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Abstract
The algorithmic and evolutionary art movements within computer-generated art have helped spur interest in eval-
uating images on the basis of their aesthetic merit. When attempting to use non-interactive techniques to address
this issue, two problems arise: (1) designing metrics that have explicit computational representations, and (2) es-
tablishing that such metrics actually fulfill their intended purpose. We survey our experiences in designing metrics
for non-interactively guiding image evolution to obtain aesthetic images and we propose a taxonomy for metric
frameworks. We also discuss some issues relevant to validating such metrics.

Categories and Subject Descriptors(according to ACM CCS): J.5 [Computer Applications]: Arts and Humanities,
I.4.7 [Image Processing and Computer Vision]: Feature Measurement

1. Introduction

The literature on perception, digital art, and art criticism pro-
vides limited guidance and even fewer suggestions for help-
ing researchers design metrics for evaluating images on the
basis of their aesthetic merits. In this paper, by restricting out
attention to the problem domain of generative art, we first
survey previous work on using metrics to guide aesthetics
in a non-interactive evolutionary setting and then, by focus-
ing on the generative technique known as “evolving expres-
sions,” we discuss several ways we have gone about imple-
menting such metrics. We also consider the design of met-
rics for biologically inspired generative methods, and then
we propose a taxonomy of design methods for metrics. Al-
though many researchers implementing such metrics have
included user testing as a part of “future work,” apart from
the belief that such metrics must be subject to innate social
and cultural biases, few suggestions have emerged for how
to perform constructive testing. We therefore include some
remarks on the problems of validation and user testing.

It is important to make clear at the outset that we are mak-
ing a distinction between devising metrics thatsubstitutefor
one’s artistic expression and thereby serve asextensionsof
the individual artist’s themselves in the way artists such as
Cohen, Knowlton, or Mohr have done [EC02], and devising
general purpose metrics that can be tuned or customized to

evaluate images according to a variety of different aesthetic
criteria.

2. Generative Art

Perhaps because computer-generated abstract art is the least
contentious problem domain, or perhaps because it is easy
to develop test suites of images using generative techniques,
most researchers investigating metrics for aesthetic evalua-
tion of images have focused on non-photorealistic images
obtained using generative methods.

2.1. Chronology of generative techniques

We list several well-known generative art schemes in
roughly chronological order. Our list is not exhaustive, but
we feel it is a useful guide to the literature. Most well-
known among the generative techniques are the line draw-
ings of Dawkins [Daw89], the abstract art of Sims [Sim91],
the organic forms of Latham [TL92], and the dynamical sys-
tem visualizations exhibited as fine art by Field and Golu-
bitsky [FG92]. Less well-known, but indicative of the wide
range of techniques that this domain encompasses, are the
implicit surfaces evolved by Bedwell [BE98], the aesthetic
textures of Ibrahim [Ibr98] and Lewis [Lew01], the aesthetic
patterns of Staudek [Sta03], and the image re-colorings of
Greenfield [Gre04].
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2.2. Origins of metrics

The first attempt to implement a metric for aesthetically eval-
uating a population of images within the context of an evo-
lutionary, generative art system was by Baluja et al [BPJ94].
These researchers attempted to train a neural net to perform
this evaluation task using as training sets images that were
obtained by categorizing the user rankings of images evalu-
ated while users were running an interactive version of their
generative system. Rooke, in unpublished work, evolved ex-
pression trees in such a way that the aesthetic rankings of
the images within the image population made by these trees
coincided almost exactly with his own rankings of the im-
ages in the same population. He then allowed his evolved
population of expressions, or “critics” as he called them, to
control the evolution of images in his generative system. The
ability of his trees to make aesthetics rankings is explained
by the fact that the underlying primitives in the nodes of the
trees were able to make statistical assessments of the im-
ages. Sprott appears to have been the first digital artist to
investigate the use of global complexity measures for aes-
thetically evaluating fractal-like images [Spr96]. Greenfield
is the first to have published about the use of co-evolutionary
predator-prey metrics for evolving images [Gre00a]. More
will be said about this topic in the next section. Finally, it
should also be mentioned here that Machado and Cardoso
made use of neural nets when aesthetically evaluating im-
ages in the image populations evolved by their generative
system [MC98].

3. Evolving Expressions

As a result of his now famous SIGGRAPH ’91 paper
[Sim91], Karl Sims helped spawn a cottage industry of com-
puter artists who have built generative systems based on the
“evolving expressions” technique for creating abstract im-
ages that he first introduced. Early practitioners of this craft
include Rooke, Greenfield, Unemi, Machado, Mount, Row-
bottom, and Musgrave. More recent converts include Ash-
more, Kleiweg, Rowley and Ross. Much of the work of this
cadre of artist-researchers is web accessible.

3.1. Overview of the method

The details of the generative system that we will use here
when considering the problem of aesthetically evaluating
images may be found in [Gre00b] and [Gre02]. It is based on
Sims evolving expressions method. For our purposes, it suf-
fices to view abstract images as being generated from func-
tions whose domain is the unit square and whose range is
the unit interval, In our generative system functions are al-
gebraic expression trees written using postfix notation. This
implies an expression of the form, sayV1 U2 V0 C758
B0 B6, defines a function of two variables,f (V0,V1). The
expression tree has all interior nodes labelled withB’s or
U’s and all leaves labelled withV’s or C’s. TheB’s andU’s

are binary and unary functions respectively selected from the
function library given in [Gre00b]. For the leaves theV’s are
variables and theC’s are constants. A functionf (V0,V1)
gives rise to anN×N pixel image defined with reference
to a color look up table of sizeL whose colors vectors are
c1, . . . ,cL by coloring pixelpi, j with colorck provided

f (i/N, j/N) ∈ [(k−1)/L,k/L).

The principal advantage of using postfix expressions is that
recombination, mutation, and evaluation operators are easy
to implement.

3.2. Co-evolution

In [Gre00a], we described a co-evolutionary method for
evolving gray-scale images using the evolving expressions
set-up we have just described. We viewed a population of
images ashostsfor parasites— 3× 3 digital convolution
filters attached at specificsitesof the image. Parasites were
able to assign a numerical aesthetic value to both host and
parasite by acting as “irritants” in the following manner. The
parasite’s filter was convolved over the 10×10 pixelpatch
of the host determined by the coordinates of the site where
the filter was attached, and then a pixel by pixel comparison
of the result with the underlying image was made. The mag-
nitude of the difference at each pixel determined whether a
point was awarded to the host or to the parasite. The dynamic
in force was that hosts were rewarded for increasing their
“complexity” within the patch in order to ward off parasites
who were rewarded for their ability to be able to “predict”
the functional values of the host based solely on the values
of nearby pixels. The reason why this measure of aesthetic
fitness exerted evolutionary pressures that led to interesting
images is because there was a local-global tension at work
due to the fact that when host genomes reacted to the lo-
cal irritation induced by the parasites their global structure
changed.

Unlike the other generative schemes discussed below, this
scheme is computationally efficient. Moreover aesthetic fit-
ness is not an absolute quantity, but is only defined relative
to the current parasite population, a population that is also
mutating and evolving. For this reason premature evolution-
ary convergence is avoided. As Figure1 shows, due to the
nature of the fitness computation, image entropy is high, and
the style of the co-evolved images is very noisy.

3.3. Fitness functions

In [Gre02], using the same generative system as before, but
now with a color look-up table consisting of 450 colors,
we considered the problem of designing metrics to evaluate
the aesthetics of images based on the geometric characteris-
tics of their compositions. To accomplish this we color seg-
mented a 32×32 thumbnail of the image to yieldm regions
with areasa1, . . . ,am, boundary lengthsb1, . . . ,bm, and re-
gion adjacency countsj1, . . . , jm, indexed so thata1 ≥ a2 ≥

c© The Eurographics Association 2005.

152



G. Greenfield / Designing Metrics

Figure 1: Two co-evolved gray-scale images.

· · · ≥ am and then extracted the following measurements to
help quantify the geometry of the segmentation:

A(s,t) =
t

∑
k=s

(k+1)ak,

B(s,t) =
t

∑
k=s

bk,

J(s,t) =
t

∑
k=s

jk.

Next we defined the fitness of an imageI to be a weighted
linear combination of these terms. This enabled us to explore
the parameterized space of fitness functions of the form

F(I) = wAA(s1, t1)+wBB(s2, t2)+wJJ(s3, t3).

Figure2 shows two evolved images with their correspond-
ing segmentations. Figure3 shows additional examples. All
of these images were evolved using simple fitness functions
such asF(I) = A(2,4)+B(1,m)or F(I) = A(1,1)+J(1,m).

Figure 2: Two images accompanied by their color-
segmented thumbnails that were evolved from user designed
fitness functions.

The point is that our geometric assessments allowed us, as
fitness functiondesigners, to exert evolutionary pressure on
image evolution by biasing it in favor of images with con-
tiguous sequences of regions that were area balanced, deli-
cately intertwined, or even densely connected. Notice how-
ever that fitness was not directly responsible for color con-
tent only image composition because the fitness functions
did not use color components as arguments.

3.4. Multi-objective optimization

To overcome the premature evolutionary convergence that
frequently occurred using the previous method, we next
turned to multi-objective optimization [Gre03b]. Using the
NSGA II algorithm of Debs as a diversity mechanism, we
were able to simultaneously evolve two or moreinteract-
ing subpopulations of images, where each population was
induced according to the above scheme. As Figure4 shows,
we achieved some successes by using “round-robin” fitness
function schemes such as:

F1(I) = 10J(1,25)+B(1,4),

F2(I) = B(1,4)+A(1,4)/5,

F3(I) = A(1,4)/5+10J(1,25).
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Figure 3: Two images evolved using user designed fitness
functions to influence certain composition characteristics.

Figure 5 shows four other examples obtained using other
combinations of the various elementary fitness functions at
our disposal.

3.5. Image re-coloring

To re-color our images, in [Gre04] we evolved color look-up
tables of the form(t1, . . . , tL) where theti ’s were not neces-
sarily distinct colors drawn from our fixed set ofL = 450
HSV color vectors. Again we used color segmentation and
multi-objective optimization, but now we included the color
assessment measureT(i, h) to force regioni to be a color
whose hue component was approximatelyh, and C(i, j)
to force regionsi and j to have complementary hues, in
our fitness functions. With these enhancements, image re-
colorings such as those shown in Figure6 were obtained by
using fitness schemes such as:

F1(I) = A(2,6) ·J(13,25)+C(4,5)

Figure 4: Two images evolved during the same run using
evolutionary multi-objective optimization.

F2(I) = min(T(1,4.2),T(2,3.7))·B(1,4).

4. Biologically Inspired Examples

In this section we survey our efforts to design aesthetics met-
rics for generative art that is loosely based on biologically
inspired processes.

4.1. Ant colony optimization

Following Monmarché et al [ABM∗03], in [Gre05] we con-
sidered an ant colony optimization simulation where a small
number of virtual ants are allowed to roam on anN×N pixel
grid seeking and depositing color. By evaluating the individ-
ual antsbehaviorduring the “painting” phase, we were able
to remove ants and breed replacement ants for the popula-
tion in such a way that when the underlying grid was re-set
to white, the ants could improve the aesthetic quality of their
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Figure 5: Four images evolved using evolutionary multi-
objective optimization.

Figure 6: Original image at upper left together with three
re-colorings evolved using evolutionary multi-objective op-
timization.

paintings. Since we were indirectly controlling the composi-
tion of the ant painting by evolving ant behaviors, for each
ant we measurednv, the number of distinct cells the ant
visited during the period allotted for painting, andnf , the
number of times scent following occurred. Figure7 shows
two ant paintings that were evolved in under twenty gen-
erations using ant populations of size twelve, grids of size
200× 200, allotting 2400 time cycles for ants to complete

Figure 7: Two ant paintings evolved using ant fitness func-
tions F(A) = nv +nf and F(A) = nv ·nf respectively.

their painting. Once again, simple fitness functions such as
F(A) =nv+nf andF(A) =nv ·nf were used. Note also that
the color schemes for the ant paintings were not specified
explicitly but were evolved in response to evolutionary pres-
sures exhibited on initial populations of ants whose pseudo-
randomly generated genomes coded for the colors to deposit
and seek.

4.2. Cellular morphogenesis

Following Eggenberger [Egg97], in [Gre03c] we consid-
ered the evolution of aesthetically pleasing visualizations of
cellular morphogenesis processes of conglomerates of cells
where cell activities were governed by a regulatory gene
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structure. To oversimplify, anN×N substrate was filled with
two types of cells. Each cell contained four products, or mor-
phogens, whose concentrations affected the regulatory genes
which in turn affected the production and diffusion of addi-
tional morphogens. By initializing cells with trace amounts
of morphogens and applying a morphogen gradient to the
external cell boundary, over time an outside-in cell activa-
tion pattern developed as shown in Figure8. If we label the
morphogens (R)ed, (B)lue, (G)reen, and (C)ommunication,
and we letsigmaX denote the standard deviation of mor-
phogenX, nd denote the number of cells that are dormant
after the prescribed number of developmental cycles has oc-
curred, andna denote the number of cells that altered their
morphogen production behavior during the last developmen-
tal cycle, then

by letting the fitness function be

F(I) =
σC ·na ·min(σR,σG,σB)

1+nd
,

we were able to evolve visualizations such as those shown
in Figure 9. This fitness function uses theσC term to en-
sure diffusion of cell products, penalizes cell patterns with
too many dormant cells, and thanks to the presence of thena

term ensures that cellular activity has not reached a steady
state. Moreover, since it only requires at least one color mor-
phogen be present in varying concentration levels, it too does
not directly control for color.

Figure 8: A time series showing the outside-in development
of a 20× 20 cell pattern after 50, 150, 250, and 350 time
steps.

5. Metric Design

Based on our experiences, we conclude that metric design
for aesthetic purposes is a two-stage process. First, one must

decide what statistical measurements should be acquired
from the images themselves. Second, one must decide how
to combine those measurements into an aesthetic evaluation
tool. In other words, we do not feel a metric is simply a func-
tion F(I), whereI is an image, but rather we feel it is an
assessmentframeworkderived from functions of the form

F(m1(I),m2(I), . . . ,mr(I)),

where eachmi(I) is a carefully chosen image assessmentpa-
rameter. In our view metric design ismotivatedby consider-
ing cognitive, perceptual, or other psychological factors that
help suggest useful parameters that can be acquired from im-
ages as well as ways to organize them, and thenimplemented
using a practice-based approach that refines fitness calcula-
tion formulas until they meet either subjective or objective
criteria.

6. Metric Taxonomy

We propose a taxonomy for the metric framework we for-
mulated above. We include examples from the literature to
show the kinds of metrics we wish to include in each cat-
egory. Our own work listed under the “learning” category
is not discussed here because its AI implications are beyond
our scope. It is interesting to note that the only examples that
we feel qualify for the “negative feedback” category arise
from biologically inspired artificial life simulations.

• Positive Feedback

– e.g. simulated co-evolution [Gre00a]
– e.g. neural nets [MC98]

• Negative Feedback

– e.g. simulated immune systems [RSMS05]
– e.g. simulated diseases [Dor05]

• Direct Control

– e.g. families of fitness functions [Gre02]

• Indirect Control

– e.g. multi-objective optimization [Gre03b]
– e.g. ant colony optimization [Gre05]

• Learning

– e.g. image analogies [HJO∗01]
– e.g. simulated gaze data [Gre03a]

7. Validating Metrics

Concerning the problem of validating our metrics, we ob-
serve that it is confounded by the fact that any image iden-
tified using a metric is still subject to final user acceptance.
This means validation must be considered in both qualitative
and quantitative terms: Did a metric successfully identify
images meeting the aesthetic criteria? How often did it suc-
ceed in doing so? A frequently heard suggestion is to com-
pare automated evaluation of an image population withartist
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rankings. This means dividing testers into two groups: those
with, and those without, artistic training. Although there is
some evidence that the viewingbehaviorsdiffer for these
two groups, and the viewingpreferencesdiffer for these
two groups, there is no evidence that their aesthetic judg-
ments differ because judging criteria are rarely specified.
Moreover, in an evolutionary setting, it is easily argued that
user-assigned aesthetic fitness is non-objective because im-
age rankings are neither reproducible nor constant over time
due to such factors as fatigue and boredom. We propose that
metric validation by user testing cannot occur until valida-
tion of “users” occurs. In this vein, a recent experiment by
Linkov and Staudek [LS04] organizing testers into aesthetic
groups based on their preferences, and then analyzing the
characteristics of those groups is of interest. It could form
the basis for an approach that first identifies whether a test-
ing groupshouldbe able to determine if a proposed metric
is capable of successfully selecting images on the basis of,
say, “complexity” or “symmetry.”

8. Conclusions

We surveyed some of our work on designing metrics to au-
tomatically evaluate the aesthetic merits of images belong-
ing to populations evolved using evolutionary, generative art
methods. We proposed a taxonomy for metric design. We
briefly considered the problem of metric validation and user
testing. Clearly this work is only in its beginning stages.
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