
A `plug and play' approach to testing virtual

environment interaction techniques

James S. Willans and Michael D. Harrison

Human-Computer Interaction Group

Department of Computer Science, University of York

Heslington, York YO10 5DD, U.K.

e-mail: fJames.Willans,Michael.Harrisong@cs.york.ac.uk

Abstract. It is generally agreed that the usability of virtual environ-

ment interaction techniques is very poor. One reason for this is because

toolkits used by virtual environment developers supply a small number

of prede�ned techniques which are expected to be used regardless of con-

text. In addition, there is no software to facilitate the design and testing

of interaction techniques akin to that found for the appearance of the

environment. We have developed the Marigold toolset to aid in the sys-

tematic design, testing and re�ning of virtual environment interaction

techniques. The toolset uses a visual hybrid speci�cation as a starting

point. In this paper we demonstrate how Marigold can be used to aid in

determining the suitability of interaction techniques by the rapid testing

of alternatives in a `plug and play' style.

1 Introduction

Much of the work concerning virtual environments has addressed technological
issues such as the development of new toolkits and methods for distributing the
computational load inherent in such systems. However, the usability of virtual
environments is generally poor largely because of the interaction techniques used
within such environments [3]. This situation can be attributed to two main
reasons. Firstly, popular virtual environment toolkits such as Superscape [19] and
dVise [6] provide a small number of prede�ned techniques (bound to physical
devices) which are expected to be used regardless of context. Secondly, while
there is much software available which facilitates the design and prototyping
of the environment's appearance (for example 3DStudio [5]), the corresponding
facilities for interaction techniques do not exist.

Stanney notes that `if humans cannot perform e�ectively within virtual envi-
ronments, then further pursuit of the technology may be fruitless' [17]. If virtual
environments are to be useful in a wider context, it is important to ensure their
usability by carefully determining appropriate interaction techniques for the in-
dividual requirements of the environment. For instance, consider the following
scenario: a technique is required for an environment that allows a potential house
buyer to explore a residential area. There are many interaction techniques which
will support such navigation, but the important question is which technique is

suitable in this context? Such questions are di�cult to answer with any degree of
certainty using abstract designs. This is because the diversity of virtual environ-
ments means that each environment has a large number of unique factors that
need to be considered when designing the interaction technique. For the same
reason, guidelines for designing interaction techniques, such as those presented
in [2], can only give an outline indication of the design. We suggest that an ex-
ploratory approach is more desirable, where the developer can design techniques
and test these with users using a prototype of the whole environment. The ad-
vantages of this are that the interaction technique is validated in the context of
all the elements of the environment (world objects and viewpoints, for instance)
and users are involved within the design process.

In this paper we present the Marigold toolset which supports a rapid tran-
sition between the design and testing of virtual environment interaction tech-
niques. This process begins with a visual speci�cation of the desired interaction
technique which is then `plugged' into a virtual environment. This is described
in section 2. In section 3 we discuss and demonstrate how the process aids rapid
exploration of alternative techniques. Section 4 examines related work. Finally,
in section 5 we present our conclusions.

2 Marigold

We have developed the Marigold toolset to aid in the rapid designing, testing and
re�ning of virtual environment interaction techniques. The toolset is designed to
support a similar process to the Statemate tool [8] (based around the statechart
formalism [7]) that provides a means of visually specifying the behaviour of
dynamic systems. This behaviour can then be explored interactively. Although
Marigold currently only supports navigation techniques, we are extending it to
support selection and manipulation techniques.

Marigold consists of two tools. The interaction technique builder (ITB) sup-
ports visual speci�cation of an interaction technique using the notation presented
in [15, 16]. From the ITB a stub of the interaction technique is generated. This
stub is an environment independent description of the interaction technique. By
this, we mean that it does not make commitments to the inputs and outputs of
the technique. The second tool, the prototype builder (PB), provides a visual
method of `plugging' the generated stubs of interaction techniques into the other
elements of the virtual environment (e.g. the devices and visual renderings). The
code for the virtual environment is automatically generated from the PB.

This approach is rapid for a number of reasons. Firstly, the concurrency
inherent in virtual environment interaction techniques is captured in the nota-
tion. Consequently, the developer can easily and accurately describe concurrent
behaviour. Secondly, both tools verify automatically that the speci�cations are
semantically correct, hence there is very little chance that the automatically gen-
erated code will fail to produce any results. Finally, as the interaction techniques
are de�ned in an environment independent form, it is very easy for developers

to `plug and play' interaction techniques to determine their suitability within
varying environment con�gurations.

2.1 The speci�cation formalism and interaction technique builder

Virtual environments can be thought of as consisting of a hybrid of continu-
ous and discrete components [10]. The hybrid speci�cation utilised by the ITB
was speci�cally developed for the speci�cation of virtual environment interac-
tion techniques and is described in [15]. The notation uses Petri-nets [14] to
describe the discrete behaviour and a newly developed extension to describe
the continuous behaviour. Like Statecharts [7], the formalism is not concerned
with the implementation of the states, only the behavioural ordering (what can
happen and in what sequence). This reduces complexity and allows insight into
requirements on the design rather than a premature focus on implementation.

We will describe the speci�cation formalism by way of an example. The mouse
based
ying interaction technique enables
ying through a virtual environment
using the desktop mouse. Variations of this technique are used in many desktop
virtual environment packages (e.g. the virtual production planner [1] and VRML
[4]). One variation works as follows. The technique is initiated by pressing of the
middle mouse button and moving the mouse away from the clicked position.
The user's speed and direction is directly proportional to the angle and distance
between the current pointer position at the point the middle mouse button was
pressed. Flying is deactivated by a second press of the middle mouse button.

The hybrid speci�cation of the mouse based
ying interaction technique is
shown in �gure 1 within Marigold ITB1. The technique has one input: mouse,
and one output: position. When the middle mouse button is pressed the middle

m/butt sensor is activated and the start transition �red (1). The start transi-
tion enables the continuous
ow which updates origin with the current mouse
position (2) (taken from the mouse plug). A token is then placed in the idle

state. When the out origin sensor detects that the mouse has moved away from
the origin position, transition (3) is �red which moves the token from the idle

state to the
ying state. A token in the
ying state enables the continuous
ow
which calculates the translation on position using the current mouse position
and the origin (4). This is then continuously outputted to the the position plug.
Whenever the
ying state is enabled, the inhibitor connecting this state to the
start transition implies that the start transition cannot be re-�red. When the at

origin sensor detects that the mouse has moved back to the origin position, a
transition is �red which returns the token from the
ying state to the idle state
closing the continuous
ow and halting the transformation on position. Regard-
less of whether the technique is in the idle or the
ying state, the technique can
be exited by the middle m/butt sensor becoming true and �ring either one of
the two exit transitions (5 or 6).

1 The numbers are not part of the speci�cation and have been annotated to the screen-

shot.

Fig. 1. The mouse based
ying hybrid speci�cation within the ITB

The toolbar at the top of the diagram contains an option for each of the
node and link components constituting the speci�cation. The ITB enforces the
semantics of the speci�cation and only allows legal connections between com-
ponents. Additionally, the tool also tries to maintain clarity of speci�cation by
intelligent routing of the visual connections between the components.

There are two stages to the re�nement of an interaction technique speci�ca-
tion to a prototype. The �rst stage takes place in the ITB and involves adding
a small amount of C/Maverik (virtual environment library [9]) code to some of
the nodes within the speci�cation. There are three types of code that can be
added, we will describe these in the context of the mouse based
ying example:

{ variable code - this is placed in the plugs of the speci�cation (). It describes
what kind of information
ows in and out of the plugs and, hence, around
the speci�cation. Illustrated in �gure 2 (a) is the code added to the mouse

plug. An integer variable represents the state of the mouse buttons and a
vector represents the mouse position.

{ conditional code - this is placed in some transitions () and all sensors ().
It describes what state the data
owing into that component must adhere
to in order for the component to �re. Illustrated in �gure 2 (b) is the code
added to the middle m/but sensor. The ITB informs the developer which
data
ows in and out of the node (i.e. what data they are able to access

within their code). This code speci�es that when the middle mouse button
is pressed a boolean value is returned.

{ process code - this is placed in all transformers (
~
) and denotes how the

information
owing into the transformer is transformed when enabled. Il-
lustrated in �gure 2 (c) is the code added to the position transformer. This
describes how position should be transformed using the current mouse posi-
tion and the origin position.

Fig. 2. a) Adding variables to the mouse input plug b) Adding conditional code to the

middle mouse button sensor c) Adding process code to the position transformer

2.2 The prototype builder

The Marigold PB provides a method of visually `plugging' an interaction tech-
nique stub generated from the ITB with the other elements of the virtual envi-
ronment such as devices, viewpoints and visual renderings. Shown in �gure 3 is
the mouse based
ying interaction technique example within the PB integrated
into an environment. As can be seen in this illustration, each node has a set
of variables, the variables for the mouse based
ying technique (mbf) are those
placed in the techniques plugs within the ITB. What cannot be seen, from this
black and white �gure, is that each variable has a background colour denoting
whether it an input or output variable. The relation between the environment
elements is expressed by wiring these variables together using transitions. The
tool automatically veri�es that the variables being joined are the correct type.

Once the speci�cation is complete, the code for the virtual environment (in its
entirety) can be automatically generated.

Within the mouse based
ying example (�gure 3), we have linked a desktop

mouse as an input to the technique and a viewpoint as an output from the tech-
nique. Additionally, we have inserted a number of world object visual renderings.
However, since these remain static during interaction, they are not linked to any
other elements of the environment.

Fig. 3. The prototype speci�cation for mouse based
ying within the PB

3 Discussion

There are two main values to the approach introduced in section 2. Firstly,
the hybrid speci�cation can be veri�ed for desirable usability properties. This
is out of the scope of this paper and is discussed in [20]. Secondly, interaction
techniques can be rapidly built and tested. To exemplify this, the mouse-based

ying example discussed in the section 2 was inserted into an environment for
the navigation of a hypothetical planned housing estate. Consider a converse
possibility of plugging the two handed
ying interaction technique [12] into this
example. The existing interaction technique is deleted from the PB speci�cation
and the new technique stub added and wired, where necessary, to the other

Fig. 4. The two handed
ying interaction technique prototype speci�cation

nodes. Illustrated in �gure 4 is the PB with the same visual renderings and
viewpoints as the previous example (shown in �gure 3), however wired to the
new interaction technique [12].

The two handed
ying interaction technique, detailed in [12], enables
ying
through a virtual environment in a direction determined by the vector between
the user's two hands and at a speed relative to their hand separation. Movement
can be halted as the user brings their hands together. The principal idea behind
the technique is to utilise user proprioception.

In addition, the device inputs within the environment have changed. Al-
though the two handed
ying technique is designed for use with two 6 degrees
of freedom trackers (Polhemus magnetic trackers, for instance), we have sub-
stituted two pseudo devices into the technique so that it can be tested using
the devices available on a desktop workstation (the keyboard controlling the left
hand and the mouse controlling the right hand). As it is not possible to feel the
relative position of these devices proprioceptively, they are also mapped onto cur-
sors within the environment so that their relative positioning can be perceived
visually within the viewpoint. The additional keyboard mapping (keyboard) acti-
vates and deactivates the technique. Such pseudo devices con�gurations provide
a means for developers to `play' and test whether the technique is semantically
correct. However, these would be substituted for physical devices to allow users
to `play' so that the usability of the technique can be evaluated.

Such `plug and play' substitution is very simple using the PB and substan-
tially simpler, clearer and faster than experimentation by direct alteration of
program code. Although it is di�cult to appreciate the behaviour of a virtual
environment from a static image, the screenshot of the environment generated
from the prototype speci�cation shown in �gure 4 is illustrated in �gure 5.

Fig. 5. The virtual environment as generated from Marigold PB using the two handed

ying interaction technique

4 Related work

A method for designing interaction techniques is presented in [2]. The main moti-
vation behind this work is to provide a method of �tting interaction techniques to
the needs of the task and a framework is presented which supports this process.
The framework results in a high level description of the components constituting
the required interaction technique(s). The work presented here complements this
process because it is able to re�ne these high level descriptions to prototypes and
support experimental veri�cation that the designed technique is indeed correct.

A number of methods have been developed which relate visual speci�cations
to the implementation of virtual environment behaviour. In [11, 13] Jacob et al.
present a user interface management system (UIMS) which links a visual hybrid
notation to the behaviour of a virtual environment. Hence, changes made in the
speci�cation are propagated to the implementation. Our work di�ers from this
in that they have an implementation as a starting point which is linked to the
higher level notation (in the traditional UIMS manner), however we re�ne from
the speci�cation to the prototype. Similarly, the work presented in [18] provides

a method of visually constructing the behaviour of virtual environments while
immersed within the environment. The visual notation provides a very high level
set of components which are plugged together to form a speci�cation. However,
the high-level nature of the components severely limits what can be achieved.

5 Conclusions

In this paper we have identi�ed that the careful design and selection of virtual
environment interaction techniques is a key factor in developing usable virtual
environments. We have presented a tool supported approach, motivated by an
existing process, which provides the means to rapidly and systematically de-
sign, test and re�ne interaction technique. We have demonstrated how this `plug
and play' style of development can support the rapid exploration of alternative
interaction techniques.

Acknowledgements

We are grateful to Jon Cook at the Advanced Interface Group at the University
of Manchester for his help with the details of Maverik. We are also grateful to
Shamus Smith and David Duke for their comments on this work.

References

1. BBC/Colt International. Virtual production planner, 1997.

2. D.A. Bowman. Interaction Techniques for Common Tasks in Immersive VirtualEn-

vironments - Design, Evaluation and Application. PhD thesis, Georgia Institute of

Technology, 1999.

3. D.A. Bowman and L.F. Hodges. User interface constraints for immersive virtual

environment applications. Technical report, Graphics, Visualisation and Usability

Center, Georgia Institue of Technology, 1995.

4. Rikk Carey and Gavin Bell. The Annotated VRML 2.0 Reference Manual. Devel-

opers Press, 1997.

5. Autodesk corporation. 3DStudio. 111 McInnis Parkway, San Rafael, California,

94903, USA.

6. Pierre duPont. Building complex virtual worlds without programming. In

Remco C. Veltkamp, editor, Eurographics'95, pages 61{70, 1995.

7. David Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8:231{274, 1987.

8. David Harel, Hagi Lachover, Amnon Naaad, Amir Pnueli, Michal Politi, Rivi Sher-

man, Aharon Shtull-Trauring, and Mark Trakhtenbrot. STATEMATE: A working

environment for the development of complex reactive systems. IEEE Transactions

on Software Engineering, 16(4):403{413, July 1990.

9. Roger J. Hubbold, Xiao Dongbo, and Simon Gibson. Maverik - the Manchester

virtual environment interface kernel. In Martin Goebel and Jacques David, editors,

Proceedings of 3rd Eurographics Workshop on Virtual Environments. SpringerVer-

lag, 1996.

10. Robert J.K. Jacob. Specifying non-WIMP interfaces. In CHI'95 Workshop on the

Formal Speci�cation of User Interfaces Position Papers, 1995.

11. Robert J.K. Jacob. A visual language for non-wimp user interfaces. Proceedings

IEEE Symposium on Visual Languages, pages 231{238, 1996.

12. Mark R. Mine, Fredrick P. Brook Jr, and Caro H.Sequin. Moving objects in space:

Exploiting proprioception in virtual-environment interaction. In SIGGRAPH 97,

1997.

13. S.A. Morrison and R.J.K. Jacob. A speci�cation paradigm for design and im-

plementation of non-wimp human-computer interaction. In ACM CHI'98 Human

Factors in Computing Systems Conference, pages 357{358. Addison-Wesley/ACM

Press, 1998.

14. Wolfgang Reisig. Petri Nets. EATCS Monographs on Theoretical Computer Sci-

ence. Springer-Verlag, 1982.

15. Shamus Smith and David Duke. Virtual environments as hybrid systems. In

Eurographics UK 17th Annual Conference, 1999.

16. Shamus Smith, David Duke, and Mieke Massink. The hybrid world of virtual

environments. Computer Graphics Forum, 18(3):C297{C307, 1999.

17. Kay M. Stanney, Ronald R. Mourant, and Robert S. Kennedy. Human factors

issues in virtual environments. Presence, 7(4):327{351, August 1998.

18. Anthony J. Steed. De�ning Interaction within Immersive Virtual Environments.

PhD thesis, Queen Mary and West�eld College, 1996.

19. Superscape Corporation. Superscape, 1999. 3945 Freedom Circle, Suite 1050, Santa

Clara, CA 95054, USA.

20. James S. Willans and Michael D. Harrison. A toolset supported approach for

designing and testing virtual environment interaction techniques. International

Journal of Human-Computer Studies (submitted), 1999.

