

Learning Strategies to Select Point Cloud Descriptors for 3D Object Classification: A Proposal

Jens Garstka and Gabriele Peters

Chair of Human-Computer-Interaction University of Hagen - Germany

Initialization

Building a dynamic set of feature vectors and object classes, e.g., cars, planes, cups, teddy bears, etc.:

- using point clouds of some objects per class
- using different types of feature descriptors for point clouds

Reinforcement Learning

Task

The reinforcement learning (RL) uses periodic tasks. Each task ends, if

- one class is remaining (successful classification),
- no class is remaining (no classification), or
- the learner runs into timeout.

Environment

The environment consist of

- a dynamic set of object classes with preprocessed feature vectors, as presented in **1**,
- a set of available types of different feature descriptors that could be applied on the current input object, and

state

avail. feature-descriptors:

- the input object.

Policy

While initially learning the first policy π , the RL selects randomly one of the available feature descriptors. During the subsequent course of classification the RL will use an adaptive ϵ -greedy selection based on the learned policy π .

Action

The action based on the selected feature descriptor consists of the following steps:

- The calculation of the feature vector(s) of the current object for the selected feature descriptor.
- The comparison of the feature vector(s) against the set of classified feature vectors.
- The labeling of all classes with an insufficient quality of matching feature vectors as unsuitable

Reward

The reward depends on the following rules:

- If one class is remaining and the object belongs to this class, the reward value is calculated by linear interpolation of the time used for classification: 1, if the time is zero, 0 if the time equals the timeout.
- In all other cases the reward value is -1.

object belongs to a single remaining class

reward = -1otherwise possible classes: terminal state avail. feature-descriptors:

reward = 0

Classification and Online Learning

Classification

The RL follows policy π with an ϵ -greedy strategy to select actions, i.e., to select and apply feature descriptors. If a classification succeeds, the used feature vectors get added to the dynamic set of feature vectors.

New Unknown Object Classes

In case all object classes are labeled as unsuitable (fail state), the process is repeated n times while increasing the ϵ -value. This leads to a high rate of randomly selected feature descriptors. If this additional iteration does not lead to a classification, a new object class is created automatically.

• New Feature Descriptors

New feature vectors are calculated for all classes learned so far. The ϵ -greedy strategy *automatically* leads to the occasional use of the these new feature descriptors and an adaptation of the policy π .

3a. **Learning New Objects Online** possible classes: initial state avail. feature-descriptors: no classification restart *n* times or timeout possible classes: fail state avail. feature-descriptors: >n failed classifications FD 1 FD 2 FD 3 FD 4 FD 5 class class 2 class 3 new class 4

reward = [0,1]

