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Figure 1: We visualize time-dependent transport and mixing in a multiphase fluid simulation of a fuel spray nozzle. In (a), the backward FTLE
shows the time-dependent flow behavior. In (b), the different fluid types are illustrated together with particles close to Lagrangian coherent
structures (black).

Abstract

To gain insight into large, time-dependent particle-based fluid flows, we visually analyze Lagrangian coherent structures (LCS), a
robust skeleton of the underlying particle dynamics. To identify these coherent structures, we build on recent work that efficiently
computes the finite-time Lyapunov exponent (FTLE) directly on particle data. We formulate the LCS definitions for particles
based on robust approximations for higher-order derivatives of the FTLE. Based on these formulations, we derive a per-particle
distance to the closest coherent structure. This allows us to visually analyze and explore the Lagrangian transport behavior
directly on the particle data. We show that this is especially beneficial to detect and visualize flow features on different time
scales. Lastly, we apply our approach to study mixing in multiphase flows by visualizing the different types of fluids and their
relation to the coherent structures.

CCS Concepts
• Human-centered computing → Scientific visualization;

1. Introduction

Interactive visualization of unsteady flows is still a big challenge
in science and engineering. At the same time, simulations and the
data they produce continue to grow rapidly. In recent years, particle-
based simulation methods, e.g. the smoothed-particle hydrodynam-
ics (SPH) method, have become popular. They are especially well-

suited for multiphase simulations that contain two or more distinct
fluid phases, for example a liquid and a gas phase. In this work, we
consider the visualization of such fluid flow datasets consisting of
several million particles per time step.

The finite-time Lyapunov exponent (FTLE), a measure for the
rate of separation (or attraction) of infinitesimally close tracer par-
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ticles, has been established as a powerful way to visualize time-
dependent flows. Recent work computes the FTLE directly on parti-
cle data [SCMZ16, SZCC17, DRC∗18]. The otherwise costly FTLE
computation is thereby considerably simplified due to the inherent
Lagrangian nature of particle data. The FTLE can be employed to
extract Lagrangian coherent structures (LCS), a robust skeleton of
Lagrangian particle dynamics that organize fluid transport and mix-
ing behavior [Hal15]. Although a significant amount of research has
been conducted on extracting Lagrangian coherent structures from
FTLE fields, this has been mostly limited to structured data. It is
possible to resample particles to a grid, but this reduces the effective
resolution and amplifies the error stemming from the approxima-
tion of the first and second derivatives of the FTLE field, which
are needed for the extraction of LCS. In this work, we consider the
evaluation of LCS directly on particle data, for which robust approx-
imations for the derivatives exist. Furthermore, we reformulate the
LCS criteria for particles and their local neighborhood to derive a
per-particle distance to the closest LCS.

We further discuss the visual analysis of large, multivariate flows
based on this LCS distance to visualize the Lagrangian particle
dynamics and to explore the correlations to other flow features. To
reduce visual clutter in large particle datasets, finding and extracting
features of interest is especially important. We show that our derived
LCS distance is well-suited in highlighting relevant structures of
the flow. Furthermore, we facilitate the interactive exploration and
analysis of multivariate particle data and derived features using
multiple coordinated views, including a parallel coordinate plot,
histograms, and scatter plots of large particle datasets. Using the
concept of brushing and linking, the user can interactively explore
and analyze the multivariate data and derived features, such as the
correlation to LCS. The potential of combining visual analysis and
feature extraction has already been demonstrated in previous work
[BMDH07, STH∗09, LZM∗11]. Furthermore, our findings indicate
that the visual analysis based on Lagrangian coherent structures is an
effective approach to study the transport behavior in time-dependent
flows.

The selection of the time scale greatly influences the amount and
type of features that are found in the flow. With a fast evaluation of
LCS and the user interaction in all of the linked views, the identi-
fication and comparison of appropriate time scales is significantly
improved. Lastly, we apply our approach to visualize mixing in
multiphase fluid flows. Since LCS act as transport barriers that are
minimally diffusive, they are closely related to the interface between
two phases, e.g. liquid and gas particles, and their mixing proper-
ties [MHP∗07]. By correlating the phase interface with the LCS, we
find an effective visualization of the mixing behavior in multiphase
flows.

To summarize, our main contributions are:

• We derive a formulation for Lagrangian coherent structures di-
rectly on particle-based flows,
• We discuss the visual analysis of Lagrangian transport based on

the LCS,
• We identify LCS to visualize mixing behavior in multiphase

flows.

2. Related Work

This section discusses prior studies related to the visualization of
particle-based flows and introduces Lagrangian coherent structures.

2.1. Lagrangian Coherent Structures

Lagrangian coherent structures are the most repelling, attracting,
and shearing material surfaces in the flow. As such, they characterize
the topology of the flow and govern the global transport behavior,
see Haller [Hal15] for a recent overview. In order to identify LCS,
the finite-time Lyapunov exponent has been proposed in the seminal
work by Haller [HY00]. This scalar measure describes the rate
of separation (or attraction) with respect to infinitesimally close
particles over a finite-time interval. More specifically, let the flow
map φ

t
t0(x) be the mapping from a position x of a particle at time t0

to its position at time t. With the spatial gradient∇φ
t
t0(x), the right

Cauchy-Green strain tensor is defined as

C(x, t0, t) :=∇φ
t
t0(x)

ᵀ∇φ
t
t0(x). (1)

Using the largest eigenvalue λmax of C, the FTLE is defined as:

σ(x, t0, t) :=
1

|t− t0|
ln
(√

λmax (C(x, t0, t))
)
. (2)

The FTLE thus describes the average exponential stretching of an
infinitesimally close particle neighborhood at time t0 when the flow
is integrated to t. The FTLE that is computed by integrating forward
in time from t0 to t consequently measures the rate of separation.
By integrating backward in time, the rate of attraction is computed
instead, which is referred to as the backward FTLE.

There has been a lot of research in the computation of the FTLE
to reduce its computational effort [BR10, SRP11, BGT12, CRK12].
Most of the effort in the computation of the FTLE stems from the
dense integration of tracer particles that is required to approximate
the spatial gradient∇φ

t
t0(x). For Lagrangian flows, this integration

can be replaced by computing the derivative from existing pathlines.
More specifically, Agranovsky et al. [AGJ11] integrate a sparse set
of particles and employ moving least squares to compute the deriva-
tives necessary for the computation of FTLE. Shi et al. [SZCC17]
similarly solve a least-square fitting problem to compute FTLE. Sun
et al. [SCMZ16] derive a SPH formulation for the FTLE compu-
tation on particles, where the derivatives are obtained by deriving
the smoothing kernels. Dauch et al. [DRC∗18] discuss the efficient
implementation of this formulation on the GPU to interactively
compute the FTLE for large, three-dimensional datasets.

Given an FTLE field, locally maximizing surfaces in at least
one dimension, referred to as height ridges, can be defined as
Lagrangian coherent structures [Hal01, SLM05]. Sadlo and Peik-
ert [SP07] present a method to efficiently extract and filter height
ridges using marching ridges and adaptive mesh refinement. Garth
et al. [GGTH07] propose an efficient approximation of the FTLE
field, but prefer a direct visualization instead of ridge extraction. The
authors discuss the challenge of ridge extraction from intrinsically
noisy FTLE fields. More recent work [Hal11] shows deficiencies
of the definition of LCS as height ridges and instead introduces the
notion of weak LCS. This definition is not only based on the FTLE
and its derivatives, but directly on the strain tensor C. Schindler
et al. [SPFT12] propose a ridge concept based on the weak LCS
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definition, which they call C-Ridges. In this work, we consider
both LCS definitions. An alternative approach to approximate La-
grangian features for two-dimensional flows is proposed by Kuhn et
al. [KER∗14], based on a geometric reconstruction of the flow map.

2.2. Particle-Based Flow Visualization

Krüger et al. [KKKW05] and Bürger et al. [BSK∗07] present parti-
cle tracing systems that interactively integrate particles in a vector
field and display them using a glyph-based representation. Bürger
et al. [BKKW08] propose an importance measure to reveal im-
portant structures of flows and further employ FTLE to place so
called anchor lines. Jones et al. [JMEL08] visualize multivariate
particle data using transparent glyphs and pathlines. The authors
emphasize the advantages of parallel coordinates for visually analyz-
ing particle data. To visually debug SPH simulations, Reinhardt et
al. [RHD∗17] similarly combine a spatial 3D view with additional
views, such as scatter and parallel coordinate plots. As shown by
Grottel et al. [GKM∗15], the visualization of particle data benefits
from specific data structures and visualizations.

Salzbrunn et al. [SGSM08] propose pathline predicates, which fil-
ter a set of pathlines according to properties that are of interest to the
user. Shi et al. [STH∗09] analyze unsteady 3D flow fields by com-
puting multiple properties of selected pathlines. The resulting multi-
variate data is analyzed using information visualization approaches
with a set of linked views, including brushing and a focus+context
visualization. To visualize particle data, Shi et al. [SZCC17] com-
pute the FTLE and further accumulate pathline attributes on particle
data, but do not consider the evaluation of LCS.

3. Lagrangrian Coherent Structures in Particle-based Flows

In this section, we first detail how to compute spatial derivatives on
particle data and how this can be used to compute the FTLE. Then,
we introduce the height-ridge and weak LCS definitions. Afterwards,
we recapitulate the extraction of LCS from an FTLE field defined
on a uniform grid. Finally, we discuss the evaluation of LCS on
particles.

3.1. Spatial Derivatives and FTLE

The computation of FTLE and LCS requires the evaluation of
higher-order spatial derivatives. For particle data, moving least
squares [LS81] can be applied to reconstruct a smooth and continu-
ous fit to the particle data. It has been successfully applied to com-
pute higher order derivatives [CFCN∗07], in which case a basis of
at least quadratic degree is required. Agranovsky et al. [AGJ11] em-
ploy moving least squares for the computation of FTLE on sparsely
integrated tracer particles.

For our experiments, we follow recent work for SPH
data [SCMZ16, DRC∗18], which we discuss in more detail. To
obtain spatial derivatives in the SPH framework [Mon92] in n-
dimensional space, we first define the interpolation of a quantity Ai
at position xi ∈ Rn using the neighboring particle positions x j ∈ Rn:

Ai = ∑
j

A jW (x j− xi,h), (3)

where W is a compact kernel function parameterized by the smooth-
ing length h. The neighboring particle positions x j ∈N (xi), where
N (xi)⊂ Rn, thus depend on the support of the kernel function. To
compute the gradient, the kernel function can be differentiated:

∇Ai = ∑
j

A j∇W (x j− xi,h). (4)

Although it is possible to compute second derivatives the same
way, this is discouraged. Instead, we use the following approxima-
tion [Bro85]:

∇2Ai = ∑
j
(A j−Ai)

(x j− xi)
ᵀ∇W (x j− xi,h)
||x j− xi||

. (5)

To compute the FTLE at position xi, we consider how the neigh-
borhoodN (xi) at time t0 is deformed at time t, which leads to the
following definition for the gradient of the flow map [SCMZ16]:

∇φ
t
t0(xi,t0) = ∑

j
(x j,t − xi,t)⊗∇W (xi,t0 − x j,t0 ,h), (6)

where we index the positions by time. Similar to Dauch et
al. [DRC∗18], we employ a correction term for the FTLE com-
putation due to the particle disarray [BL99].

3.2. Definition of LCS

We discuss two different LCS definitions: The first one defines LCS
as height ridges of the FTLE, while the second one is based on the
concept of weak LCS as defined by Haller [Hal11].

To detect LCS as (n− 1)-dimensional height ridges within the
n-dimensional FTLE field σ at position x, we compute the gradient
∇σ(x), the Hessian matrix Hσ(x), the smallest eigenvalue emin and
corresponding eigenvector vmin of Hσ(x). The following two criteria
must hold:

ch
1(x) :=∇σ(x) · vmin = 0, (7)

ch
2(x) := emin ≤ 0. (8)

Note that we relax the inequality in the second criterion to include
thick ridges, similar to Farazmand and Haller [FH12].

In several examples, Haller [Hal11] shows that observable LCS
are not necessarily FTLE ridges and vice versa. We also use the
more accurate definition of weak LCS, but reformulate it to fit into
two criteria. To this end, we require the strain tensor C(x, t0, t) that is
used to compute the FTLE. We compute eigenvalues λi of C(x, t0, t),
with λ1≤ ·· · ≤ λi≤ ·· · ≤ λn, and the corresponding eigenvectors ξi.
Since the major eigenvector ξn of C(x, t0, t) is equal to the direction
of maximal stretching, it must be orthogonal to the LCS:

cw
1 (x) := 〈∇λn,ξn〉= 0. (9)

For the second criterion, we reformulate Equation 8 since the LCS
must be a local maximum in direction ξn. An additional condition
ensures that the normal repulsion rate is larger than the tangential
stretch, typically caused by shearing in the flow. To summarize, we
compute the second criterion as:

cw
2 (x) := 〈ξn,∇2

λnξn〉 ≤ 0∧λn−1 6= λn∧λn > 1. (10)

With these criteria, we fulfill three of the conditions necessary for
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Figure 2: Illustration of the per-particle LCS distance (increasing
from red to green over yellow), and the corresponding LCS created
by marching ridges (blue).

a weak LCS (cf. Haller [Hal11], theorem 7). Note that the height
ridge definition only fulfills two of those conditions, but does not
depend on the strain tensor. We can make use of both definitions
and thus refer to the criteria simply as c1 and c2.

3.3. Grid Extraction

For grid-based FTLE fields in 3D, the extraction of LCS as height
ridges of the FTLE can be performed with the Marching Ridges
algorithm [FP01] as discussed by Sadlo and Peikert [SP07, SP09].
In detail, the locations where the first criteria c1 are met is found
using Marching Cubes [LC87], i.e. computed at the grid vertices and
approximated using linear interpolation inside of each grid cell. Note
that the orientation of eigenvectors in a cell must be made consistent,
which can be performed with principal component analysis (PCA).
Afterwards, a triangle is created only if the second criterion c2 is
met for the corresponding edge. Noise amplification due to the
use of second derivatives is addressed by applying smoothing prior
to the evaluation of derivatives. Additionally, feature filtering is
applied since the approach often yields more ridges than desired, for
example due to degeneracies of the Hessian [STS10].

3.4. LCS from Particles

Performing Marching Ridges on particle data would require resam-
pling the FTLE to a grid and computing the derivatives afterwards.
This step is computationally inefficient and is prone to amplify noise
in the derivatives. Instead, we compute the derivatives and evalu-
ate the LCS criteria for each particle using its local neighborhood.
Similar to Marching Ridges, we compute zero crossings of the first
criteria from a particle with respect to its neighboring particles;
however, we cannot triangulate the zero crossings. Instead, we com-
pute the minimal distance to any LCS in its neighborhood for each
particle, cf. Figure 2. In the following, we discuss this procedure in
detail.

Given a particle at position x ∈ Rn and neighboring particles
x j ∈ N (x), we compute the distance from x to the nearest LCS in
the neighborhood. First, we make the orientation of eigenvectors for
the particle and its neighbors consistent using PCA. Afterwards, we
check each neighboring particle if c1(x j) has a different sign than
c1(x). In this case, the position of the zero crossing LCS(x,x j) be-
tween the two particles can be determined using linear interpolation.
Finally, if the zero crossing exists, and both particles additionally

fulfill criterion c2, we obtain the distance to x as:

dLCS(x,x j) :=


∞ if ¬

(
c2(x)∧ c2(x j)

)
,

∞ if sign(c1(x)) = sign(c1(x j)),

||LCS(x,x j)− x|| otherwise.

(11)

We define the LCS distance for x as the minimal distance to the LCS
towards all neighboring particles:

d(x) := inf
x j∈N (x)

dLCS(x,x j). (12)

This function defines an unsigned distance field. Even though we can
compute points on the LCS using linear interpolation, an extraction
of a surface is difficult since the distances are unsigned and the
LCS contain complicated, nonorientable structures. We did perform
several experiments to extract the coherent structures, but were
unable to find a reliable method. However, we did not consider the
method by Kindlmann et al. [KCH∗18], which seems promising.

Instead of extracting surfaces, we store for each particle the dis-
tance to the closest LCS. These per-particle distances can be added
to the dataset and used for further analysis and visualization. Lastly,
we normalize the distance using the radius r of the particle neigh-
borhood:

L(x) :=
d(x)

r
. (13)

4. Particle-Based Flow Visualization

For an effective particle-based flow visualization, the amount of
visual occlusion has to be reduced to make important parts of the
flow visible. This is crucial for particle data where datasets contain
millions of particles, most of which are not of immediate interest to
the user. We employ the FTLE, LCS distance, and the multivariate
particle data to select particles of interest. In the following, we
describe the visual analysis in multiple linked views. Then, we
consider the visualization of particle trajectories. Lastly, we discuss
the visualization of mixing in multiphase fluid flows.

4.1. Visual Analysis

In addition to a spatial visualization of the particles, we employ
multiple linked views on the data. Interesting particles can be se-
lected by brushing in any of the views to focus on the currently
deemed relevant parts of the flow. Central for the visual analysis is
the parallel coordinate plot that shows all particle attributes, includ-
ing the position and velocity, but also other derived quantities such
as vorticity, FTLE, and LCS distance. For each of those dimensions
an axis is created and for every particle a polyline is drawn over all
axes based on the particle’s values. The resulting plot allows cor-
relating each pair of neighboring dimensions. To this end, the axes
can be reordered to compare different dimensions. Moreover, every
axis can be brushed to select particles. The polylines of selected
particles are highlighted in the parallel coordinate plot and in all of
the other linked views. Correspondingly, the spatial visualization
shows only selected particles, which are affected by the transfer
function. Figure 3 depicts a parallel coordinate plot, where a low
LCS distance has been brushed. Consequently, particles near a LCS
are selected and we can immediately see how these particles are
correlated to and distributed in other dimensions.
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Figure 3: The parallel coordinate plot shows all multivariate dimensions of each particle at once. Here, particles close to a LCS are brushed
(red) on the corresponding axis. The brushed lines, highlighted in orange, allows correlating particles near a LCS to the other dimensions, for
example to the FTLE (on the right of the brushed axis) or to LCS over a different time interval (on the left).

For large particle datasets, drawing millions of polylines quickly
leads to clutter. We depict a 1D histogram on each axis, which helps
to convey the particle distribution in each dimension. Moreover,
we employ a frequency-based approach [NH06, HW09]. Instead of
drawing single polylines, the line density is computed and mapped
to color and transparency. As proposed by Guo et. al. [GXY11],
we employ a non-linear mapping of density to avoid loosing subtle
details and outliers.

Displaying a large number of particles is similarly challenging
in a scatter plot. This can be improved by drawing semi-transparent
glyphs; however, frequency-based visualizations are better suited to
visualize large datasets. Since approaches based on kernel density
estimation or continuous scatter plots [BW08] are too expensive for
our data sizes, we use histograms.

4.2. Visualizing the Topology of Time-Dependent Flows

We now discuss the visualization of unsteady flows by selecting a
sparse set of particles and their trajectories that best represent the
flow topology. For particle-based flows, trajectories can be obtained
by interpolating between the positions of particles over time. Note
that these are not equivalent to massless tracer particles integrated in
a velocity field. In particular, these particles are less affected by the
exponential error growth near LCS. This is due to the particle-based
simulations that apply attracting and repelling forces to the particles
to enforce a uniform discretization of the domain. Moreover, these
trajectories are well-suited to visualize particle-based fluid flows
since they depict the actual movement of particles and do not depend
on numerical integration. By brushing and linking, particles and
trajectories can be selected intuitively using any of the views. Using
the proposed per-particle LCS distance, trajectories near LCS are
thus easily selected and visualized.

4.3. Visualizing Mixing in Multiphase Fluid Flows

Multiphase fluid simulations contain particles of different types. By
color mapping each particle according to its type, the distinct phases
and their interface become visible, cf. Figure 6 (c). The visualiza-
tion strongly indicates the presence of vortices and separatrices, i.e.
separating lines with little cross flux, that are strongly related to
the mixing behavior. To gain insight into the dynamics of the phase
interface and the mixing regions over time, we identify the transport
barriers in the form of LCS. As shown in Figure 1(b), we can display
LCS together with the phase interface by emphasizing particles near
a LCS. Although the FTLE also indicates the transport behavior,

cf. Figure 1(a), the sparse representation of the coherent structures
significantly reduces visual clutter. Since the LCS are minimally
diffusive, little to no mixing should occur across the boundaries.
Accordingly, the separatrices coincide with the LCS, whilst vortices
near phase interfaces indicate possible mixing regions. The LCS
further show the behavior of the flow surrounding the interface,
which influences the evolution of the interface over time.

5. Implementation

In this section, we outline a parallel implementation of the LCS
computation and the spatial visualization of particle data.

5.1. Parallel LCS Computation

During the computation of the LCS, we need to repeatedly query
the local neighborhood of a particle. In our implementation, we
use a uniform grid to efficiently determine the neighborhood. If the
cell sizes are chosen equal to the kernel support, a minimal number
of cells have to be queried. As kernel function, we use a quintic
spline [LL10].

We perform all computations on the particles in parallel on the
GPU by splitting them in two steps: First, we compute the spatial
derivatives and evaluate the LCS criteria for every particle using
its local neighborhood. In the second step, we compute the LCS
distance for each particle. For a particle at position x, given either
vector vmin to detect height-ridges or ξn for the weak LCS definition,
we determine the mean vector and the covariance matrix from the
local neighborhood N (x). Then we extract the major eigenvector
of the covariance matrix, according to which we orient the vectors
of all particles in the neighborhood. Lastly, we evaluate the zero
crossings and compute the distance from x to the closest LCS.

5.2. Spatial Visualization

We depict particles as semi-transparent glyphs by applying a 1D
transfer function to map a scalar value to color and opacity. Ren-
dering particles as illuminated spheres gives a good perception of
depth, but Gaussian kernels are better suited to illustrate complex,
semi-transparent regions, see Figure 1. To render semi-transparent
particles, back-to-front sorting lead to the best results. However, to
render particle trajectories, sorting would be difficult. Instead, we
use order-independent transparency [MKKP18]. Moreover, we take
only a random subset when visualizing particle trajectories to reduce
occlusion and visual clutter.
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Figure 4: We evaluate our approach on the double gyre dataset with different data sizes. As a reference, the forward FTLE of the double gyre
computed from the integrated particle trajectories is shown in the left column. The LCS distance mapped to color is shown in the middle using
the height-ridge criteria and in the right column using the weak LCS criteria.
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Figure 5: Visualization of the gradient magnitude (a), the first height-ridge criteria (b) that should be equal to zero, and the second criteria (c)
that should be below zero at an LCS.

6. Experiments

To evaluate our approach, we apply it to a synthetic and a two- and
three-dimensional SPH dataset.

6.1. Double Gyre

The double gyre is a two-dimensional periodic and unsteady vector
field that describes two counter rotating gyres. It is commonly used
for the validation of FTLE and LCS. We use the following definition:

v(x,y, t) =
(

−πAsin( f (x, t)π)cos(πy)
πAcos( f (x, t)π)sin(πy) ∂

∂x f (x, t)

)
, (14)

where

f (x, t) = a(t)x2 +b(t)x
a(t) = εsin(ωt)
b(t) = 1−2εsin(ωt).

(15)

We set A = 0.1, ω = 2π/10, and ε = 0.1. We convert this analytic
vector field into a particle-based representation by integrating par-
ticles using a fourth order Runge-Kutta scheme and sampling the
trajectories at fixed time steps of 0.1. The particles are uniformly
seeded in the domain [0,2]× [0,1], but jittering is applied to reduce
aliasing artifacts. In total, this leads to 2048×1024 particles. Lastly,
we compute the forward FTLE over the time interval [0,20]. We
apply an FTLE threshold of 0.08 to compute the LCS distance.
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(a) (b) (c)

Figure 6: LCS from a large time interval (a) and a small interval (b). The fluid phases are shown in (c).

Figure 4 shows FTLE and LCS distance by applying a linear
color map. The LCS distance visualizations in (b) and (c) depict the
expected coherent structures, cf. e.g. Farazmand [FH12]. The ridges
can also be visually inferred from the FTLE field in Figure 4(a). As
expected, the height ridge and weak LCS criteria identify the same
coherent structures, but the height ridge LCS are thicker.

The second and third rows of Figure 4 show the influence of the
number of particles on the accuracy of the computation. Although
the LCS distance still identifies the coherent structures even for
the smallest dataset, it degrades faster then the FTLE. This is not
surprising since the computation of the LCS distance requires the
first and second derivatives of the FTLE.

Figure 5 shows a visualization of the gradient magnitude of the
FTLE from the full dataset in (a) and the two height-ridge criteria
in (b) and (c). These results emphasize that the derivatives and the
derived quantities thereof are smooth, ensuring the robustness of the
approach. Due to our approximation of the derivatives using kernel
functions, increasing the size of the neighborhood leads to smoother
derivatives, but will also smooth out finer features.

6.2. Fuel Spray

This two-dimensional dataset from a simulation of a fuel spray con-
tains about 12.6 million particles per time step. As shown in Figure 6
(c), fuel particles (yellow) are injected on the top left and mix with
two distinct gas phases (light and dark blue). The atomization of
the fuel into a spray of fine particles in the surrounding gas phase
is investigated by domain scientists to determine the quality and
characteristics of the spray.

Figure 1 shows the backward FTLE (a) and the LCS together
with the fluid phases (b). The LCS capture most of the ridges in
the FTLE field and give a clear indication of the global transport
and mixing behavior. On smaller scales, the LCS seem to lose some
accuracy compared to the FTLE, indicating a lack of resolution.
Besides enforcing an FTLE threshold of 0.1, we did not apply any
smoothing or filtering operations, which would be required by grid-
based extracting methods.

Since the computation of the FTLE and LCS is fast, it is possible
to quickly explore different time intervals. As shown in Figure 6 (a)
and (b), a large interval smooths out short-lived structures, whilst a
small time interval emphasizes these, but might fail to detect longer-
lived structures. We further correlate the LCS over different time
intervals, for example using the parallel coordinate plot in Figure 3,

Table 1: Performance measurements of our datasets.

Dataset Num. particles FTLE Height-ridge LCS Weak LCS

Double Gyre 2,097,152 52.1 ms 10.2 ms 9.5 ms
Fuel Spray 12,629,195 370.4 ms 48.4 ms 48.2 ms
Bubble 4,347,225 102.7 ms 22.7 ms 20.6 ms

to determine which structures exist in one or both time scales. From
the LCS in different time scales shown in Figure 6 (a) and (b) and
the parallel coordinate plot, we gather that the vortical region (red)
is short lived. The fluid phase visualization in (c) indicates strong
mixing in this region caused by this vortex. However, the longer
lived transport barriers in the middle of the complete flow show little
cross flux and thus completely separate the phases. On the right, the
transport barrier itself starts to swirl. Even though it still shows little
cross flux, the phases start to mix on a greater scale.

6.3. Bubble

The Bubble dataset is a laminar, two-phase flow of an air bubble
moving through water. The dataset can be reproduced with the
GPUSPH [gpu] simulation code. The domain is 6 times the size of
the spherical bubble and is discretized using 4.3 million particles in
each of the 50 discrete time steps in the interval [0,0.5].

Figure 7 shows the backward FTLE (a) and particles close to
the corresponding height-ridge LCS (b), which we color according
to the fluid type. The LCS correspond to the ridges of the FTLE,
but without the small-scale disturbances visible in the FTLE. The
attracting coherent structures convey the transport of the air bubble
that moves from left to right and starts to split. By visualizing both
LCS and the fluid phases, the splitting of the air bubble in smaller
bubbles becomes clearly visible.

In (c), we visualize particles trajectories, chosen by random from
the whole dataset and colored according to their material. Although
the different fluid phases become visible, the visualization suffers
from significant amount of clutter due to a large number of short, and
relatively uninteresting trajectories. By creating trajectories from
particles near LCS, these trajectories are effectively filtered out in
(d). The movement and splitting of the air bubble is better visible.
In total, this reveals the major flow features with respect to the air
particles and how they mix with the surrounding fluid.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

167



T. Rapp & C. Dachsbacher / Visualizing Transport and Mixing in Particle-based Fluid Flows

(a) Backward FTLE (b) Particles near LCS (c) Pathlines (d) Pathlines near LCS

Figure 7: Visualization of the Bubble dataset using the backward FTLE (a), particles near LCS (b), particle trajectories (c), and trajectories
created from particles near LCS.

6.4. Performance Measurements

Table 1 shows our performance measurements, which support our
claim of an interactive visualization. Since the FTLE and LCS com-
putations are extremely fast, different time scales can be efficiently
explored. Moreover, the evaluation of height-ridge and weak LCS
shows a similar complexity. All of our tests were run on an Intel i7
with 32GB of system memory and a Geforce 1080Ti graphics card
with 11GB of dedicated GPU memory.

Since our visualization and filtering techniques are fast, our per-
formance is bound by loading data from disk. Although we asyn-
chronously load likely time steps in advance in a separate thread,
requests for an unloaded time step might take a couple of seconds
to complete for larger datasets. Operations that require loading mul-
tiple time steps, e.g. creating pathlines, are bottlenecked by the I/O
operations.

7. Discussion

As our experiments have shown, the proposed LCS distance is well-
suited to identify the LCS and is fast to compute. Compared to the
FTLE, the LCS distance is sparse and can thus be combined with
other visualizations, such as coloring by fluid type for multiphase
flows. Moreover, it allows us to select particles of interest, e.g. to
visualize particle trajectories. However, since the computation of
the LCS distance is based on first and second-order derivatives, it
leads to a reduced accuracy compared to the FTLE and might thus
miss features that are not sufficiently captured by the data.

Lastly, our comparison between the height-ridge and weak LCS
definition is inconclusive. Although the weak LCS offers stronger
theoretical guarantees, in our experiments we found that the most
significant difference is the exclusion of LCS that stem from shear-
ing in the flow.

8. Conclusion

In this work, we have considered Lagrangian coherent structures
for the interactive visualization of time-dependent particle flows. In
detail, we formulate two different LCS definitions on the particle
data that allows us to employ particle-based formulations for the
spatial derivatives. We introduce a per-particle distance to the closest
LCS to visualize and analyze particle-based flows. With multiple,

linked views on the data, we are able to effectively combine this dis-
tance with other particle quantities and features. In our experiments,
we show the effectiveness of this approach to visualize Lagrangian
dynamics and mixing behavior in multiphase fluids. Additionally,
selecting and comparing different time scales can be effectively per-
formed using the proposed visual analysis approach. Although this
work has been an important step towards the interactive analysis of
large particle-based flows, the steadily growing size of simulations
remains a challenging issue.
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