

Tutorial: Tensor Approximation in Visualization and Computer Graphics Tensor Decomposition Models

Renato Pajarola, Susanne K. Suter, and Roland Ruiters

Data Reduction and Approximation

- A fundamental concept of data reduction is to remove redundant and irrelevant information while preserving the relevant features
 - e.g. through frequency analysis by projection onto pre-defined bases, or extraction of data intrinsic principal components
 - identify spatio-temporal and frequency redundancies
 - maintain strongest and most significant signal components
- Data reduction linked to concepts and techniques of data compression, noise reduction as well as feature extraction and recognition/extraction

Data Approximation using SVD

- Singular Value Decomposition (SVD) standard tool for matrices, i.e., 2D input datasets
 - see also principal component analysis (PCA)

Low-rank Approximation

- Exploit ordered singular values: $s_1 \ge s_2 \ge ... \ge s_N$
- Select first r singular values (rank reduction)

Low-rank Approximation

- Exploit ordered singular values: $s_1 \ge s_2 \ge ... \ge s_N$
- Select first r singular values (rank reduction)
 - use only bases (singular vectors) of corresponding subspace

Matrix SVD Properties

Matrix SVD

rank reducibility

orthonormal row/column matrices

What is a Tensor?

0-order tensor 1st-order tensor 2nd-order tensor

> Data sets are often multidimensional arrays (tensors) images, image collections, video, volume data etc.

. . .

Fibers and Slices

- and from a tensor \mathscr{A} by a_{i_1,i_2,i_3}
- The generalization of rows, columns (and tubes) is a *fiber* in a particular mode
- Two dimensional sections of a tensor are called slices
 - Frontal, horizontal and lateral for $\mathscr{A} \in \mathbb{R}^3$

• Individual elements of a vector *a* are given by a_{i_1} , from a matrix A by a_{i_1,i_2}

Unfolding and Ranks

- Operations with tensors often performed as matrix operations using unfolded tensor representations
 - different tensor unfolding strategies possible
- Forward cyclic unfolding $A_{(n)}$ of a 3rd order tensor *A* (or 3D volume)
- The *n*-rank of a tensor is typically defined on an unfolding
 - $n-\operatorname{rank} R_n = \operatorname{rank}_n(\mathscr{A}) = \operatorname{rank}(\mathbf{A}_{(n)})$
 - multilinear rank- (R_1, R_2, \ldots, R_N) of \mathscr{A}

Rank-one Tensor

- *N*-mode tensor $\mathscr{A} \in \mathbb{R}^{I_1 \times \ldots \times I_N}$ that can be expressed as the outer product of *N* vectors
 - Kruskal tensor
- Useful to understand principles of rank-reduced tensor reconstruction
 - Inear combination of rank-one tensors

Tensor Decomposition Models

Tucker

- Three-mode factor analysis (**3MFA/Tucker3**) [Tucker, 1964+1966]
- Higher-order SVD (**HOSVD**) [De Lathauwer et al., 2000a]

CP

- **PARAFAC** (parallel factors) [Harshman, 1970]
- **CANDECOMP** (CAND) (canonical decomposition) [Caroll & Chang, 1970]

Tucker Model

- Higher order tensor $\mathscr{A} \in \mathbb{R}^{I_1 \times \ldots \times I_N}$ represented as a product of a core tensor $\mathscr{B} \in \mathbb{R}^{R_1 \times \ldots \times R_N}$ and *N* factor matrices $\mathbf{U}^{(n)} \in \mathbb{R}^{I_n \times R_n}$
 - using *n*-mode products ×_n

$$\mathscr{A} = \mathscr{B} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \cdots \times_N \mathbf{U}^{(N)} + \boldsymbol{\varepsilon}$$

$$I_{1} \bigcup^{(1)} I_{2} \bigcup^{(2)} I_{3} \bigcup^{(3)} + e$$

$$R_{1} R_{2} R_{3}$$

CANDECOMP-PARAFAC Model

- Canonical decomposition or parallel factor analysis model (CP)
- \bullet Higher order tensor \mathscr{A} factorized into a sum of rank-one tensors
 - normalized column vectors $u_r^{(n)}$ define factor matrices $\mathbf{U}^{(n)} \in \mathbb{R}^{I_n \times R}$ and weighting factors λ_r

$$\mathscr{A} = \sum_{r=1}^{R} \lambda_r \cdot \boldsymbol{u}_r^{(1)} \circ \boldsymbol{u}_r^{(2)} \circ \dots \boldsymbol{u}_r^{(N)} - \dots$$

Linear Combination of Rank-one Tensors

The CP model is defined as a linear combination of rank-one tensors

$$\mathscr{A} = \sum_{r=1}^{R} \lambda_r \cdot \boldsymbol{u}_r^{(1)} \circ \boldsymbol{u}_r^{(2)} \circ \dots \boldsymbol{u}_r^{(N)} + \boldsymbol{\varepsilon}$$

$$I_1 \square I_2 \square I_3 \square I_1 \square I_1$$

Linear Combination of Rank-one Tensors

- The CP model is defined as a linear combination of rank-one tensors
 The Tucker model can be interpreted as linear combination of rank-one
- The Tucker model can be interpretent tensors

$$\mathscr{A} = \sum_{r_1=1}^{R_1} \sum_{r_2=1}^{R_2} \cdots \sum_{r_N=1}^{R_N} b_{r_1 r_2 \dots r_N} \cdot \boldsymbol{u}_{r_1}^{(1)} \circ \boldsymbol{u}_{r_2}^{(2)} \circ \dots \boldsymbol{u}_{r_N}^{(N)} + \varepsilon$$

$$I_1 \prod_{l_2} \int_{l_3}^{l_2} \int_{l_3}^{u_{r_3}^{(3)}} \prod_{\boldsymbol{u}_{r_1}^{(1)}}^{u_{r_2}^{(2)}} + \dots + \int_{l_3}^{u_{R_3}^{(3)}} \prod_{\boldsymbol{u}_{R_1}^{(1)}}^{u_{R_2}^{(2)}} + \varepsilon$$

CP a Special Case of Tucker

universitätbonn

Generalizations

Any special form of core and corresponding factor matrices

• e.g. blocks along diagonal

Reduced Rank Approximation

- Full reconstruction using a Tucker or CP model may require excessively many coefficients and wide factor matrices
 - large rank values R (CP), or $R_1, R_2 \dots R_N$ (Tucker)
- Quality of approximation increases with the rank, and number of column vectors of the factor matrices
 - best possible fit of these bases matrices discussed later

Rank-R Approximation

• Approximation of a tensor as a linear combination of ranke-one tensors using a limited number *R* of terms

CP model of limited rank R

$$\widetilde{\mathscr{A}} = \sum_{r=1}^{R} \lambda_r \cdot \boldsymbol{u}_r^{(1)} \circ \boldsymbol{u}_r^{(2)} \circ \dots \boldsymbol{u}_r^{(n)}$$

`**~**1´

 Decomposition into a tensor with reduced, lower multilinear rank (R_1, R_2, \ldots, R_N)

 $\operatorname{rank}_{n}(\mathscr{A}) = R_{n} \leq \operatorname{rank}_{n}(\mathscr{A}) = \operatorname{rank}(\mathbf{A}_{(n)})$

- *n*-mode products of factor matrices and core tensor in a given reduced rank space
 - Tucker model with limited ranks R_i

$$\widetilde{\mathscr{A}} = \mathscr{B} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \cdots$$

Best Rank Approximation

 Rank reduced approximation that minimizes least-squares cost

$$\mathcal{A} = \arg\min(\mathcal{A}) \| \mathcal{A} - \mathcal{A}$$

 Alternating least squares (ALS) iterative algorithm that converges to a minimum approximation error based on the Frobenius norm II...II_F

rotation of components in basis matrices

 $\widetilde{\mathscr{A}} = \mathscr{B} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(3)}$

typical high-quality data reduction: $R_k \leq I_k / 2$

Generalization of the Matrix SVD

