
Computer Graphics Curriculum: a Programming Approach

D. Sobczyk & M.-S. Touzeau & J.-J. Bourdin

Laboratoire d’Informatique Avancée de Saint-Denis
Université Paris 8, France

{dom,mst,jj}@ai.univ-paris8.fr

Abstract

At University Paris 8 the computer science curriculum is focused on programming as a good technique to improve

the skills of students and to improve the success of studies. It has been reinforced when France adopted the Bologna

requirements. This approach is well adapted to our computer graphics courses. The results of these courses are

discussed.

Categories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: K.3.2 [Computer and
Information Science Education]:

1. Introduction

As most computer graphics curriculums are developed for
students of various backgrounds (major or non-major, com-
puter science degree or computer and arts degree. . .), pro-
gramming is no more the key of teaching computer graphics.
This paper will present an example of the use of intensive
programming for teaching computer graphics.

2. Background

After many workshops on computer graphics education,
Coimbra in1999 [Cun99], Bristol in 2002 [Cun02],
Hangzhou in 2004 [CHLS04] and Vienna in
2006 [BCFH06], the definition of a common computer
graphics curriculum remains a goal to be achieved. In
Vienna [BCFH06] the question of when to start teaching
GPU programming was raised. With good reason, some
of the attendees wanted this teaching to begin after the
beginning course while others with as good reasons thought
that as really too early. More generally the question of the
part of programming in our curriculum has to be handled
carefully. It is not only the question of which programming
language to teach but also the simple idea of programming
as a learning tool.

We will not pretend to circumvent the whole of this sub-
ject but only to give the first ideas to launch a debate on these
questions.

3. A programming curriculum

The computer science curriculum of our university is ori-
ented on programming. This choice has been made a long
time ago and confirmed when we had to adapt our curricu-
lum accordingly to the Bologna requirements. The reader
may refer to Fuller et al. paper [FPA∗06], to get an insight of
the consequences of the requirements, but we can summarize
the main objectives as:

1. the adoption of a common framework of readable and
comparable degrees, (also through the implementation of
the Diploma Supplement);

2. the introduction of undergraduate and postgraduate levels
in all countries, with first degrees no shorter than 3 years
and relevant to the labour market;

3. ECTS-compatible credit systems also covering lifelong
learning activities;

4. a European dimension in quality assurance, with compa-
rable criteria and methods;

5. the elimination of remaining obstacles to the free mo-
bility of students (as well as trainees and graduates)
and teachers (as well as researchers and higher educa-
tion/administrators).

The second point made a great difference in France as we
had previously a two-years long “DEUG” and a one-year
long “licence”. It was not possible to put them together and
present it as the new undergraduate curriculum. We had to

EUROGRAPHICS 2008 Education Papers

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

 D. S o b czyk & M .-S . To u zea u & J.-J. Bo u rd in / a Prog ra mmin g Ap p ro a ch

adapt also to the labour market and it is not that easy with
a three years long curriculum. Our bachelor degree is three
years long and therefore the master degree that follows is
two years long.

The first year includes four courses on programming:

• Introduction to programming languages. It seems to be a
very broad presentation of the languages but in fact it’s
mostly the place where students have to learn how to
write, compile, execute and correct a program. The cur-
rent programming environment is the old emacs, a local
Lisp is presented and gcc is used. Such languages as
pyhton and prolog are also presented. Even for very
simple functions our students have to spend a lot of time
at debugging process. The main reason is that in early
classes they have not learnt to write (even in French) with-
out mistake.

• Methodology of functional programming. In this class stu-
dents lear how to program with Lisp.

• Imperative programming, meaning a C programming
class.

• Logical programming or object oriented programming.

To validate these courses students have to present a project.
The projects are expected to take from ten to twenty work
hours. Usually most of the students work more than twenty
hours and some results are impresive. When they have
worked that much students seem to have taken the habit of
spending most of their time in front of computers trying to
make better and better programs in order to impress their
teachers or, at least, their fellow students.

The teachings of such matters as algorithmic or data struc-
tures begins after this first year. Therefore almost every al-
gorithm presented in class has to be tested by the students.
In second year a "project based learning" course has been
introduced [MGJ06]. It is mostly a course on working as a
team and designing a project, step by step, from scratch to
the writing of the users’ manual.

In our curriculum the computer graphics courses are given
during the third year. A student may take up to three courses:
"graphics programming", "image synthesis" and "GPU pro-
gramming". Each of them represent 40 hours of class plus a
large amount of personal work. The first is a prerequisite for
the third. In our bachelor (three years) degree, none of these
courses can be mandatory. But the first, at least, is very pop-
ular among students. It is included in a module with limited
choice, each student has to take three of the four courses of
the module. In reality, most years, only three of these courses
are effectively on schedule and the graphics programming
course becomes mandatory.

The students express a strong interest in these courses
even if they are not compulsory. For example in 2006-2007,
on 50 students of third year, all of them took graphics pro-
gramming course due to the lack of choice, 15 of them (30%)
took the image synthesis course and 18 of them (36%) took

the GPU programming course. Most of them expressed in-
terest to carry on in a master with strong computer graphics
component and at least one of the majors left our university
to join a more computer graphics master degree.

3.1. Contents of the courses

3.1.1. Graphics programming

At the end of this course the student should be able to use
a modern graphics API to create a graphics application that
can be integrated with other computer applications. In recent
years the API presented has been OpenGL. In the course
these points are studied:

1. OpenGL Machine
2. Geometric drawing
3. Visualization
4. Visualization and colors
5. Lighting
6. Blending
7. Simulating Natural Phenomena

At the end of the course the students have to present a
project. Examples of subjects are:

• Mario Bros like.
"Your program will enable the full 3D play and the editor
ability for new levels of play."

• Star wars like.
"With your program it will be possible to:
pilot a space ship
detect collisions with other ships or asteroids
fight against other ships
change the viewpoint, the textures, etc.

3.1.2. Image synthesis

This course pretends to introduce the whole of computer
graphics. It is meant to cover the introductory course as pre-
sented in Hangzhou in 2004 [CHLS04]. Therefore its con-
tent is really broad:

1. Vision, Images and Colors
2. Image analysis, pixel based rendering

This part uses the second and third chapter of Strothotte
and Schlechtweg’s book [TS02].

3. Fundamentals algorithms
This part includes not only well known algorithms but
also not so well known algorithms (for example Berstel’s
algorithm to compute straight lines).

4. Modeling
5. Rendering

This part even includes NPR as a new way of render a
scene.

At the end of the course a project has to be done by stu-
dents. Examples of these projects are:

c© The Eurographics Association 2008.

D. S o b czyk & M .-S . To u zea u & J.-J. Bo u rd in / a Prog ra mmin g Ap p ro a ch

• Straight lines
Test and compare the running times of the different pro-
grams seen in class (Bresenham’s 1965, Bresenham’s
RLE, Castle and Pitteway’s, Boyer and Bourdin’s, Bers-
tel’s . . .).

• Dithering
Use different dithering methods and compare the results.

• Painting
Modify the pixel based rendering methods seen in class to
obtain an impression of paint when applied on a photo.

• Toon shading
Your program will render a scene through toon shading. It
will then be applied on sequences of images and produce
an animation with, if possible, visual continuity.

As one can imagine some of these projects seem now clearly
outdated and are not frequently choosen by students.

In the figure 1 you can see a screen shot from such a work.
Here it is possible to move the view point toward the statue
or turn around it.

Figure 1: A screen shot from a visualization project.

3.1.3. GPU programming

This course intends to make student program on GPU. As
this is constantly changing, the content is adapted every year.
In 2007 it was:

1. Graphic Processing Units
2. GLSL
3. Toon shading (vertex shader)
4. Toon shading (vertex and pixel shader)
5. Texture mapping
6. Multi-texturing
7. Bump-mapping
8. Shadow volume

Examples of projects:

• Soap bubbles

– Dynamically move the bubbles in a shader.
– Destroy the bubbles after a period of time.

– Add lateral wind.
– Make a game with soap bubbles.

• Cars
To a simple animation of moving cars, add

– puddles of water, with reflections,
– the rain and the waves it generates in the puddles of

water,
– the snow,
– an impression of speed.

• Helicopter

– Simulation of helicopter in flight.
– Add image modifications to improve the speed feeling.
– Add the effect of the rotor move and wind on water.
– Add the effect of the rotor move and wind on grass.

The example presented in figure 1 has been upgraded by
the student to pass this course. Table 1 presents the simple
fragment program that enables to improve the frame per sec-
ond rate of the program.

Figure 2: A screen shot of a helicopter game.

Images 2 and 3 present an helicopter game programmed
by one of our students.

4. Pros and cons of the programming approach

We will now try to summarize some of the reasons teach-
ing staff should or should not use programming as a good
teaching approach.

4.1. Pros

• The main advantage of a programming oriented curricu-
lum is that at any moment the students have the ability to
test their own knowledge, to evaluate what exactly they
know and are able to do. On the other side the teacher
can evaluate the program to know the students have un-
derstood.

c© The Eurographics Association 2008.

 D. S o b czyk & M .-S . To u zea u & J.-J. Bo u rd in / a Prog ra mmin g Ap p ro a ch

varying vec3 normal, lightDir;

void main()

{

float intens;

vec4 couleur;

intens=(max(dot(lightDir,normalize(normal)),0.0));

if (intens > 0.98){

couleur = (gl_Color * 0.2);

}

else if (intens > 0.5){

couleur = (gl_Color * 0.5);

}

else if (intens > 0.25){

couleur = (gl_Color * 0.8);

}

else {

couleur = gl_Color;

}

gl_FragColor=couleur;

}

Table 1: A simple fragment code (couleur == color).

• If one wants to to go farther than the step of basic un-

derstanding, programming is good way to assure a real
mastering of the knowledge [BB06].

• Programming makes students work harder, specially in
computer graphics. They spend hours to develop some
part of the code, to obtain the “perfect” colors or inter-
activity.

• Programming increases the ability to concentrate. Most of
the new generation, in France at least, has real difficulties
to concentrate. They work a little and spend hours talking,
sending and receiving messages about anything else. In
their previous classes they never learned how to concen-
trate. Programming requires concentration and they learn
it well.

• Our young generation lacks of the causality principle.
Whatever the cause, for example it can be related to these
politicians being declared “responsible but not guilty”
even after casualties by the hundred, the fact is our stu-
dents don’t see the relation between action and conse-
quences. With programming they have to understand that
principle.

• Programming is a good way to acquire a sense of antici-
pation.

• Programming has paradoxically good results with stu-
dents in situation of failure. We have, in our university,
students who have failed earlier studies. Most of them
think, at first, that they came here having nothing else to
do. When we ask of them a lot of work as the only way
to success most of them try this challenge. So they work
a lot and the success is unavoidable. We’d say that with

programming the success is more proportional to the work
done than in any other kind of studies.

Figure 3: Helicopter game higher view.

4.2. Cons

• With programming, the learning goes slower. When one
wants to present lots of material during a course, one can
not make every student program everything. For example
only one students programmed all the algorithms given
to quickly compute straight lines (see above) in the three
last years. What do the other ones remember of this class
time?

• Programming requires harder work (as stated above).
Therefore, in many cases, students are not able to do so
much work and simply fail their studies. It is specially the
case with students of low income families. They have to
have a part time job to earn their living and a lot of home
work is not always possible.

• Most times the program doesn’t work perfectly and it’s
such a little error! It may take hours to fix a program even
if one has already understood and make the most of it.
Some students discourage at this point.

There is also the problem of intuitive/rational pedagogical
methods. Programming is, in this case, both old fashioned
and accurate: our domain deeply depends on rationality.

On the other hand, the greater part of pedagogy methods
leads us to more intuitive methods of learning. The recent
ways to teach even maths are less formal and more intuitive.
One could also talk about PBL [MGJ06] as a way to follow
a more intuitive path, less rational or anticipated. The main
goal of the method is to improve results to get more students
with a degree than with a failure in the end. It is not clear
that this approach or even the intuitive approach achieve its
goal of success. It seems to improve the statistics of any one
course without improving the results of a whole curriculum.

5. Computer graphics programming

Now the discussion will be more closely focused on the
computer graphics programming courses. The second course

c© The Eurographics Association 2008.

D. S o b czyk & M .-S . To u zea u & J.-J. Bo u rd in / a Prog ra mmin g Ap p ro a ch

(I mage Synthes is) will not be dis cus s ed her e. I t is eas ily r e-
built as a usual lecture.

For the graphics programming course, the programming
teaching technique has many advantages. Without it students
would not learn how to use a modern API. It means also a
better understanding of the maths used. It is very popular
with students and gives the possibility to significantly im-
prove other projects they have to do. For that purpose this
class should be given at the end of the second year of our
degree.

The main problems are that too much subjects have to be
covered and therefore it is not possible to evaluate students
on significant results on every subject.

For the GPU Programming course, the teacher in charge
in the last years have noted some advantages/inconvenients.

• Some algorithms are too complex for third year students
(multi-passes algorithms for example).

• The API course is too fresh and half of the students are
not ready to take this new step. If 30 students passed the
Graphics programming course, only 18 of them took the
GPU class and only 12 of them were successful.

• The lecture on the GPU hardware has to be long and fas-
tidious. The difference between geometry, vertex, rasteri-
zation, is not clear without being tried.

• This course gives an unique opportunity to use high level
and low level programming.

• The results are interactive and very impressive therefore
the course is popular on students.

• It is a good way to use more evolved maths (matrix inver-
sion. . .).

• There is no need to recompile the program, the simple
edition of the text file suffices to see real changes.

Two main questions remain. If the graphic programming
course is done during the second year, will the GPU pro-
gramming course be easier the following year? Should we
use glman [BC07] or CUDA [CUD] to improve this course?

6. Conclusions

We have presented the curriculum of the bachelor degree,
post Bologna requirements, taught in our university. This
curriculum is programming oriented and the three computer
graphics courses it includes specifically use this ability of
our students. The advantages of a programming oriented cur-
riculum have been discussed and more precisely the GPU
programming course has been discussed. We don’t offer an
ending answer to the problems stated and hope a discussion
at the conference will make us improve our teaching.

References

[BB06] BECKHAUS S., BLOM K. J.: Teaching, exploring,
learning - developing tutorials for in-class teaching and

self-learning. In Education Programme at Eurographics

2006 (2006), Judy Brown W. H., (Ed.), vol. 25-4 of Com-

puter Graphics Forum, pp. 840–841.

[BC07] BAILEY M., CUNNINGHAM S.: A Hands-on En-
vironment for Teaching GPU Programming. In SIGCSE

Conference (March 2007), SIGCSE, pp. 254–258.

[BCFH06] BOURDIN J.-J., CUNNINGHAM S., FAIRÉN

M., HANSMANN W.: Report of the CGE 06 Com-

puter Graphics Education Workshop. Tech. rep.,
EUROGRAPHICS/ACM-SIGGRAPH,
September 2006.
http://education.siggraph.org/conferences/eurographics/
2006/cge-06-report-pdf.

[CHLS04] CUNNINGHAM S., HANSMANN W.,
LAXER C., SHI J.: The beginning com-
puter graphics course in computer science.
http://education.siggraph.org/conferences/eurographics/
cge-04/Rep2004CGEworkshop.pdf,
2004.

[CUD] Cuda. NVIDIA.
http://developer.nvidia.com/object/cuda.html.

[Cun99] CUNNINGHAM S.: Gve’99.
http://education.siggraph.org/conferences/eurographics/
gve-99/reports/papers/gve-fullreport.pdf,
1999. Report of the 1999 Eurographics/SIGGRAPH
Workshop on Graphics and Visualization Education.

[Cun02] CUNNINGHAM S.: Cge 02 - final report,
2002.
http://education.siggraph.org/conferences/eurographics/
cge-02/report.

[FPA∗06] FULLER U., PEARS A., AMILLO J., AVRAM

C., MANNILA L.: A Computing Perspective on the
Bologna Process. ACM SIGCSE Bulletin 38, 4 (December
2006), 142–158.
http://www.cs.kent.ac.uk/pubs/2006/2447.

[MGJ06] MARTÍ E., GIL D., JULIÀ C.: A pbl experience
in the teaching of computer graphics. Computer Graphics

Forum 25, 1 (March 2006). Blackwell Publishing.

[TS02] T.STROTHOTTE, S.SCHLECHTWEG: Non-

Photorealistic Computer Graphics. Morgan Kaufmann,
May 2002.

c© The Eurographics Association 2008.

