Tutorial: Tensor Approximation in Visualization and Computer Graphics Tensor Decomposition Models

Renato Pajarola, Susanne K. Suter, and Roland Ruiters

Data Reduction and Approximation

- A fundamental concept of data reduction is to remove redundant and irrelevant information while preserving the relevant features
- e.g. through frequency analysis by projection onto pre-defined bases, or extraction of data intrinsic principal components
- identify spatio-temporal and frequency redundancies
- maintain strongest and most significant signal components
- Data reduction linked to concepts and techniques of data compression, noise reduction as well as feature extraction and recognition/extraction

Data Approximation using SVD

- Singular Value Decomposition (SVD) standard tool for matrices, i.e., 2D input datasets
- see also principal component analysis (PCA)

Low-rank Approximation

- Exploit ordered singular values: $\mathrm{s}_{1} \geq \mathrm{s}_{2} \geq \ldots \geq \mathrm{s}_{\mathrm{N}}$
- Select first r singular values (rank reduction)

Low-rank Approximation

- Exploit ordered singular values: $\mathrm{s}_{1} \geq \mathrm{s}_{2} \geq \ldots \geq \mathrm{s}_{\mathrm{N}}$
- Select first r singular values (rank reduction)
- use only bases (singular vectors) of corresponding subspace

Matrix SVD Properties

- Matrix SVD
- rank reducibility
- orthonormal row/column matrices

What is a Tensor?

a

$$
i_{1}=1, \ldots, I_{1}
$$

0 -order tensor

$i_{2}=1, \ldots, l_{2}$
2nd-order tensor

$i_{3}=1, \ldots, I_{3}$
3rd-order tensor

- Data sets are often multidimensional arrays (tensors) - images, image collections, video, volume data etc.

Fibers and Slices

- Individual elements of a vector \boldsymbol{a} are given by $a_{i 1}$, from a matrix \mathbf{A} by $a_{i 1, i 2}$ and from a tensor ed by $a_{i 1, i_{2, i 3}}$
- The generalization of rows, columns (and tubes) is a fiber in a particular mode
- Two dimensional sections of a tensor
are called slices
- frontal, horizontal and lateral for $\mathscr{A} \in \mathbb{R}^{3}$

Unfolding and Ranks

- Operations with tensors often performed as matrix operations using unfolded tensor representations
- different tensor unfolding strategies possible
- Forward cyclic unfolding $\mathbf{A}_{(n)}$ of a 3rd order tensor ed (or 3D volume)
- The n-rank of a tensor is typically defined on an unfolding

- n-rank $R_{n}=\operatorname{rank}_{n}(S$ ($)=\operatorname{rank}\left(\mathbf{A}_{(n)}\right)$
- multilinear rank- $\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ of \mathscr{A}

Rank-one Tensor

- N-mode tensor $\mathscr{A} \in \mathbb{R}^{11 \times \ldots \times I N}$ that can be expressed as the outer product of N vectors
- Kruskal tensor
- Useful to understand principles of rank-reduced tensor reconstruction
- linear combination of rank-one tensors

$$
\mathscr{A}=\boldsymbol{b}^{(1)} \circ \boldsymbol{b}^{(2)} \circ \cdots \circ \boldsymbol{b}^{(N)}
$$

```
Kruskalensor
```


Tensor Decomposition Models

CP

- PARAFAC (parallel factors) [Harshman, 1970]
- CANDECOMP (CAND) (canonical decomposition)
[Caroll \& Chang, 1970]

Tucker

- Three-mode factor analysis (3MFA/Tucker3)
[Tucker, 1964+1966]
- Higher-order SVD (HOSVD)
[De Lathauwer et al., 2000a]

Tucker Model

- Higher order tensor $\mathscr{A} \in \mathbb{R}^{I \times \ldots . . \times I_{N}}$ represented as a product of a core tensor $\mathscr{B} \in \mathbb{R}^{R 1 \times \ldots \times R N}$ and N factor matrices $\mathbf{U}^{(n)} \in \mathbb{R}^{l_{n} \times R n}$
- using n-mode products \times_{n}

$$
\mathscr{A}=\mathscr{B} \times{ }_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times_{3} \cdots \times_{N} \mathbf{U}^{(N)}+\boldsymbol{\varepsilon}
$$

CANDECOMP-PARAFAC Model

- Canonical decomposition or parallel factor analysis model (CP)
- Higher order tensor ed factorized into a sum of rank-one tensors
- normalized column vectors $\boldsymbol{u}_{r}{ }^{(\mathrm{n})}$ define factor matrices $\mathbf{U}^{(n)} \in \mathbb{R}^{I_{n} \times R}$ and weighting factors λ_{r}

$$
\mathscr{A}=\sum_{r=1}^{R} \lambda_{r} \cdot \boldsymbol{u}_{r}^{(1)} \circ \boldsymbol{u}_{r}^{(2)} \circ \ldots \boldsymbol{u}_{r}^{(N)}+\varepsilon
$$

Linear Combination of Rank-one Tensors

- The CP model is defined as a linear combination of rank-one tensors

$$
\mathscr{A}=\sum_{r=1}^{R} \lambda_{r} \cdot \boldsymbol{u}_{r}^{(1)} \circ \boldsymbol{u}_{r}^{(2)} \circ \ldots \boldsymbol{u}_{r}^{(N)}+\varepsilon
$$

Linear Combination of Rank-one Tensors

- The CP model is defined as a linear combination of rank-one tensors
- The Tucker model can be interpreted as linear combination of rank-one tensors

$$
\mathscr{A}=\sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \ldots \sum_{r_{N}=1}^{R_{N}} b_{r_{1} r_{2} \ldots r_{N}} \cdot \boldsymbol{u}_{r_{1}}^{(1)} \circ \boldsymbol{u}_{r_{2}}^{(2)} \circ \ldots \boldsymbol{u}_{r_{N}}^{(N)}+\varepsilon
$$

CP a Special Case of Tucker

CP

Generalizations

- Any special form of core and corresponding factor matrices
, e.g. blocks along diagonal

Reduced Rank Approximation

- Full reconstruction using a Tucker or CP model may require excessively many coefficients and wide factor matrices
- large rank values R (CP), or $R_{1}, R_{2} \ldots R_{\mathrm{N}}$ (Tucker)
- Quality of approximation increases with the rank, and number of column vectors of the factor matrices
- best possible fit of these bases matrices discussed later

Rank- R Approximation

- Approximation of a tensor as a linear combination of ranke-one tensors using a limited number R of terms
- CP model of limited rank R

$$
\widetilde{\mathscr{A}}=\sum_{r=1}^{R} \lambda_{r} \cdot \boldsymbol{u}_{r}^{(1)} \circ \boldsymbol{u}_{r}^{(2)} \circ \ldots \boldsymbol{u}_{r}^{(N)}
$$

Rank- $\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ Approximation

- Decomposition into a tensor with reduced, lower multilinear $\operatorname{rank}\left(R_{1}, R_{2}, \ldots, R_{N}\right)$
- $\operatorname{rank}_{n}(\widetilde{\mathscr{A}})=R_{n} \leq \operatorname{rank}_{n}(\mathscr{A})=\operatorname{rank}\left(\mathbf{A}_{(n)}\right)$
- n-mode products of factor matrices and core tensor in a given reduced rank space
- Tucker model with limited ranks R_{i}

$$
\widetilde{\mathscr{A}}=\mathscr{B} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times_{3} \cdots \times_{N} \mathbf{U}^{(N)}
$$

Best Rank Approximation

- Rank reduced approximation that minimizes least-squares cost

$$
\widetilde{\mathscr{A}}=\arg \min (\widetilde{\mathscr{A}})\|\mathscr{A}-\widetilde{\mathscr{A}}\|^{2}
$$

- Alternating least squares (ALS) iterative algorithm that converges to a minimum approximation error based on the Frobenius norm II.... $\|_{F}$
- rotation of components in basis matrices

$$
\widetilde{\mathscr{A}}=\mathscr{B} \times{ }_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times{ }_{3} \mathbf{U}^{(3)}
$$

typical high-quality data reduction: $R_{k} \leq I_{k} / 2$

Generalization of the Matrix SVD

