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Data Reduction and Approximation

•A fundamental concept of data reduction is to remove redundant and 
irrelevant information while preserving the relevant features
‣ e.g. through frequency analysis by projection onto pre-defined bases, or 

extraction of data intrinsic principal components
– identify spatio-temporal and frequency redundancies

‣ maintain strongest and most significant signal components

•Data reduction linked to concepts and techniques of data compression, 
noise reduction as well as feature extraction and recognition/extraction
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Data Approximation using SVD

•Singular Value Decomposition (SVD) standard tool for matrices, i.e., 2D 
input datasets
‣ see also principal component analysis (PCA)
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•Exploit ordered singular values: s1 ≥ s2 ≥ ... ≥ sN

•Select first r singular values (rank reduction)
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•Exploit ordered singular values: s1 ≥ s2 ≥ ... ≥ sN

•Select first r singular values (rank reduction)
‣ use only bases (singular vectors) of corresponding subspace



•Matrix SVD
‣ rank reducibility
‣ orthonormal row/column matrices

Matrix SVD Properties
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What is a Tensor?

•Data sets are often multidimensional arrays (tensors)
‣ images, image collections, video, volume data etc.
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• Individual elements of a vector a are given by ai1, from a matrix A by ai1,i2 
and from a tensor A  by ai1,i2,i3

•The generalization of rows, columns 
(and tubes) is a fiber in a particular 
mode

•Two dimensional sections of a tensor 
are called slices
‣ frontal, horizontal and lateral for A ∈ ℝ3

Fibers and Slices
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•Operations with tensors often performed as 
matrix operations using unfolded tensor 
representations
‣ different tensor unfolding strategies possible

•Forward cyclic unfolding A(n) of a 3rd order 
tensor A  (or 3D volume)

•The n-rank of a tensor is typically defined 
on an unfolding
‣ n-rank Rn = rankn(A)  = rank(A(n))

‣ multilinear rank-(R1, R2, …, RN) of A
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Rank-one Tensor

•N-mode tensor A ∈ ℝI1×…×IN that can 
be expressed as the outer product of 
N vectors
‣ Kruskal tensor

•Useful to understand principles of 
rank-reduced tensor reconstruction
‣ linear combination of rank-one tensors
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Tensor Decomposition Models
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• Three-mode factor analysis (3MFA/Tucker3) 
[ Tucker, 1964+1966 ]

• Higher-order SVD (HOSVD) 
[ De Lathauwer et al., 2000a ]
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• PARAFAC (parallel factors) [ Harshman, 1970 ]

• CANDECOMP (CAND) (canonical decomposition) 
[ Caroll & Chang, 1970 ] 
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•Higher order tensor A ∈ ℝI1×…×IN  represented as a product of a core 
tensor B ∈ ℝR1×…×RN and N factor matrices U(n)∈ ℝIn×Rn

‣ using n-mode products ×n

U(3)U(1) U(2)I1 I2I1

I2 I3

I3

R1 R2 R3

R1

R2
R3

B= e+A

A = B⇥1 U(1)⇥2 U(2)⇥3 · · ·⇥N U(N) + e

Tucker Model
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CANDECOMP-PARAFAC Model
•Canonical decomposition or parallel factor analysis model (CP)
•Higher order tensor A  factorized into a sum of rank-one tensors

‣ normalized column vectors ur(n) define factor
matrices U(n)∈ ℝIn×R and weighting factors λr
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•The CP model is defined as a linear combination of rank-one tensors

Linear Combination of Rank-one Tensors
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•The CP model is defined as a linear combination of rank-one tensors
•The Tucker model can be interpreted as linear combination of rank-one 

tensors

Linear Combination of Rank-one Tensors
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20

I1 U
(1

)

I2

U(2)

I3

U(3

)

R

R

R

R I1 U
(1

)

I2

U(2)

I3

U(3

)

R2

R1

R3

R2
R3

R1 B

CP Tucker

I3

I1

I2

I3

I1

U(3)

R3

R1

R2U(1)

I2

U(2)

B⇡fA



•Any special form of core and 
corresponding factor matrices
‣ e.g. blocks along diagonal
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•Full reconstruction using a Tucker or CP model may require excessively 
many coefficients and wide factor matrices
‣ large rank values R (CP), or R1, R2 … RN (Tucker)

•Quality of approximation increases with the rank, and number of column 
vectors of the factor matrices
‣ best possible fit of these bases matrices discussed later
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Reduced Rank Approximation
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Rank-R Approximation

•Approximation of a tensor as a linear 
combination of ranke-one tensors using a 
limited number R of terms
‣ CP model of limited rank R
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•Decomposition into a tensor with reduced, 
lower multilinear rank(R1, R2, …, RN)
‣  

•n-mode products of factor matrices and core 
tensor in a given reduced rank space
‣ Tucker model with limited ranks Ri

24

fA = B⇥1 U(1)⇥2 U(2)⇥3 · · ·⇥N U(N)

I3

I1

I2

I3

I1

U(3)

R3

R1

R2U(1)

I2

U(2)

B⇡fA
rankn( fA ) = Rn  rankn(A ) = rank(A(n))



Best Rank Approximation
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•Rank reduced approximation that 
minimizes least-squares cost 

‣  

•Alternating least squares (ALS) iterative 
algorithm that converges to a minimum 
approximation error based on the 
Frobenius norm ||…||F
‣ rotation of components in basis matrices
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Generalization of the Matrix SVD
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