mographic projection of the basis functions introduced in Sect. 2.3.2 over
potentially curved rays c. These quantities form the matrix entries of our lin-
ear systems. In theory, we have to compute a large number of these matrix
entries, one for every combination of basis function φi and measurement mj .
As this is computationally expensive and the storage of the resulting matrix is
not feasible, we restrict ourselves to discretizations using basis functions with
local support. The simplest such choice is a basis function that is constant in
one voxel and zero outside. However, we will also use slightly more complex
basis functions to obtain improved reconstruction results.

To compute the tomographic projections of the basis functions we will
resort either to analytical integration on axis-aligned grids, Fig. 2.4 left, or
use a discretized version of the line integrals, Fig. 2.4 right. Analytic integra-
tion is usually more efficient but can only be used in case of curves c that
are straight rays, restricting its use to non-refractive tomography, Chapters 5
and 6. Quadrature-based evaluation of the line integrals, on the other hand,
is more flexible but less accurate and computationally more expensive, Chap-
ter 8. In any case, the curve c along which the line integral is computed must
be known before computing the tomographic projection value.
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Fig. 2.4. Computing the tomographic projection of a basis function - left: The ray
is intersected with the boundary of the axis-aligned basis function and an analytic
expression for the line integral between entry and exit point is computed. Curve
c must be a line. right: The basis function is sampled between the entry and the
exit point of the ray and the line integral is evaluated using a quadrature rule with
stepping ∆s. Curve c can be arbitrarily shaped.

2.3.4 Computing the Curve

In the case of non-refractive phenomena, the computation of curve c is
straightforward. It is simply the back-projected ray of a certain pixel as in-
troduced in Sect. 2.3. For refractive phenomena directional changes of the ray
have to be taken into account. An elegant way of doing this is the formula-
tion of the rays’ trajectory as the solution of a system of ordinary differential
equations (system of ODE’s). The curved ray is described as the trajectory of
a particle moving in the refractive index field. The differential change of its
position and direction can conceptually be written in the following way:

dx

ds
= d (2.8)

dd

ds
= f(n,d, . . .). (2.9)

Here x is the position and d the direction of the particle, ds denotes
an infinitesimal change in the tangential curve direction. Thus the position
x changes according to direction d, i.e., upon integration of the system of
ODE’s we perform a step in the current ray direction. However, direction d

can change at every position in space, expressed by the generic function f . It
depends on the refractive index, the direction d itself and potentially other
parameters. Function f will be chosen differently for the reconstruction of
free-flowing water surfaces, Chapter 7 and air flows, Chapter 8, respectively.
The reason is the implementation as a level set evolution in the former and
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as a tomographic reconstruction problem in the latter case. Additionally, this
formulation is employed for viewing ray and light propagation simulation in
the real-time rendering algorithm presented in Chapter 9.

Occasionally, we will add equations to this framework to facilitate the in-
tegration of certain variables along the ray. An application is the computation
of the tomographic projections, Sect. 2.3.3. These additional equations are of
the following form:

dm

ds
= φi. (2.10)

As can be seen by integrating Eq. (2.10),

m =

∫

c

φids, (2.11)

we obtain the tomographic projection of the basis function along the
curved ray c by solving the system of ODE’s (2.8)-(2.10) with appropriate
initial conditions. These are the camera center for the position x, the back-
projected ray direction D for the ray direction d and m = 0.

Similarly, other quantities of interest can be integrated along the curved
ray c by using equations of the same form as Eq. (2.10).

2.4 Photo-Consistency

The main goal of this thesis is to reconstruct computer models suitable
for photo-realistic rendering of natural phenomena from real-world measure-
ments. Since we are using purely optical methods with conventional camera
hardware to perform our measurements, one obvious requirement for the re-
constructed computer models is that they are in agreement with the acquired
images when rendered from the same perspective as the originally acquired
views. This requirement is known as photo consistency. However, this is just a
necessary condition for photo-realistic view synthesis. Additionally we require
good view extrapolation properties, i.e., if we change the virtual viewpoint in
the rendering algorithm such that it does not match any of the input views, the
image quality should not degrade considerably. This can happen as a result of
over-fitting the data [72]. In Chapter 7, in the context of water reconstruction,
we specifically use an experimental setup that allows for a photo-consistency
measure to be defined. This measure is then used to minimize the discrepancy
between the reconstructed model and the recorded images. In Chapters 5, 6
and 8 photo-consistency is optimized in a least-squares sense.
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Related Work

The modeling of transparent, especially natural phenomena for computer
graphics purposes is a challenging and computationally expensive problem
that, nevertheless, has fascinated researchers for a long time. This led to the
development of an abundance of methods for the realistic modeling of these
phenomena or objects, both for dynamic as well as for static scenes. We present
a taxonomy of transparent object/phenomena modeling techniques in Fig. 3.1.
This taxonomy is mainly intended to help classifying our own work and not
as a general-purpose classification scheme. E.g., the intentional omission of a
distinction between static and dynamic scene modeling techniques is a source
of major differences especially for simulation based methods - techniques or
models that produce realistic static imagery are not necessarily suited to ob-
tain convincing animations. However, in the context of the reconstruction of
these phenomena the techniques used in dynamic settings are mostly similar
to the static case. The main difference is the amount of hardware that is nec-
essary to capture appropriate data. In some cases, though, the reconstruction
methods are relying on data that is not acquirable in one time instant. We
will point this out and mention that the particular method is only suitable
for the reconstruction of static objects. If not mentioned explicitly, the dis-
cussed methods can be used for the reconstruction of dynamic phenomena by
applying them on a per-frame basis.

3.1 Simulation

We now review simulation-based methods for the modeling of transparent phe-
nomena. There are mainly two categories of approaches: procedural modeling
like particle systems or dynamic systems and physics-based simulations.
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Fig. 3.1. A taxonomy of transparent object modeling techniques in computer graph-
ics. The red box indicates the modeling approaches covered in this thesis.

3.1.1 Procedural Modeling

The first class of simulation techniques consists of mostly ad-hoc or intuitive
descriptions of the qualitative behavior for phenomena like fire, water, and
smoke. There is a strong tradition of procedural modeling in computer graph-
ics reaching back to the time when computers were not powerful enough to
perform the complex simulations required for physically correct modeling of
the underlying phenomena. Nevertheless, procedural models still enjoy wide
popularity in the graphics community. The advantages of procedural models
are fast computation times and the possibility to include intuitive control for
the animator. On the other hand, the burden of creating a physically plausible
look is put on the operator. Of course, this also results in more freedom in
creating special effects that are physically impossible.

Particle systems were the first method to be employed for the simulation
of natural phenomena. Reeves’ 1983 paper [163] is a classic in this respect.
The method was used to animate the Genesis Demo sequence in Star Trek II:
The Wrath of Khan. He used a two-layer hierarchy of particle systems, where
the first layer was a particle system whose particles contained the second
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layer, i.e., again a particle system. In this way the complex explosion could
be modeled.

Takai et al. [193] and Takahashi et al. [192] use cellular automata in two
and three dimensions respectively to simulate the spread of fire. Temperatures
are exchanged between neighboring cells, and when the ignition temperature
is reached, a cell starts participating in a particle system that is used to render
the fire. A large number of particles is necessary to achieve realistic looking
results.

Cellular automata are also used to model other natural phenomena.
Dobashi et al. [41] simulate cloud formation, a hybrid physics-based, pro-
cedural method is proposed by Kim et al. [98] to model ice formation. A
special hexagonal grid is used to avoid procedural modeling and interpolation
artifacts when switching to the physics-based simulation.

Beaudoin et al. [17] use chains of particles for fire simulation. They sim-
ulate fire propagation on polygonal meshes, building on the work of Perry
and Picard [35]. The boundary between parts of the burning object that are
burning and those that have not been reached by the fire is modeled on the
object’s surface. Then chains of particles that are animated by ad-hoc vec-
tor fields defined by the animator are released from the surface. The vector
fields model effects of buoyancy, wind blows, flame flickering, and other prop-
erties. To render the fire, a combination of potential fields around each of the
chains of particles is defined and rendered in a volumetric fashion. Lamor-
lette and Foster [108] present a similar, much more sophisticated version of
this approach for a movie production environment. They also use statistical
properties of real flames to guide the creation of vector fields and heuristics
for splitting of the flame structures.

To enhance the visual quality of particle based fire simulations, Wei et
al. [208] use texture splats [38], i.e., small rectangular textures, to render the
particles. The texture images are extracted from photographs of real flames.

A popular choice in the above-mentioned methods is to add Perlin
Noise [151] to the vector fields describing motion in order to model turbulence
in flames, smoke, and other effects. Perlin used his noise functions to directly
generate images of fire, water, and soap bubbles. Ebert and Parent [43] ani-
mate smoke by translating the evaluation region of a volumetric perlin noise
texture in space, yielding a smooth transition for the modeling of volumetric
smoke.

3.1.2 Physics-Based Simulation

The other major category of modeling algorithms for transparent phenom-
ena is physics-based simulation. These techniques produce physically correct
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images and usually provide superior visual quality compared to procedurally
modeled natural phenomena. This comes at the cost of computational expense
and high memory demands which makes it difficult to achieve high-resolution
simulations. The computations scale at least with O(n3), where n is the dis-
cretization in one spatial dimension [51]. It is also difficult to devise intuitive
means of controlling the boundary conditions and parameters guiding the sim-
ulation. Moreover, re-runs of the simulations with slightly changed parameter
values can produce dramatically different results because of the chaotic be-
havior exhibited by the governing equations. Thus, although the visual quality
of the algorithms described in this section is very good, it is still desirable to
design hybrid methods like [108] to include better artistic control over the
modeling process.

Stam and Fiume [185] seem to be the first authors investigating the use of
advection-diffusion equations for modeling transparent phenomena. Although
they stress that they are not actually solving the equations of fluid dynam-
ics, their equations exhibit a similar structure to the Navier-Stokes equations
except for the coupling of the different physical parameters like density, tem-
perature, pressure, and the spatial velocities of the fluid. In the tradition of
particle systems, Stam and Fiume simulate the transport and diffusion of
quantities based on externally specified velocity fields. The full Navier-Stokes
equations of fluid dynamics differ in that the transported and diffused proper-
ties of the fluid themselves influence the velocity fields and, thus, the evolution
of the phenomenon.

Foster and Metaxas [50, 51] introduce the solution of the equations of
fluid dynamics into the computer graphics community. They show that the
simulations can in fact result in high quality renderings and also point out
the computational expense of these simulations. They use an explicit time
stepping scheme for the solution of the equations, thus requiring many small
time steps to be taken to obtain a stable numerical simulation1.

A major break-through for physics-based simulations of natural phenom-
ena was Stam’s paper [184]. Stam introduces an unconditionally stable and
fast fluid solver which found wide-spread use in later work. The main problem
of his solver is numerical dissipation, i.e., excessive smoothing of the solution.
Fedkiw et al. [48] introduce the method of vortex confinement to the graphics

1 In general transport equations are similar to the wave equation and require step
sizes of O(∆t) for explicit integration schemes. In fluid dynamics, this is known as
the Courant-Friedrich-Levy (CFL) condition and yields an upper bound for ∆t.
Diffusion equations, on the other hand, require much more restrictive step sizes of
O(∆t2) for stability. These restrictions can be overcome by implicit time stepping
which is unconditionally stable. Note that stability does not equate with accuracy,
thus taking larger simulation steps typically decreases simulation accuracy.
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community where small detail is added back to the solution in appropriate
places, i.e., in places of strong vortices in the flow. In [48] the focus was on
smoke simulation. Since then, the methods have been adapted to a wide range
of natural phenomena including fire [144], explosions [218, 49], chemical reac-
tant flows [84], water [116], and more.

3.2 Image-Based Methods

In this section we review the literature concerning image-based techniques
for the modeling of transparent phenomena. We distinguish between image-
based rendering, i.e., methods that use the available imagery as is, image-
based reconstruction where real images are combined with coarse geometry
models, and learning-based techniques. The latter class of algorithms uses the
data to learn model parameters from the images or aims to recombine them
to generate new photo-realistic images that have not been recorded in the
acquisition step.

3.2.1 Image Based Rendering

Light field [114] or Lumigraph rendering [60] was first introduced by Levoy
and Hanrahan, and Gortler et al., respectively. Light fields are a sampled rep-
resentation of (parts of) the plenoptic function [1], which describes the light
distribution in time and space. Light field rendering permits the generation of
images of complex scenes without modeling its underlying geometry. A pre-
requisite for the application of this method is a large number of known views
of the scene. The intermediate views are then obtained by interpolating the
original views. The two methods differ in the placement the input viewpoints.
While Levoy and Hanrahan require a regular sampling of the viewpoints,
Gortler et al. use unstructured viewpoints acquired by a hand-held camera
and resample them into a structured representation. Additionally, Gortler et
al. use depth-assisted warping to generate new views while Levoy and Hanra-
han rely on pure image interpolation. Although these methods have not been
applied to model transparent phenomena, when combined with a large camera
array [211, 212] these methods can be used to render novel view points of dy-
namic transparent phenomena. The depth-assisted warping is not applicable
in this case, though. There have been extensions to this scheme, mapping these
algorithms to graphics hardware for dynamic light fields [56] and interpolating
directly from the unstructured data [29].

Another line of research deals with the recombination of the acquired im-
ages in the temporal domain, thus trading the ability to change viewpoints
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for the generation of new dynamics of the recorded scene. The methods in
this category can work with a single video sequence of repetitive nature.

With video textures [175] complex phenomena can be animated in a non-
repetitive fashion from input videos but are restricted to a fixed viewpoint
unless the texture is mapped to synthetic geometry. The input videos are an-
alyzed for loops and smooth transition points. This information is then used
to re-play the video frames in a different order. A similar method specifically
geared towards natural phenomena is presented by Stich and Magnor [189].
In [189] manifold analysis and warping are used to find appropriate transi-
tion points in the video and to smoothen transitions when looping the video.
Kwatra et al. [107] extend this scheme to spatially varying temporal transition
points in order to lessen transition artifacts in Schödl et al.’s [175] method.
For phenomena that exhibit a major evolution direction, they suggest adding
spatial tracking of features to obtain spatio-temporal transition effects.

3.2.2 Image-Based Reconstruction

The limitations of image-based rendering methods are due to the huge amount
of data necessary to facilitate the combination of dynamic content, the abil-
ity to change the viewpoint, and possibly altering the dynamics of the phe-
nomenon. This means that an enormous amount of hardware has to be em-
ployed to achieve this goal.

The desire to alleviate these limitations of purely image-based rendering
led to the development of image-based reconstruction techniques. Image-based
reconstruction techniques acquire coarse geometric data in addition to the
images that the rendering is based on. A key attribute of these methods is
that the reconstruction is not carried out in three-dimensional space but rather
implicitly in the image plane of the newly generated views.

Schirmacher et al. [173] used per image depth maps to warp images into
new views using a reasonable number of views. Matusik et al. [124] developed
image-based visual hulls, an implicit reconstruction computed in the image
plane only. These techniques are only applicable to opaque objects. Extend-
ing their earlier approach, Matusik et al. developed algorithms to acquire
fuzzy [125] and transparent, refractive objects [126]. These approaches are
based on environment matting techniques [221, 2] which lend themselves to
rendering static images of transparent, refractive objects against new back-
grounds. Matusik et al. eases the fixed-viewpoint constraint by acquiring envi-
ronment mattes on the visual hull surface of the object, effectively augmenting
a low-quality approximation of the objects’ geometry with view-dependent
environment mattes. Unfortunately, this requires the acquisition of a large
number of images per viewpoint for establishing the background-image plane
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relation. Therefore, although yielding high quality renderings from arbitrary
viewpoints, this method is not suitable to capture dynamic, transparent phe-
nomena.

3.2.3 Image-Based Modeling

We refer to methods that use real world data to infer a model, i.e., a low-
dimensional representation of the underlying phenomenon and estimate the
model’s coefficients from the available data as image-based or data-driven
modeling methods. These methods try to capture the characteristic dynamics
of a phenomenon. They trade the ability to change the viewpoint for the
ability to generate new images that have not been captured in the original
sequences. Interestingly, most of the research on image-based modeling of
natural phenomena for static viewpoints has been done in the context of
texture generation. A texture, in comparison to a general image, is one where
every sub-image is perceived to be similar whereas this is not true for a general
image [207].

The earliest work on the analysis and synthesis of temporally varying
textures is by Szummer and Picard [191]. They introduce the notion of a
three-dimensional video space, i.e., two spatial dimensions and one temporal
dimension. An extended autoregressive model is fitted to the data, and new
sequences of effects like water and steam are generated. A similar goal is pur-
sued by Bar-Joseph et al. [10]. They employ statistical learning to obtain a
statistical model which is used to generate new random samples of the under-
lying phenomenon. Results for fire, clouds, and water are presented. Wei and
Levoy [207] use vector quantization to perform temporal texture synthesis. All
these previous methods can only synthesize so-called stationary regions, i.e.,
inner regions of the phenomenon that exhibit a repetitive temporal behavior
per pixel.

There has only been limited work in the context of full models of transpar-
ent phenomena so far. Bhat et al. [21] present a method that models natural
phenomena as a flow of particles that are extracted from input video. The
paths for the particles are specified by an animator, then particle motions are
extracted by tracking a textured patch for each of them through the video
sequence. Later, the particle paths can be edited by the animator, and the
phenomenon can be changed to generate new video sequences. Results for fire,
water, and smoke are reported.

Stich and Magnor [188] present a two-dimensional morphable flame model
the parameters of which are determined from input video data. The parame-
ters are used to learn an auto-regressive process for the flame dynamics that
can be used to sample new instances of flame animations. The advantage of
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this approach is the possibility to include effects that where not present in the
acquired video data. For example, external forces such as wind can be used
to change the trajectory of the flame.

The fact that only little work exists for modeling of natural phenomena
is surprising, given the fact that data-driven models have been applied to a
wide range of modeling problems in computer graphics. To cite just a few,
data-driven models have been applied to shape synthesis [181], face model-
ing [25, 24], example-based synthesis of motion [109], BRDF synthesis [128]
and modeling by recycling parts of models, recombining them into a new geo-
metric model [53]. Often a generic model is derived and fitted to the data. A
general description of this approach can be found in [104]. A notable exception
is the data-driven BRDF model [128] where the model itself is derived from
the data automatically using a manifold learning technique like [195, 168, 171].

3.3 Reconstruction

The goal of reconstruction techniques is the acquisition of computer models
from real world objects. Different methods focus on different physical param-
eters of the objects or phenomena, but the main interest is in getting a good
description of the actual object in terms representable by a computer. The
methods reviewed in this section come from a wide range of scientific areas and
focus on different aspects of the same problem. In computer graphics the main
objective is the generation of convincing imagery - the physical parameters of
the objects are not of primary importance. Computer vision techniques con-
centrate on finding better models for scene descriptions that make computer
models consistent with acquired imagery. Combustion scientists, experimental
fluids researchers, and the applied optics community are typically interested
in the exact physical parameters of the underlying processes. These different
goals led to a wide range of approaches for the reconstruction of transpar-
ent objects/phenomena which are difficult to classify. A major difference is
whether refraction is taken into account. Approaches ignoring refraction can
work with a simple perspective image formation model, whereas modeling
refraction requires a more complex model. When refraction is taken into ac-
count, light rays typically arrive at the camera via curved paths that are often
only C0 continuous.

3.3.1 Non-Refractive Phenomena

Related work concerned with non-refractive, transparent phenomena can be
coarsely divided into tomographic approaches and others, where the other
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approaches differ widely and cannot be categorized easily. Methods suitable
for photo-realistic image synthesis are based on laser scanning [75, 52] or are
similar to tomographic reconstruction [72, 73, 74, 87, 89]. Hawkins et al. [75]
use a laser plane that is quickly swept through a column of smoke. A high-
speed camera captures slices of the volumetric density distribution while the
laser plane is moving through the volume. Additionally, the scattering phase
function is measured and the albedo of the smoke is determined to facilitate
realistic rendering results. However, the setup uses expensive equipment, e.g.,
a powerful laser and a high-speed camera. Furthermore, the capture is not in-
stantaneous because the laser plane needs to sweep through the smoke, thus
restricting this method to the acquisition of slowly varying smoke columns.
Fuchs et al. [52] alleviate this problem by trading spatial sampling resolu-
tion for instantaneous capture of the data set. They use a set of laser lines
that sample the reconstruction volume sparsely and interpolate the remaining
values. Although this method allows for capturing of rapidly changing flow
patterns, spatial resolution is limited.

The tomographic approaches [72, 73, 74, 87, 89] use imagery from mul-
tiple conventional cameras and do not require other specialized equipment.
Hasinoff and Kutulakos [73, 74] base their derivation on a photo-consistency
constraint. They show that a sheet-like structure can always be made photo-
consistent with two views. Furthermore, convex combinations of several sheet
structures from different camera pairs are also shown to be photo-consistent.
The so-called flame sheets can be interpreted as a special basis for the tomog-
raphy problem. This basis is shown to be the spatially most restricted basis
that yields photo-consistent reconstructions. In this thesis, on the other hand,
we use standard bases to cover the volumetric phenomenon and estimate the
emission density inside its visual hull, Chapters 5 and 6. The visual hull re-
striction of the solution is indispensable for good-quality reconstructions from
a sparse number of views. Both methods do not exhibit the temporal aliasing
problems inherent in [75] and can be applied to capture dynamic, volumetric
models of fire and thin smoke.

The tomographic reconstruction problem has been studied extensively.
A good overview of classical techniques to solve the problem of finding a
function from measurements of its tomographic projections is given in [96].
They are mostly based on the Radon transform [157]. The most widely used
method is filtered back projection. Graphics hardware-accelerated implemen-
tations are available [31]. In the medical imaging community, multi-resolution
methods have been developed to improve robustness against measurement
noise. They facilitate spot-light tomography2 or limited-angle tomography.

2 a tomography problem where only a small region of interest is reconstructed with
good quality, whereas the remaining volume is only approximated coarsely
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Some approaches are based on non-rectilinear ’optimal’ grids [115, 202, 77],
others on wavelet expansions of the solution or the input data [15, 161, 170].
However, these methods have not found wide-spread practical use. Another
way of limiting the acquisition time or spatial resolution is an adaptive scan-
ning process, where the mechanical setup is changed according to the region
of interest [79].

Additionally, a couple of methods have been developed in the computer vi-
sion literature. However, their main goal is not photo-realistic image synthesis,
but an improvement of opaque scene reconstructions by using more sophis-
ticated models of image formation. Bhotika et al. [22] include an occupancy
probability in a space carving [105] framework. This measure is taken to im-
prove opaque surface reconstructions and is not intended to allow for transpar-
ent object reconstruction. De Bonet et al. [27] and Szeliski and Golland [190]
explicitly include the possibility of transparent objects in a volumetric scene
description. A photo-consistency measure is employed to automatically dif-
ferentiate between opaque and transparent regions in space. The results are,
however, not suitable for realistic rendering.

Computerized tomography has also been (mis-)used by applying it to con-
ventional photographs of an opaque object [54, 165], the results are, however,
no improvement over visual hull reconstructions [111] with the same number
of views available. A plausible application of computerized tomography for the
reconstruction of opaque objects has been the work of Reche et al. [162]. They
reconstruct a pseudo-density distribution of trees and use billboard textures
to render photo-realistic images of real trees from arbitrary viewpoints.

3.3.2 Refractive Phenomena

Work on the reconstruction of refractive phenomena can be divided into meth-
ods that treat objects with a, potentially unknown, single refractive index and
methods that try to recover a continuous field of varying refractive indices.
The former methods usually deal with objects with a high refractive index,
whereas the latter can only be used in case of a relatively small maximum
refractive index such as refractive index variations in hot air flows. The goal
of constant refractive index reconstruction methods is usually the recovery of
time-varying water surfaces or static glass objects. Variable refractive index
reconstruction methods, on the other hand, are mostly used in the applied
optics and experimental fluids literature to extract secondary information:
the refractive index of gas flows is under certain conditions coupled to other
physical quantities like density and temperature of the air flow.
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Constant Refractive Index Reconstruction

Historically, the first reconstruction methods dealing with refractive phenom-
ena are from the photogrammetry literature [80, 119]. The focus is on recon-
structing underwater imagery from outside the water. A parametric surface
description, i.e., a plane equation, is assumed, but the refractive index can
be computed alongside the undistorted image. Computer vision techniques
improved on this scheme by computing the water surface from texture distor-
tions [138, 139, 176] detected by optical flow measurements [81, 118, 14, 9].
The refractive index is assumed to be known. A similar technique is presented
by Morris and Kutulakos [136], extending the previous work by estimating
the refractive index in addition to the surface position and its normals. All
these methods consider a time-varying two-dimensional water surface. [136]
is a special case of a theoretical analysis of the geometry of light paths pre-
sented by Kutulakos and Steger [106]. The latter leads to algorithms allowing
for the reconstruction of fully three-dimensional refractive objects. However,
the multi-pass measurements restrict this method to static objects. A differ-
ent method presented in this thesis, Chapter 7, allows the reconstruction of
time-varying, three-dimensional water surfaces [86]. The water is dyed with
a chemiluminescent chemical, making the water self-emitting. The technique
is based on measuring the optical path length by means of intensity mea-
surements. Finally, Trifonov et al. [198] describe an elegant way of removing
refraction effects. The object to be reconstructed is submerged into a fluid of
the same refractive index, thus straightening the light paths. The object is
placed into a tank containing the fluid and the ray directions are calibrated
prior to object acquisition.

Variable Refractive Index Reconstruction

Variable refractive index reconstruction methods are usually formulated as
tomography problems since tomographically projected refractive index varia-
tions can be measured in different ways, i.e., line integrals of some function of
the refractive index field can be measured with appropriate measurement se-
tups. The line integrals are measured using ultra-sonic waves [152], bi-focal op-
tical coherence tomography [222], or Schlieren imaging [180]. Schlieren imag-
ing is a purely optical measurement method. It was used predominantly for
qualitative imaging of fluid flows and uses a sophisticated setup of lenses
and filters in its original incarnation [172, 180]. Recently, quantitative mea-
surements have become possible [82]. Quantitative Schlieren imaging is based
on ray deflection measurements and has been simplified considerably by the
advent of digital video cameras. The ray deflections in the image plane cor-
respond to line integrals over the gradient of the refractive index field under
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observation. They can be measured using the color-based Rainbow Schlieren
method [61] or the Background Oriented Schlieren technique [166]. Back-
ground Oriented Schlieren techniques [39, 166, 132, 44] measure the ray de-
flections by computing the optical flow [81, 118, 14, 9] between a reference
view and the distorted view due to refractive index changes. They are there-
fore suitable for acquiring time-varying volumetric models of refractive index
fields due to small refractive index changes. 3D reconstructions using tradi-
tional Schlieren imaging has been shown by Schwarz [177]. The acquisition
setup is very sophisticated, requiring twenty traditional Schlieren setups ar-
ranged in a circle and multiple measurement passes. For this reason only
quasi-static flows can be reconstructed. The same restriction applies to one-
view acquisition techniques [3, 47, 40]. These methods can only reconstruct
rotationally symmetric phenomena. McMackin et al. [131] and Venkatakrish-
nan et al. [203] demonstrate the acquisition of two-dimensional slices of a
three-dimensional flow. These methods also use only one view and are thus
restricted to two-dimensional measurements. In Chapter 8 we present an ap-
proach that enables a fully three-dimensional reconstruction of time-varying,
continuous refractive index fields, thus improving on the state of the art.

3.4 Rendering

In Sect. 2.1 we discussed the complex optical characteristics exhibited by nat-
ural phenomena. Real-time rendering of the majority of the effects - emission,
absorption, in-scatter, out-scatter, and refraction simultaneously is a complex
task. Many modeling techniques discussed in the previous sections include
rendering issues as well. This section is concerned with previous work regard-
ing the rendering aspect of these optical characteristics without discussing
modeling issues.

The earliest work on rendering volumes of varying refractive indices ap-
pears in the literature in context with modeling of atmospheric effects. Berger
et al. [19] ray-trace mirages by repeated application of Snell’s law in an off-
line renderer. Musgrave [142] include total reflection which was ignored in the
previous paper to render the same phenomenon.

Several approaches were published in the literature that approximate re-
fractive effects in real-time on the GPU [147, 214], on a special signal proces-
sor [146], or in a CPU-based real-time ray-tracer [204]. Hakura and Snyder [68]
propose a hybrid ray-tracing based approach that produces appealing results
but does not run in real-time. Most of these algorithms achieve good results
by recursively evaluating Snell’s law at material boundaries. An interesting
approach for displaying gemstones that handles refraction and polarization
effects was presented by Guy and Soler [66].
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Refraction rendering is related to the problem of rendering realistic
caustics. Popular off-line approaches for high-quality caustic rendering are
backward ray-tracing [7], and photon mapping, which was introduced by
Jensen [93]. It is also possible to generate volume caustics [92] with the lat-
ter approach. Either of them stores photon energies in spatial storage data
structures and gathers their contributions during image formation. Real-time
ray-tracing systems [150, 32, 204] enable the execution of these methods at
interactive frame rates [216], but typically a cluster of PCs is needed [65] to
handle the computational load. Recently, these algorithms have been ported to
graphics hardware to achieve real-time performance. Wand and Strasser [205]
compute reflective caustics by approximating surfaces with uniformly sampled
light sources. Wyman and Davis [215] propose an interactive image space tech-
nique for approximate caustic rendering on the GPU that is related to photon
mapping. They also suggest a light shaft structure similar to the illumination
volumes of Nishita and Nakamae [145] that approximates the intensity distri-
bution of the flux of light in a beam in space. A similar concept is employed
by Ernst et al. [46] to generate surface and volume caustics.

Volumetric scattering of light was considered first in computer graphics by
Blinn [26]. Kajiya and von Herzen [95] derive a general formulation of scatter-
ing in terms of volume densities. They present general equations for single and
multiple scattering. Light interaction between surfaces and volumes is treated
by Rushmeier and Torrance [169] in a radiosity style algorithm. Stam [183] ex-
plores the limit of multiple scattering and presents a diffusion approximation
to this limit. Mertens et al. [133] approximate single subsurface-scattering by
using a dipole approximation to multiple scattering in real-time.

Recently, real-time scattering implementations for volumetric data sets
have been presented. Magnor et al. [120] use a GPU ray-casting implemen-
tation to render reflection nebulae which includes emission and absorption
effects. A discussion of combined emission, absorption and scattering render-
ing can be found in [129].

The majority of the approaches discussed so far imply ray geometry for
the light paths and assume well-defined boundaries between layers of materials
with differing refractive indices. An alternative approach based on wavefront
tracking has been proposed by Mitchell and Hanrahan [134]. They use an an-
alytical description of light transport and integrate the wavefront curvature
along piecewise straight light paths. Stam and Languénou [186] introduce a
framework based on the description of a light path as the solution to a sys-
tem of ordinary differential equations. This enables tracing curved ray paths
in optically inhomogeneous media with continuously varying refractive index.
They use a ray-tracer to compute bent eye-rays. Seron et al. [178] use a re-
lated ODE-based framework for the simulation of atmospheric effects. The
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ODE-based description of light paths can handle arbitrarily curved light rays
in a similar way as non-linear ray-tracing that has, for instance, been used
to simulate gravitational lenses [63, 210]. The solution of these differential
equations is similar to particle tracing. Krüger et al. [103] show that particle
systems in large voxel volumes can be simulated on the GPU for the purpose
of flow visualization.

3.5 Discussion

The modeling techniques reviewed in this chapter allow the, more or less
realistic, display of time-varying natural phenomena. Image-based methods
are either restricted to a fixed viewpoint or static objects due to the multi-pass
acquisition setups required for capturing these models. Simulation approaches
allow for interactive manipulation of the results but are restricted in their
physical accuracy either due to the modeling paradigm, numerical accuracy
issues or unknown boundary conditions.

This thesis aims to provide three-dimensional real-world measurements of
phenomena such as fire, smoke, and fluid flows. These data could help verify
numerical simulations and serve as input data to data-driven modeling tech-
niques. The output of the techniques presented in this thesis can be rendered
directly to provide photo-realistic, dynamic free-viewpoint video of natural
phenomena. This enables using common effects of free-viewpoint video like
stop motion and the bullet time effect for natural phenomena. Hopefully,
these techniques will provide a way to derive more realistic models of natural
phenomena for image generation purposes.

On the rendering side we present a real-time rendering technique for vol-
umes of continuously varying refractive index. This method improves on the
state of the art by combining the majority of the optical effects exhibited by
natural phenomena which has only been partially shown before. The method is
flexible enough to allow for the simultaneous rendering of all effects considered
separately in the reconstruction methods presented in this thesis. Additional
effects that have been neglected can be rendered as well. Thus, it is suitable
to render even phenomena for which no acquisition techniques exist today.
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Data Acquisition

This chapter deals with the steps involved in setting up and using a multi-
camera studio. We discuss recording options, calibration issues and pre-
processing of the acquired video footage. The data acquired and pre-processed
as described in this chapter serves as the input data for all reconstruction algo-
rithms presented in this thesis. We start with the description of the recording
setups that were used to record the experimental data for our reconstruction
algorithms.

4.1 Recording

For the purpose of the reconstruction algorithms discussed in this thesis it
is a prerequisite to acquire synchronized video data from multiple vantage
points simultaneously. Synchronized multi-video data is acquired by multiple
cameras that record the scene all at the same time but from different positions.
Synchronization is achieved either by hardware triggering - this is the most
common and accurate way - or by software triggering, where a start pulse
is sent and the cameras keep their frame-rate, running on an internal clock.
While still somewhat expensive, today several research labs have small scale
multi-video studios available featuring 6 - 16 cameras [124, 137, 174, 196,
187, 64, 127, 220, 206]. Studios with a larger number of cameras (up to 128)
have been built [160, 211, 212] but due to their large cost and the high level
of technical sophistication necessary to stream the data to disk these large
studios have not become too popular. Another issue is the large amount of
work that is necessary to calibrate these studios.

A good overview of many multi-camera setups, the choice of cameras, lens
selection, camera placement for different reconstruction tasks and the neces-
sary hardware can be found in [121]. In the following we concentrate on our
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Fig. 4.1. The two different camera systems that were used to acquire multi-video
data for the projects in this thesis, left: a mobile multi-camera studio, right: our
in-house system.

particular application, the acquisition of multi-view video footage for the re-
construction of time-varying natural phenomena and the necessary calibration
and pre-processing steps.

4.1.1 Acquisition Setup

For the research presented in this thesis we used two different acquisition
systems. Chronologically the first was a mobile multi-video acquisition setup
that was developed in joint work with Lukas Ahrenberg [4]. The goal was
to enable the acquisition of scenes in their natural context without being
restricted to record in carefully set up studio environments. The system uses
8 Sony DFW-500 FireWire cameras and 4 controlling laptops equipped with
1GB of RAM. The cameras are synchronized via wireless network and the
images are captured to the main memory of the laptops. The cameras run at
15 fps, at a resolution of 640× 480, 8 bit per pixel, which allows for capturing
of up to 40 seconds of video footage. Afterwards the data is compressed and
written to the hard-disk. If only one computer is used to control each camera
the recording time is doubled. The system is shown in the field in Fig. 4.1,
left. It is modular and can be extended by additional laptops and cameras.
One of these modules is shown in Fig. 4.2. This camera system was used to
acquire the data for the algorithms presented in Chapters 5 and 6.

The other camera system used in this thesis is a commercial system. It
also consists of 8 cameras but streams directly to disk using a RAID system
of SCSI hard-drives. The camera model is the Imperx MDC-1004. It can
capture at a resolution of 1004× 1004, 12 bit per pixel, with up to 48 frames
per second. The cameras can be hardware triggered or started by a common
pulse, keeping their frame-rate by running on an internal clock. The system
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Fig. 4.2. One module of the mobile recording system [4]: it consists of two cameras,
a laptop for controlling the acquisition, a rechargeable battery to power the cameras,
a tripod and some wires.

is shown in Fig. 4.1, right hand side. Due to its size it can only be used in
our in-house studio. The raw data for Chapters 7 and 8 was acquired using
this system. A slight complication is the fact that these cameras use two A/D
converters for half of the image each when recording at 48 frames per second.
This results in slight color differences between the two halves of the image. A
correction scheme is presented in Sec. 4.4.

After describing the general characteristics of our recording systems, we
now turn to practical issues regarding the acquisition process. We use either
a circular or a semi-circular camera setup. The circular camera setup is to
be preferred even though we record transparent phenomena. The reason is
the better quality of the visual hull that can be reached when the cameras
surround the scene completely. However, due to the need for a well defined
background pattern in Chapter 8 we resort to a semi-circular setup in this
case. An important point to consider using a circular setup is to distribute
the cameras in a way that the optical axes of the cameras are as far from
parallel as possible. This happens if the cameras directly face each other and
has to be avoided as far as possible because it introduces redundancy into the
measurements. Since the phenomena we are recording are transparent and
the camera rays for a particular camera are only slightly divergent, we would
measure nearly the same datawith cameras placed opposite to each other. This
is most important for the non-refractive reconstruction methods considered
in Chapters 5 and 6.

Another practical issue arising in the context of fire and water reconstruc-
tion, Chapters 5 and 7, respectively is the acquisition of very low intensity
levels. Since the recording takes place in a dark surrounding and the effect
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itself1 produces very little light for the cameras we need to trade-off between
different camera parameters. These trade-offs are

• aperture setting: light sensitivity vs. depth of field,
• exposure time: camera noise vs. motion blur, and related,
• frame rate: exposure time vs. dynamics of the phenomenon.

It is not always possible to find a good trade-off. However, we found that
recording with software triggering, i.e. setting a start pulse and letting the
cameras keep their pace autonomously, freed up a lot of exposure time that
is simply used for waiting for the hardware trigger pulse otherwise. We per-
formed tests to ensure that the cameras were still reasonably synchronized
using a LED binary counter visible to all cameras simultaneously. The test
resulted in good synchronization up to a switching rate of 200 Hz. A second
observation is that in the case of recording fire, the shape of the flame is
heavily determined by the exposure time. Different exposure times result in
differently realistic shapes of the flames. This effect should be investigated
further with respect to the human visual system2.

Using our in-house camera system we recorded our sequences in raw mode
to avoid pre-processing of the images on-board the camera. Unfortunately
this was not possible with the Sony cameras. However, when using digital
cameras as measurement devices all calibration and processing should be per-
formed by the experimenter in order to ensure that the data is not modified
unintentionally.

4.1.2 Bayer Interpolation

Most CCD cameras today use a monochrome chip and place an array of red,
green and blue filters in front of the single sensor elements. The arrangement of
the filters is known as Bayer pattern [16], see Fig. 4.3. This raises the problem
of color interpolation, also referred to as demosaicing. Since the final image
is supposed to have red, green and blue values at every pixel some sort of
interpolation has to be applied to the shifted grids. This problem is however
non-trivial since we are sampling a vector valued function at spatially differ-
ent positions for the single vector components. A large number of methods,
e.g [110, 99, 140, 141] have been suggested to solve this problem but it is still
an active area of research. A performance evaluation of different demosaicing
algorithms is presented in [159]. Following the results of this study we mostly
use [110] and [99] to perform the Bayer interpolation. We use a representative

1 alcohol flame and chemiluminescence, respectively
2 i.e. what is the ’exposure time’ of the human visual system ?
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Fig. 4.3. The Bayer pattern consists of red, green and blue filters placed in front of
the single sensor elements of a CCD chip. There are twice as many green filters as
blue and red filters respectively. This is due to the frequency response of the human
visual system, the red and blue color channels cannot be differentiated as well as
the green color channel.

test image from the multi-view video sequences and run both methods. We
then choose the method that produces the least artifacts.

4.2 Calibration

Camera calibration is the process of determining a camera’s projection pa-
rameters and its photometric and colorimetric imaging characteristics. For
multi-camera systems the goal is to find a common coordinate system for all
cameras, i.e. the internal parameters of each camera which are mainly gov-
erned by the camera lens, the cameras’ spatial positioning with respect to
each other and a common color space such that the measurements of the
single cameras can be related to one another.

4.3 Photometric Calibration

Often it is also desirable that the cameras exhibit a linear response to incom-
ing radiance since forward models of light transport are often expressed in this
radiometric quantity. An introduction to radiometric concepts can be found
in [42]. Charge-Coupled Device (CCD) cameras exhibit a linear response to ra-
diance except for both high and low ends of the dynamic range of the camera.
If it proofs necessary, as e.g in Chapter 7, the camera response can be esti-
mated by performing multiple exposures with different aperture settings [167]
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Fig. 4.4. The GretagMacBeth ColorChecker DC
TM

.

or using optical neutral density filters [102] where the latter is preferable for
multi-camera systems since the aperture setting does not have to be restored
to a common value for all cameras after the calibration step.

4.3.1 Color Calibration

Determining a common color space for all cameras of the multi-video system
is called colorimetric calibration. Background information on color models,
color perception etc. can be found in [217]. We differentiate between absolute
and relative colorimetric calibration. Both types of methods use a color cal-
ibration chart with a number of lambertian reflectors of different color, see
Fig. 4.4. When performing absolute color calibration, the colors on the chart
are known under special illumination conditions 3. Using this equipment a so
called ICC profile [83] can be generated. These profiles allow for the transfor-
mation between the color spaces of the single cameras using a common profile
connection space (PCS). The implementation of the transformations and mea-
surement processes is vendor specific and typically proprietary information is
involved.

Relative colorimetric calibration methods on the other hand do not try
to establish a relationship between colors in some physical sense and their
digital representations. The common color space is often the color space of one
of the cameras. The simplest such method is known as white balancing. An

3 Usually a D65 illuminator is required which produces a well defined spectrum sim-
ilar to daylight. The illumination can be produced using specialized illuminaires,

e.g. the GretagMacBeth SpectraLight III
TM

.
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area of the image that is known to be white is selected and the multiplicative
factors for each color channel are determined from this area. Different methods
exist for adjusting the image statistics of two images such that they appear
similar. Different color spaces like lαβ are employed for this purpose [164].
In [143] multiple cameras are automatically adjusted in the camera hardware
to obtain uniform color response of a 5 camera system. Joshi et al. [94] use
a mixture between automatic camera control and a linear warp of the RGB-
color space of each of their 100 cameras towards the reference color space of a
randomly chosen camera. For our setups we use a similar approach. We record
the color checker, Fig. 4.4 and extract the color patches semi-automatically
using a homography based patch generation algorithm. We then estimate the
coefficients of a 3×4 color correction matrix Ci

j for the mapping from camera
j to camera i.
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(4.1)

This color correction scheme yields acceptable results in practice. Although
the mapping between color spaces could be computed using higher order poly-
nomial models of the color transformation, in practice the restricted number
of color samples often results in over-fitting and colors especially at the dark
and bright end of the dynamic range of the color channels tend to overshoot.

4.3.2 Radial Undistortion

Lens distortions are found in almost all lenses, especially in lenses with short
focal length. An advantage of higher price lenses is that, additionally to ex-
hibiting less distortions than their cheap counterparts, their distortions are
systematic in nature and can be described by low parameter non-linear mod-
els [130]. The major types of distortions are radial and tangential distor-
tions [130], where the tangential part is often neglected in the computer vi-
sion literature [76]. An example of radial distortion in industrial grade lenses
is shown in Fig. 4.5, left hand side. The task of radial undistortion is to recover
the parameters of the lens distortion model.

There are linear radial lens distortion models [11], but these are usually
not sufficient to capture the lens distortion entirely. Most radial undistortion
methods rely on a polynomial model of the distortion [76, 200, 71]:

x = x̂+ (x̂− cx)(κ1r
2 + κ2r

4 + . . .) (4.2)

y = ŷ + (ŷ − cy)(κ1r
2 + κ2r

4 + . . .), (4.3)
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Fig. 4.5. left: original image with radial distortion as recorded by our cameras,
right: after radial undistortion.

where (x̂, ŷ) are the distorted and (x, y) the undistorted image coordinates.
(cx, cy) denotes the center of the image 4 and

r =
√

(x̂− cx)2 + (ŷ − cy)2 (4.4)

is the distance of the distorted image coordinates from the optical image
center. κ1 and κ2 are called the radial distortion parameters. We developed
a method similar to [97] to estimate these coefficients. We record a checker-
board pattern that covers most of the image and extract its corner points
using standard image processing techniques. We use a user-defined quadri-
lateral to automatically generate checkerboard corner positions in absence
of radial distortion. These initial points are matched to the nearest feature
points extracted from the recorded image. We then impose the grid structure
of the synthetically generated points onto the distorted points and generate
Kochanek-Bartels splines [100] to fit the curved checkerboard lines. We intro-
duce a measure for the curvedness of the splines

e =
∑

i

∫

ci

(κ(s))2ds. (4.5)

Here ci denotes the i’th spline and κ(s) its curvature at a position s along
the curve. The measure e thus evaluates to the sum of the squared curvatures

4 Actually these are the coordinates of the optical center of the camera which is
not necessarily the same as the image center. Methods for characterizing and
estimating the optical camera center are given in [213].
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Fig. 4.6. 3 of 8 calibrated views with super-imposed world coordinates shown as a
grid.

of all splines. Since the lines of the checkerboard pattern are supposed to be
straight we can minimize e with respect to κ1, κ2, cx and cy

min
κ1,κ2,cx,cy

e (4.6)

by warping the splines according to the image deformation model.
The minimization is performed using the non-linear conjugate gradient
method [154]. The resulting parameters are minimizing e in a least squares
sense. Finally we compute a warping vector field for the corrected image. This
step lets us process video sequences efficiently. A result of radial undistortion
is shown on the right hand side of Fig. 4.5.

4.3.3 Geometric Calibration

After radial undistortion the non-linear effects of the projections πi, Sec. 2.3,
are removed and a linear, projective relationship remains to be determined.
The projection matrix P is commonly [71] written as

P = KR[I| − t]. (4.7)

Matrix K contains the internal camera parameters like pixel size and fo-
cal length, R is the rotation of the camera in world coordinates and t is
the translation. There exist numerous methods to compute these calibra-
tion matrices. Some use a known calibration object (known 3D coordinates),
e.g. [200, 76, 219], whereas others work from point correspondences in the
image planes of the cameras only, e.g. [8, 153, 33]. The former are typically
more robust whereas the latter are more flexible in that they do not require
a common view of a calibration object from all cameras simultaneously.

For our mobile multi-camera system we developed a calibration tech-
nique [85] based on a virtual calibration object [8, 33] and a viewing
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graph [113] of the cameras. This method is joint work with Lukas Ahrenberg.
It allows for the calibration of multi camera setups where not all cameras
share a common viewing volume.

However, for the practical purpose of calibrating the camera setups used
for the experiments in this thesis we use a different approach. It is based on
the calibration technique by Zhengyou Zhang [219]. Zhang’s method estimates
the camera parameters using at least three homographies of a plane in general
orientations. It can be used to calibrate a single camera. We typically use a
much larger number of homographies for increased robustness. We record a
multi-video sequence of a checkerboard moved in front of the cameras and
track the checkerboard features throughout the scene. Then, for each camera
separately, we estimate the plane-to-plane homographies relating the checker-
board to the camera’s image plane. From these homographies we compute the
camera’s internal parameters and the plane positions relative to the camera. A
subsequent bundle adjustment [199] increases the accuracy of the single cam-
era calibration. After having calibrated each camera separately, we identify
the camera image pairs with a shared view of the checkerboard pattern and
use the estimated plane equations to compute a rigid body transform [6] for
this camera pair. Ideally we can establish a relationship between one camera
and all the others in the multi-camera setup. If this fails we have to resort to
the graph-based approach described in [85]. An additional bundle adjustment
for the final multi-camera calibration fixes minor misregistrations.

Because we work with a whole video sequence, the bundle adjustment
for single camera calibration is computationally expensive when carried out
in a näıve way. This is because it relies on a non-linear optimization, us-
ing e.g. the Levenberg-Marquardt [154] method, of all camera parameters
simultaneously 5. Therefore we implemented a sparse bundle adjustment pro-
cedure [117]. This is possible because the camera orientation parameters are
independent for each plane position. A result of the camera calibration step
is shown in Fig. 4.6 where we draw a grid defined in the world coordinate
system into 3 camera views.

4.4 Image Pre-Processing

In addition to calibrating the cameras in the multi-video setup, all images ac-
quired during recording have to be pre-processed. While for CMOS-cameras it

5 In Zhang’s algorithm [219] the moving plane is regarded as fixed and the camera
is correspondingly treated as moving. Therefore 6 camera orientation parameters
(translation and rotation) per plane position are estimated.
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(a) Original (b) Background (c) Foreground

Fig. 4.7. Background subtraction for thin smoke: The original image (a) contains
a burning incense that produces thin smoke. It is diffusely lit with daylight. (b) is a
background image recorded beforehand and (c) is the background subtracted image
that contains only the smoke column.

is mandatory to record a black image with the cap on the lens to capture bro-
ken ’hot’ pixels, this is not strictly necessary for the CCD-cameras employed
in our camera systems. A small video sequence can be recorded to estimate
the mean background noise of the cameras [20] which is later subtracted from
the recorded images. Further techniques for compensating non-gaussian noise
characteristics of imaging sensors are described in [20] as well.

As mentioned in Sec. 4.1.1 when using the Imperx MDC-1004 cameras at
full frame rate we have to deal with two A/D converters processing the two
halves of an image separately. This leads to different image characteristics
within the image. We adjust one of the half images’ image characteristics by
estimating the statistics of the two half images in a band near the splitting
between the two converters. Afterwards we adjust the pixel values of the
second half image to meet the statistical distribution of intensity values of the
first half image.

4.4.1 Background Subtraction

In Sec. 2.3.1 we described the image based visual hull that we will use fre-
quently throughout this thesis. A prerequisite-requisite for computing it is
the automatic identification of object silhouettes. For this purpose we record
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a background sequence of 100 frames for each shot. We then proceed to com-
pute the median background image and the per pixel standard deviation of
the noise present in the background sequences. This enables us to classify
pixels into foreground and background in the image sequences containing the
recorded phenomenon. The foreground classification is stored in a silhouette
image and the video frames are processed by subtracting the median back-
ground image, see Fig. 4.7.

4.4.2 Silhouette Processing

The silhouettes acquired in this way usually have small holes due to imper-
fections in the simple classification scheme. We therefore post-process them
by applying standard image processing techniques like median filtering and
morphological operators [182] to the silhouette images. This step sometimes
increases the size of the silhouettes but since we are reconstructing volumetric
models of transparent phenomena and use the silhouette data for initialization
purposes only, this does not have adverse effects on the reconstruction results.



Part II

Reconstruction of Non-Refractive Phenomena





Overview

This part of the thesis deals with the reconstruction of dynamic natural phe-
nomena that can be described as emissive density fields. We consider two
classes of phenomena. These are fire and thin smoke. Although refraction is
present in flames we ignore this effect in this part of the thesis. This is possible
because the ray deflections due to heat produced in the flame are typically
small. An alternative to assuming straight rays will be presented in Part III,
Chapter 8.

In the following Chapters 5 and 6 we develop methods for the reconstruc-
tion of these phenomena. The methods are validated by tests with synthetic
test data and the behavior of our algorithms with respect to important pa-
rameters of the problem is investigated. In Chapter 5 we present the basic
approach, visual hull restricted computerized tomography, that enables the
reconstruction of these phenomena from a sparse number of views.

Chapter 6 then extends this scheme to an adaptive version of the algo-
rithm. The adaptive grid is shown to benefit the reconstruction quality while
lowering memory demands in exchange for processing time. A new class of
error measures for the splitting heuristic is introduced and evaluated with re-
spect to reconstruction performance. Regularization issues are shown to play a
major role in the adaptive version of the algorithm. The uniform grid exhibits
a superior numerical conditioning and is straight forward to implement. The
adaptive version of the algorithm on the other hand demands a more detailed
analysis of the problem and different regularization strategies.





5

Fire Reconstruction

In this chapter we introduce the basic tomographic reconstruction algorithm
for transparent natural phenomena that we will use with variations, with
exception of Chapter 7, throughout the thesis to reconstruct volumetric com-
puter models of fire, smoke and fluid flows. The basic ingredients are an alge-
braic formulation of the reconstruction problem, the restriction of the solution
space by using the visual hull of the phenomenon and iterative methods for
solving large, sparse linear systems of equations. The application of these tech-
niques to the reconstruction of flames is presented in this chapter. Next we
introduce the forward image formation model that our reconstruction algo-
rithm is based on.

5.1 Image Formation Model and Basic Equations

We use a simplified image formation model for fire which was introduced
by Hasinoff et. al [73]. The fire is modeled as a 3D density field φ of fire
reaction products i.e. soot particles. Image intensity is related to the density
of luminous particles in the fire. The model has the form

Ip =

∫

c

φ ds+ Ibg. (5.1)

Here Ip is pixel p’s intensity, c a curve through 3D space, φ is the density
field of the soot particles and Ibg is the background intensity. Curve c is the
back-projected ray of pixel p in our case. This model assumes infinitely many
pixels. We approximate every pixel by one ray through the density field. As
will be seen later this assumes that the back-projection cone of one pixel is
smaller than the local support of the basis functions we will use to approximate
the density field φ. Additional assumptions of the model are



48 5 Fire Reconstruction

0

1

1

1

PSfrag replacements

φi

φi ◦ T

T

cn

T ◦ cn

Fig. 5.1. Relationship between basis function φi, defined on the unit cube, and
curve c defined in world coordinates.

• Negligible absorption/scattering - this assumption is valid for fire not sub-
stantially obscured by smoke, and

• Proportional self-emission - the brightness depends on the density of the
soot particles only

In order to invert Eq. (5.1) we have to make an assumption on the structure
of φ. We do this by assuming that φ can be represented as a linear combination
of basis functions φi:

Ip =

∫

c

(

∑

i

aiφi

)

ds+ Ibg (5.2)

The sum and the coefficients ai can be moved out of the integral and we
get

Ip =
∑

i

ai

(∫

c

φi ds

)

+ Ibg. (5.3)

Eq. (5.3) describes a linear system of equations,

p = Sa + b. (5.4)

The rows represent the equations for one pixel and the columns contain
the integrals of the pixel’s back-projected rays over the basis function φi. The
choice of the basis functions φi is essential for the tractability of the problem.
Vector b will be zero for the purposes of this chapter since we record our fire
sequences in the dark. In Chapter 6 where we consider smoke reconstruction
this is no longer true and we discuss additional processing steps there.

Eq. (5.4) has to be solved for the coefficients ai contained in vector a

to reconstruct the density field of the flame. Unfortunately, matrix S is not
well behaved. It has, in general, a large condition number (the quotient be-
tween the largest and the smallest singular value), making the inversion of
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Eq. (5.4) an ill-conditioned problem. This inversion is exactly the computer-
ized tomography (CT) problem. The CT problem is usually solved using the
Radon transform [157]. The Radon transform uses the Fourier slice theorem
to obtain the reconstruction by applying an inverse Fourier transform. This
method has the drawbacks that a camera setup is required where all cameras
principal axes meet in one point, and the basis functions must be of the type

φFourier
i (x, y, z) = ei(αix+βiy+γiz). (5.5)

These basis functions have infinite support and thus give rise to a full
matrix S (i.e. every pixel is influenced by every basis function). To be able to
solve the linear system in Eq. (5.4) we would like to have a sparse matrix S.
This is obtained by choosing basis functions with local support. The simplest
of these basis functions is the box function:

φBox
i (x, y, z) =















xi
min < x ≤ xi

max

1 yi
min < y ≤ yi

max

zi
min < z ≤ zi

max

0 else

(5.6)

Most algebraic reconstruction techniques (ART) [96] use this basis function
and approximate Eq. (5.3) in some way.

The advantage of algebraic reconstruction techniques that use basis func-
tions with local support is the ability to constrain the problem and restrict
the solution space by keeping basis function coefficients from being estimated
that are known to be zero. We will use this fact to perform a sparse-view
tomographic reconstruction of good quality using images of fire.

5.2 Implementation

The following section presents implementation details, how to efficiently set up
and solve the linear system (5.3). We split the process into two steps and de-
scribe them separately. The matrix generation process determines the entries
of S, regardless of additional knowledge about the solution. This knowledge
is used in the process of solving the linear system. Regarding the reconstruc-
tion problem as two separate parts allows for the efficient processing of whole
sequences of video data.

5.2.1 Setting up the Linear System

As can be seen in Eq. (5.3), the entries of matrix S consist of integrals over
the basis functions φi. Since these are chosen to have local support, they
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are zero over a wide range of the volume. Therefore the integral is zero for
a large number of entries of matrix S. Determining the entries Sji amounts
to intersecting the back-projected rays of all pixels with the support of all
basis functions. This is essentially a volume ray-tracing process. To simplify
matters, we choose voxel-aligned basis functions. This choice decreases the
amount of computation needed for the intersections from O(n3) (intersect all
basis functions) to O(3n) (intersect 3n planes and perform a suitable lookup).

We now consider specific types of basis functions and the resulting struc-
ture of matrix S of Eq. (5.4). We present a unified approach to the integration
problem for different kinds of basis functions. It is not the most efficient im-
plementation for the box basis function but serves as an example for more
complicated cases. We define the basis function on the unit cube, transform
the curve c of Eq. (5.3) from world coordinates to the unit cube, perform
the integration and adjust the result so it is valid in world coordinates (see
Fig. 5.1). This is similar to the approach taken in Finite Element Methods
(FEM) for computing the stiffness matrix in the numerical analysis literature.
We need to compute

Sji =

∫

cj

φi ◦ T ds (5.7)

where cj is the ray back-projected from pixel j, j = 1 . . . jmax, and jmax

is the number of pixels that are influenced by any of the basis functions in all
camera images. A ◦ B(x) = A(B(x)) denotes the concatenation of functions.
We want to perform the integration in unit coordinates. Therefore, the integral
has to be transformed in the following way:

∫

cj

φi ◦ T ds =
||dj ||
||Tdj ||

∫

T◦cj

φi dt (5.8)

The factor
||dj ||
||Tdj ||

relates the integral in unit coordinates to the integral

in world coordinates, dj is the direction vector of the back-projected ray cj .
This factor is only valid for a linear curve c and a linear transform T . The
proof is given in Appendix A.1.1.

Box Basis Function

In case of the box basis function φBox
i , the whole computation simplifies con-

siderably. φBox
i ◦ T is unity in exactly one voxel i and zero elsewhere. x1 and

x2 are the points of intersection of ray cj with voxel i. The integral on the
unit cube can then be transformed in the following way: Let us consider the
curve cj in world coordinates as



5.2 Implementation 51

Fig. 5.2. Visualization of the trilinear basis function. This basis function has a
support of 8 voxels (1 removed for better visibility). The values of the function are
shown as transparent iso-surfaces. At the meeting point of all voxels, the function
is one, on the borders it falls off to zero.

cj(t) = (1 − t)x1 + tx2 (5.9)

and denote the transformed curve T ◦ cj as

F (t) = T ◦ cj(t) = T
(

(1 − t)x1 + tx2
)

. (5.10)

Applying Eq. (A.4) to compute the integral in unit coordinates yields

Sji =
||x2 − x1||

||T (x2 − x1)||

∫ 1

0

φBox
i (F (t)) ||T (x2 − x1)|| dt = (5.11)

||x2 − x1||
∫ 1

0

φBox
i (F (t)) dt. (5.12)

Because F (t) , t ∈ [0, 1] is completely contained in the support of φBox
i and

φBox
i = const. = 1 we arrive at

Sji = ||x2 − x1||. (5.13)

This is simply the distance that the back-projected ray travels in the voxel
corresponding to basis function φBox

i .

Trilinear Basis Function

The trilinear basis function has a support of 8 voxels that are arranged in
a cube. A visualization is shown in Fig. 5.2. In the center of this cube the
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function is one and on its borders it falls off to zero. The values in between
are trilinearly interpolated. This results in a cubic polynomial in three di-
mensions for each voxel. The intersection of the back-projected ray T ◦ cj in
unit coordinates and the basis function φTriLin

i is a cubic polynomial in ev-
ery voxel as well, and can thus be integrated analytically. The coefficients of
the polynomial can be found by computing an approximation which is exact
because polynomials approximate polynomials of the same degree perfectly.
Another option is to compute it using a computer software like Maple. The
polynomial that has to be integrated is given in Appendix A.1.2.

The trilinear basis functions are arranged on the voxel grid such that
there is a one-voxel overlap in every dimension. This ensures smooth blending
when rendering the fire. Furthermore, it is well suited for visualization using
graphics hardware (see Sect. 5.3).

5.2.2 Solution

After having set up the linear system (5.4) we face a number of difficulties:

• the matrix S is large,
• the linear system is ill-conditioned, and
• we want to obtain a physically plausible, i.e. non-negative density field φ.

We wish to compute a least squares solution to Eq. (5.4):

a = (ST S)−1ST (p − b) (5.14)

The size of the matrix ST S that is to be inverted is the overall number of
basis functions squared. For a reasonably resolved voxel model i.e. more than
643 voxels, this is a large system which can only be solved using iterative
methods.

5.2.3 Conjugate Gradients for a Regularized Solution

Fortunately there exist iterative solution methods for linear systems of equa-
tions with regularizing properties which is especially useful for our application.
The conjugate gradient method (CG, e.g. [23, 69]), developed to solve large
symmetric positive definite (SPD) matrices, is suitable for our task. The nor-
mal equations, Eq. (5.14), are by construction symmetric and positive definite.

Hansen [69] discusses the regularizing properties of the CG method in
detail. Despite the incomplete theoretical understanding of the convergence
properties it is experimentally and partially theoretically shown that the CG
method behaves quite similar to the truncated singular value decomposition.
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Initialization:

a0 = 0, r0 = p − Sa0, d0 = S
T
r0, k = 1

Iteration:

αk = ||ST
rk−1||

2

2/||Sdk−1||
2

2

ak = ak−1 + αkdk−1

rk = rk−1 − αkSdk−1

βk = ||ST
rk||

2

2/||S
T
rk−1||

2

2

dk = S
T
rk + βkdk−1

Termination: L-curve criterion

Fig. 5.3. The CGLS algorithm.

The singular values are captured in their natural order starting with the
largest [69].

This leaves us with finding a non-negative solution. We choose basis func-
tions that are non-negative everywhere. This ensures that non-negative co-
efficients a yield a non-negative density field. Therefore we have to find a
non-negative solution vector to Eq. (5.14). We do this by projecting the cur-
rent solution ak to the subspace of non-negative solutions in every iteration
k of the CG method. This is done by setting the negative entries of ak to
zero. We apply the CGLS variant [69] of conjugate gradient methods to our
problem. This variant was developed for solving the normal equations without
explicitly computing ST S. This saves memory because the explicit representa-
tion of the product is usually dense. The CGLS algorithm is given in Fig. 5.3
for completeness.

As the termination criterion we adopt a variant of the L-curve criterion [23,
69]. The norm of the solution ||ak||2 is plotted against the norm of the residual
error ||Sak − p||2 on a log-log scale. The point of highest curvature on this
curve is the best trade-off between a smooth solution and accuracy in the
fit [69]. The number of iterations of the CG method plays the role of the
regularization parameter in our case.

The results of applying this methodology (using the box basis function)
to an input multi-video sequence of 8 camera streams is shown in the upper
row of Fig. 5.4. As can be expected, the number of views is not sufficient to
restrict the solution to the real density field and ghosting artifacts are clearly
visible.
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Fig. 5.4. Synthesized views of the reconstructed volume based on the full equation
system, Eq. (5.4) (upper row) and the visual hull restricted system (lower row). The
left and rightmost images correspond to views near original input views, whereas the
middle views are in between views. Ghosting artifacts are clearly visible in the full
system case (upper row), the density field suffers from over-fitting. These problems
are resolved in the visual hull-restricted solution (lower row). The images cover
approximately 90◦ and the viewpoints are equally spaced.

5.2.4 Visual Hull Restricted Solution

We circumvent this problem by exploiting additional information. We know
that each basis function whose support projects outside the silhouette of the
fire in any source image must have a coefficient of zero because the density
field vanishes outside the visual hull. We can use this information to determine
the basis functions with possibly nonzero coefficients. Fig. 5.5 shows the area
of discretization and the basis functions whose support is inside/outside the
visual hull in case of the box basis function, and a discretization of 643 basis
functions. As can be seen from the figure, most of the 643 basis functions are
situated in ’empty’ space. Only about one tenth of them contribute to the
density field that is to be reconstructed.

Since the contribution of each basis function to each pixel in the source
images is stored in the columns of the linear system (5.4) it is simple to adjust
it such that the coefficients of those basis functions whose support lies outside
the visual hull are not estimated: we simply have to remove the corresponding
columns from the linear system before solving the normal equations.

5.2.5 Animated Fire

The restriction of the linear system at solving time is an efficient way to
deal with multi-video sequences, i.e. the reconstruction of a time-varying vol-
umetric model of the flame. Given a static camera setup, the only things that
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Fig. 5.5. The image shows the basis functions inside the visual hull in red, partially
inside and partially outside green and outside yellow. The box depicts the area of
discretization seen from two of the recording camera’s viewpoints.

change from frame to frame are the affected basis functions and the right hand
side of the linear system (5.4). Since setting up the linear system is much more
expensive, computationally, than solving it, it is advisable to compute the full
linear system first and restrict the problem while solving for every frame of
the multi-video sequence.

Some results when using this procedure are shown in the lower row of
Fig. 5.4. The images are taken from the same virtual viewpoints as in the row
above. By constraining the reconstruction to the volume of the visual hull,
photo-realistic rendering results can be obtained.

5.3 Connection to Volume Rendering

Given the coefficients ai of the basis functions φi, rendering corresponds to
the direct application of the forward image formation model, Eq. (5.3). There-
fore, it is sufficient to create the matrix S for the new view and perform the
matrix multiplication, Eq. (5.4), to obtain the pixel values. Matrix S is a
pre-computed direct volume rendering [129]. The similarity between volume
rendering and computerized tomography is also pointed out in Ref. [122],
where the Fourier Slice Theorem is used to speed up direct volume rendering.
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An animation from a static viewpoint can be obtained very efficiently since it
amounts to just one matrix-vector multiplication per frame.

We reproduce the color information by computing the reconstruction for
each color channel separately. The rendering is performed using three different
voxel models that are rendered to the three color channels, respectively.

In case of the trilinear basis function it is more convenient (and faster)
to perform a volume slice rendering approach using modern graphics hard-
ware [31]. Modern graphics cards perform the trilinear interpolation auto-
matically, so the coefficients ai can be used as a volume texture to perform
the rendering. Hardware accelerated rendering allows for interactive frame
rates. The frame rate is restricted by the transfer of the volumetric flame
models to the memory of graphics hardware. On modern PC’s around 150
volumetric flame models can be fit into the main memory of the computer.
One volumetric model uses about 25 MB of memory. We have suggested a
wavelet based compression scheme to reduce this size and enable real-time
rendering of the sequences reconstructed with the methods presented in this
chapter [5]. Due to space restrictions we will not discuss the method in this
thesis.

5.4 Experimental validation

We recorded a multi video sequence with the mobile camera setup presented in
Sec. 4.1.1. This system uses 8 Sony DFW-500 cameras, recording at 640x480
pixels and 15 frames per second. An approximately circular camera setup
was used to acquire the images. The recording was performed in a darkened
room with the fire being the only source of light. It was therefore possible
to circumvent the step of background subtraction. However, we had to use
very high gain settings, introducing noise in the images, notable in the blue
channel, Fig. 5.7(a).

5.4.1 Experiments

We experimentally analyzed the dependency of our method on the discretiza-
tion resolution. Since we aim at creating photo-realistic images from arbitrary
viewpoints using the reconstructed volumetric model, we perform a recon-
struction, followed by a rendering of the model. We reconstruct a volumetric
model using all views except for one, which in turn is used to validate the
rendered image of the model. Seven out of the eight views are used to recon-
struct a sequence of 100 frames. The reconstructed model is then projected
into the eighth view and the difference is computed for each color channel.
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Fig. 5.6. Plot of the mean reconstruction error for all frames of a sequence. The
different curves show results for a discretization of space into 323 (green), 643 (red)
and 963(blue) voxels.

The average difference in intensity is shown in Fig. 5.6 for all 100 frames and
different levels of discretization. The pixel values range from zero to 255.

Fig. 5.6 shows that approximation quality becomes better with higher level
of discretization. We also performed experiments with a discretization level
of 483 and 723 voxels. The results of these are not shown for clarity, but are
included in Fig. 5.7(b). These experiments show the tendency to converge
towards the correct unused view, suggesting that the 3D structure of the
density field is indeed captured accurately.

Another experiment was performed to evaluate the dependency on the
number of views that are used for the reconstruction. We reconstructed one
frame of the sequence using 3, 4, 5, 6 and 7 views of the flame. The comparison
is performed against the left-out views. The results are shown in Fig. 5.7(a).
Here as well, the convergence of the solution can clearly be observed. Visually
acceptable reconstruction results, especially when used in animated render-
ings, are obtainable with as few as 4 to 5 views. 8 views are sufficient for
photo-realistic rendering.

5.4.2 Discussion

Potential sources of error of our method are

• camera calibration errors,
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Fig. 5.7. Mean error plotted against the number of views used for reconstruction
(left) and the mean error over the whole sequence of Fig. 5.6 against the level of
discretization. The three curves denote the three color channels red, green and blue.

• color calibration errors,
• 2D image processing (rescaling), and
• discretization (number of views and spatial discretization).

Calibration errors are inevitable and tend to create too small visual hulls.
This means that the actual silhouette is a bit larger than the silhouette of the
reconstructed model. Since this does not happen with synthetic test images,
such errors can be attributed to camera calibration inaccuracies. We exclude
these pixels from the error measurement to prevent biasing the error measure.

Rescaling the images is necessary to fit the matrix in memory (2 GB RAM).
It should be noted that 2D image processing might influence the result of the
reconstruction because it can introduce effects not described by our model.
Projecting the result of the reconstruction back to the original views and
referring to Eq. (5.14), the reconstruction/rendering loop p̂ = S(ST S)−1ST p

can be interpreted as a filter on the 2D pixel data p where p̂ is the solution
projected to the original views. If the pixel data p is filtered in 2D prior to
the reconstruction procedure, it might not correspond to a filter in the 3D
domain and therefore introduce artifacts. Finally, the discretization of the
density field and the assumption on its special structure, i.e. its composition
from basis functions, introduce errors of their own.

While one has to be aware of these error sources, our validation experi-
ments demonstrate that it is possible to compute density fields that enable
photo-realistic image synthesis from arbitrary viewpoints.
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5.5 Summary

We have presented a method that is capable of reconstructing dynamic, vol-
umetric models of fire for animation purposes. Our approach is applicable in
case of

• negligible scattering (fire not obscured by smoke)
• no sensor saturation in the input images
• no opaque objects inside the flame
• no part of the flame is seen by less than 2 cameras

We obtain photo-realistic results. Validation shows that our approach re-
constructs the actual 3D distribution of flame intensity. Our results are ob-
tained using 8 cameras, demonstrating that the method is applicable in a
sparse view scenario. The reconstruction is optimized for processing of multi-
video-sequences, making it a suitable tool to model fire for animation pur-
poses.



60 5 Fire Reconstruction

Fig. 5.8. Difference between original, unused views and reconstruction rendered
from the same viewpoint. Left: Original, Middle: Reconstruction, Right: Difference.

Fig. 5.9. Synthesized views of two different flames with black background, the 5
images of each row cover approx. 120◦.

Fig. 5.10. Synthesized views of animated fire in a virtual environment.
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Reconstruction

In the previous chapter we introduced the sparse view tomographic reconstruc-
tion of emissive phenomena like fire. This chapter deals with an extension of
the basic approach. We demonstrate that under carefully chosen recording
conditions the basic method, Chapter 5, can be applied to the reconstruction
of thin smoke columns. To capture the fine details present in whirling smoke
we extend the previous method to an adaptive grid scenario. The idea is to
concentrate the resolution of the reconstruction where fine detail is visible
and to approximate homogeneous regions by larger basis functions. Since we
still rely on the visual hull of the phenomenon to restrict the solution space,
we present a technique to compute this information directly from matrix S,
introduced in Sec. 5.1. The non-uniform basis functions introduced in this
chapter lead to stability problems in the solution of the linear system pre-
sented earlier. We will discuss the reasons for this and present a remedy for
this behavior.

6.1 Application of the Image Formation Model to Smoke

To apply the method presented in the previous chapter to smoke we have to
make sure the image formation model is more or less valid. Both assumptions
stated in section 5.1 are obviously not true for smoke in general. We tackle
the problem by making the following assumptions

• The smoke is uniformly and diffusely lit, and
• Scattering takes place in a uniform manner.

These assumptions make it possible to treat the smoke as a self-emissive
medium. We found this model to be applicable for thin smoke reconstruction.
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In the case of flame reconstruction it is possible to record in a dark setting,
avoiding the complication of background subtraction for transparent phenom-
ena, i.e. vector b of Eq. (5.4) is zero. Since the smoke has to be lit uniformly
we have to perform background subtraction which was described in Sec. 4.4.1.
This step computes the difference (p−b) in advance and is depicted in Fig. 4.7.
In the following we regard vector p as the background-subtracted pixel vector.

Reconstruction and re-rendering of the reconstructed model into the orig-
inal views can be seen as a 2D image filtering operation as discussed in
Sec. 5.4.2. This filter is defined by the image formation model and the re-
constructed density field. Pre-processing of the input images might not corre-
spond to a valid filter of this form and thus affect the reconstruction process
negatively. Fortunately, background subtraction and noise reduction are not
observed to have adverse effects on the visual quality of the reconstruction.

6.2 Adaptive Reconstruction

An adaptive reconstruction technique for three-dimensional computerized to-
mography is motivated by the better memory efficiency that can be achieved.
This in turn yields higher effective resolutions for the reconstructed models.

Using a uniform grid, the memory limit of 2 GB on a 32-bit machine is
reached relatively fast. In our experiments we have found that using 8 cameras
with images taken at 320x240 pixel resolution, we can achieve a reconstruction
resolution of 1283 voxels.

In general we have np rows with O( 3
√
nb) non-zero elements each in ma-

trix S, where nb is the number of basis functions needed to approximate the
density field and np the number of pixels in a frame (a frame is one time frame
of a multi-video sequence and contains nc images, where nc is the number of
cameras). A uniform discretization of the reconstruction space is assumed. We
use an index-stored sparse matrix as a representation for S. We store the two
indices and the matrix value for each non-zero entry. Even though this is the
most memory efficient storage scheme for an unstructured sparse matrix, the
available memory fills up quite fast when using a uniform grid.

6.2.1 Basic Iteration

We now turn to the modifications necessary to convert the algorithm of Chap-
ter 5 into an adaptive reconstruction scheme. An adaptive reconstruction al-
gorithm iteratively estimates the solution and refines it in appropriate places.
This is done by performing the following iteration:

1. Estimate the coefficients a of Eq. (5.4), then
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C 1

C 2

Fig. 6.1. The error heuristic measures the accumulated residual error in the image
plane for each basis function.

2. Compute an error measure for each basis function, followed by
3. Splitting of the k basis functions that are responsible for the largest error,

and
4. optionally, lifting of the current solution to the new discretization1.
5. Until convergence go to step 1.

The following subsections cover the single steps in detail. The estimation
process (step 1) has already been described in Section 5.1. It is independent
of the shape of the basis functions and therefore directly applicable to the
adaptive algorithm.

6.2.2 Error Measure

The main difficulty in the adaptive estimation process is to relate the residual
error

r = p − Sa (6.1)

to the interpolation error

|u− Pφi
u| (6.2)

Here u is the perfectly reconstructed function and Pφi
u its projection onto

the subspace of functions representable by the basis functions φi. A relation
between the two errors allows for the identification of the coefficients ai that
contribute most to the residual error. We present a heuristic for this projec-
tion step and show the feasibility of an adaptive computerized tomography
reconstruction.

1 This can speed up convergence of the algorithm but might also lead to a local
minimum.
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The basic idea of our heuristic is based on the projection of the basis func-
tion’s regions of support into the camera images, and on the accumulation
of the residual error of the affected pixels, see Fig. 6.1. This yields an intu-
itive way of relating the error caused by a particular basis function to the
residual error in the image plane. In addition the error measure is efficiently
implemented using sparse matrix - vector multiplications.

Our main observation is that the complete geometry of the problem is
encoded in the matrix S. The system of equations (5.4) has the following
structure:











p1

p2

...
pnp











=













∫

c1
φ1ds . . .

∫

c1
φnb

ds
∫

c2
φ1ds . . .

∫

c2
φnb

ds
...

...
...

∫

cnp
φ1ds . . .

∫

cnp
φnb

ds













a (6.3)

Since our basis functions φi have local support the matrix S is sparsely
populated. Note that every column of the matrix corresponds to a particular
basis function. The rows are the equations for one particular pixel. Therefore
an entry Sji is non-zero only if the support of basis function φi projects onto
pixel pj. We use this observation to formulate the projection of the basis
functions into the images and the accumulation of residual errors per basis
function in matrix notation:

eφi
=

1

nφi

∑

j

δS
ji|rj| (6.4)

δS
ji =

{

1 : Sji 6= 0

0 : else
(6.5)

The basis function φi is visible in nφi
cameras, and vector e contains the

error measure for all basis functions.
Careful observation of Eq. (6.4) shows a close similarity to the L1 norm

||r||1 =
∑

j |rj| for each of the basis functions’ associated error values. This
motivates the introduction of a new class of error norms which we call the
class of projected codomain Lp norms. We define it in the following way

eφi
=

1

nφi





∑

j

δS
ji|rj|p





1
p

, (6.6)

where δS
ji is defined as before.
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Fig. 6.2. The linear operator S maps the domain to the codomain and its adjoint
operator ST maps the codomain back to the domain. In the case of real matrix
entries Sji the complex conjugate matrix ST is simply the matrix transpose ST .

Now consider the linear matrix operator S which is a discretized version
of the linear operator defined in Eq. (5.1). S maps the domain, i.e. the emis-
sion densities in three-dimensional space, to the codomain of intensity values
in the image plane, see Fig. 6.2. This implies that we cannot measure the
reconstruction error in the domain of the operator. Instead the residual er-

ror r = S
(

ST S
)−1

ST p − p resides in the codomain of the operator, i.e. in
the image plane. The proposed error measure performs a tomographic back-
projection, see Sec. 2.2, of the Lp norm of the residual in the codomain to the
three-dimensional domain of the density values.

Now we prove that our error measure is indeed a norm in the domain of
the linear operator S. The norm axioms

||x|| ≥ 0 (6.7)

||x|| = 0 ⇔ x = 0 (6.8)

||αx|| = |α|||x|| (6.9)

||x + y|| ≤ ||x|| + ||y|| (6.10)

are shown to hold for the class of projected codomain Lp norms. Essentially
this follows from the linearity of operator S and the reasonable assumption
that no basis functions are present that do not influence any of the data. The
latter requirement is enforced by the visual hull restriction of our operator.

Inequality (6.7) follows from the norm properties of the regular Lp norm
and a positivity condition on the matrix elements δS

ji which are fulfilled be-
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Fig. 6.3. Visual hull restriction of matrix S.

cause they are either zero or one. Condition (6.8) is true iff there does not
exist a column in δS

ji that is zero for all j, i.e. there is no basis function that
does not project to any pixel. This condition is enforced by construction of
the matrix S which is described in Sec 6.2.3.2. Eq. (6.9) holds because of the
linearity of δS

ji and inequality (6.10) is a modified version of the Minkowski
inequality:





∑

j

δS
ji|xi + yi|p





1
p

≤





∑

j

δS
ji|xi|p





1
p

+





∑

j

δS
ji|yi|p





1
p

(6.11)

of which a more general form is proved in Appendix A.2. The performance
of the adaptive reconstruction algorithm using the projected codomain L1, L2

and L∞ norms is assessed in Sect. 6.4.1.

6.2.3 Splitting and Basis Function Independent Visual Hull

Restriction

Using the error heuristic from the previous section, we iteratively split those k
basis functions that cause the largest residual error. k is an arbitrary number
that influences the convergence of the adaptive scheme. It should not be set
too large because our error measure is just a heuristic and unnecessary basis
functions might be introduced. We perform a uniform splitting on the box
basis functions. For different types of basis functions the splitting process

2 see step 4 of the visual hull restriction process
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becomes more complicated. E.g. for the linear basis function, asymmetric basis
functions have to be introduced where basis functions of different splitting
level overlap.

We do not have to recompute matrix S in every iteration. Instead the
columns corresponding to the split basis functions are removed and replaced
by columns corresponding to the new basis functions, see Fig. 6.4. This, to-
gether with the error heuristic expressed in matrix form results in an efficient
implementation of the iterative method described in Section 6.2.1.

The visual hull restriction of matrix S can be performed in an efficient
and accurate way. The following discussion refers to Fig. 6.3. In step 1 we
extract all rows that have non-zero entries in pixel vector p. These represent
the rays that are inside the silhouette of camera C. In step 2 we identify the
columns that have zero entries only, i.e. the basis functions that do not affect
the silhouette in camera C. Therefore they cannot be part of the visual hull.
This step has to be performed per camera. Therefore it is necessary to keep
track where the pixels in vector p originated.

We compute a binary vector for each camera, marking all basis functions
that are potentially contained in the visual hull with one. These correspond
to columns containing non-zeros in the sub-matrices extracted in step 1. The
basis functions marked with one have non-zero support in the generalized cone
back-projected from the silhouette of camera C.

By taking the element-wise logical AND of all binary vectors, we compute
the intersection of the generalized cones of all cameras and thus the visual
hull (step 3). This computation is accurate up to the discretization in the
image plane, i.e. up to the pixel level. Step 4 restricts the original matrix S to
columns corresponding to basis functions that have non-zero support in the
visual hull. The resulting linear system has zero rows for some of the pixels in
vector p that are outside the silhouette. Note that not all rows that have a zero
right hand side get removed. This is because the basis functions might not be
completely contained in the visual hull. Therefore the zero pixels have to be
accurately included in the estimation process (step 5). Basis functions on the
boundary of the visual hull are very likely to be split, so the boundary of the
visual hull gets represented accurately after some iterations of the adaptive
scheme. This can be seen in the middle plot of Fig. 6.13.

The splitting process cannot be performed infinitely. It is advisable to set
a maximum split level. A suitable criterion is the Nyquist limit, i.e. if a basis
function projects to less than two pixels in all images the splitting can be
stopped. A useful number for k is the square root of the number of basis
functions currently used. This choice results in a sub-exponential growth in
the number of basis functions but converges faster than a constant number k.
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Fig. 6.4. Augmentation of matrix S to accommodate adaptive splitting. The column
corresponding to a split basis function (red) is removed and its non-zero entries are
recomputed for the smaller basis functions taking its place (green).

6.2.4 Initialization of the New Discretization

The solution of the previous iteration in the adaptive process can be used
as an initial guess for the updated discretization of the domain. This ensures
a faster convergence of the conjugate gradient method in each iteration of
the adaptive process, but might lead to an undesirable local minimum of the
solution. We initialize the coefficients of the unsplit basis functions with their
value from the previous iteration and the newly introduced ones with the
value of their parent in the octree data structure.

6.2.5 Implementation

The whole adaptive process can be efficiently implemented using basic matrix
- vector operations. A simple indexed, unordered sparse matrix representation
has been found to be suitable for the purposes of this algorithm. This allows
for a straight-forward implementation and is also easily parallelizable. The
memory requirements are typically only 20 to 25% of the uniform grid case
while achieving comparable reconstruction accuracy. This allows for higher
resolution input images and a higher resolution of the reconstructed model.

We use a minimalist octree data structure to keep track of the splitting
process. For each column index of matrix S we store the split level from the



6.2 Adaptive Reconstruction 69

Fig. 6.5. A visual hull restricted adaptive grid (intermediate step in the iteration).

root of the tree and the index that the corresponding leaf would have in a
uniformly split octree under a fixed order of traversal. This enables us to
identify the positions and sizes of the newly inserted basis functions and to
generate the integral values for the new columns of matrix S in every iteration.

To minimize the overhead introduced by re-generating the matrix values
for the newly inserted columns we keep track of the cameras and pixels that are
affected by a particular basis function. For each row of matrix S we store the
camera and the pixel corresponding to the linear equation. Thus by identifying
the non-zero entries of the removed column we can efficiently generate the new
non-zero entries of the columns replacing the original one. This is possible
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Fig. 6.6. The condition number of matrix S plotted against the number of basis
functions in the adaptive and the uniform grid version of the reconstruction algo-
rithm. Note that this is a double logarithmic plot.

because the refined basis functions’ support is completely contained in the
support of the original basis function. Fig. 6.4 shows the changes applied to
matrix S during the refinement of the adaptive grid.

6.3 Regularization Issues

The basic adaptive reconstruction method suffers from problems which cannot
intuitively be seen. It turns out that the introduction of differently sized basis
functions changes the numerical conditioning of the inverse problem. Fig. 6.6
shows the condition number of matrix S defining the least squares problem
for the algorithm based on the uniform grid and for the adaptive grid case.
As can be seen from the Figure, the numerical conditioning of the problem
is orders of magnitude worse for the adaptive grid than for the uniform grid
case. We can also observe jumps in the graph of the adaptive grid case. These
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Initialization:
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Fig. 6.7. The preconditioned CGLS algorithm.

jumps correspond to the introduction of new split levels of the basis functions
into the grid.

This effect negates the positive character of the smaller degree of freedom
caused by the differently sized basis functions and decreases the convergence
rate of the CGLS method considerably. To solve this problem we need two
ingredients. First we have to switch to a preconditioned version of the CGLS
method and second we introduce explicit regularization of the linear least
squares problem.

6.3.1 Preconditioned CGLS

Preconditioning is the process of modifying a linear system to improve its
condition number without changing its solution. This is done by multiplying
the original system of equations with an approximation to the inverse of the
original matrix, i.e. for the normal equations, Eq.(5.14)

M−1ST Sa = M−1ST b. (6.12)

The matrix M−1 is called a preconditioner. Eq. (6.12) has obviously the
same solution as Eq. (5.14) as long as the inverse of M exists, however the
condition number of the resulting linear system can be improved considerably
and thus the convergence of iterative solution methods can be accelerated. The
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drawback is that matrix M must be computed and inverted. This must be
possible at a low computational expense such that the improved convergence
rate amortizes the additional costs. The preconditioned CGLS algorithm is
given in Fig. 6.7.

We use the Jacobi preconditioner which is

M = diag(ST S). (6.13)

This simple preconditioner is already effective in increasing the conver-
gence rate of the CGLS method to acceptable levels and can be computed
efficiently directly from matrix S..

6.3.2 Explicit Regularization

The conjugate gradient method exhibits a regularizing behavior as it behaves
similarly to the truncated singular value decomposition (TSVD). The TSVD
basically removes the numerical null space of the ill-posed problem and there-
fore smoothes the solution.

However we can also take explicit knowledge of the solution of the ill-
posed problem into account and thus select an appropriate solution from the
numerical null space of the linear system. This is done by modifying the
original least squares problem with another quadratic, positive definite form.
Ideally the solution space of this quadratic form covers the null space of the
original linear system and has itself a null space in the solution space of
the original problem. However since the problems considered here are too
large for the null space of the original problem to be computed explicitly,
the modifying quadratic form usually does not exhibit these properties and
trade-offs between noise reduction and solution accuracy have to be made.
Now consider the minimization problem

min
x

||(Ax − b)||22 = min
x

(Ax − b)
T
(Ax − b) = min

x
f(x)

which leads to the normal equations via

∇f = 2AT Ax − 2AT b = 0.

We can incorporate prior knowledge about the solution vector x by adding a
second quadratic, positive definite form to the original minimization problem:

min
x

(1 − α)||(Ax − b)||22 + α||Rx||22 =

min
x

(1 − α)(Ax − b)
T
(Ax − b) + αxT RT Rx =

min
x
f̂(x)
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Fig. 6.8. Left: standard Tikhonov regularization leads to differently penalized co-
efficients, Right: adaptive Tikhonov regularization overcomes this problem.

Setting the gradient of f̂ to zero yields the modified normal equations

∇f̂ = 2(1 − α)(AT Ax − Ab) + 2αRT Rx = 0.

Here α allows the user to weigh prior knowledge against data fitting capa-
bilities. We will refer to the term involving A as the data term and call the
second term involving R the smoothing term. Rearranging the terms and set-
ting λ = α

1−α
yields the regularized normal equations

[

AT A + λRT R
]

x = AT b. (6.14)

The parameter λ is called regularization parameter and R is the regular-
ization matrix. For use with the preconditioned CGLS method we write the
regularized normal equations as

[

A√
λR

]T [
A√
λR

]

x =

[

A√
λR

]T [
b

0

]

. (6.15)

6.3.3 Tikhonov Regularization

The simplest choice for the regularization matrix is the unit matrix. The
resulting regularization method is called Tikhonov regularization. The choice
of R = I yields an objective function of

f̂ = (Ax − b)
T
(Ax − b) + λxT x
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for the least squares minimization. This shows the well known fact that
Tikhonov regularization in addition to the data term minimizes the norm
of the solution x. However in the case of adaptive grid reconstructions this is
not a viable way to go. Artifacts like the ones shown in Fig. 6.8 appear due
to different scales in the size of the basis functions.

To understand this phenomenon we have to consider the smoothing term
xT x. Each coefficient xi of the solution contributes equally to the smoothing
term. On the other hand the influence of each corresponding basis function
φi on the residual error is different because of their differing area of support.
Therefore basis functions with a smaller support are penalized more heavily
by Tikhonov regularization than basis functions with a larger support, i.e.
the smoothing term can be minimized without changing the residual error
too heavily. This suggests altering the regularization matrix to reflect the
contribution of the differently sized basis functions. Setting the regularization
matrix R to the diagonal matrix whose elements are

Rii
at =

√

1

v(φi)
, (6.16)

where v(φi) measures the volume covered by the non-zero support of ba-
sis function φi yields the adaptive Tikhonov regularization matrix Rat. The
norm of the solution vector is weighed by the size of the support of the basis
functions in the adaptive grid. This takes into account the inhomogeneous
nature of the grid and results in a stable solution for the adaptive computer-
ized tomography problem. Other choices of R like e.g. discretized derivative
operators are possible though [69]. A result of applying the adaptive Tikhonov
regularization scheme is shown in Fig. 6.8, right hand side. The artifacts intro-
duced by standard Tikhonov regularization have been successfully removed.

6.4 Results

In this section we present results for synthetic and real-world data recon-
structed with the proposed method. We study the convergence properties of
the adaptive scheme with respect to the numbers of cameras used and the er-
ror measure employed. For real-world data we show results of a reconstruction
of a 300 frames smoke sequence.

6.4.1 Synthetic Tests

To validate the proposed adaptive tomographic reconstruction scheme we per-
formed tests on synthetic data. We use the Shepp-Logan phantom head model,
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Fig. 6.9. The Shepp-Logan phantom head model used as ground truth in our syn-
thetic tests.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10−3 adaptive algorithm

number of basis functions

R
M

S
 e

rr
or

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10−3 uniform algorithm

number of basis functions

R
M

S
 e

rr
or

 

 
8 cameras
16 cameras
32 cameras
64 cameras
128 cameras

8 cameras
16 cameras
32 cameras
64 cameras
128 cameras

Fig. 6.10. RMS reconstruction error vs. number of basis functions for different
numbers of cameras, left: the adaptive algorithm, right: using uniform discretization
as in Chapter 5. The scale of the ground truth data is 1.0.

Fig. 6.9, as is common in the computerized tomography literature [96] to as-
sess the accuracy of tomographic reconstruction methods. The model includes
stylized, typical features of a human head.

We use the head model as ground truth and compute the RMS error for
different numbers of simulated cameras. We analyze the convergence proper-
ties of the adaptive scheme with respect to the number of basis functions used
in the reconstruction process, Fig. 6.10. The plot shows the behavior of the
RMS error over 80 iterations of the adaptive scheme for different numbers of
cameras. As expected the RMS error reduces with larger numbers of iterations
and it converges on a lower level when using more cameras. The visual quality
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Fig. 6.11. RMS reconstruction error vs. number of basis functions for different error
measures. The plot shows the convergence behavior of the adaptive algorithm using
the projected codomain L1, L2 and L∞ norms. The RMS error achievable by using
the perfect error measure (comparison against the known solution) is included for
comparison. The scale of the ground truth data is 1.0.

of the reconstructions is shown in Fig. 6.12. Compared with the uniform grid
case a smaller RMS error is achieved using less basis functions.

Fig. 6.11 shows a comparison of the convergence behavior of the adap-
tive algorithm using different error measures for predicting the insufficiently
approximated regions. We compare the projected codomain L1, L2 and L∞

norms. We also include a plot for the perfect estimator, using the known solu-
tion to identify parts of the solution that need to be improved. According to
Fig. 6.11, the projected codomain L2 and L∞ norms perform similar, where in
practice we prefer the projected codomain L2 norm because of a more homo-
geneous splitting of the space. However, there is still room for improvements
as can be seen by the significantly lower graph of the perfect estimator. The
number of cameras used for this synthetic test was 64. The results are similar
for different numbers of cameras.
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Fig. 6.12. Reconstruction results for different number of cameras ( rows from top to
bottom 8, 16, 32, 64, 128 cameras respectively ) and different numbers of iterations
of the adaptive reconstruction scheme ( from left to right 4, 12, 32, 48, 64 iterations ).

6.4.2 Real-World Experiments

For our real-world experiments we used again the mobile multi-camera sys-
tem, Sec. 4.1.1. We perform background subtraction as a preprocessing step.
Because the background subtraction is not perfect, we use an alpha-matte in
step 1 of the visual hull restriction process Fig. 6.3. The matte is created using
morphological operators on the thresholded foreground images.

We performed a convergence study of the adaptive algorithm in a real-
world setting. The results are shown in Fig. 6.13. Since we do not have ground
truth data for this case we use the residual error for the analysis. The residual
error decreases as expected with the number of iterations. The decrease is not
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monotonic though. This is because our error measure is based on a heuristic.
An interesting graph is the plot of the number of rows in matrix S versus
the number of iterations. It shows that the basis functions adapt to the pixel
perfect visual hull. A visualization of the results after different numbers of
iterations and the convergence of the solution is shown in Fig. 6.14. Along with
Figs. 6.16 and 6.15 it shows reconstructions we have obtained by applying our
algorithm to different multi-video sequences.

6.5 Discussion

Compared to the uniform discretization case our new method offers some
advantages which are reduced memory requirements allowing for an increased
resolution of the reconstruction. The adaptive grid on the other hand is a
disadvantage for the reconstruction of video sequences in terms of computation
time. Since the adaptive grid cannot be re-used for the different frames of the
video sequence and the majority of the computation time is spent in the setup
of the linear system, the reconstruction times for one frame with the adaptive
method are comparable to the time spent for the reconstruction of a whole
video sequence in the uniform grid case.

Thus the adaptive grid tomographic technique is primarily suited for the
reconstruction of single frames where high resolution of the reconstructed
model is of major concern.

6.6 Summary

We have presented an adaptive algorithm for optical tomography. The algo-
rithm is based on an octree hierarchy of piecewise constant basis functions.
We propose a heuristic that enables the projection of errors in the image
plane into the domain of the basis functions. This heuristic is the transfer of
a norm from image space to the three-dimensional solution space. This al-
lows us to iteratively split basis functions that cause large residual errors in
the image plane. Using this algorithm we are able to reconstruct dynamic,
volumetric models of flames and thin smoke. Additionally we presented an
efficient scheme for the accurate computation of the visual hull. This scheme
is independent of the choice of basis functions and accurate up to the pixel
level. We believe that our error projection method can be used in different
contexts as well where the domain and the codomain of a linear operator live
in different spaces.



6.6 Summary 79

number of basis functions

number of iterations

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0  10  20  30  40  50  60  70  80

number of pixels

number of iterations

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0  10  20  30  40  50  60  70  80

residual error

number of iterations

 4000

 4500

 5000

 5500

 6000

 6500

 0  10  20  30  40  50  60  70  80

Fig. 6.13. Behavior of nb the number of visual hull consistent basis functions
(columns) in matrix S (top), np the number of pixels (rows) in matrix S (mid-
dle) and the residual error (bottom) versus the number of iterations of the adaptive
algorithm run on real-world data.
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Fig. 6.14. Visualization of reconstruction results after 1, 2, 14, 28 and 100 iterations.

Fig. 6.15. A volumetric model of smoke rendered from different viewpoints.

Fig. 6.16. Reconstructions of 15 consecutive frames of a smoke sequence.



Part III

Reconstruction of Refractive Phenomena





Overview

In this part of the thesis we turn our attention to phenomena that include
refraction as a major effect. These are free-flowing surfaces of water in Chap-
ter 7 and heated air flows in Chapter 8. The first phenomenon is an example
of a homogenous refractive index distribution inside the object. Thus the
reconstruction problem is ideally formulated as a surface reconstruction prob-
lem. We want to find the boundary between air and water, separating two
different refractive indices. Differing from the other reconstruction methods
presented in this thesis we use a level set formulation to find a surface mini-
mizing a photo-consistency based error measure as introduced in Sec. 2.4. We
are essentially using the a-priori information that only two refractive indices,
separated by a well defined boundary, are present in the scene. This changes
in Chapter 8. Our goal will be to reconstruct a spatially inhomogenous field
of refractive indices. This is again realized using a tomographic reconstruction
algorithm similar to Chapters 5 and 6. We introduce a new formulation of the
tomographic reconstruction problem allowing for (in theory) arbitrarily curved
light paths. The solution of the tomographic problem will be a vector field -
the gradient of the refractive index distribution - which has to be integrated
to obtain the final reconstruction. As in Part II, the reconstruction methods
presented in this part of the thesis are applicable to the reconstruction of
dynamic phenomena, again because a single measurement pass is sufficent to
acquire the information needed.





7

Water Reconstruction

In this chapter we introduce refraction into the image formation model. We
develop a method for the reconstruction of fully three-dimensional bodies of
water. We deal with a single index of refraction which is required to be known.
The light rays can be refracted an arbitrary number of times at well defined
boundaries between the water volume and the surrounding air. This is a binary
tomography problem. We approach it by modeling the interface between water
and air as a dynamic surface. We develop experimental conditions that allow
for a photo-consistency error measure as introduced in Sec. 2.4 to be defined.
The surface is then deformed such that it minimizes the difference between
synthetically generated and recorded views of the water column.

7.1 Level Set Basics

Since this chapter uses a different solution method for the tomography prob-
lem than the ones employed in the rest of the thesis we shortly introduce some
basic terminology and concepts.

7.1.1 Level Set Representation

We model the water as an implicit surface separating air from water

u(x) = 0 ⇔ x ∈ Σ, (7.1)

where x ∈ R
3 is part of the surface Σ if it is part of the zero level set

of function u. The surface can be deformed by adding a flow field, the so
called flux to u, see Fig. 7.1. In theory function u can have an arbitrary form,
however for practical computations it is advantageous to choose u as a signed
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Fig. 7.1. Surfaces are represented by the zero level set of an implicit function u.
The surface can be shrunk or expanded by adding and subtracting values from u.
If the term being added is inhomogeneous the surface deforms (not shown in the
figure).

distance function to the zero level set [148]. With this description only closed
surfaces Σ can be described. For open surfaces see [179, 148]. Summarizing,
function u has the following properties:

u(x) = 0 ⇔ x ∈ Σ
u(x) < 0 ⇔ x ∈ O
u(x) > 0 ⇔ x /∈ (O

⋂

Σ)
|∇u| = 1
nΣ = ∇u
dΣ(x) = |u(x)|

(7.2)

i.e. it is negative inside the object O and positive on the outside. The
surface is described by the zero-crossing of function u and its gradient points
in the normal direction nΣ of the surface everywhere. The distance dΣ(x) of
a point x to surface Σ is given by the absolute value of the function u. This
enables a very simple computation of the closest point on the surface for every
point in space:

xΣ = x − u∇u. (7.3)

The convenience of using the signed distance function for function u comes
at the price of having to adjust it to exhibit these properties every time
the surface Σ is deformed, which is done via a partial differential evolution
equation. The evolution equation is problem specific and describes the flux
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modifying function u such that it exhibits the properties required by the
specific task. An evolution parameter τ is introduced and the flow described
by the level set evolution equation is applied until convergence to a stationary
solution, where the flow becomes zero and the surface stops moving. The final
position of the surface is often heavily dependent on the initial level set u0. It
can easily stop moving in undesirable places. Therefore a good initial guess is
very important for the convergence of the surface. Convergence properties of
level set methods are still not fully understood, for a discussion see e.g. [34].

To re-initialize u to signed distance after a deformation, the evolution
equation

du

dτ
= |∇u| − 1 (7.4)

is solved for a stationary solution, details can be found in [148]. An initial
guess for the signed distance function can be computed using the sweeping
algorithm described in [62].

7.2 Error Minimization using Weighted Minimal

Surfaces

A minimal surface is a surface that minimizes an error functional A(Σ) defined
for a surface Σ

A(Σ) =

∫

Σ

Φ(x,n)dA. (7.5)

Here Φ is the weight function or error measure defined on the surface. It
may depend on a point x on the surface Σ and the normal of the surface in
that point n(x). Goldluecke and Magnor [59] showed that a surface minimizing
Eq. (7.5) fulfills the Euler-Lagrange equation1

< Φx,n > −Tr(S)Φ+ divΣ(Φn) = 0. (7.6)

They present a level set evolution equation, the solution of which is a
stationary point of Eq. (7.6). Defining the flux

1 Φx is the differentiation of Φ with respect to its spatial coordinates x and Φn with
respect to the normal n respectively. Tr(S) is the trace of the second fundamental
form of the surface Σ and related to the mean curvature of the surface. divΣ

denotes the divergence operator for vector fields on the manifold Σ. We refer the
interested reader to [58] and the references therein for a detailed discussion.
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Fig. 7.2. Four of eight source images from our test video sequence. The images were
taken at the same point in time.

Ψ = −div(Φn) + divΣ(Φn), (7.7)

[59] write the level set evolution equation for minimizing Eq. (7.5):

du

dτ
= Ψ |∇u|. (7.8)

This is a flow in the normal direction of the surface [148], optimizing
Σ with respect to A(Σ). It should be noted that the integral in Eq. (7.5)
is never evaluated explicitly. Evolving Eq. (7.8) to a steady state implicitly
minimizes the integral by deforming surface Σ using only local computations.
A disadvantage caused by this is that we must be able to evaluate Φ away
from surface Σ. We will discuss this issue in Sec. 7.3.1.

7.3 Experimental Setup

In order to define an error measure for surface Σ in the context of this chapter,
we use a special experimental setup which enables us to formulate a photo-
consistency constraint on the surface. The error measure Φ will measure the
agreement between synthetically generated views using the reconstructed sur-
face Σ and the recorded images.

Our experimental setup consists of chemically dyed water that is recorded
using a multi-camera setup. Two chemicals are mixed into the water and
their chemical reaction produces light, making the water self-emissive. This
effect is called chemiluminescence. Commercially available products using this
effect are glow sticks. They are optimized for brightness and longevity of the
chemical reaction.

Recording the self-emissive water in a dark setting and assuming constant
self-emission in a well mixed solution of the chemicals allows us to measure
the optical path length that a ray travels in the fluid. We ignore absorption
and scattering. Some example images of our input data are shown in Fig. 7.2.
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Equating the image intensity with the optical path length within the water
column requires the photometric calibration of all cameras, see Sec. 4.3, such
that they exhibit a linear response to incoming radiance.

7.3.1 Error Measure

Since intensity in our experimental setup corresponds to optical path length
within the refractive medium we can set up a photo-consistency measure to
measure the goodness of fit of a surface model Σ to the acquired data. Defining
the quantity

r =

∫

c

ρH(−u)ds (7.9)

we have a tool to measure the optical path length within the volume en-
closed by surface Σ. We make use of the Heaviside function

H(x) =







0 x < 0
1
2 x = 0
1 x > 0

(7.10)

and the property that the level set function u is negative inside the enclosed
volume. c is the curved ray traversing the volume. The Heaviside function
selects the interior of the volume depending on the level set function u used
for its description. ρ is a constant scale factor that combines camera response
and emissivity value of the chemical reaction.2 The practical computation of
c and r is performed simultaneously using a description of the ray trajectory
as the solution to the initial value problem

dx

ds
= d (7.11)

dd

ds
= δ(u)f(d, u) (7.12)

dr

ds
= H(−u). (7.13)

as described in Sec. 2.3.4. The function f models Snell’s Law, see Ap-
pendix A.3 for the exact definition. δ(u) is the Dirac delta function, serving
as a boundary indicator such that a change in ray direction, i.e. refraction or

2 In practice we normalize the camera images with the mean value of all pixels
within the silhouettes of the water column and divide synthetically generated
images by the mean value of all ray-traced pixels. The resulting values are inde-
pendent of ρ.
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Fig. 7.3. An illustration of the complexity of image formation: The light rays enter
from the top left corner and are refracted multiple times while traversing the scene.
The parts of the light paths that the light travels in the water volume are shown in
yellow. Since they add nothing to the optical path length travelled in the refractive
volume, the last part of the rays, i.e. the last refraction and the path to the boundary
of the scene volume, are omitted. On the top a 1D view of the resulting intensities
is shown.

total reflection, only takes place at material boundaries. Fig. 7.3 shows some
ray paths traversing a synthetic test volume consisting of two separate bodies
of water. A synthetic 1D-view of ray-traced intensities r is shown on the top
of Fig. 7.3.

Conceptually the error measure Φ can now be written

Φ(x,n) =
1

k

k
∑

i=1

(Ii ◦ πi(x) − r(x,n))2, (7.14)



7.3 Experimental Setup 91

where r(x,n) is the ray-traced intensity along curve ci, computed using
Eqs. (7.11)-(7.13) with initial conditions set to r0 = 0, x0 = x and d0 = do, see
Fig. 7.4. We start to ray-trace curve ci at a point x on a distorted surface with
a normal n independent of the level set normal nΣ . The initial ray direction
is determined using the modified normal. This is necessary to enable normal
optimization of the surface Σ. Ii◦πi(x) is the intensity recorded by camera Ci

for the projection of point x. Summation is performed over a set of cameras
C1 . . . Ck that have a reasonably unobscured view of x. In the following we
discuss the details of the implementation.

Of particular difficulty is the evaluation of the error function Φ(x,n) for
a given point x and corresponding normal n. The problem is that this term
has to be evaluated away from the current surface Σ in order to numerically
compute the derivatives in Eq. (7.8), i.e. for points that do not lie directly
on the surface, and with a normal which may be different from the current
surface normal. In fact, the question is what local error would arise if the
surface was distorted such that it lies in x with normal n. For this reason,
ray tracing in order to evaluate the error function has to be performed for a
distorted surface Σ′. The computation of Φ(x,n) is thus performed in three
steps.

In the first step, we construct the distorted surface Σ ′ through which rays
are traced. We have to change Σ locally in a reasonably smooth manner such
that the new surface passes through x. At this moment, we do not yet care
about the normal. Assume for now that x lies outside the volume O enclosed
by Σ. The desired result can then be achieved by uniting O with a sphere B
centered in the point xΣ closest to x on Σ, with radius dΣ (the distance of x

to surface Σ), see Fig. 7.4. Vice versa, if x lies inside O, we can achieve the
result by subtracting B from O.

The second step is to define the set of cameras C = {C1, . . . , Ck} which
contribute to the error measure. Ideally, since the medium is transparent,
we would like to consider all cameras we have available. Unfortunately, this
requires to find for each camera the ray passing from the camera center to
x, possibly refracted multiple times on the way. This computation definitely
is too time-consuming. Instead, we only consider those cameras which have a
reasonable unobscured view of xΣ with regard to the original surface. More
precisely, each camera Ci belonging to C must meet the following two criteria:

• The straight line segment from xΣ to the center of projection Ci must not
intersect Σ, and

• The ray starting from x in the refracted direction do must travel inside
O in the beginning. do is computed using Snell’s law, using the index of
refraction of water for inside the volume, and of vacuum for outside.
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Fig. 7.4. Modifying surface Σ to compute the partial error function φi for a single
camera.. The surface Σ is united with a sphere of radius dΣ centered in point xΣ

closest to point x on the surface to yield a new surface Σ ′ that passes through x.
Surface Σ′ permits to evaluate changes in the error measure Φ due to a deforming
surface. Additionally n can be chosen close to the exact surface normal, in order to
evaluate the derivative of Φ with respect to the normal. Ray-tracing of curve c is
started in x with direction do.

In the third step, we finally compute the photo-consistency error φi for
each contributing camera Ci and average those to get the total error Φ. Each
individual error is computed as follows: Let Ii ◦ πi(x) be the intensity of the
projection of x in image Ii, and ri(x,n) be the accumulated intensity along a
ray traced from x into the refracted direction do. Then

φi(x,n) := (Ii ◦ πi(x) − ri(x,n))
2
. (7.15)

This corresponds to comparing the image intensity to the ray-traced intensity
of a ray cast from the camera to x, refracted by a surface located in x with
normal n. Thus, the desired normal n is also correctly taken into account.

Unfortunately the resulting weight function Φ is not locally dependent
on x and n because the distortion of Σ changes Φ globally. The silhouette
constraint introduced in the next subsection counters this shortcoming and
experiments on synthetic test data suggest the feasibility of the reconstruction
approach, cf. Fig. 7.6 for a qualitative analysis.
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Silhouette Constraints

An additional constraint on the photo-consistency of the reconstruction result
is that the projection of the reconstruction in each camera image must match
the silhouette of the object to be reconstructed [105]. This constraint yields
both a stopping term in our evolution equation, as well as an initial surface
for the evolution in form of the visual hull [111]. To this end, let σi be the
signed distance to the silhouette, defined in the image plane, negative inside
the object silhouette.

We prohibit the projections of surface Σ to the cameras’ image planes to
ever shrink inside any of the recorded silhouettes. A stopping term is there-
fore added to the surface evolution, which grows very large if a point on the
projected boundary of the surface lies inside a silhouette. When computing
the visibility of a point xΣ , we can extract from the set of unobscured views
C the set of cameras B ⊂ C in which xΣ lies on or very close to the boundary
of the projection. The two criteria for camera Ci in C to lie in B as well is
that

• the angle between viewing direction di from xΣ to the center of projection
Ci and the level set surface normal nΣ must be close to ninety degrees,
and

• the straight line from xΣ in the direction di away from the camera must
not intersect the surface.

Then the boundary stopping term is defined as

B(x) :=
∑

Ci∈B

[exp (−β(σi ◦ πi)(xΣ)) − 1] , (7.16)

where xΣ is again the point closest to x on Σ, and β > 0 a user-defined
weight, which should be set reasonably high. We use β = 10 throughout all of
our tests, where the images are defined to lie in [0, 1]2, and the signed distance
is normalized accordingly.

PDE Discretization

In order to implement the level set evolution equation, Eq. (7.8), the volume
surrounding the surface Σ has to be discretized. We use a regular three-
dimensional grid of evenly distributed cells with variable spatial resolution of
usually 643 or 1283 cells. Denoting as uxyz

i the value of the discretized function
u at grid point (x, y, z) at an iteration i of the evolution, a first order Euler
forward step in the evolution parameter is given by
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uxyz
i+1 = uxyz

i + Ψ(uxyz
i )|∇uxyz

i |∆τ. (7.17)

|∇uxyz
i | is computed using the Godunov upwind scheme3 [148]. Since an

explicit time stepping scheme is used, a step size restriction for ∆τ has to be
enforced to ensure stability. A necessary condition for stability is the so called
CFL-condition4 from the computational fluids literature:

∆τ ≤ diam cell(x,y,z)

maxx,y,z|Ψ(uxyz
i )||∇uxyz

i | . (7.18)

It states that the evolution pseudo time step must be sufficiently small
that the level sets of the discretized function u cannot cross more than one
grid cell during one update.

We now turn to the discretization of the differential operator Ψ , Eq. (7.7).
It consists of two parts div(Φn) and divΣ(Φn). To compute these the surface
normals n must be computed. This is done by evaluating ∇uxyz

i using central
differences. The discretized differential operator div(Φn) is then computed as

3
∑

i=1

Φp+∆xieini
p+∆xiei − Φp−∆xieini

p−∆xiei

2∆xi

(7.19)

where p = (x, y, z) is the position of a grid cell, ei a Cartesian unit vector
and ∆xi the grid spacing in direction ei. Please keep in mind that Φ has
to be re-evaluated using locally distorted surfaces Σ ′ for every point of the
discretization stencil, i.e. to evaluate div(Φn) it is necessary to trace six rays
through six differently distorted surfaces.

The evaluation of the normal optimization term divΣ(Φn) is more complex.
It involves computing the matrix of second order derivatives Φxn:

Φxn =







∂2Φ
∂x1∂n1

∂2Φ
∂x1∂n2

∂2Φ
∂x1∂n3

∂2Φ
∂x2∂n1

∂2Φ
∂x2∂n2

∂2Φ
∂x2∂n3

∂2Φ
∂x3∂n1

∂2Φ
∂x3∂n2

∂2Φ
∂x3∂n3






(7.20)

The trace Tr(Φxn) of this matrix is the common divergence operator
div(Φn), however it has to be mapped to the tangent plane of Σ to com-
pute the divergence operator on the manifold. This is done by choosing an
arbitrary orthonormal base {t0, t1} for the tangent space at the center point

3 This is necessary because the computed flows cause shocks in the solution, i.e.
there are places in the solution where the characteristics collide and a particular
solution has to be picked to avoid multi-valuedness. This solution is referred to
as viscosity solution. Using standard central differencing discretization schemes
results in unstable algorithms.

4 Courant-Friedrich-Levy condition
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(a) The first synthetic volume (left)
with 16 input views (stacked,right).
Below each view is shown the signed
distance transform σ of the silhou-
ette.

(b) The second synthetic volume,
also with 16 input views and signed
distance transform of the silhouette.

Fig. 7.5. Synthetic test volumes and ray-traced views. Red color denotes positive
values of signed distance, blue color negative values.

x. Setting U := Φxn, the entries of the 2 × 2 partial derivative matrix V in
tangent space are then computed as

Vij = ti
T Utj , i, j ∈ {0, 1}. (7.21)

Finally divΣ(Φn) is computed as the trace Tr(V). The second order par-
tial derivatives are computed similarly to Eq. (7.19) using central differences.
However to compute matrix U, 24 evaluations of Φ with 6 differently distorted
surfaces become necessary.

For computational efficiency the surface is evolved according to the narrow
band level set method [179], starting the evolution with the visual hull surface
Σ0 and the values uxyz

0 of the corresponding signed distance level set function
u0 in the centers of the grid cells. However, there are two optimization terms
which are added to the values in the cells after each update step, Eq. (7.17).

The first one is the boundary term B(x, y, z). The second term is designed
to speed up convergence and avoid local minima. It accelerates the shrinking
process in regions where the error is excessively high. We add to uxyz

i+1 the
value

ε1B(x, y, z) − ε2Lσ(Φ)(Φ(x, y, z) − Φ̄),

where Lσ(Φ) is the stable Leclerc M-estimator for the standard deviation of
the error values of all cells, and Φ̄ the mean value of the error. ε1, ε2 > 0
are two user-defined weights. Good choices and their influence on convergence
behavior are discussed in the next section.
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(a) Convergence towards the first test volume, after 0, 100, 200,
and 300 iterations.

(b) Convergence towards the second test volume, after 0, 15, 30,
and 45 iterations.

Fig. 7.6. We achieved the best results using 24 input views. Several in-between
stages of the iteration are shown for the two test volumes.

7.4 Results

In this section we present results for synthetic tests as well as reconstructions
performed on real-world data.

Synthetic 2D Experiments

In order to verify that our surface evolution is capable of producing correct
results despite the complex problem we want to solve, we first tested it on
synthetic 2D data. For this purpose, we ray-traced several views of two differ-
ent test volumes using the image formation model presented. The first volume
is designed to test how well the algorithm can recover concavities, while the
second volume is not connected and has a mixture of straight and round edges.
Both test volumes and resulting 1D views are shown in Fig. 7.5.

We ran our algorithm with different numbers of input views in order to
test the dependence of convergence on this critical parameter. Convergence
becomes stable if eight or more cameras are available, with twelve views re-
quired in the more complex second test case. We also note that there is a quick



7.4 Results 97

 0.4

 0.2

 0
 0  100  200  300  400  500

A
r
e
a
 
E
r
r
o
r
 
[
%
]

Number of iterations

Test Volume #1

8 Cameras
12 Cameras
16 Cameras
24 Cameras
32 Cameras
48 Cameras

 0.3

 0.2

 0.1

 0
 0  10  20  30  40  50  60

A
r
e
a
 
E
r
r
o
r
 
[
%
]

Number of iterations

Test Volume #2

8 Cameras
12 Cameras
16 Cameras
24 Cameras
32 Cameras
48 Cameras

Fig. 7.7. Convergence of the results depending on the number of input views.

saturation of reconstruction quality with respect to the number of cameras
because the visual hull does not improve further if more than 16 cameras are
used, in accordance with earlier results [124]. In addition, the quality of the
reconstruction levels out at around 24 cameras for both test volumes.

In all cases, the algorithm runs with the same parameter values of ε1 = 0.1
and ε2 = 100. These values give stable behavior against parameter changes
using 24 cameras to estimate the first test volume. As a rule of thumb, there
is a certain threshold value for the speedup term above which it accelerates
the evolution above a stable limit, causing the surface to shrink inside the
silhouettes. Too low a choice of ε1 has no ill effects on stability, but slows
down convergence. ε2 can safely be chosen somewhere between 10 and 100
without much effect, but may cause the surface to be stuck at an undesirable
spot if set too high.

Table 7.1 shows the reconstruction error, i.e., the difference between the
ground truth area (Fig. 7.6) and the area enclosed by the reconstructed sur-
face, after 200 iterations for the first test volume and different choices of ε1
and ε2.

Table 7.1. Error in the reconstruction of the volume shown in Fig. 7.6(a) after 200
iterations, depending on different choices of ε1 and ε2. An entry of “U” indicates
instability and “S” indicates a stopped evolution.

ε1
0.01 0.1 0.5 1 5

1 0.07 U U U U
10 0.05 0.04 0.06 U U

ε2 50 0.16 0.07 0.03 0.04 U
100 0.04 0.05 0.04 0.06 U
1000 S S S S 0.03
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Real-world Water Videos

For the real-world tests, we used the Imperx-MDC 1004 multi-video recording
setup, Sec. 4.1.1.

The cameras were geometrically and photometrically calibrated. We ac-
quired our test sequences in the dark, the chemiluminescent water being the
only source of light. The images were pre-processed as discussed in Sec. 4.4.
We performed a clean-up of the foreground masks using morphological op-
erators. The reconstruction was performed on an equidistant, uniform grid
of 1283 voxels. The geometry of two of the reconstructed surface models as
well as computer graphics renderings in virtual environments using modified
material properties for the water volumes are shown in Fig. 7.8.

7.5 Summary

In this chapter we have presented a method for the reconstruction of flow-
ing water surfaces. A novel recording methodology and a corresponding im-
age formation model enable us to define a photo-consistency constraint on
the reconstructed surface taking refraction into account. We utilize weighted
minimal surfaces to refine the visual hull of the water using constraints based
on optical path length measurements of the real surface. Real-world exper-
iments demonstrate the suitability of our method for the reconstruction of
free-flowing water.
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Fig. 7.8. In the top row the surface geometries of two reconstructed water columns
are shown. The middle and lower rows show still frames of a flight around a recon-
structed water column placed into a virtual environment. The material properties
are gradually changed. All ray-tracing was performed with the Persistence of Vision
Ray Tracer, available at www.povray.org.
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Reconstruction of Continuous Refractive Index

Fields

In the previous chapter we investigated a reconstruction method for refrac-
tive phenomena with a well defined surface and a single refractive index. In
this chapter we develop a method to reconstruct continuously varying, three-
dimensional refractive index fields. This problem can again be formulated as a
tomographic reconstruction problem. The basic approach is similar to Chap-
ter 5, however inhomogeneous refractive index fields cause the bending of light.
Therefore it is necessary to introduce a description of the bent light rays for
the forward image formation model. The basis of the reconstruction will be
measurements of ray deflections in the image plane of the cameras. These
displacements of imaged world points due to refraction can be described in
terms of the gradients of the refractive index field. The gradient field is recon-
structed using the tomographic approach described in Chapter 5. Afterwards
an integration step is performed to recover the refractive indices. The ap-
proach presented in this chapter can be used to recover refractive index fields
of comparatively low maximum refractive index magnitude as found in heated
air flows or fluid mixtures.

8.1 Overview

Our method for capturing dynamic, spatially-varying refractive index fields
consists of two primary components: the 2D imaging of ray deflections due
to a 3D refractive index field, and the tomographic reconstruction of that 3D
field from a number of deflection images captured from different positions.
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Random Dot Pattern

Camera

Refractive index field

original ray
deflected ray

Fig. 8.1. Principle of the BOS deflection sensor: A plane with a high-frequency dot
pattern is placed behind the scene of interest and an image is recorded without the
object (dashed red lines). Then the inhomogeneous refractive index field is inserted
between the camera and the background plane. Another image is taken and the
deflection of the light rays in the image plane is computed using optical flow.

8.1.1 2D Deflection Sensing

We use a Background Oriented Schlieren (BOS) imaging setup [39, 166,
132, 44], using digital video cameras observing a high-frequency background
through the refractive index field under investigation. The distortions caused
by the refraction (Figure 8.1) are captured with an optical flow algorithm,
which can be directly used to visualize these distortions.

Our contribution to BOS imaging is the development of a robust optical
flow method that finds matches in the background pattern even if the refrac-
tion is strong enough to locally cause large isotropic and anisotropic scaling of
the background pattern. It should be noted, however, that there are limits to
what is possible with optical flow methods. If the refractive index differences
are strong enough to cause total internal reflection or drastic changes in the
focus of the optical setup, then optical flow methods may not be the best
choice. Our method is therefore not well suited for recovering solids made of
glass or other transparent materials. It may, however, be possible to use our
method if such solids are immersed in fluids of comparable refractive index,
similar to the work of Trifonov et al. [197], but without the need for a very
precise match of refractive indices. We leave this application for future work.
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8.1.2 3D Tomographic Reconstruction

The reconstruction is based on a set of deflection images taken from differ-
ent viewpoints. The existing methods in the literature are, without exception,
based on the paraxial approximation [47, 203], i.e. the assumption that the
deflections do not cause significant changes in the ray path through the re-
construction volume, even though the deflection angle is large enough to be
measured. Under this approximation, consider a camera ray along the z-axis.
We can write the angular deflection in the horizontal (i.e. x) direction as a
line integral of differential horizontal changes in index of refraction along the
ray

φx =
1

n0

∫

∂n

∂x
dz, (8.1)

where n0 is the refractive index of the surrounding environment. A similar
equation holds for the vertical deflection angle φy.

Under this paraxial view, the pixel measurements correspond directly to
line integrals of refractive index gradients. Consequently, a volume of refractive
index gradients can be reconstructed with standard tomographic methods,
such as Fourier slice reconstruction or algebraic reconstruction (ART) [96].
Finally, this gradient volume can be integrated into a refractive index field by
solving a Poisson equation. For more detail on this approach, please refer to
the work by Faris and Byer [47].

Unfortunately, this method breaks down if inhomogeneities in the refrac-
tive index field are strong enough to cause ray deflections comparable to or
larger than the voxel spacing used in the reconstruction. For this reason, we
derive a novel theory for tomographic reconstruction that does not neglect
changes in the geometry of the ray path. This theory is derived from the
Eikonal equation and gives rise to an efficient reconstruction algorithm.

8.2 Background Oriented Schlieren Imaging

As mentioned before, the recently developed Background Oriented Schlieren
technique [132, 166, 44, 203] measures the per-pixel ray deflection in the image
plane caused by refraction in a volume by observing a high-frequency back-
ground through that volume, and computing the optical flow relative to an
undistorted image (Figure 8.2). This method represents a significant reduction
in cost and complexity compared to traditional Schlieren imaging.

However, some challenges remain, especially if the object to be measured
exhibits comparatively large differences in refractive index. In this case, the
background distortions become too severe for simple optical flow algorithms
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Fig. 8.2. Left: reference image, middle: distorted image, right: absolute difference
(contrast enhanced). The candle plume is being blown from the side with a can of
compressed air.

to find matching regions. One challenge is that the frequency characteristics of
the random dot patterns used in most BOS implementations [166] degenerate
quickly with even uniform scaling: magnification of such patterns results in
larger regions of uniform black or white color, while shrinking quickly results
in a uniform medium grey color. In both cases, it is difficult for the optical
flow algorithm to pick up matching regions. For this reason, we use Wavelet
Noise [37] as our background pattern, since it contains details in a wide range
of frequency bands, and therefore degrades much more gracefully.

Our optical flow algorithm is designed to use this high-frequency infor-
mation to find matches under distortions. We use window-based normalized
cross-correlation to compute the flow, because it can be adapted to handle
these distortions by searching for matches in isotropically or anisotropically
scaled versions of the images. The basic optical flow is computed using spa-
tial convolution on a per-window basis using the standard normalized cross-
correlation formula

C(m,n) =

∑N
i,j=1

(

fi,j − f̄
)

(gi−m,j−n − ḡ)
√

∑N
i,j=1

(

fi,j − f̄
)2∑N

i,j=1 (gi,j − ḡ)
2
, (8.2)

where fi,j and gi,j are pixel values from the distorted and the background
image, respectively, and f̄ and ḡ are the mean intensities over the comparison
window.

The cross-correlation results in a matrix C(m,n) of correlation scores for
each translation m,n ∈ [−(N − 1) . . . N − 1]. In the neighborhood of the
maximum of these correlation scores we fit 3-point Gaussians in the horizontal
and vertical dimensions to the scores, which helps us locate the match with
sub-pixel accuracy. We also compute a signal-to-noise ratio for each window
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as the ratio between the peak correlation value and the average correlation
score of all other pixels. We use this ratio as a reliability metric for filtering
in a post-processing stage.

This basic algorithm is adapted to handle significant distortions by iter-
ative refinement. The optical flow field estimated in one iteration is used to
determine an affine transformation for each neighborhood. In the next iter-
ation, each extracted window is warped with the corresponding affine trans-
formation before computing the correlation scores. In addition, we adjust the
window size from iteration to iteration, starting with a large window size for
robustness, and ending with a small window size that better captures detail
in the data.

The final vector field is improved by filtering. Spurious vectors that differ
by more than a fixed threshold from the global mean or their local median
vectors are removed and filled in by linear interpolation. Bilateral filtering
is used to smooth the resultant field while preserving the reasonably sharp
boundaries that do occur in practice. A Gaussian spatial smoothing kernel is
modulated by another Gaussian in the vector magnitude range. The width of
this second Gaussian is set on a per-vector basis according to the signal-to-
noise ratio, so that highly reliable vectors are not smoothed over, while poor
quality ones have their neighbors weighted heavily.

All stages of the optical flow algorithm are designed such that they can be
implemented on a GPU. Processing times are on the order of a few minutes
per frame for multiple iterations on 512×512 images with window sizes up to
64× 64. Figure 8.3 shows the optical flow for a plume of hot air and a 75 mm
lens computed in this fashion.

The optical flow fields recovered with BOS can be used directly in render-
ing, for example to distort camera rays in environment matting applications,
or for deflecting light rays to compute caustics (see Section 8.5.2).

8.2.1 Computing Three-Dimensional Deflection Directions

The tomographic reconstruction algorithm described in the following section
requires three-dimensional deflection directions rather than optical flow vec-
tors as its input, see Fig. 8.4. We therefore have to convert the 2D vectors
obtained with BOS into estimates of world-space ray directions. In a calibrated
setup with known spacing between object and background pattern, these di-
rections could be computed from the optical flow and the exact location of the
point where the deflected ray exits the volume under consideration. Unfortu-
nately, the latter information is not readily available. A simple estimate used
in the literature is to approximate the precise location with the point where
the original (undistorted) camera ray would exit the volume (Figure 8.4). This
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Fig. 8.3. Results from the BOS algorithm. Left: deflection field caused by a plume
of hot air. Right: extreme ray deflections created by a (chipped) 75 mm lens, viewed
from slightly off-axis.

approximation is valid if the object diameter is significantly smaller than the
distance between object and background, which is the case for all our mea-
surements.

8.3 Tomographic Reconstruction

In the following, we discuss the tomographic reconstruction of a 3D refrac-
tive index field from the three-dimensional deflected ray directions measured
with the BOS algorithm and converted as described in the previous section.
We first derive the theory for a tomographic reconstruction of the gradient
field that does not require the use of the paraxial approximation explained in
Section 8.1. We then describe a practical implementation of this theory (Sec-
tion 8.3.2), and finally describe how to integrate the gradient field to obtain
the refractive index field (Section 8.3.3).

8.3.1 Gradient Field Tomography

The derivation of our reconstruction method starts from the Eikonal equation

(∇S)2 = n2, (8.3)

which can itself be derived from Fermat’s principle of least time or alterna-
tively from the Maxwell equations. In this equation, S describes the time it
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Fig. 8.4. The deflection direction can only be measured with two planes behind the
object. An approximation is the direction from the intersection of the undeflected
ray with the visual hull of the object to the position on the background plane that
was measured. This approximation is valid as long as the extent of the object is
considerably smaller than the distance to the background plane.

takes for light to arrive at a particular point in space, and n is the refractive
index as before. Unfortunately S is not a function since it is multi-valued: light
can reach a point in space via multiple paths of varying length, causing the
solution to branch at various loci in space. These places are known as caustics.
To solve Eq. (8.3) uniquely, the so-called viscosity solution is usually consid-
ered. This solution of the Eikonal equation describes the time of first arrival
via any path at a particular point in space. The solution of Eq. (8.3) depends
on the initial and boundary conditions that are used to set the positions of
light sources, or, via Helmholtz reciprocity, the location of cameras.

Since iso-surfaces of S describe regions of constant time of first arrival,
and light rays are described by the path of least time, light ’particles’ travel
normal to the iso-surfaces of S, along ∇S. We therefore have

n
dx

ds
= ∇S, (8.4)

where the factor n enters the equation because ∇S is not normalized. From
Eq. (8.3) it is clear that the magnitude of ∇S is n, the reciprocal of the relative
speed of light in the medium.

We do not have to solve Eq. (8.3) explicitly for S and then integrate using
Eq. (8.4). Instead, Eqs. (8.3) and (8.4) can be combined to obtain a differential
equation for the particle position in terms of the refractive index n. For this
we take the gradient of Eq. (8.3):
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∇ (∇S · ∇S) = ∇ (n · n) (8.5)

end thus

2 (∇ · ∇S)∇S = 2n ∇n. (8.6)

Inserting Eq. (8.4) together with ∇ · dx
ds

= d
ds

yields

d

ds

(

n
dx

ds

)

= ∇n. (8.7)

Eq. (8.7) is known as the ray equation of geometric optics. It is a second
order ordinary differential equation that can be written as a set of first order
ordinary differential equations. As in Chapter 7, this is an application of our
ODE ray-tracing framework, introduced in Sect. 2.3.4.

Starting from Eq. (8.7) and setting

n
dx

ds
= d, (8.8)

we obtain

dd

ds
= ∇n. (8.9)

Observing that

dn

ds
=
dn

dx
· dx
ds

= ∇n · dx
ds
, (8.10)

we find that Eqs. (8.8) - (8.10) define a coupled system of ordinary dif-
ferential equations for the path of a bent ray in a medium of non-uniform
refractive index in terms of ∇n. Eq. (8.10) is another example of informa-
tion that can be integrated along a curved ray using a system of ordinary
differential equations.

We integrate Eq. (8.9) to obtain an equation that relates the unknown
gradient of the refractive index field to our measurements, i.e. the outgoing
ray directions

dout =

∫

c

∇n ds+ din. (8.11)

Eq. (8.11) forms the basis of our reconstruction scheme. Similar to Chap-
ters 5 and 6 we discretize the unknown vector function ∇n using a set of basis
functions φi with unknown coefficient vectors ni,
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∫

c

∑

i

niφi ds =
∑

i

ni

∫

c

φi ds = Sni = dout − din. (8.12)

Solving this linear system of equations for the coefficient vectors ni al-
lows us to recover the gradient of the refractive index field ∇n. Observe that
Eq. (8.12) is vector valued and describes three linear systems with three sets
of coefficients, one for each coordinate of the gradient field.

Since the curved rays c are initially unknown, we develop an iterative
solution that updates the ray geometry along with the volume estimate as
described in the following.

8.3.2 Reconstruction Algorithm

Our reconstruction algorithm for the gradient of the refractive index field thus
takes the following form:

1. compute curved rays c, Eq. (8.7),
2. set up linear system, Eq. (8.12),
3. solve unconstrained linear system for ∇n,
4. until convergence go to step 1.

The initial guess for the gradient field is ∇n = 0, i.e. we initially start
from the straight ray geometry also assumed in the paraxial approximation, cf.
Eq. (8.9). The rays are computed by a discretization of Eqs. (8.8) - (8.10). The
ray integrals can be performed using any standard ODE integration scheme
like the Runge-Kutta family. After recomputing the curved rays for the current
volume estimate, we can also recompute the estimate of three-dimensional
deflection directions from the optical flow data (Section 8.2.1).

The structure of the linear systems, Eq. (8.12), is very similar to the one
for the fire and smoke reconstruction case, cf. Eq. (6.3):











d1
out − d1

in

d2
out − d2

in

...

dnm

out − dnm

in











j

=











∫

c1
φ1ds . . .

∫

c1
φnb

ds
∫

c2
φ1ds . . .

∫

c2
φnb

ds
...

...
...

∫

cnm
φ1ds . . .

∫

cnm
φnb

ds











nj . (8.13)

The index j refers to the coordinates x, y and z. We have one equation
for every measurement dout; din is obtained from the camera calibration by
computing a pixel’s back-projected ray. The values nm and nb denote the
number of measurements and the number of basis functions respectively. To
set up the linear system we have to determine the line integrals for the line
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Fig. 8.5. The matrix entries are computed while performing the ray integration to
determine the ray path with a fixed spatial step size. The values at the ray sampling
positions (black dots) approximate the ray integral over the radially symmetric basis
functions (blue).

of sight of each pixel over the basis functions φi. We use radially symmetric
Kaiser-Bessel basis functions for a high-quality reconstruction. The matrix
entries are computed while performing the ray integration, see Figure 8.5. We
are using the visual hull restricted tomography algorithm of Chapter 5 to solve
the linear system in Eq. (8.12) independently for each coordinate. Therefore,
those columns of the matrix containing integrals over basis functions outside
the visual hull [111] are removed from the computations. However, in this
application this cannot be done as a post-processing step as introduced in
Chapter 6, because of the non-linear nature of the rays c. For this reason
we have to compute the visual hull of the object before setting up the linear
systems.

Similar to Chapters 5 and 6, the linear systems can be solved using
CGLS [69] if the number of cameras recording the scene is moderate. In the
case of more than 8 cameras it is necessary to resort to out-of-core algorithms
because of the memory requirements for storing matrix S. For larger numbers
of viewpoints we use a re-formulation of the simultaneous algebraic recon-
struction technique (SART) [96, 197] in terms of matrix-vector products. The
SART iteration can be performed on partial matrices Sk, e.g. corresponding to
equations generated by the measurements of one view. It takes the following
form:

n
j
k+1 = n

j
k + Sk

T (dout − din)j − Skn
j
k

m diag(SkSk
T )

, (8.14)

wherem is the number of equations in matrix Sk, j is the coordinate index,
and k is the iteration count for the tomographic reconstruction. The SART
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iteration has an intuitive explanation as the tomographically back-projected,
rescaled residual error in the image plane, that is, the solution is updated
with a rescaled version of the tomographic back-projection of the residual
error. The matrix-vector formulation of SART readily accounts for the visual
hull restriction.

In general it is preferable to use the conjugate gradient method to solve
the linear systems, Eq. (8.12), since it exhibits better convergence properties,
possesses implicit regularization properties and allows for the application of
explicit regularization methods like e.g. Tikhonov regularization as discussed
in Sec. 6.3.

8.3.3 Integration of the Gradient Field

After the computation of ∇n, the final step is to find the refractive index
field n from the gradient information. Computing n from ∇n is similar to
computing a surface from its normals. We use the definition of the Laplacian
operator

4n = ∇ · ∇n (8.15)

to compute n. The left hand side of Eq. (8.15) is discretized and the right
hand side of it is computed using our recovered ∇n. The resulting Poisson
equation is solved for n. We use central differences for the Laplacian operator
and Dirichlet boundary conditions n = 1 at the boundary of the computa-
tional domain.

The Poisson equation can be solved most efficiently with multi-grid solvers.
Since we have to perform the integration only once per frame we use a less
efficient but easier to implement Jacobi-preconditioned Conjugate Gradient
method [13] to solve the linear system, Eq. (8.15). It is not advisable to use
the (preconditioned) CGLS method in this case because the convergence is
very slow due to the squared condition number of the matrix.

8.4 Physical Measurement Setup

We use two different camera setups for our experiments with real-world mea-
surements (Figure 8.6):

• a single video camera setup that can be used to acquire 2D data for use as
environment mattes, or for the reconstruction of rotationally symmetric
flows. In this setup, we use a Prosilica black-and-white 1.5 megapixel C-
MOUNT camera, and
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Fig. 8.6. The single camera setup (left) and the camera array (right) that we use
for acquisition.

• the Imperx MDC-1004 multi-camera system, described in Sec. 4.1.1, that
can be used to capture non-symmetric flow for 3D reconstruction.

The Wavelet Noise patterns that we use as a background are printed ei-
ther on paper, or on overhead transparencies with a laser printer. Since short
camera exposure times are required to capture fast or very turbulent flows, it
helps to use transparencies that are backlit by a light box or another bright
and well-diffused light source. For slow or laminar flow, the patterns can be
printed on paper and used in a reflective setting.

The cameras are geometrically calibrated as discussed in Sec. 4.2. Photo-
metric and colorimetric calibration is not necessary in this case.

For fluid imaging, we use a rectangular water tank with clear plastic walls
of homogeneous thickness. The cameras are located outside the tank, observ-
ing it through one of the walls. The ray bundle emerging from each perspective
camera is refracted on a planar interface between water and tank, yielding a
different perspective view with a virtual center of projection behind the lo-
cation of the camera. This virtual center of projection and the associated
intrinsic and extrinsic (virtual) camera parameters can again be found with
standard calibration techniques.

8.5 Results and Applications

Our evaluation of the BOS algorithm and the tomographic reconstruction is
based on both simulations with synthetic data, and real-world measurements.
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8.5.1 BOS Imaging on Synthetic Datasets

For ground truth experiments with the BOS algorithm, we applied known
2D flow fields to a Wavelet Noise pattern, and recovered the original flow
from these images. We found that we can obtain very good results (relative
RMS error below 1%) for high isotropic scaling factors and anisotropic scaling
around 4 : 1. This is more than sufficient accuracy for the flow fields we are
considering here, as well as for low-curvature solids such as the 75 mm lens
from Figure 8.3. High curvature solids could result in larger distortions, which
would require different methods.

8.5.2 BOS Imaging on Real Measurements

We acquired BOS data for a large number of different flows. Figure 8.7 shows
the displacement magnitude plots of a small selection from that set, including
both laminar flows and more turbulent ones.

These kinds of datasets can be used directly in rendering, for example as
environment mattes to distort the camera rays. Similarly, the data can be used
to distort light rays, for example in a photon mapping algorithm. This will
cast caustics on the receiving surface, which are also known as shadowgraphs.
Real-world shadowgraphs are related to Schlieren imaging, and can also be
used to image flows [180]. Both the environment matting and the shadowgraph
rendering are depicted in Figure 8.8.

8.5.3 Tomographic Reconstruction of Simulated Data

To obtain quantitative results for the robustness of our tomographic recon-
struction method, we ran the algorithm on synthetic data. We tested both
smooth datasets and ones with high spatial frequencies, and analyzed the rel-
ative RMS error of the reconstruction depending on the number of views and
the differences in refractive index. For the smooth datasets, we used Gaussian
blobs of different variance. Publicly available volume datasets with volume
densities linearly mapped to refractive indices were used for the high-frequency
analysis.

Table 8.1 shows the relative RMS error for the HIPIP dataset from the
UNC CHVRTD volume collection for various configurations. We define rel-
ative RMS error as RMS/∆n, with ∆n = nmax − nmin. In all tests we set
nmin = 1. As expected, the RMS error drops with the number of views used
for reconstruction. However, even with only 8 views and a comparatively large
∆n of 0.1, the RMS error across the volume is below 3% for refractive index
fields, which indicates that our camera array is adequate for measurements of
gases with reasonable precision.
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Fig. 8.7. Displacement magnitude images for various flows. Top left: laminar flow
of heat rising from a candle. Top right: low turbulence gas jet from a spray can.
Bottom left: turbulent interaction of a hot air plume above a candle with a jet of
compressed air. Bottom right: turbulent mixture of water with corn syrup.

It is worth noting that most of the error is concentrated in regions of
strong gradients, which appear blurred in the reconstruction. A larger number
of views reduces this blur, and therefore the reconstruction error.

8.5.4 Tomographic Reconstruction of Real Measurements

On the right of Figure 8.9, we show a 3D reconstruction of a laminar candle
plume from a single BOS image, assuming rotational symmetry. The BOS
data (left) was projected from a total of 16 virtual camera positions. In the
process, the slight asymmetries present in the data BOS image are averaged
out, so that the reconstructed volume is fully symmetric. The closing of the
iso-surfaces near the top is an artifact of the limited reconstruction volume
since the top of the plume was outside the camera field of view.
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Fig. 8.8. Environment matte and shadowgraph rendering of two BOS measure-
ments. Left: hot air, Right: the chipped lens from Figure 8.3. Also see video.

#Views RMS Error

8 2.89%
16 2.69%
32 2.38%
64 1.97%

128 1.54%

Table 8.1. RMS error for the tomographic reconstruction of the synthetic HIPIP
volume from optical flow images.

Figure 8.10 shows a few frames from some of the real-world footage we
captured with the camera array. The top four rows are different renderings
of the same dataset: turbulent hot air rising from a gas burner. The first
two rows show a maximum intensity projection rendering of the refractive
indices, and the third and fourth rows an iso-surface representation of the
same information. Both sequences clearly show the advection of the hot air.

The last two rows of Figure 8.10 show a direct volume rendering of the
temperature distribution in a plume of hot air above a candle. This flow is
more laminar than the flow above the burner. These images are an example
of the secondary information that can be extracted from the refractive index
fields, depending on the dataset.

For gases, the refractive index is directly related to the volume density ρ
through the Gladstone-Dale Equation:

ρ =
n− 1

k(λ)
,
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Fig. 8.9. Reconstruction of a rotationally symmetric flow from a single BOS image.

where k is the Gladstone-Dale constant, which depends on the material and
weakly on the wavelength of light. For air and visible light, k has an approx-
imate value of 0.23 cm3/g.

Under certain assumptions, one can derive further quantities from the
volumetric densities. For example, under constant pressure such as in the
examples of hot air, the ideal gas law (see, e.g. [201]) can be used to infer the
temperature distribution in the volume as

T =
p ·M
R · ρ ,

where p is the pressure, M is the molecular mass of the gas (≈ 29 g/mol for
air), and R is the gas constant (≈ 8.31 J/(K ·mol)).

In a similar fashion other secondary information can be inferred from the
refractive index field. In the case of liquid mixtures, for example, the refractive
index is an indicator of the local fluid concentrations. This kind of information
could be useful for verifying fluid simulators, and furthering the understanding
of certain types of flow in general.

8.6 Summary

We have presented a novel technique for capturing time-varying, inhomoge-
neous refractive index fields, such as the ones created by gas and liquid flows.
Our major contributions are an improvement of the Background Oriented
Schlieren imaging method developed in fluid imaging, and a novel theory for
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tomographic reconstruction of 3D volumes from Schlieren images, which gives
rise to a practical algorithm. With these methods, it is now possible to capture
complex flows with very moderate hardware requirements. The data captured
with this approach can be directly used in computer graphics for rendering
camera distortions or caustics.

Maybe even more interesting in the long run is the fact that the recovered
refractive index fields are indicators of other physical properties, such as the
density or temperature distribution in gases, or concentrations of fluids in
the scenario of liquid mixing. These and similar derived quantities could be
excellent tools for furthering the understanding of fluids, and comparison of
fluid simulations against reference data.
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Fig. 8.10. Results from the tomographic reconstruction process. Top: refractive
index volume of turbulent hot air rising from a gas burner, rendered with maximum
intensity volume rendering. Center: the same volumes rendered as iso-surfaces. Bot-
tom: direct volume rendering of the temperature distribution in a more laminar flow
of hot air rising above a candle (for clarity, the volume rendering is restricted to the
visual hull).
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Rendering
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Real-time Rendering of Optically Complex

Refractive Objects

In this chapter we develop a real-time rendering method that can display the
natural phenomena that are reconstructed using the techniques described in
Chapters 5 - 8. However the rendering method presented here is much more
powerful and can render complex anisotropic effects such as single scatter-
ing effects and surface reflectance including the Fresnel effect. The majority
of the optical characteristics of natural phenomena as discussed in Sec. 2.1
can be reproduced in real-time for static objects. For dynamic effects inter-
active frame-rates are possible. The rendering method is once again based
on the ODE ray-tracing scheme, Sec. 2.3.4. The differential equations can be
integrated very efficiently on todays programmable graphics hardware. Ad-
ditionally we describe a technique to simulate light propagation in optically
inhomogeneous media. In this way shadowgraphs and caustics caused by re-
fractive objects or phenomena can be simulated efficiently. The light prop-
agation scheme is based on the same mathematical framework that is used
throughout the thesis to compute curved light rays. The two ingredients fast
viewing ray computation and efficient light propagation are joined by an ex-
pressive image formation model that allows the use of emission, absorption,
reflection, refraction and single scattering characteristics to describe optically
complex refractive objects.

In the following we first introduce our image formation model, describe the
approximations that facilitate real-time rendering using this model, derive the
mathematical framework for viewing ray and light propagation in the scene
and finally describe the implementation on a consumer grade graphics board.
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9.1 Image Formation Model

9.1.1 General Image Formation

We are concerned with the realistic and efficient rendering of transparent ob-
jects with spatially varying optical characteristics. To this end, we assume
that the parameters of the model are stored in a 3D volume that can be gen-
erated by a human modeler or captured using one of the methods described
in Chapters 5 - 8. Our general model of image formation accounts for emis-
sion, absorption, reflection, refraction and single scattering. A mathematical
formulation for a particular, potentially curved ray that passes through the
volume is given by

I(c) =

∫

c

Ic(x,d)A(t, c)dt+ IbgA(t∞, c) , (9.1)

where Ic denotes light intensity on the ray c that is scattered, emitted or
reflected into the direction of the eye. Ibg is the background intensity and
A(t, c) the absorption of light at position t along the ray. Ic is composed
of different components contributing to the light intensity on a given ray.
Function Ic depends on the position in space x = c(t) and the local ray
direction d = dc

dt
. In general it is wavelength-dependent and can be computed

using different parameters for each wavelength λ. We can express Ic in terms
of these variables:

Ic(x,d) = Is(x,d) + δ(x)ρIr(x,d) + Ie(x,d) . (9.2)

Here Is denotes the intensity due to in-scatter, Ir the intensity caused by
reflections and Ie the local emission intensity. The Dirac delta function δ(x)
serves as a boundary indicator, i.e. it equals one if x is on a boundary be-
tween two different objects and zero elsewhere. This accounts for the fact that
reflections occur on boundaries between different materials. ρ is the Fresnel
reflection factor for unpolarized light [28]. The Fresnel transmission factor τ
enters the absorption equation (9.5) through factor T (t), as we will describe
later.

Is, Ir and Ie all depend on the position in space x and on the local ray
direction d and can be evaluated locally given volumetric descriptions of their
distributions. The last point is important. The locality of Ic, given appropriate
pre-computations, allows us to parallelize its computation in an efficient way.

We formulate in-scatter in terms of the scattering phase function φ. It may
vary in space and depends further on the local ray direction d and the local
light directions ω

Is(x,d) =

∫

Ω

Ii(ω)φ(x,d, ω)dω . (9.3)
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Ii(ω) denotes the incoming light intensity from direction ω and the light contri-
butions due to in-scatter are integrated over the sphere of incoming directions
to yield Is. Similarly we write

Ir(x,d) =

∫

Ω+

Ii(ω)ψ(x,d, ω)dω , (9.4)

where ψ describes a BRDF including the cosine factor. The normal of the
surface can either be provided as an additional function or be derived from
the refractive index field n. ψ thus gives us the light contribution due to
reflection on a boundary between two different materials. Please keep in mind
that this term is only valid on the boundary of objects and its contribution is
triggered by δ(x).

Ie is just a function Ie(x,d) in its most general form. In conjunction with
the light source definitions, it can be used to model multiple scattering effects
or self-emission due to fluorescence or phosphorescence.

Finally, we have a closer look at the absorption function A in Eq. (9.1). If
arbitrary absorption distributions are considered, it depends on the distance
along the ray and the ray’s shape, and thus it evaluates to

A(t, c) = T (t)e−
R

t

0
a(c(s))ds , (9.5)

i.e. the absorption function describes the exponential attenuation of an inten-
sity at position x = c(t) due to a spatially varying attenuation function a.
Out-scatter can be included as an additive term into the absorption integral,
see [120], but we omit it here for reasons of clarity. T (t) is the product of all
Fresnel transmission factors τ encountered along the ray up to position t.

9.1.2 Simplified Image Formation

In its general form, our image formation model is too complex to be evaluated
in real-time. Therefore, we make two simplifying assumptions:

1. The light in the scene originates from a discrete number of light sources,
and

2. for each point in the scene, there is only one incoming light ray from each
of the light sources.

The second point is important. We model only one ray from a light source
to a particular point in space. This ray can be chosen arbitrarily from the set
of rays passing through a particular point in space, e.g. the first arrival ray
or the ray carrying the highest energy. This restriction allows us to develop
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Fig. 9.1. 2D illustration of our complex image formation scenario – due to inho-
mogeneous material distribution, light rays and viewing rays are bent on their way
through the scene volume. Light rays always travel orthogonal to the light wave-
fronts, i.e. the iso-surfaces of constant travel time.

an efficient rendering algorithm for a fairly complex image formation model,
since we can convert the integrals of Eqs. (9.3) and (9.4) into discrete sums:

Is(x,d) =
∑

j

Iij
(x)φ(x,d, lj) (9.6)

Ir(x,d) =
∑

j

Iij
(x)ψ(x,d, lj) . (9.7)

Now, at a particular point in space we have only one incoming intensity Iij

and one incoming local light direction lj per light source j. Thus, if we can
pre-compute these, and if we are able to quickly traverse the light ray c, we can
evaluate Eq. (9.1) with local operations only. In the following section we derive
the mathematical recipes for viewing ray traversal and light propagation.
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9.2 Light Transport

In this section, we develop the equations for the transport of light in the
scene. The propagation of viewing rays is described in Sect. 9.2.1 and light
transport is discussed in Sect. 9.2.2. Viewing rays and light rays, Fig. 9.1,
behave very similarly and the governing equations are derived from the same
basic equation, the ray equation of geometric optics [28]. However, we use
different parameterizations to account for specifics in the two processes. Please
note that for light rays, we have to take the intensity fall-off into account
whereas viewing rays carry radiance.

9.2.1 Viewing Ray Propagation

The ray equation of geometric optics has been previously used in computer
graphics by [186] and [178]. The equation describes the motion of a light
’particle’ in a field n of inhomogeneous refractive indices:

d

ds

(

n
dx

ds

)

= ∇n . (9.8)

It is derived from the eikonal equation and the motion of a massless particle
along the gradient of the eikonal solution as described in Sec. 8.3.1. ds denotes
an infinitesimal step in the direction tangential to the curved ray. Eq. (9.8)
can be re-written as a system of first order ordinary differential equations

dx

ds
=

d

n
(9.9)

dd

ds
= ∇n (9.10)

which can be discretized using a simple Euler forward scheme

xi+1 = xi +
∆s

n
di (9.11)

di+1 = di +∆s∇n (9.12)

or some higher order integration method like the Runge-Kutta family [155].
This is again an application of the ODE ray-tracing framework introduced
in Sec. 2.3.4. The equations (9.9) and (9.10) have the nice property that the
spatial step size is equal for all ray trajectories, see Appendix A.4 for a proof.
This proves advantageous for rendering, Sect. 9.3, where the number of itera-
tions for each particle trace should be approximately equal to ensure optimal
performance. Conveniently, ray bending and total reflection are naturally sup-
ported by the ray equation of geometric optics.
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9.2.2 Modeling Light Sources

We model a light source with a three-dimensional vector field of local light di-
rections l(x) and a scalar field of intensities Ii(x) (cf. Sect. 9.1.2). These fields
can be computed in several ways. A popular choice among computer graphics
researchers is photon mapping [91] of which GPU implementations are avail-
able [156]. In the computational physics and numerical analysis literature a
huge range of methods have been proposed to solve this problem. Choices
range from purely Eulerian formulations using the eikonal and transport
equations [30], phase space methods [149] and hybrid Lagrangian-Eulerian
approaches [18] to adaptive wavefront tracing [45]. All methods except for
the purely Eulerian approach deal with the inherent multi-valuedness of the
solution of the underlying equations.

We use adaptive wavefront tracing [45, 36] for the computation of the lo-
cal light directions and intensities because it offers the best trade-off between
computation time and accuracy of the solution. A wavefront is an iso-surface
of constant travel time of light originating from a light source, see Fig. 9.1. In
accordance with Fermat’s Principle light rays travel always normal to these
wavefronts. The wavefront is discretized by a set of connected particles. These
are propagated through the inhomogeneous refractive index field. In case the
wavefront becomes under-resolved new particles are inserted to preserve a min-
imum sampling rate, Fig. 9.2. The local light directions are represented by the
traveling directions of the particles and the intensities can be computed from
the areas of wavefront patches. The pre-computation of the three-dimensional
light distribution takes the following subsequent steps:

• wavefront propagation,
• intensity computation,
• wavefront refinement,
• voxelization of the wavefront normals and intensities.

This process is repeated until the wavefront leaves the volume of interest. The
individual steps are detailed in the following.

Wavefront Propagation

We discretize the wavefront into a set of inter-connected particles which are
propagated independently. This way, the wavefront is subdivided into so-called
wavefront patches whose corners are defined by light particles, Fig. 9.2 (right).
The connectivity information is needed for the intensity computation. The
propagation of the particles is performed according to Eq. (9.8) similar to
the ray propagation, Sec. 9.2.1. We re-parameterize it to yield equi-temporal
discretization steps:
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Fig. 9.2. Adaptive wavefront refinement – (left) 2D illustration: the wavefront is
represented by particles (red dots) that are connected to form a wavefront (blue
lines). While advancing through the voxel volume (shown in gray) the wavefront is
tessellated such that its patches span less than a voxel. – (right) 3D illustration of
the tessellation for one wavefront patch.

n
d

dt

(

n2 dx

dt

)

= ∇n . (9.13)

A proof of this property is given in Appendix A.4. The re-parameterization
is necessary to enable a simple formulation of the intensity computation de-
scribed in Sect. 9.2.2. It ensures that all particles stay on a common wavefront
over time. Similar to Eqs. (9.9) and (9.10) we can write Eq. (9.13) as a system
of first order ordinary differential equations

dx

dt
=

d

n2
(9.14)

dd

dt
=

∇n
n

. (9.15)

This formulation enables a fast GPU implementation of the wavefront prop-
agation scheme as a particle tracer. Once the wavefront can be tracked over
time we can compute the intensity of light from the area of the wavefront
patches that connect the particles.
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Fig. 9.3. The intensity law of geometric optics (left) and its discretized version
(right) in the form of a stream tube. The product of area and intensity is constant
along a tube of rays.

Intensity Computation

The intensity computation is based on the intensity law of geometric op-
tics [28], see Fig. 9.3 (left). The law states that in an infinitesimal tube of
rays the product of intensity and area stays constant:

I1dS1 = I2dS2 . (9.16)

We use a discretized version of the intensity law to update the energy con-
tribution of wavefront patches during propagation. The motion of each patch
through the scene describes a so-called stream-tube, Fig. 9.3 (right). Eq. (9.16)
then reads

I(t) =
I(0)A(0)

A(t)
. (9.17)

Here A(t) denotes the area of a wavefront patch at time t and I(t) its intensity
per area. Since we are modeling absorption in our image formation model this
effect has to be included in the intensity computation as well. Thus the final
intensity for a wavefront patch is given by

Ii(t) =
I(0)A(0)

A(t)
e−

R

t

0
a(c(t̂))

n
dt̂ . (9.18)

Wavefront Refinement and Voxelization

In order to obtain a continuous volumetric representation of the light distri-
bution the wavefront patches have to be voxelized. However, due to divergent
corners the patches can in general become arbitrarily large while they are
propagated.

If a wavefront patch becomes larger than one voxel the wavefront becomes
under-resolved and sampling problems in the computational grid occur.
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Fig. 9.4. Work-flow of our rendering system.

To alleviate this, we adaptively split the wavefront patches once they grow
larger than one voxel, see Fig. 9.2. By this means, we also adapt to the chang-
ing curvature of the continuous solution.

Since at the same time, graphics hardware is not able to rasterize arbi-
trarily sized quads into 3D volumes, we use the adaptive sampling and equate
wavefront patches with their midpoints, storing intensity and directional in-
formation as a single voxel sample. Under-sampling of the wavefront is thus
solved in conjunction with implementing GPU-based voxelization.

9.3 Implementation Issues

After the theoretical foundation has been set, we now have a closer look at how
to map the outlined concepts onto the GPU. Fig. 9.4 illustrates the work-flow
of our renderer. In the following, we detail its most important components,
the employed data format, Sect. 9.3.1, the light simulator, Sect. 9.3.2 and the
view renderer, Sect. 9.3.3.

9.3.1 Input Data Format

Input scenes are stored as a set of 3D volume textures. In a first set of volumes,
the spatially-varying refractive index field, as well as its gradient field are
stored. The objects in our test scenes were created as solids of revolution,
implicit surfaces, or triangle meshes that we rasterized into the 3D volume.
Refractive index distributions can be reconstructed as described in Chapters 7
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and 8, derived directly from the implicit functions of the objects or they can
be defined interactively. In case the gradient information is not already known
we smooth the volumes prior to gradient computation.

Other 3D textures contain the spatially-varying attenuation function (sep-
arate values for the three color channels), the material boundary indicator,
as well as BRDF parameters and emission descriptions. For approximating
anisotropic scattering effects, we employ the Henyey-Greenstein scattering-
phase function [78]. Its parameters are also stored in volumetric textures.

9.3.2 Light Simulator

Our implementation follows the adaptive wavefront propagation described in
Sect. 9.2.

Basically, after initialization at the light source, the wavefront is repre-
sented as a particle system. The difference to a standard particle system is
that the particles are bound into packets of four and thus span a wavefront
patch, Fig. 9.2 (right). This allows us to simulate the stream tube concept
on graphics hardware, where each tube in the wavefront is represented by its
front-most patch. All the patches are stored in floating point textures, which
hold the four corners’ positions, their propagation directions (see Fig. 9.3
(right)) and a RGB energy value (see Sec. 9.2.2).

During initialization, we use the 2D-parameterization of the patch list
texture to either produce a planar wavefront (directional light source) or a
spherical wavefront (point light source). The initialization ensures that the
wavefront is large enough to cover the simulation volume. Other light source
types (as multi-directional light) can be implemented, as the wavefront patches
are independent and thus can be stacked on top of each other. The propagation
of the wavefronts through the scene and the logging into the output 3D volume
is performed in four subsequent steps described in the following.

Patch List Update

For every time step, we update the patches’ corner positions and directions
according to Eqs. (9.14) and (9.15). We further update the patches’ held
RGB energies according to Eq. (9.18) in case a material with attenuation is
traversed.

Patch List Voxelization

After each update step, we need to protocol the wavefront patches into the
3D output volumes for energy and direction. On graphics hardware, this is



9.3 Implementation Issues 131

accomplished using point primitives and the concept of Flat 3D textures in-
troduced by Harris et al. [70]. Before we commit a patch to the 3D volume,
we check if it is allowed to overwrite the one already stored there (if any), e.g.
based on the first arrival or the highest energy criterion.

Patch List Tessellation

After the wavefront patches have been propagated we check whether their area
is larger than one voxel cross-section. In case the patch is too large it is split
as shown in Fig. 9.2 (right). We currently do not unite converging wavefront
patches to form larger ones because the merging of the patches’ propagation
directions is non-trivial in the general case (i.e. when they are not co-planar).

Patch Termination

If a wavefront patch holds too little energy, we apply an energy threshold to
eliminate it. We assume it will not contract again and thus yield a noteworthy
energy contribution. Termination typically happens after too many tessella-
tions or loss of energy due to repeated attenuation. We also eliminate patches
that leave the simulation volume.

After the new patch list has been generated, it is forwarded to the patch
list update to advance the simulation. This repeats until no patches remain in
the simulation volume. In Fig. 9.5, we show a wavefront propagating through a
wine glass. The computed intensities are used as colors, resulting in a preview
of the caustic patterns in and around the object.

9.3.3 View renderer

Given the output from the light simulator, we can render arbitrary user views
of a complex refractive object. The view renderer implements a fast ray-caster
for arbitrarily bent viewing rays based on Eqs. (9.11) and (9.12). Intensities
along viewing rays are computed according to Eq. (9.1), using the simplified
image formation model and the scene parameters stored in the input textures.

In theory, we can handle arbitrary BRDF models, including parametric
or tabulated representations. However, since our glass objects come close to
perfect reflectors and a good approximation of the first reflection is already
visually pleasing, we use simple dynamic environment mapping. The Fresnel
effect and the anisotropic scattering phase function are computed on-the-fly
in the fragment shader.
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Fig. 9.5. (top) The refractive index volume of the glass is approached by a spherical
wavefront from the right. The adaptive tessellation of the wavefront is also visible. –
(bottom) When it passes through the object, caustic patterns appear in its intensity
distribution.

After the viewing ray has finished volume traversal, we use its exit direc-
tion to conduct a lookup into a dynamic environment map to approximate
the background intensity. All lighting computations are performed in high dy-
namic range and an adaptive tone-mapping based on [101] is applied prior to
display.

9.4 Results and Discussion

We rendered result sequences with five different objects in several surround-
ings, thereby visualizing different combinations of effects. The results are
shown in Figs. 9.6 and 9.7. For light simulation within the objects we used
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the highest energy ray criterion to compute the three-dimensional light dis-
tribution.

Fig. 9.6 shows a variety of objects that were modeled by a human mod-
eler. The objects exhibit various combinations of the optical effects that can
be described by our image formation model. Fig. 9.7 shows renderings of a
manipulated version of the Burner data set of Chapter 8. The volumetric real-
world data acquired in the previous chapter was computationally modified to
exhibit scattering and absorption characteristics. We identified regions with
high refractive index gradients and added scattering and absorption terms de-
pending on the gradient strength. This purely ad-hoc method is an example
of the types of modifications that can be performed with computer models of
real-world data.

Our test data were stored in 1283 voxel volumes. On an AMD Dual Core
Athlon with 2.6 GHz equipped with an NVidia GeForce 8800 GTX and 768
MB of video RAM, we obtain a sustained rendering frame rate of around 25 fps
if one object is displayed and if the light source remains in a fixed position.
Mind that the frame rate decreases when zooming in closely on the object,
since then more rays need to be cast from the viewpoint into the volume.
After moving a light source to a new position, the lighting simulation has to
be rerun once. This typically takes around 5 to 7 seconds if the simulator is
initialized with 50.000 wavefront patches. Due to the adaptive tessellation,
the patch count in the simulation typically peaks at 450.000.

For our particular application, the ODE-based ray propagation and adap-
tive wavefront tracing formulation has a couple of intriguing advantages.
The voxel representation allows for fast non-linear ray casting. Expensive
ray/geometry intersections, like in [156], would lead to performance bottle-
necks on complex curved light paths.

Adaptive wavefront tracing also enables us to simulate non-linear light
transport with a fast particle tracer while simultaneously avoiding under-
sampling problems. Our update times after light position changes are com-
parable to other state-of-the art GPU methods reproducing fewer effects,
e.g. only caustics in isotropic media [46]. We see an advantage over alterna-
tive methods like photon-mapping [91] because we only insert particles when
needed, i.e. when the wavefront is under-sampled. We also obtain densely
sampled light intensity and direction information throughout 3D space, such
that we can cater for anisotropic visual effects at any point in the scene.
Also, no special reconstruction kernels are required. Furthermore, we obtain
a physically plausible1 light distribution with significantly reduced sampling
problems. An advantage over PDE approaches is the fast simulation and the
ability to pick a particular solution in case of multi-valuedness of the light dis-

1 within the limits of geometrical optics, see [28] for details
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tribution. For a particular point in space, we can choose the first arrival ray
or the one carrying the highest energy. With additional memory consumption
and higher algorithmic complexity multi-valued solutions could be computed
as well.

Despite these advantages for refractive object rendering, on general scenes
our algorithm does not match the power of related approaches like photon
mapping, which can efficiently produce full global illumination solutions.

The required level of discretization makes our method only suitable for the
simulation of spatially confined refractive objects. These objects may appear
as part of larger scenes, as shown in our renderings. Due to the volumetric
representation, the scene’s size is mainly limited by the available video mem-
ory. Octree representations can help to further reduce memory consumption.
Besides, with future generations of graphics boards, memory limits will be-
come less of an issue. We also have to properly match triangle-based lighting
to our volume-based lighting to insert our volumetric scene models into larger
triangle-based scenes rendered with standard surface shading.

Furthermore, we are dependent on decent gradient fields to yield visually
pleasing results. To this end, we pre-smooth the refractive index volumes
prior to gradient evaluation. Here, one needs to take care to not over-smooth
which leads to halo-effects around material boundaries. This effect can be
prevented by using a suitable proxy geometry to restrict the tracing of rays to
the inside of the silhouette of a refractive object. This measure additionally
yields a speed-up over the rendering of the complete discretization volume,
however volumetric light effects in the space surrounding the object cannot be
rendered anymore. A sufficiently high voxelization level is needed for extreme
close-up renderings. Otherwise, discretization artifacts in the lighting effects
may occur.

9.5 Summary

In this chapter we presented a fast and versatile method to render a variety of
sophisticated lighting effects in and around refractive objects in real-time. It is
based on a sophisticated model of light transport in volumetric scene represen-
tations that accounts for a variety of effects, including refraction, reflection,
anisotropic scattering, emission and attenuation. It employs a fast particle
tracing method derived from the eikonal equation that enables us to efficiently
simulate non-linear viewing rays and complex propagating light wavefronts on
graphics hardware. Since our method maps efficiently to a standard GPU we
see many applications in computer games and real-time visualization.
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Fig. 9.6. A gallery of different objects rendered with the proposed algorithm.
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Fig. 9.7. Frames from an animation of heated airflow captured with the method
described in Chapter 8 and modified to exhibit scattering and absorption properties.
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Discussion and Conclusions

In the following we summarize our work, discussing contributions and draw-
backs of the presented methods. Following that we draw conclusions and
present an outlook on future work.

10.1 Summary

We first introduced a sparse-view tomographic reconstruction technique for
the acquisition of dynamic, volumetric models of flames suitable for photo-
realistic image synthesis. The basic tool for the achievement of this goal using
only a handful of cameras is the restriction of the solution space to the visual
hull of the flames. The reduced degrees of freedom of the inversion problem
and the coarse proxy geometry provided by the visual hull result in good
view extrapolation properties of the acquired models. However, the method
has only been tested under laboratory conditions because of the amount of
hardware necessary for the acquisition of the data processed by the recon-
struction algorithm. Necessarily we were restricted to small-scale flames. It is
to be expected that the application of the proposed method to large-scale fires
like a camp fire will make it necessary to use more cameras than employed
in our experimental setup. Another factor not considered in this work is the
presence of opaque objects like firewood in the flames. The presence of these
will have a similar effect as metal implants in medical computed tomography
applications, resulting in spurious projection artifacts.

Next, we discussed an extension of the basic visual hull-restricted tomog-
raphy algorithm that uses an adaptive representation of the underlying com-
putational grid. This measure increases the effective resolution of the recon-
struction. We apply the modified method to the reconstruction of thin smoke
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columns that are recorded under carefully chosen experimental conditions.
The higher effective resolution enables reconstructing fine details like swirls
in the smoke. However, it also leads to stability problems during reconstruc-
tion. The causes are analyzed and a solution is presented. In due course we
develop an error projection method from the image plane of the cameras to
the three-dimensional reconstruction volume. In a mathematical context, this
constitutes a method for the transfer of an error measure from the codomain
of a linear operator to its domain which might be applicable in more gen-
eral settings as well. The adaptive reconstruction method suffers from the
same shortcomings as the basic algorithm. Additionally, the scattering and
absorption properties of the smoke are ignored.

The water reconstruction technique enables acquiring the surface of free-
flowing bodies of water. We developed experimental conditions under which
the optical path length of a refracted light ray in the water volume can be
measured. This is achieved by using the effect of chemiluminescence. Based
on this approach we develop a photo-consistency measure that is optimized
using a weighted minimal surface. The surface evolution is implemented us-
ing the well-known level set technique. Drawbacks of this method are that
the refractive index of the fluid must be known in advance, and that the
result is dependent on a good initial guess, where the latter requirement is
more restrictive. Additionally, the chemicals added to the fluid may change
its viscosity and thus the overall behavior of the fluid.

The restriction to a single, known refractive index throughout the volume
is alleviated by our reconstruction technique for inhomogeneous refractive
index fields based on the tomographic reconstruction of the refractive index
gradient field. We introduce a new formulation of the tomographic problem
that does not require the paraxial approximation to be used, i.e., we can
handle arbitrary curved light paths. The prerequisite-requisite for computing
the tomographic reconstruction is an estimate of image space ray deflections
caused by the refractive volume. According to synthetic tests this seems to
be the limiting factor in the application of this method since the deflections
have to be computed from image space measurements of distorted background
information using optical flow techniques. The maximum magnitude of the
refractive index fields is thus limited by the measurement setup.

The proposed rendering method for refractive objects is very general. Its
capabilities exceed the data acquirable by the reconstruction methods pre-
sented in this thesis. We can render spatially varying, inhomogeneous refrac-
tive index fields exhibiting emission, absorption, single scattering, and re-
flection on material boundaries simultaneously. An efficient light propagation
technique enables rapidly computing three-dimensional light distributions, in-
cluding local light directions. This allows for rendering of anisotropic volumet-
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ric lighting effects like volume caustics in smoke, volumetric shadows and sim-
ilar effects. The advantage, and simultaneously the greatest restriction, of this
rendering algorithm is the volumetric representation of the objects. The power
lies in the possibility for truly spatially varying material properties, allowing
for a combination of visual effects that has not been demonstrated before.
However, the memory consumption of the models restricts the rendering of
dynamic models to about 3 frames per second. This number could probably
be improved by a factor of two by utilizing appropriate caching schemes. We
investigated wavelet compression schemes for emissive volume rendering of
dynamic models [5]. However this method is not suitable for the rendering of
refractive objects and thus has not been included in this thesis.

10.2 Conclusions

In this dissertation we introduced the tomographic reconstruction of natural
phenomena for computer graphics purposes. The acquisition of fully three-
dimensional, dynamic models of fire, smoke, and fluid flows enables free-
viewpoint video applications for natural phenomena. The quality of the re-
constructed, dynamic computer models is suitable for photo-realistic view
synthesis which was the primary goal of this work. However, the utility of
the acquired models is beyond pure rendering of the phenomena considered
here. I believe that the subsequent analysis of the reconstructed models can
make the development of example-based modeling algorithms possible. Fur-
thermore, the data, especially the refractive index fields, lend themselves to
the analysis for secondary information like fluid density or temperature. The
color information present in the flame models might be used for pyrometry
investigations. This, in turn, could lead to estimates of boundary conditions
for the equations of fluid dynamics, leading in turn to better computer ani-
mations.

10.3 Future Work

The work presented so far just amounts to a first step in image-based modeling
of natural phenomena. To summarize, the basic tomographic algorithm could
be improved by adding support for opaque objects present in the reconstruc-
tion volume. Another goal would be to measure absorption and potentially
scattering properties in addition to emissivity. Refractive index tomography
and emission tomography could be combined to allow for the simultaneous
measurement of the two effects.
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Further research should be conducted in the direction of compressing the
acquired volumetric models to facilitate real-time rendering of whole sequences
of the reconstructed models. A connection to the reconstruction methods pre-
sented in this thesis is formed by wavelet bases. The feasibility of directly
reconstructing using a wavelet basis should be explored. This is complicated
by the fact that it is difficult to ensure a physically plausible, non-negative re-
construction result since wavelet bases contain negative components and our
projection to the space of non-negative solutions cannot be employed.

On the rendering side the wavefront tracking scheme for the computation
of three-dimensional light distributions with directional information seems to
be a promising direction of future work. The equations describing the light
propagation in their current parameterization do not lend themselves to the
simulation of light-matter interactions with reflective objects. However, the
viewing ray parameterization is suitable for this task. Unfortunately, the in-
tensity computations become much more involved when using this parame-
terization since the simple intensity rule cannot be used anymore. Instead,
the curvature of the wavefronts has to be integrated along the ray. On the
other hand this would lead to a unification of refractive and reflective light
transport.
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Appendix

A.1 Integration of Rays over Basis Functions

A.1.1 Transformation of Curve Integrals

Here we give the proof for Eq. (5.8).

∫

cn
φi ◦ T dt (A.1)

=
∫ 1

0
φi ◦ T ◦ cn(t) ||dcn(t)

dt
|| dt (A.2)

(∗)
= ||dn||

||Tdn||

∫ 1

0
φi ◦ T ◦ cn(t)||Tdn|| dt (A.3)

(∗∗)
= ||dn||

||Tdn||

∫ 1

0
φi ◦ T ◦ cn(t)||d(T◦cn)

dt
|| dt (A.4)

= ||dn||
||Tdn||

∫

T◦cn
φi dt (A.5)

(∗) dcn(t)
dt

cn(t)linear
= dn, const. (A.6)

(∗∗) d(T◦cn)(t)
dt

= dT
dcn

dcn

dt

T linear

cnlinear
= Tdn (A.7)

Note that this proof is only valid for a linear curve cn and linear transfor-
mation T .

A.1.2 Polynomial to be Integrated for the Trilinear Basis

Function

In the following we assume the curve cn to be in the form T ◦ cn(s) = p+ sr.
The direction vector r is normalized. The cubic polynomial that is to be
integrated for the trilinear basis function is given by:
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s3∗ (a1rxryrz)+

s2∗ (a1(rxrypz + pxryrz + pyrxrz)+
a2rxry + a3rxrz + a4ryrz)+

s ∗ (a1(pzpxry + pzpyrx + pxpyrz)+
a2(pxrz + pyrx) + a3(pxrz + pzrx)+
a4(pyrz + pzry) + a5rx + a6ry + a7rz)+

1 ∗ (a1pxpypz + a2pxpy + a3pxpy + a4pypz+
a5px + a6py + a7pz + a8)

(A.8)

The constants a1 . . . a8 are defined as

a1 = −p000 − p001 + p010 + p011

−p100 − p101 + p110 + p111

a2 = −p000 + p001 + p010 − p011

a3 = −p000 + p001 − p100 + p101

a4 = −p000 + p010 − p100 + p110

a5 = −p000 − p001

a6 = p000 − p010

a7 = p000 + p100

a8 = −p000

(A.9)

p000 . . . p111 are the values at the corner points of the unit cube in the order
of pzyx, respectively. The integration has to be performed from s1 to s2 which
are the intersections of cn with the voxel in question in unit coordinates.

A.2 Projected Codomain Lp norm related proofs

A.2.1 Proof of the Minkowski Inequality for Projected

Codomain Lp Norms

The Minkowski inequality states that

(

∑

i

|xi + yi|p
)

1
p

≤
(

∑

i

|xi|p
)

1
p

+

(

∑

i

|yi|p
)

1
p

.

In the context of proving the triangle inequality for the class of projected
codomain Lp norms it reads

(

∑

i

|si||xi + yi|p
)

1
p

≤
(

∑

i

|si||xi|p
)

1
p

+

(

∑

i

|si||yi|p
)

1
p

. (A.10)
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We start with rewriting the p’th power of the left hand side of Eq. A.10:

(

∑

i

|si||xi + yi||xi + yi|p−1

)
1
p

p

≤ (A.11)

We use the standard triangle inequality to obtain

∑

i

|si|
(

|xi||xi + yi|p−1 + |yi||xi + yi|p−1
)

=

∑

i

|si||xi||xi + yi|p−1 +
∑

i

|si||yi||xi + yi|p−1 ≤

which is less or equal than

(

∑

i

|si||xi|p
)

1
p
(

∑

i

|si||xi + yi|q(p−1)

)
1
q

+

(

∑

i

|si||yi|p
)

1
p
(

∑

i

|si||xi + yi|q(p−1)

)
1
q

=

because of Hölders inequality which is proofed in the next subsection.
Rearranging terms we obtain





(

∑

i

|si||xi|p
)

1
p

+

(

∑

i

|si||yi|p
)

1
p





(

∑

i

|si||xi + yi|qp−q

)
1
q

≤

Hölders inequality requires 1
p

+ 1
q

= 1, p, q ≥ 0, therefore qp− q = p and
the equation becomes





(

∑

i

|si||xi|p
)

1
p

+

(

∑

i

|si||yi|p
)

1
p





(

∑

i

|si||xi + yi|p
)

1
p

p

q

. (A.12)

Dividing Eqs. A.11 and A.12 by (
∑

i |si||xi + yi|p)
1
p

p

q yields the desired
result

(

∑

i

|si||xi + yi|p
)

1
p

≤
(

∑

i

|si||xi|p
)

1
p

+

(

∑

i

|si||yi|p
)

1
p

¤.
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A.2.2 Proof of the Hölder Inequality for Projected Codomain

Lp Norms

The original Hölder inequality reads

∑

i

|xiyi| ≤
(

∑

i

|xi|p
)

1
p
(

∑

i

|yi|q
)

1
q

.

Here we prove the Hölder inequality for projected codomain Lp norms

∑

i

|si||xiyi| ≤
(

∑

i

|si||xi|p
)

1
p
(

∑

i

|si||yi|q
)

1
q

to complete the proof of the Minkowski inequality for projected codomain
Lp norms. We use a result from differential calculus as our main tool:

a
1
p b

1
q ≤ a

p
+
b

q
(A.13)

Setting

A =

(

∑

i

|si||xi|p
)

1
p

B =

(

∑

i

|si||yi|q
)

1
q

a =
|si||xi|p
Ap

b =
|si||yi|q
Bq

and inserting in Eq. A.13, we obtain

|si||xiyi|
AB

≤ |si||xi||yi|
AB

≤ |si||xi|p
pAp

+
|si||yi|q
qBq

,

where the first inequality stems from part of the proof of the triangle
inequality for real numbers. Summing over i and expanding A and B yields
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∑

i |si||xiyi|
(
∑

i |si||xi|p)
1
p (
∑

i |si||yi|q)
1
q

≤
∑

i |si||xi|p
p
∑

i |si||xi|p
+

∑

i |si||yi|q
q
∑

i |si||yi|q
=

pq

p+ q

(
∑

i |si||xiyi|) (
∑
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∑
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(
∑
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1
p (
∑

i |si||yi|q)
1
q

≤
(

∑

i

|si||xi|p
)(

∑

i

|si||yi|q
)

.

.

With pq
p+q

= 1 (again because of 1
p

+ 1
q

= 1) we obtain

(

∑

i

|si||xiyi|
)(

∑

i

|si||xi|p
)1− 1

p
(

∑

i

|si||yi|q
)1− 1

q

≤
(

∑

i

|si||xi|p
)(

∑

i

|si||yi|q
)

.

Dividing by (
∑

i |si||xi|p)1−
1
p (
∑

i |si||yi|q)1−
1
q completes the proof:

∑

i

|si||xiyi| ≤
(

∑

i

|si||xi|p
)

1
p
(

∑

i

|si||yi|q
)

1
q

¤.

A.3 Refraction Computation at a Boundary

The following formulas describe refraction at a well defined boundary, refrac-
tion from both sides and total reflection are included. Fig. A.1 shows the
quantities involved in the computation. The direction vector di is a unit vec-
tor incident on the surface and the resulting direction vector do is also a unit
vector, exiting the surface.
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Fig. A.1. The figure shows the geometric quantities used in the refraction formula.

n =
∇u
|∇u|

di
⊥ = (−di · n)n

di
‖ = −(di + di

⊥)

sin θo =











|di
‖| ni

no
(n · di) > 0

|di
‖|no

ni
(n · di) < 0, |di

‖| < ni

no

|di
‖| (n · di) < 0, |di

‖| ≥ ni

no

cos θo =

√

1 + sin θo
2

s =

{−1 (n · di) < 0, |di
‖| ≥ ni

no

1 else

f(di, u) = do = −s di
⊥

|di
⊥|

sin θo −
di
‖

|di
‖|

cos θo (A.14)
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A.4 Ray parameterizations for Rendering

We derive a constant spatial and a constant temporal step size parameteriza-
tion of the ray equation of geometric optics. Eq. (9.8) is derived by combining
the eikonal equation

|∇S| = n (A.15)

and the equation of a particle moving normal to the wavefronts S = const.

dx

ds
=

∇S
|∇S| . (A.16)

S is a solution of the eikonal equation and iso-surfaces of this function are
called wavefronts. They are surfaces of constant travel time from the light
source. The derivation of Eq. (9.8) can be found in [28].

A.4.1 Parameterization with constant spatial step size

Using Eq. (A.16) we immediately have

|dx
ds

|2 =
dx

ds
· dx
ds

= 1. (A.17)

Inserting Eq. (A.15) into Eq. (A.16) yields

n
dx

ds
= ∇S. (A.18)

Setting d = ∇S we obtain a parameterization with constant spatial step size
ds, Eqs. (9.9) and (9.10).

A.4.2 Parameterization with constant temporal step size

We are looking for a parameterization where

dS

dt
= ∇S · dx

dt
= 1, (A.19)

i.e. the infinitesimal change of the eikonal function S with respect to the
parameter t is constant. Inserting Eq. (A.18) into Eq. (A.19) yields

1

n
=
dx

ds
· dx
dt

=
dx

ds
· dx
ds

ds

dt
=
ds

dt
, (A.20)

where the last identity is due to Eq. (A.17). Using this result we perform a
change of parameters using the chain rule and obtain Eqs. (9.14) and (9.15)
from Eqs. (9.9) and (9.10).
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tion physique. Princeton University Bulletin, pages 49–52, 1902.

68. Z.S. Hakura and Snyder. J.M. Realistic reflections and refractions on graphics
hardware with hybrid rendering and layered environment maps. In Proc. of
EGSR, pages 289–300, 2001.

69. Per Christian Hansen. Rank-Deficient and Discrete Ill-Posed Problems. Society
of Industrial and Applied Mathematics, 1998.

70. M.J. Harris, W.V. Baxter, T. Scheuermann, and A. Lastra. Simulation of cloud
dynamics on graphics hardware. In Proc. of Graphics Hardware, pages 92–101,
2003.

71. Richard Hartley and Andrew Zisserman. Multiple View Geometry. Cambridge
University Press, 2000.

72. Samuel W. Hasinoff. Three-Dimensional Reconstruction of Fire from Images.
MSc Thesis, University of Toronto, Department of Computer Science, 2002.

73. Samuel W. Hasinoff and Kiriakos N. Kutulakos. Photo-Consistent 3D Fire by
Flame-Sheet Decomposition. In In Proc. 9th IEEE International Conference
on Computer Vision (ICCV ’03), pages 1184–1191, 2003.

74. Samuel W. Hasinoff and Kiriakos N. Kutulakos. Photo-consistent reconstruc-
tion of semi-transparent scenes by density sheet decomposition (to appear).
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9), May
2007.

75. Tim Hawkins, Per Einarsson, and Paul Debevec. Acquisition of time-varying
participating media. In Proceedings of ACM SIGGRAPH, pages 812–815, 2005.

76. J. Heikkila and O. Silven. A four-step camera calibration procedure with
implicit image correction. In CVPR 97, pages 1106–1112, 1997.

77. V. Henson, M. Limber, S. McCormick, and B. Robinson. Multilevel image
reconstruction with natural pixels. SIAM J. Sci. Comp., 17:193–216, 1996.

78. Louis G. Henyey and Jesse L. Greenstein. Diffuse Radiation in the Galaxy.
Astrophysical Journal, 93:70–83, 1941.

79. Jürgen Hofmann, Alexander Flisch, and Andreas Obrist. Adaptive CT scan-
ning - mesh based optimisation methods for industrial X-ray computed tomog-
raphy applications. NDT&E International, 37:271–278, 2004.

80. J. Höhle. Reconstruction of the underwater object. Photogrammetric Engi-
neering, pages 948–954, 1971.

81. B. Horn and B. Schunck. Determining Optical Flow. Artificial Intelligence,
17:185–203, 1981.

82. W. L. Howes. Rainbow schlieren and its applications. Applied Optics,
23(4):2449–2460, 1984.

83. ICC. Specification icc.1:2003-09, file format for color profiles (version 4.1.0),
international color consortium, 2003.

84. Insung Ihm, Byungkwon Kang, and Deukhyun Cha. Animation of reactive
gaseous fluids through chemical kinetics. ACM Siggraph / Eurographics Sym-
posium Proceedings, Symposium on Computer Animation, pages 203–212, 2004.



154 References

85. Ivo Ihrke, Lukas Ahrenberg, and Marcus Magnor. External camera calibration
for synchronized multi-video systems. Journal of WSCG, 12(1-3):537–544,
January 2004.

86. Ivo Ihrke, Bastian Goldluecke, and Marcus Magnor. Reconstructing the geom-
etry of flowing water. In International Conference on Computer Vision 2005,
pages 1055–1060, Beijing, PRC, 2005. IEEE.

87. Ivo Ihrke and Marcus Magnor. Image-Based Tomographic Reconstruction of
Flames. ACM Siggraph / Eurographics Symposium Proceedings, Symposium
on Computer Animation, pages 367–375, June 2004.

88. Ivo Ihrke and Marcus Magnor. Adaptive grid optical tomography. In Emanuele
Trucco and Mike Chantler, editors, Vision, Video, and Graphics 2005, pages
141–148, Edinburgh, UK, 2005. Eurographics.

89. Ivo Ihrke and Marcus Magnor. Adaptice grid optical tomography. Graphical
Models, 68:484–495, 2006.

90. Ivo Ihrke, Gernot Ziegler, Art Tevs, Christian Theobalt, Marcus Magnor, and
Hans-Peter Seidel. Eikonal rendering: Efficient light transport in refractive
objects. ACM Trans. on Graphics (SIGGRAPH’07), page to appear, 2007.

91. Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. AK
Peters, 2001.

92. Henrik Wann Jensen and Per H. Christensen. Efficient simulation of light
transport in scences with participating media using photon maps. In Proc. of
SIGGRAPH’98, pages 311–320. ACM Press, 1998.

93. Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan.
A practical model for subsurface light transport. In Proc. of SIGGRAPH’01,
pages 511–518. ACM Press, 2001.

94. Neel Joshi, Bennet Wilburn, V. Vaish, Marc Levoy, and M. Horowitz. Auto-
matic color calibration for large camera arrays. Technical Report CS2005-0821,
UCSD CSE, 2005.

95. J.T. Kajiya and B.P. Von Herzen. Ray tracing volume densities. In Proc. of
SIGGRAPH’84, pages 165–174, 1984.

96. A. C. Kak and Malcolm Slaney. Principles of Computerized Tomographic Imag-
ing. Society of Industrial and Applied Mathematics, 2001.

97. Sing Bing Kang. Radial Distortion Snakes. In IAPR Workshop on Machine
Vision Applications (MVA2000), pages 603–606, Nov. 2000.

98. Theodore Kim, Michael Henson, and Ming C. Lin. A Hybrid Algorithm for
Modeling Ice Formation. ACM Siggraph / Eurographics Symposium Proceed-
ings, Symposium on Computer Animation, pages 305–314, 2004.

99. Ron Kimmel. Demosaicing: Image Reconstruction from Color CCD Samples.
IEEE Trans. on Image Processing, 8(9):1221–1228, 2000.

100. Doris H. U. Kochanek and Richard H. Bartels. Interpolating Splines with Local
Tension, Continuity, and Bias Control. In Proceedings of ACM SIGGRAPH,
volume 18, pages 33–41, 1984.

101. G. Krawczyk, K. Myszkowski, and H.-P. Seidel. Perceptual effects in real-time
tone mapping. In Proc. of Spring Conference on Computer Graphics. ACM,
2005.



References 155

102. Grzegorz Krawczyk, Michael Goesele, and Hans-Peter Seidel. Photometric
Calibration of High Dynamic Range Cameras. Research Report MPI-I-2005-
4-005, Max-Planck-Institut für Informatik, May 2005.
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