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Data Reduction and Approximation

* A fundamental concept of data reduction is to remove redundant and
irrelevant information while preserving the relevant features

» e.g. through frequency analysis by projection onto pre-defined bases, or
extraction of data intrinsic principal components

- Identify spatio-temporal and frequency redundancies

» maintain strongest and most significant signal components

* Data reduction linked to concepts and technigues of data compression,
noise reduction as well as feature extraction and recognition/extraction
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Data Approximation using SVD

* Singular Value Decomposition (SVD) standard tool for matrices, i.e., 2D
Input datasets

» see also principal component analysis (PCA)
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"~ Low-rank Approximation

* Exploit ordered singular values: s1 > s2 > ... = SN

* Select first r singular values (rank reduction)
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Low-rank Approximation

* Exploit ordered singular values: s1 > s2 > ... = SN

* Select first r singular values (rank reduction)

» use only bases (singular vectors) of corresponding subspace
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Matrix SVD Properties

* Matrix SVD

» rank reducibility

» orthonormal row/column matrices
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What is a Tensor?
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* Data sets are often multidimensional arrays (tensors)

» Images, image collections, video, volume data etc.
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Fibers and Slices

* Individual elements of a vector a are given by a;;, from a matrix A by ai»

and from a tensor .oz by ai .43

* The generalization of rows, columns
(and tubes) is a fiber in a particular
mode

* Two dimensional sections of a tensor
are called slices

» frontal, horizontal and lateral for .oz e R3
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Unfolding and Ranks

* Operations with tensors often performed as
matrix operations using unfolded tensor

representations o A LI
» different tensor unfolding strategies possible . I i i
| |
* Forward cyclic unfolding A, of a 3rd order —Ih L L b
tensor .oz (or 3D volume) o/ A nk
o | 7 A
* The n-rank of a tensor is typically defined "7 4 l l
on an unfolding & R . . .
(3) bL-1
» n-rank R, = rank,(.c#) = rank(A:) o A4 i i
I3
. d | |
» multilinear rank-(R1, Ro, ..., Ry) of .oz AN —— -
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Rank-one lensor

e N-mode tensor .oz e RI1X.-xIN that can

be expressed as the outer product of
N vectors

» Kruskal tensor

» Useful to understand principles of
rank-reduced tensor reconstruction

» liInear combination of rank-one tensors
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Tucker
R basis matrices U I
2
/ \ e Three-mode factor analysis (3MFA/Tucker3)
Tucker, 1964+1966
I R @ U® R5 | ,UC er + ]
e Higher-order SVD (HOSVD)
R [ De Lathauwer et al., 2000a |
3
R> \
core tensor 93
I
R D> e PARAFAC (parallel factors) [ Harshman, 1970 |
e CANDECOMP (CAND) (canonical decomposition)
\\\ U R [ Caroll & Chang, 1970 ]
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Tucker Model

e Higher order tensor .aze RI'x--xIN represented as a product of a core

tensor 98 € RERix..xRv gand N factor matrices Ume Rinxkn

» using n-mode products x,

%:%XlU(l) ><2U(2) X3 XNU(N)_|_£
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CANDECOMP-PARAFAC Model

» Canonical decomposition or parallel factor analysis model (CP)

» Higher order tensor .oz factorized into a sum of rank-one tensors

» normalized column vectors u,™ define factor
matrices Ume RI»R and weighting factors A,
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Linear Combination of Rank-one Tensors

* The CP model is defined as a linear combination of rank-one tensors

1 _— "
universitatbonnl ¥



Linear Combination of Rank-one Tensors

* The CP model is defined as a linear combination of rank-one tensors

* The Tucker model can be interpreted as linear combination of rank-one
tensors




CP a Special Case of Tucker
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(Generalizations

* Any special form of core and
corresponding factor matrices | o7

| — €

» e.g. blocks along diagonal
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Reduced Rank Approximation

* Full reconstruction using a Tucker or CP model may require excessively
many coefficients and wide factor matrices

» large rank values R (CP), or R1, R> ... Rx (Tucker)

* Quality of approximation increases with the rank, and number of column
vectors of the factor matrices

» best possible fit of these bases matrices discussed later
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Rank-R Approximation

* Approximation of a tensor as a linear
combination of ranke-one tensors using a
limited number R of terms

» CP model of limited rank R

of = f?tr-u,(fl)ou,(fz)o...u,(fm

r—=1
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Rank-(R1, Rz, ..., Ry) Approximation

* Decomposition into a tensor with reduced,
lower multilinear rank(Ri, Ra, ..., Rn)

P

» rank, (&) = R, < rank, () = rank(A,))

* n-mode products of factor matrices and core
tensor in a given reduced rank space

» Tucker model with limited ranks R;

J:%XlU(l) XZU(Z) X3 e XNU(N)
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Best Rank Approximation

* Rank reduced approximation that
minimizes least-squares cost

N

o = arg min (.7 ) o — o

 Alternating least squares (ALS) iterative
algorithm that converges to a minimum
approximation error based on the
Frobenius norm |I... Il

» rotation of components in basis matrices
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GGeneralization of the Matrix SVD
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