
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2003)
G.-P. Bonneau, S. Hahmann, C. D. Hansen (Editors)

ShellSplatting: Interactive Rendering of Anisotropic Volumes

Charl P. Botha and Frits H. Post

Data Visualisation Group
Delft University of Technology, The Netherlands

{c.p.botha,f.h.post}@its.tudelft.nl
http://visualisation.tudelft.nl/

Abstract
This work presents an extension of shell rendering that is more flexible and yields higher quality volume ren-
derings. Shell rendering consists of efficient data-structures and methods to manipulate and render structures
with non-precise boundaries in volume data. We have updated these algorithms by creating an implementation
that makes effective use of ubiquitously available commercial graphics hardware. More significantly, we have ex-
tended the algorithm to make use of elliptical Gaussian splats instead of straight-forward voxel projection. This
dramatically increases the quality of the renderings, especially with anisotropically sampled volumes. The use of
the graphics hardware alleviates the performance penalty of using splats.

1. Introduction

Volume visualisation can be performed in three ways: ren-
dering two-dimensional slices of the volume, rendering sur-
faces that have been extracted from the volume and direct
volume rendering1.

An extracted surface is usually an isosurface and is ap-
proximated as a triangulated mesh for accelerated render-
ing with modern polygon graphics hardware. This method
assumes that extractable isosurfaces are present in the data
and that these isosurfaces correctly model the structures in
the volume2.

Direct volume rendering3, 4 (DVR) allows us to visu-
alise structures in the data without having to make deci-
sions about the precise location of object boundaries by ex-
tracting polygonal isosurfaces. Instead, we can define multi-
dimensional transfer functions that assign optical properties
to each differential volume element and directly visualise
structures on the grounds of this transformation.

Shell rendering5, 6, which can be seen as a hybrid of sur-
face and direct volume rendering, was proposed as a fast vol-
ume visualisation method in the early nineties. It had sig-
nificant advantages at that time: it was an extremely fast
software algorithm that also required far less memory than
competing volume visualisation algorithms. As recently as
2000, software shell rendering was still found to be faster
than hardware assisted isosurface rendering7. Originally it

supported only parallel projection but work has been done
to extend it to perspective projection8. In this paper, we will
consider only parallel projection.

However, this object-order method makes use of simple
voxel projection to add a voxel’s energy to the rendered im-
age. In addition, texture-mapping, shading and composit-
ing hardware has become common-place. These two facts
have led us to extend shell rendering by translating it to
a hardware-accelerated setting and to allow voxels to con-
tribute energy to the rendered image via a splat-like ellip-
tical Gaussian. This makes possible interactive high-quality
renderings of anisotropically sampled volumes.

In this paper we present this extension that we have
dubbed ShellSplatting. The algorithm generates higher-
quality renderings than shell-rendering and does this more
rapidly than standard splatting. It retains all advantages
of the shell rendering data-structures. We also present a
straight-forward way to calculate the splat projections that
accommodates anisotropically sampled volumes at no extra
speed or memory cost.

Section 2 supplies information about volume visualisa-
tion, focusing on splatting and shell rendering and the de-
velopment of this work. In section 3 our algorithm is doc-
umented. Section 4 contains visual results as well as com-
parative timings. In section 5 we detail our conclusions and
mention possible avenues for future work.

c© The Eurographics Association 2003.

105

http://www.eg.org
http://diglib.eg.org


Botha and Post / ShellSplatting

2. Related Work

Much work has been done to improve the quality and the
speed of splatting. Two early papers focusing on hardware-
assisted implementations of splatting are by Laur and
Hanrahan9 and Crawfis and Max10. The former represents
each splat as a collection of polygons whilst the latter makes
use of a single texture-mapped polygon, thus utilising avail-
able graphics hardware for both modulation and composit-
ing.

A more recent contribution is that of Ren et al11, who ex-
tend EWA (Elliptical Weighted Average) Surface Splatting12

to an object-space formulation, facilitating a hardware-
assisted implementation of this high-quality surface point
rendering method. There are obviously also similarities be-
tween our method for finding an object-space pre-integrated
Gaussian reconstruction function and the logic employed by
EWA surface and volume splatting13 and the original EWA
filtering14.

An advantage of our work over more recent hardware-
accelerated splatting methods that make use of vertex and
pixel shaders as well as other hardware-assisted direct vol-
ume rendering schemes15, 16 that utilise features such as reg-
ister combiners and dependent textures, is the fact that Shell-
Splatting works on any device with two-dimensional texture-
mapping and compositing facilities. This makes the algo-
rithm practically hardware-independent whilst still enabling
it to profit from advances in newer generations of graphics
accelerators.

The idea of combining splatting with a more efficient
data-structure for storing selected voxels and traversing them
more rapidly is also not new. Yagel et al present a Splat Ren-
derer which relies on the concept of a fuzzy voxel set that
consists of all voxels in the dataset with opacities above a
certain threshold and stores these voxels in a compact data-
structure17. Mueller et al accelerate volume traversal for
their splatting advances by making use of list-based data-
structures and binary searches to find voxels within cer-
tain iso-ranges rapidly18. The QSplat point rendering system
makes use of a hierarchy of bounding spheres for rapid vol-
ume traversal and adaptive level-of-detail rendering19. Craw-
fis employs a list of coordinates sorted by corresponding
scalar value so that voxels with a given scalar value can be
rapidly retrieved and splatted20. Because all voxels are splat-
ted with the same colour, splatting order is not important.

The work by Orchard and Möller21 is probably the closest
to ShellSplatting. They devise a 3D adjacency data structure
that stores only voxels with opacity above a certain threshold
and allows rapid back-to-front traversal. In this paper they
mention the possible improvement of eliminating voxels that
are surrounded by opaque material.

Our algorithm, due to its use of the shell-rendering data-
structures, not only eliminates voxels with opacity beneath a
certain threshold, but also all voxels that are surrounded by

non-transparent material. In addition, it automatically dis-
cards voxels at render time which are occluded from the ob-
server by non-transparent material.

A more subtle but important difference is that ShellSplat-
ting functions anywhere on the spectrum between a voxel-
based surface rendering algorithm and a complete volume
rendering algorithm. Its position on this spectrum is con-
trolled by two algorithm parameters that will be explained
in section 2.2.

In the following subsections we explain splatting and
shell-rendering in order to facilitate understanding of the al-
gorithm description in section 3.

2.1. Splatting

Splatting is an object-order (i.e. forward projection) direct
volume rendering method that treats an N-dimensional sam-
pled volume as a grid of overlapping N-dimensional volume
reconstruction function kernels (often Gaussians) weighted
with voxel densities. These weighted kernels are projected
onto the image plane to form “splats” that are composited
with affected pixels22. In this way, splatting approaches the
problems of volume reconstruction and rendering as a single
task.

In original splatting22, the volume is traversed from front
to back or from back to front. Centered at each voxel posi-
tion a reconstruction kernel is integrated along the view axis
to form a pre-integrated two-dimensional kernel footprint.
The kernel footprint is used to modulate the looked-up and
shaded voxel optical characteristics (colour and opacity) of
that voxel and projected onto the image plane where it is
composited with the affected pixels.

Different compositing rules are used for front-to-back and
back-to-front traversals: respectively Porter and Duff’s23 un-
der and over operators. In the latter case, the splat kernel
projection is composited with all pixels at positions p of the
image buffer I that are affected by the kernel’s projection as
follows:

Iλ(p)Iα(p) = Sλ(p)Sα(p)+ Iλ(p)Iα(p)(1−Sα(p)) (1)

Subscript λ represents the colour band, e.g. red, green or
blue. Iλ and Iα are the colour and opacity currently in
the image buffer. Sα(p) and Sλ(p) represent the modulated
and shaded opacity and colour of the kernel projection at
pixel position p. Note that, although this appears similar to
alpha-blending, it is quite different due to the opacity pre-
multiplication. There seems to be some confusion in litera-
ture concerning this compositing rule. The opacity Iα in the
image buffer is updated as follows:

Iα(p) = Sα(p)+ Iα(p)(1−Sα(p)) (2)

This compositing of splats on the image buffer approximates
the colour and opacity integration of the direct volume ren-
dering integral.

c© The Eurographics Association 2003.

106



Botha and Post / ShellSplatting

The use of pre-integrated reconstruction kernels causes
inaccuracies in the composition as each kernel is indepen-
dently integrated and not in a piecewise fashion along with
other kernels in the path of a view ray. This can result in
colour-bleeding of obscured objects in the image. Westover
proposed first performing compositing of piece-wise ker-
nel integrations into volume axis-aligned sheet-buffers24 and
then onto the image buffer to alleviate this affect. How-
ever, the axis-aligned sheet-buffering resulted in sudden im-
age brightness changes, also known as “popping”, during
rotation. Mueller introduced image-aligned sheet-buffers to
eliminate this problem25.

2.2. Shell Rendering

Shell rendering considers volumes as fuzzily connected sets
of voxels and associated values. These sets are known as
shells and the member voxels as shell voxels. In short, all
voxels with opacities higher than a configurable lower opac-
ity threshold ΩL and with at least one neighbour with opacity
lower than the configurable higher opacity threshold ΩH are
part of the shell. ΩL is the minimum opacity that will con-
tribute to the volume rendering. A voxel with opacity ΩH
or higher occludes any voxels directly behind it, which is
why we exclude all voxels that are surrounded by these high
opacity voxels. A compact binary neighbourhood code that
indicates which of a voxel’s neighbourhood voxels have ΩH
or higher opacities is also stored for each shell voxel.

If ΩL = ΩH , the shell is a one voxel thick object boundary
that is a digital approximation of the isosurface with isovalue
v = ΩL. By increasing the difference between the two thresh-
olds, we increase the number of voxels in the shell, until, in
the limiting case, the set of shell voxels is equal to the set
of all voxels in the volume that is being analysed. In this
way, shell rendering can be seen as a hybrid volume visuali-
sation method that can be utilised anywhere on the spectrum
between surface rendering and direct volume rendering.

Shell voxels are stored in two data-structures, P and D.
D is a list of all shell voxels and associated attributes in a
volume row-by-row and slice-by-slice order. For each row
in the volume, P contains an index into D of the first shell
voxel in that row as well as the number of voxels in that row.
P itself is indexed with a slice and row tuple. This enables a
very efficient way of storing and accessing the volume, but
more importantly, the voxels can be very rapidly traversed in
a strictly front-to-back or back-to-front order from any view
direction in an orthogonal projection setting. The shells have
to be re-extracted for any change in opacity transfer function
or the opacity thresholds.

When rendering, we can determine the order of indexing
by using the view octant: Shell rendering supports front-to-
back as well as back-to-front volume traversal when project-
ing voxels. When projecting voxels in the back-to-front set-
ting, the projection is composited with all pixel positions p

of the image buffer I that are affected by the voxel’s projec-
tion as follows:

Iλ(p) = Sλ(v)Sα(v)+(1−Sα(v))Iλ(p)

where v is the voxel that is being projected, Sα(v) is its opac-
ity, Sλ(v) represents its colour in the λ band as determined by
the transfer function and optional shading. Unlike equation
1, this is identical to standard alpha-blending.

The neighbourhood code mentioned above is used dur-
ing rendering to determine if a voxel is occluded from the
current viewpoint by the neighbouring voxels in which case
such a voxel is skipped. Due to the binary packing of the
neighbourhood code, this checking can be done in constant
time.

Shell rendering also supports the 3D editing of structures,
the computation of the volume of structures surrounded by
shells and the measurement (linear and curvilinear) of ren-
dered surfaces. These facilities make this technique very at-
tractive especially for clinical use.

3. The ShellSplatting Algorithm

The algorithm consists of a pre-processing step and a ren-
dering step. During pre-processing, which happens once per
volume or transfer function change, the shell structure is ex-
tracted from the volume or from an existing shell structure.
This shell structure is exactly the same as for traditional shell
rendering.

Instead of performing only voxel projection during ren-
dering however, we render each shell voxel by projecting
and compositing a pre-integrated Gaussian splat modulated
by the shaded optical properties of that voxel. This is done by
placing a rectangular polygon, coloured with the looked-up
voxel colour and texture-mapped with the pre-integrated re-
construction function, at each and every voxel position. The
texture is uploaded to the rendering pipeline once and can be
re-used as many times as necessary.

In the following two subsections, the calculation of the
rectangular polygon and the iteration and rendering of voxels
with textured polygons will be explained in more detail.

3.1. Calculation of splat polygon

The polygons have to be perpendicular to the view axis since
the reconstruction function has been pre-integrated along the
view direction. In addition, they should be sized so that the
mapped texture is scaled to the correct splat dimensions. Re-
member that for anisotropically sampled volumes, the splats
potentially differ in size and shape for each different view
direction.

To visualise this, imagine a three-dimensional ellipsoid
bounding the reconstruction kernel at a voxel. If we were to
project this ellipsoid onto the projection plane and then “flat-
ten” it, i.e. calculate its orthogonally projected outline (an

c© The Eurographics Association 2003.

107



Botha and Post / ShellSplatting

VoxelWorldProjection

Figure 1: Illustration of the calculation of the reconstruction
function bounding function in voxel space, transformation to
world space and projection space and the subsequent “flat-
tening” and transformation back to voxel space.

ellipse) on the projection plane, the projected outline would
also bound the pre-integrated and projected splat. A rectan-
gle with principal axes identical to those of the projected el-
lipse, transformed back to the drawing space, is used as the
splat polygon.

Figure 1 illustrates a two-dimensional version of this pro-
cedure. In the figure, however, we also show the transfor-
mation from voxel space to world space. This extra trans-
formation is performed so that rendering can be done in
voxel space, where reconstruction functions can be spher-
ically symmetric, even if the volume has been anisotropi-
cally sampled. Alternatively stated, the anisotropic volume is
warped to be isotropic. The voxel-to-model, model-to-world,
world-to-view and projection matrices are concatenated in
order to form a single transformation matrix M with which
we can move between the projection and voxel spaces.

In order to perform the steps outlined above, we require
some math. A quadric surface, of which an ellipsoid is an
example, is any surface described by the following implicit
equation:

f (x,y,z) = ax2 +by2 + cz2 +2dxy+2eyz+

2 f zx+2gx+2hy+2 jz+ k

= 0

This can also be represented in its matrix form as:

PT QP = 0

where Q =









a d f g
d b e h
f e c j
g h j k









and P =









x
y
z
1









Such a surface can be transformed with a 4x4 homoge-
neous transformation matrix M as follows:

Q′ = (M−1)T QM−1 (3)

A reconstruction kernel bounding sphere in quadric form

Q is constructed in voxel space. Remember that this is iden-
tical to constructing a potentially non-spherical bounding el-
lipsoid in world space. In this way anisotropically sampled
volumes are elegantly accommodated.

This sphere is transformed to projection space by making
use of equation 3. The two-dimensional image of a three-
dimensional quadric of the form

Q′ =

[

A b
bT c

]

as seen from a normalised projective camera is a conic C de-
scribed by C = cA−bbT 26, 27. In projection space, C repre-
sents the two-dimensional projection of Q on the projection
plane.

An eigendecomposition CX = Xλ can be written as

C = (X−1)T λX−1

which is identical to equation 3. The diagonal matrix λ is a
representation of the conic C in the subspace spanned by the
first two eigenvectors (transformation matrix) in

X =

[

R t
0T 1

]

where R and t represent the rotation and translation
sub-matrices respectively. The conic’s principal axes are
collinear with these first two eigenvectors.

In other words, we have the orientation and length of the
projected ellipse’s principal axes which correspond to the
principal axes of a reconstruction function bounding sphere
that has been projected from voxel space onto the projec-
tion plane. Finally, these axes are transformed back into
voxel space with M−1 and used to construct the rectangles
onto which the pre-integrated reconstruction function will be
texture-mapped.

3.2. Back-to-front shell voxel traversal

The rendering pipeline is configured so that all geometry
can be specified in voxel space. A back-to-front traversal
of the shell voxels is initiated. We have chosen back-to-
front traversal, as this method of composition (also known
as the painter’s algorithm) is easily accelerated with com-
mon graphics hardware.

For each voxel, the corresponding optical characteristics
and opacity are uploaded to the pipeline. The rectangle cre-
ated in section 3.1 is translated so that its center is at the
voxel position and the geometry is then uploaded and as-
sociated with the pre-integrated kernel texture for texture-
mapping.

The hardware is configured to shade each voxel once and
then modulate both the resultant colour and opacity with the
pre-integrated kernel texture. Texture-mapped polygons of

c© The Eurographics Association 2003.

108



Botha and Post / ShellSplatting

successive voxels are composited on the image buffer ac-
cording to equations 1 and 2. This kind of shading, modu-
lation and blending are straight-forward and standard opera-
tions in currently available commodity graphics hardware.

After having iterated through all shell voxels, a complete
image frame has been built up on the image plane with very
little use of the computer’s general purpose processor.

4. Results

The ShellSplatter was implemented as two VTK28 objects.
All rendering is performed via OpenGL. Parameters such as
the bounding volume for the Gaussian reconstruction kernel
(i.e. at which radius it’s truncated) and the Gaussian standard
deviation can be interactively modified during rendering.

Additionally, our implementation offers two major render
modes: fast and high quality. In the fast mode, rectangular
polygons are rendered for all voxels, but they are not texture-
mapped with splats. This is equivalent to a fast hardware-
assisted form of standard shell rendering. In high-quality
mode, all polygons are texture-mapped. The fast mode is
very usable for rapid investigation of the volume and using
this in an automatic level-of-detail rendering system would
be straight-forward.

Figures 2, 3 and 4 (see color plates) show examples of
ShellSplatter renderings in both fast and high-quality mode.
The high-quality renderings were made with a Gaussian
splat with radius 2 voxels and standard deviation σ = 0.7.
The fast renderings were made with rectangular polygons of
1.6 voxels across.

Table 1 shows rendering speed in frames per second for
three example data sets. These tests were done on a Linux
machine with an AMD Athlon 1.2GHz and a first generation
NVidia GeForce3. The image size was 512×512. The speed
difference between the fast and high quality modes is much
more pronounced on lower end graphics hardware.

In the table the number of shell voxels per dataset has
been specified. This already represents a tremendous sav-
ing over splatting the whole volume. Also take into account
that, during rendering, not all voxels are rendered due to the
octant-dependent occlusion checking. In the case of the en-
gine block for instance, an average of 140000 out of 230000
shell voxels (out of an original total of 8388608 voxels) are
actually sent to the rendering pipeline. Pre-processing (i.e.
extraction of the shell data-structures) takes approximately
10 seconds for a complete 2563 volume.

5. Conclusions and Future Work

In this paper we have presented a volume rendering algo-
rithm called ShellSplatting. Combining the data-structures
of shell rendering with the rendering techniques of splat-
ting, this method offers interactive and high-quality volume

rendering. The data-structures enable rapid back-to-front or
front-to-back volume traversal that efficiently ignores vox-
els that are transparent or occluded, whilst the splatting en-
ables higher-quality volume renderings than with traditional
shell rendering. In addition, the shell rendering data struc-
tures support 3D volume editing and measuring of volumes
and surfaces.

We have also demonstrated a straight-forward method of
creating a suitable splat polygon for the hardware-assisted
rendering of anisotropically sampled volumes.

An important point with regards to hardware acceleration
is the fact that our algorithm requires only basic functionality
from the graphics accelerator. This makes it useful on more
generic devices whilst still enabling it to profit from newer
generations of hardware.

ShellSplatting is obviously more efficient with datasets
consisting of many “hard” surfaces, i.e. the volume contains
large contiguous volumes of voxels with opacity greater than
Ωh. If this is not the case, the algorithm gradually becomes
a hardware-accelerated traditional splatting method. In other
words, ShellSplatting can be very simply configured to func-
tion anywhere on the continuous spectrum between voxel-
based iso-surface rendering and direct volume rendering.

Due to the way in which the splat quads are blended, com-
bining ShellSplatted volume renderings with opaque polyg-
onal geometry in a single rendering is trivial. All these fac-
tors make this method very suitable for virtual orthopaedic
surgery where bony structures are sculpted by polygonal rep-
resentations of surgical tools, which is one of our planned
applications.

We would like to extend the ShellSplatter to support per-
spective rendering. In order to do this, the shell rendering
octant-dependent back-to-front ordering has to be modified
and the splat creation and rendering has to be adapted. Ex-
cellent work has been done on the former problem29, 8 and
these resources will be utilised. Preliminary experiments on
adapting the ShellSplatter are promising.

Acknowledgements

This research is part of the DIPEX (Development of Im-
proved endo-Prostheses for the upper EXtremities) program
of the Delft Interfaculty Research Center on Medical Engi-
neering (DIOC-9).

We would like to thank Jorik Blaas for valuable discussion
and his expert advice on low-level graphics programming
issues. We would also like to thank Roger Crawfis and Klaus
Mueller for enlightening e-mail conversations on the topic of
splatting.

c© The Eurographics Association 2003.

109



Botha and Post / ShellSplatting

Frame rate (frames per second)

Aneurism CT Head Engine Block
Rendering Mode 256×256×256 256×256×99 256×256×128

0.2% (35000) shell 2.5% (160000) shell 2.7% (230000) shell

Fast 44 12 8
High Quality 41 6 8

Table 1: ShellSplatter rendering frame rates for three example data sets. Each data set’s resolution is shown along with the
percentage and number of voxels that are actually stored in the shell rendering data structures.

References

1. K. Brodlie and J. Wood, “Recent Advances in Visual-
ization of Volumetric Data,” in Eurographics State of
the Art Reports, pp. 65–84, 2000.

2. M. Meissner, J. Huang, D. Bartz, K. Mueller, and
R. Crawfis, “A Practical Evaluation of Popular Volume
Rendering Algorithms,” in Proc. Volume Visualization
and Graphics Symposium, pp. 81–90, 2000.

3. M. Levoy, “Display of surfaces from volume data,”
IEEE Computer Graphics and Applications, vol. 8,
no. 3, pp. 29–37, 1988.

4. R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume
rendering,” in Proc. SIGGRAPH ’88, pp. 65–74, ACM
Press, 1988.

5. J. K. Udupa and D. Odhner, “Fast Visualization, Manip-
ulation, and Analysis of Binary Volumetric Objects,”
IEEE Computer Graphics and Applications, vol. 11,
pp. 53–62, November 1991.

6. J. K. Udupa and D. Odhner, “Shell Rendering,” IEEE
Computer Graphics and Applications, vol. 13, no. 4,
pp. 58–67, 1993.

7. G. J. Grevera, J. K. Udupa, and D. Odhner, “An Order
of Magnitude Faster Isosurface Rendering in Software
on a PC than Using Dedicated, General Purpose Ren-
dering Hardware,” IEEE Transactions on Visualization
and Computer Graphics, vol. 6, pp. 335–345, October-
December 2000.

8. G. Carnielli, A. Falcão, and J. Udupa, “Fast digital per-
spective shell rendering,” in 12th Brazilian Symposium
on Computer Graphics and Image Processing, pp. 105–
111, IEEE, 1999.

9. D. Laur and P. Hanrahan, “Hierarchical splatting: a pro-
gressive refinement algorithm for volume rendering,” in
Proc. SIGGRAPH ’91, pp. 285–288, ACM Press, 1991.

10. R. Crawfis and N. Max, “Texture splats for 3D scalar
and vector field visualization,” in Proc. IEEE Visual-
ization ’93, pp. 261–266, 1993.

11. L. Ren, H. Pfister, and M. Zwicker, “Object space ewa

surface splatting: A hardware accelerated approach to
high quality point rendering,” Computer Graphics Fo-
rum, vol. 21, no. 3, pp. 461–470, 2002.

12. M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Sur-
face splatting,” in Proc. SIGGRAPH 2001, pp. 371–
378, ACM Press, 2001.

13. M. Zwicker, H. Pfister, J. van Baar, and M. Gross,
“EWA splatting,” IEEE Transactions on Visualization
and Computer Graphics, vol. 8, no. 3, pp. 223–238,
2002.

14. P. S. Heckbert, “Survey of texture mapping,” IEEE
Computer Graphics and Applications, vol. 6, no. 11,
pp. 56–67, 1986.

15. C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and
T. Ertl, “Interactive Volume Rendering on Standard PC
Graphics Hardware Using Multi-Textures and Multi-
Stage-Rasterization,” in Eurographics / SIGGRAPH
Workshop on Graphics Hardware ’00, pp. 109–
118,147, 2000.

16. J. Kniss, G. Kindlmann, and C. Hansen, “Interac-
tive volume rendering using multi-dimensional trans-
fer functions and direct manipulation widgets,” in Proc.
IEEE Visualization 2001, pp. 255–262, 2001.

17. R. Yagel, D. S. Ebert, J. N. Scott, and Y. Kurzion,
“Grouping Volume Renderers for Enhanced Visualiza-
tion in Computational Fluid Dynamics,” Transactions
on Visualization and Computer Graphics, vol. 1, no. 2,
pp. 117–132, 1995.

18. K. Mueller, N. Shareef, J. Huang, and R. Crawfis,
“High-Quality Splatting on Rectilinear Grids with Ef-
ficient Culling of Occluded Voxels,” Transactions on
Visualization and Computer Graphics, vol. 5, no. 2,
pp. 116–134, 1999.

19. S. Rusinkiewicz and M. Levoy, “QSplat: A Multireso-
lution Point Rendering System for Large Meshes ,” in
Proc. SIGGRAPH 2000 (K. Akeley, ed.), pp. 343–352,
2000.

20. R. A. Crawfis, “Real-time slicing of data space,” in
Proc. IEEE Visualization 1996, pp. 271–277, 1996.

c© The Eurographics Association 2003.

110



Botha and Post / ShellSplatting

21. J. Orchard and T. Möller, “Accelerated Splatting using
a 3D Adjacency Data Structure,” in Proc. Graphics In-
terface, pp. 191–200, June 2001.

22. L. Westover, “Interactive volume rendering,” in Pro-
ceedings of the Chapel Hill workshop on Volume visu-
alization, pp. 9–16, ACM Press, 1989.

23. T. Porter and T. Duff, “Compositing Digital Images,” in
Proc. SIGGRAPH ’84, vol. 18, pp. 253–259, July 1984.

24. L. Westover, “Footprint evaluation for volume render-
ing,” in Proc. SIGGRAPH ’90, pp. 367–376, ACM
Press, 1990.

25. K. Mueller and R. Crawfis, “Eliminating Popping Ar-
tifacts in Sheet Buffer-Based Splatting,” in Proc. IEEE
Visualization ‘98, pp. 239–245, 1998.

26. B. Stenger, P. R. S. Mendonça, and R. Cipolla, “Model
based 3D tracking of an articulated hand,” in Proc.
Conf. Computer Vision and Pattern Recognition, vol. II,
(Kauai, USA), pp. 310–315, December 2001.

27. B. Stenger, P. R. S. Mendonça, and R. Cipolla, “Model-
based hand tracking using an unscented kalman fil-
ter,” in Proc. British Machine Vision Conference, vol. I,
(Manchester, UK), pp. 63–72, September 2001.

28. W. Schroeder, K. Martin, and B. Lorensen, The Visual-
ization Toolkit. Prentice Hall PTR, 2nd ed., 1999.

29. J. Edward Swan II, Object-ordering Rendering of Dis-
crete Objects. PhD thesis, The Ohio State University,
1998.

c© The Eurographics Association 2003.

111



Botha and Post / ShellSplatting

Figure 2: ShellSplat rendering of rotational b-plane x-ray scan of the arteries of the right half of a human head, showing an
aneurism. On the left is the fast rendering and on the right is the high quality version. Data from volvis.org courtesy of Philips
Research, Hamburg, Germany.

Figure 3: ShellSplat rendering of the Stanford CTHead data set. The fast rendering is on the left and the high quality is on the
right. Note that this data set is anisotropically sampled.

Figure 4: ShellSplat rendering of the well-known engine block data set. The grey material has been made transparent. Data set
supplied by volvis.org, originally made by General Electric. Fast rendering on left, high quality on the right.

c© The Eurographics Association 2003.

112



Botha and Post / ShellSplatting

Figure 2: ShellSplat rendering of rotational b-plane x-ray scan of the arteries of the right half of a human head, showing an
aneurism. On the left is the fast rendering and on the right is the high quality version. Data from volvis.org courtesy of Philips
Research, Hamburg, Germany.

Figure 3: ShellSplat rendering of the Stanford CTHead data set. The fast rendering is on the left and the high quality is on the
right. Note that this data set is anisotropically sampled.

Figure 4: ShellSplat rendering of the well-known engine block data set. The grey material has been made transparent. Data set
supplied by volvis.org, originally made by General Electric. Fast rendering on left, high quality on the right.

c© The Eurographics Association 2003.

289


