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Abstract

The desire to augment our 3-dimensional per-
ception and the need to understand multivariate
problems spawned several multidimensional vi-
sualization methodologies. Starting from early
successes of visualization, like Dr. J. Snow’s dot
map in 1854 showing the connection of cholera
to some water pumps in London, Scatter plots,
Chernoff faces, Andrews plots, Projection Pur-
suit, Perceptualization of data, Data density,
Trees and Castles, Kinematic displays, Bertin
Permutation Matrices and other multivariate vi-
sualization techniques have been developed (see
[12], [13] for a beautiful non-technical review).
However, they are all limited to viewing small
datasets having a few variables.

Here we focus on Parallel Coordinates which
is a new methodology enabling the unambiguous
visualization of multidimensional geometry and,
in turn, multivariate relations. Parallel Coor-
dinates is introduced and rigorously developed.
Relations among N real variables are mapped
uniquely into subsets of 2-space having geomet-
rical properties enabling the visualization of the
corresponding N-dimensional hypersurfaces.

After the basic representation results, associ-
ated algorithms for constructions, intersections,
transformations, containment queries, proximity
and others will be given. The development is
interlaced with applications of the relevant re-
sults starting with demonstrations of Data Min-
ing on real datasets (i.e. Feature extraction from
LandSat data, Financial, Process Control, Pi-
lot Selection, Raising the Yield and Quality of
VLSI chips, and others). They are followed by
Collision Avoidance Algorithms for Air Traffic
Control which are based on the representation
of lines in multidimensional space. The detec-
tion of coplanar points and the representation

of planes and hyperplanes lead to some applica-
tions in Computer Vision, Geometric Modeling
and elsewhere. More examples of Visual Data
Mining are given. An efficient geometric classi-
fier algorithm is motivated and it will be demon-
strated on some challenging datasets. Finally,
the representatioin of curves and hypersurfaces
is taken up together with interactive applications
to Process Control, Instrumentation and Heuris-
tic Optimization. Nonlinear VISUAL models in
terms hypersurfaces are constructed from data
and used interactively for Decision Support, Sen-
sitivity Analysis, studying feasibility and effect
of contraints as well as trade-off analysis.

Getting Started
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Figure 1: The polygonal line C represents the
point C = (¢1, ¢2,¢3, €4, C5)-

In principle, a large number of (even infinitely
many) axes can be placed and be seen parallel
to each other. The representation of points is
deceptively simple and much development and
additional ideas are needed to enable the visual-
ization of multivariate relations or equivalently
multidimensional objects. Specifically, the rep-



resentation of a p-dimensional object 2 < p will
be obtained from it’s (p—1)-dimensional compo-
nents. For example, the representation (i.e. im-
age) of a line is obtained from the points on the
line, and is in fact the envelope of the polygonal
lines representing the points. Next, the represen-
tation of a plane in R3 is obtained from the rep-
resentation of the lines, rather than the points,
it contains. This leads to a recursion which turns
out to work spendidly; but we are getting ahead
of ourselves.

So far the most popular application is in
(Visual) Data Mining, because parallel co-
ordinates (abbr.||-coords) transform multivari-
ate relations into distinct 2-D patterns [1].
Several software tools starting with EDA
(Chomut [2]), followed by Finsterwalder[3],
VisuLab(Hinterberger[10]), ExplorN ( Bolor-
foroush (88), Carr (92)), WinViZ ( Eicke-
meyer), VisDB(Keim [7]), Xmdv(Ward|[8],[15]),
XGobi (Swayne, Cook, Buja, [11]), Strata(]|-
coords by Gleason), Diamond([9]), PVE (Insel-
berg, Adams, Hurwitz, Chatterjee), Influence
Explorer (Tweedie, Spence [14]) and others in-
clude ||-coords. Notably, a major project by Eu-
rostat, the Furopean Union’s Statistical Office,
is underway to develop customized data explo-
ration software based on ||-coords. This type of
application [4] hinges on :

e an informative display of the data,
e good choice of queries, and

o skillful interaction by the user of the display
in search of patterns corresponding to rela-
tionships among the variables in the data.

Recently, it has become possible to automate
the discovery process making the methodology
available to a greater number of users [6].



The Plane with Parallel Coordi-
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Figure 2: Points on the plane are represented by Xl X2

lines.

Figure 4: Lines representing points on the line
To =x1 + b.
X2
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Figure 3: In the plane parallel coordinates in-
duce a point «— line duality.

Figure 5: Model of the Projective Plane
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Figure 6: Under the duality parallel lines map
into points on the same vertical line. On the pro-

jective plane model, the great semi-circles repre-
senting the lines share the same diameter — i.e.

they have the same ideal point

0%
5%
"

OO
i

Figure T: Hyperbola(point-curve)

Ellipse(line-curve) — Image Depends on ori-

entation of Hyperbola.

lations

Figure 8: Duality between rotations and trans-
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Figure 9: (a)Square,(b) 3-D cube (c) 5-D hyper-



Multidimentional Lines

First of all let us agree on what we mean by a
line £ in N-space and a good way is to specify
£ as the set of points (given by N-tuples) which
satisfy a set of N-1 linearly independent linear
equations. After some manipulation, and with
the exception of a few special cases (for rigorous
treatment covering all the cases see [5]), such a
set of equations can be put in the form :

6172 . T2 mox1 + bQ

62,3 T3 = m3xo + b3

iy @ = mizi1 + b (1)
In_1N TNy = myzIn-1 + by

that is each equation contains a pair of adjacently
labeled variables. In the x; 1z;-plane the rela-
tion labeled ¢;_1; is a line, and by our Line <
Point duality which we have already found (eq.
(3) in Chapter 1) it can be represented by a point
Ei—l,z'- For convenience let us take the distance
between each pair of adjacent axes one unit as
shown in Fig. 10.

Since the y-axis is not coincident with the X;_ ;-
axis, we need to translate the z-coord of the
point representing the line (see eq. (2) and Fig.
2 in Chapter 1) by (¢ — 2). That is

bi1;= ((Zl—ilmi) +(i—2) ,(1_572'77“)

)

or in homogeneous coordinates by :

éi_l,i = ((Z — 2)(1 — mz) +1,b;,1 — mz) (2)

Hence, there are N — 1 such points for i =
2,...,N which represent the N-D line £. The

fact that the indexing being an essential part of
the representation is, often, not appreciated and
causes misconceptions.This is in fact the first in-
stance where we see the need for the indexing
included in the representation mapping J (eq.
(1) in the Introduction). Without the indexing,
the points could represent anyone of (N — 1)!
lines corresponding to all the possible ways the
(N — 1) independent pairs of indices can be at-
tached to the points. Since the display space is at
a premium the indexing is usually not included
in the picture, but it must always be accessi-
ble from some database. As we will see, there
a number of construction algorithms based on
this representation, and crucially depending on
the indexing.

A polygonal line for which the linear portion
containing the (i — 1),i-segment passes through
the point Ei,l,i Vi=2,...,N (another case of
needing to be careful with the indices) represents
a point on the line ¢ since the adjacent pair of
y-coordinates of its vertices on the X; 1 and X;-
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Figure 10: Spacing between adjacent axes is 1
unit.



axes simultaneously satisfy Equation (1). Such is
the case in Fig. 11 where several polygonal lines
representing points on an interval of a line in 10-
D are shown. For example, the point of intersec-
tion of the polygonal lines between the X, and
X3-axes, is the point 52,3. All the nine points,
representing that 10-dimensional lines can be
seen (or constructed) with their horizontal po-
sitions depending on the first coordinate of eq.
(2). Do not be mislead by the fact that all of
the £’s except fg7 are shown between their cor-
responding axes. This is due to the choice of
m; < 0 made for display convenience only.

The indexed points representing an N-
dimensional line have a striking and very use-
ful property. For i # j # k € [1,2,...,N]
the three points Zi,j, Zj,k, Zi,k are always collinear.
This can be seen by considering two points P, =
(Piyy---5PNy), 7 = 1,2 on £ and their projec-
tions on the z;,z;,z; three-space as shown in
Fig. 12.

Figure 11: Line interval in 10-D. Heavier polyg-
onal lines represent end-points. The nine points
where the polygonal lines intersect represent the
complete line.
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Figure 12: The Collinearity for the 3 points
l_i,j,l_j,k,l_i’k. The two triangles are in perspec-
tive with respect to the ideal point in vertical
direction. The y-axis is offscale.
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Figure 13: Rotation of a line in R about one of
its points
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Figure 14: Two intersecting lines in R®

X3

Figure 15: Intersection, for the base-variable line
description, of two lines in 4-D. This provides the
space and time coordinates of the place where
two particles moving with constant velocity col-
lide.

T1

T X X, X;

Figure 16: Non-intersection between two lines in
4-D. Here the minimum distance is 20 and occurs
at time = .9. Note the maximum gap on the T-
axis formed by the lines joining the £’s with the
same subscript. The polygonal lines representing
the points where the minimum distance occurs

are shown.

Figure 17: Near intersection between two lines
in 4-D. Here the minimum distance is 1.5 and
occurs at time = 1.8. Note the the diminished
maximum gap on the T-axis formed by the lines
joining the £’s with the same subscript. The
polygonal lines representing the points where the
minimum distance occurs are shown.
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Figure 18: Path (left) and Trajectory (right) of Figure 20: Closest approach of two aircraft. The
an aircraft. In |l-coords the position at any given ;0 and closest positions are clearly seen in ||-
time may be displayed. coords. Appearances can be misleading in a 3-
D (near perspective) display where the aircraft
appear to be nearly colliding. It is even more

uninformative in 2-D where only a projection is

. displayed.
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Figure 19: Two aircraft flying on the same path

since their 1:2 and 2:3 points coincide. They oT:1 T X1 X2 X3 °

have a constant separation their velocity being

the same since T:1 points have the same x-

coordinate. Figure 21: Transforming deviations in heading
(angle) to lateral deviations



T = 1.1

Figure 24: Conflict resolution with parallel-offset

Figure 22: Six aircraft flying at the same al- '
maneuvers. Three pairs of tangent circles.

titude. These positions are at a certain time
(taken as 0 seconds and shown on the left-hand-
corner). Circles centered at each aircraft are the
protected airspaces with the diameter being the
minimum allowable separation. The arrows rep-
resent the velocities.

o~

T = 300

T = 421.1

Figure 23: Conflicts, indicated by overlaping cir-

Figure 25: A triple tangenc
cles, within the next 5 minutes. '8 P geney

10



Hyperplanes in RY

A hyperplane in RV can be translated to one
which contains the origin, that is an N — 1-
dimensional linear subspace of RV. Since RN~1
can be represented in ||-coords by N — 1 vertical
lines and a polygonal line representing the ori-
gin of the ||-coordinate system. Therefore, it is
reasonable to expect a similar representation for
hyperplanes in RV .

\
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Y LSS Figure 28: Industrial data. Note pattern be-

_ tween the R111 and R112 axes.
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Figure 26: A plane 7 in 3-D can be represented 3
by two vertical lines and a polygonal line repre-
senting one of the points of . Figure 29: Industrial data with magnified por-

tion between the R111 and R112 axes.

Figure 30: Industrial data showing the linear re-
Figure 27: A set of coplanar points in R3, note lation between R111, R112 and an unknown pa-

the two vertical lines pattern. rameter.
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Figure 33: On the first 3 axes a set of polygo-
nal lines representing a randomly sampled set of
Figure 31: A line £ on a plane 7 is represented by coplanar points in R3 is shown.

one point 712 in terms of the planar coordinates

Y; and Y, which is collinear with it’s two point

E12 and Egg.

N/

71N

I
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Figure 34: Coplanarity! The set of pairs of
points representing lines on a plane is a pencil
of lines on a point.

Figure 32: Rotation of a plane about a line <+
Translation of a point along a line.

12
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Figure 37: Four point representation of a plane

Fi 35: The pl esented by two
eure ¢ platie T tepresen v 7 — 2 of them are redundant.

points
Y
/N~ Wﬁ_lz} ﬁ_231’ ﬁ3 e’ ﬁ_l'Z 3 .
PR SV B s
Ao
X1 X2 X3 X1’ X2’ X3’
v v v v/ . . .
X1 X2 X3 X1 Figure 38: The distances between adjacent

points are equal to the coefficients of 7 : ciz1 +
coxo + c3x3 = ¢,. That is the equation of the
plane can be read from the picture!

Figure 36: Transfering the values from the X
to the Xy/-axis.
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Figure 41: Portions, 75, , T, of the 2-flats of
5

Figure 39: Polygonal lines on the X; through Xg 7 construited from the polygonal lines joining

_1; =1; =
axes representing randomly selected points on a 71277237734

5-flat 7® C RS
74:—/~‘
e N
. L : #\/”/ "
" o T
X S R e o N
i . Fi— ) [
.
- SR K
= T
\
n X2 X3 X4 X5
\

X1 X2 X3

Figure 42: Portions, 7?%34, ,7?:2)’:’;,45, of the 3-flats
of the 1-flats of ©f 7® constructed from the polygonal lines ob-
tained by joining 72, Tahy , Tays. Nothing yet
... but wait!

Figure 40: Portions, 7?%5, ,Tr%é,
7° constructed from the polygonal lines shown

in Fig. 39. No pattern is evident.
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Figure 43: This is it! Portions, T 5s4s, ; Tobuses

of the 4-flats of 7 constructed from the polygo-
nal lines joining 7??534 , ﬁ§§45 , 7?3256 , showing that
the original points whose representation is shown
in Fig. 39 are on a 5-flat in RS. The remain-
ing points of the representation are similarly ob-
tained.

Woci234 Mrosase
Miozase . Tazaser’ “161’2'3’4L5']

-1

112/,

Figure 45: The recursive construction.

M3as6172” “)4561’2’5’

X1 X2 X3 X4 X5 X% X1’ X2’ X3 X X5' X

Figure 44: The full representation of 7°. The
coefficients of it’s equation are still the distances
between consecutive by indices points.

15

Figure 46: Rotation of a 2-flat (plane) about a
1-flat(line) in R? using the point representation.
Notice the cases where some coefficients of the
equation of the plane vanish.



Figure 47: Polygonal lines representing a ran-
domly selected set nearly coplanar points (i.e.
on a “slab”)

" — Figure 49: Close clusters from the intersection
e of the lines shown in Fig. 48

N
/

X2 X3 X1

=

Figure 48: Representation of lines formed from
the points shown in Fig. 47. The pattern for
“near-coplanarity” is very similar to that ob-
tained from coplanarity
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DATAMINING

Visual Data Mining

Selected Examples — an effort will be made to
match the audience’s interests

A Geometric Classifier

Classification is a basic task in data analysis
and pattern recognition and an algorithm accom-
plishing it is called a Classifier. The input is a
dataset P and a designated subset S. The out-
put is a characterization, that is a set of condi-
tions or rules, to distinguish elements of S from
all other members of P. With parallel coordi-
nates a dataset P with N variables is transformed
into a set of points in N-dimensional space. In
this setting, the designated subset S can be de-
scribed by means of a hypersurface which en-
closes just the points of S. In practical situations
the strict enclosure requirement is dropped and
some points of S may be omitted (“false nega-
tives”), and some points of P — S are allowed
(“false positives”) in the hypersurface. The de-
scription of such a hypersurface is equivalent to
the rule for identifying, within some acceptable
error, the elements of S. This is the geometri-
cal basis for the classifier presented here. The
algorithm accomplishing this entails:

¢ use of an efficient “wrapping” algorithm to
enclose the points of S in a hypersurface S;
containing S and typically also some points
of P— S;s0 S C Sy, of course such an 57 is
not unique.

the points in (P — S) NSy are isolated and
the wrapping algorithm is applied to enclose
them, and usually also a few points of Si,
producing a new hypersurface So with § D

(Sl - SQ),

{ the points in S not included in S; — Sy
are next marked for input to the wrapping
algorithm, a new hypersurface S3 is pro-
duced containing these points as well as
some other points in P — (S] — S2) resulting
insScC (Sl — 52) U 53,

{ the process is repeated alternatively produc-
ing upper and lower containment bounds for
S; termination occurs when an error crite-
rion (which can be user specified) is satisfied
or when convergence is not achieved.

It can and does happen that the process does
not converge when P does not contain sufficient
information to characterize S. It may also hap-
pen that S is so “porous” (i.e. sponge-like) that
an inordinate number of iterations are required.
On convergence the output is a description of
the hypersurface containing S the rule is given
in terms of the minimum number of variables
needed to describe S without loss of information.
Unlike other methods, like the Principal Compo-
nent Analysis (PCA), the classifier discards only
the redundant variables. It is important to clar-
ify this point. A subset S of a multidimensional
set P is not necessarily of the same dimension-
ality as P. So the classifier finds the dimension-
ality of S in terms of the original variables and
retains only those describing S. That is, it finds
the basis in the mathematical sense of the small-
est subspace containing S, or more precisely the
current approximation for it. This basis is the
minimal set M, of variables needed to describe
S. We call this dimensionality selection to dis-
tinguish it from dimensionality reduction which
is usually done with loss of information. Retain-
ing the original variables is important in the ap-
plications where the domain experts have devel-
oped intuition about the variables they measure.
The classifier presents M, ordered according to a

17



criterion which optimizes the clarity of separa-
tion. This may be appreciated with the example
provided in the attached figure, in addition.

The implementation allows the user to select a
subset of the available variables and restrict the
rule generation to these variables. In certain ap-
plications, as in process control, not all variables
can be controlled and hence it would be useful
to have a rule involving such variables that are
“accessible” in a meaningful way. There are also
two options available :

e cither minimize the number of variables
used in the rule, or

e minimize the number of steps, in terms of
the unions and (relative) complements, in
the rule.

The classifier provides:

e an approximate convex-hull boundary for
each cavity is obtained,

e utilizing properties of the representation of
multidimensional objects in ||-coords, a very
low polynomial worst case complexity of
O(N?|P|?) in the number of variables N
and dataset size |P| is obtained; it is worth
contrasting this with the often unknown, or
unstated, or very high (even exponential)
complexity of other classifiers,

e an intriguing prospect, due to the low com-
plexity, is that the rule can be derived in
near real-time making the classifier adap-
tive to changing conditions,

e the minimal subset of variables needed for
classification is found,

18

e the rule is given explicitly in terms of con-
ditions on these variables, i.e. included and
excluded intervals, and provides “a picture”
showing the complex distributions with re-
gions where there is data and “holes” with
no data; that can provide significant insights
to the domain experts,

The dataset chosen to illustrate has two classes
to be distinguished consisting of pulses mea-
sured on two types of neurons in a monkey’s
brain (poor thing!). There are 600 samples with
32 variables. Remarkably, convergence was ob-
tained and required only 9 of the 32 parameters.
The resulting ordering shows a striking separa-
tion. In the attached figure the first pair of vari-
ables 1,y originally given is plotted showing
no separation. In the adjoining plot the best
pair x11,Z14, as chosen by the classifier’s order-
ing, shows remarkable separation. The result
shows that the data consists of two “banana-
like”! clusters in 9-D one (the complement in
this case) enclosing the other (class for which
the rule was found). Note that the classifier can
actually describe highly complex regions. It can
build and “carve” the cavity shown. It is no
wonder that separation attempts in terms of hy-
perplanes or nearest-neighbor techniques can fail
badly on such datasets. The rule gave an error
of 3.92 % using train-and-test with 66 % of the
data for training).

'Perhaps the monkey was dreaming about bananas
during this fateful experiment ...
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Representing Curves

Generalized Conics -~ CONVEX SETS
(The six cases) and other dualities

Figure 51: Case 1 — Estar (ellipse-like) to hstar
(hyperbola-like), Dual of case 4. On Model of
Projective Plane (abbreviated as MMP) the es-
tar has no ideal points (i.e. does not contain any
diameters of the cap) while the hstar has two
corresponding to its asymptotes.

Figure 52: Case 2 — Pstar (parabola-like) to
pstar, self-dual

On MMP a pstar is an estar with one diameter.
This corresponds to the direction (ideal point)
the pstar opens towards /.

20



Figure 53: Case 3 — Pstar to hstar, Dual of
Case 5 (not shown). A pstar having a support-
ing line with slope 1 is mapped into an hstar
with one vertical asymptote (and where every
vertical intersects only one chain in 1 point) and

conversely.

Figure 55: Case 6 — Hstar to hstar, Self-dual
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Figure 56: Cusps are transformed into inflection
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Figure 54: Case 4 — Hstar to estar, Dual of 1
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Figure 57: A family of line transformations
Fixing r and varying © defines a family of lines
tangent to the circle whose parallel coordinate
representation is a hyperbola while fixing ©® and
varying r produces vertical lines.

Line Neighborhoods

Figure 58: Line neighborhood in orthogonal and
parallel coordinates

An unbounded region (on the right) is replaced
by a bounded one.

22

Figure 59: Several line neighborhoods
Here the transformed neighborhoods are dis-
tinct.
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Figure 60: A sphere in R®
Figure 62: Model of a country’s economy
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Figure 63: Competition for labor between the
Fishing & Mining sectors — compare with previ-
ous figure
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Figure 61: Finding a Feasible Point for a Process
Represented by a Hypersurface
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