
Eurographics Symposium on Parallel Graphics and Visualization (2006)
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

Parallel Texture-Based Vector Field Visualization on
Curved Surfaces Using GPU Cluster Computers

S. Bachthaler1, M. Strengert1, D. Weiskopf2, and T. Ertl1

1Institute of Visualization and Interactive Systems, University of Stuttgart, Germany
2School of Computing Science, Simon Fraser University, Canada

Abstract
We adopt a technique for texture-based visualization of flow fields on curved surfaces for parallel computation on
a GPU cluster. The underlying LIC method relies on image-space calculations and allows the user to visualize
a full 3D vector field on arbitrary and changing hypersurfaces. By using parallelization, both the visualization
speed and the maximum data set size are scaled with the number of cluster nodes. A sort-first strategy with
image-space decomposition is employed to distribute the workload for the LIC computation, while a sort-last
approach with an object-space partitioning of the vector field is used to increase the total amount of available GPU
memory. We specifically address issues for parallel GPU-based vector field visualization, such as reduced locality
of memory accesses caused by particle tracing, dynamic load balancing for changing camera parameters, and the
combination of image-space and object-space decomposition in a hybrid approach. Performance measurements
document the behavior of our implementation on a GPU cluster with AMD Opteron CPUs, NVIDIA GeForce 6800
Ultra GPUs, and Infiniband network connection.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing algorithms I.3.3
[Three-Dimensional Graphics and Realism]: Color, shading, shadowing, and texture

1. Introduction

Flow visualization is an important topic in scientific visual-
ization, addressing the display and visual analysis of data
that may originate from numerical simulations—such as
those of computational fluid dynamics—or from measure-
ments during flow experiments. Line integral convolution
(LIC) [CL93] and other related texture-based methods are
successfully applied to flow fields on planar 2D domains. A
key benefit of texture-based techniques is their capability to
gradually modify the density of the visual representation. In
particular, a representation that densely covers the domain
with particle traces overcomes the problem of identifying
appropriate seed points for traces. Although LIC can be ap-
plied to 3D flow, it typically suffers from problems of clutter
and occlusion. Therefore, flow visualization on curved 2D
hypersurfaces through the complete 3D data set is an inter-
esting compromise between the completeness and flexibility
of the visual representation on the one hand and the reduc-
tion of perceptual problems on the other hand.

Recently, there has been significant algorithmic progress

in efficiently computing LIC on surfaces via image-space ap-
proaches [LJH03, vW03, WE04]. These methods also bene-
fit from leveraging the processing power of GPUs (graph-
ics processing units). In this paper, we adopt the method
from [WE04] because it most accurately models the original
LIC idea, providing good image quality and temporal coher-
ence for animated visualizations. Unfortunately, the perfor-
mance of surface LIC is strongly influenced by image resolu-
tion, which may lead to rendering rates well below one frame
per second (fps) for high-resolution visualizations covering
more than a megapixel. Another issue is the restriction of the
amount of available texture memory, which limits the maxi-
mum size of the 3D flow data set that can be visualized.

In this paper, we address both the performance and mem-
ory issues by extending and adapting surface LIC to a GPU
cluster, i.e., a cluster computer with GPU-equipped compute
nodes. Image-space decomposition is used to scale the visu-
alization speed with the number of GPU nodes, while object-
space decomposition leads to a scaling of available GPU
memory. Parallelizing this kind of GPU algorithm poses par-

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


S. Bachthaler et. al. / Parallel Texture-Based Vector Field Visualization on Curved Surfaces Using GPU Cluster Computers

ticular challenges that are addressed in this paper: communi-
cation of intermediate results between GPUs, main memory,
and different compute nodes; a significantly reduced locality
of memory accesses caused by particle traces that cover large
spatial regions (i.e., particularly less locality than for par-
allel volume rendering); dynamic load balancing that takes
into account a strongly view-dependent behavior of surface
LIC; and the combination of image-space and object-space
decomposition. In addition, we document the performance
characteristics of our approach by including timings of our
implementation.

2. Related Work

Texture-based flow visualization has been an important ele-
ment of the research in scientific visualization. An overview
of the large body of previous work is given in the survey
article [LHD∗04]. Spot noise [vW91] and line integral con-
volution (LIC) [CL93] are early examples for texture-based
techniques. Recently, advances in texture-based flow visu-
alization are often connected to the increasing performance
and functionality of GPUs, which can be used to improve the
speed of 2D flow visualization [JEH00, WHE01, vW02].

One approach to extend flow visualization methods from
Euclidean space to a curved 2D manifold—such as a surface
embedded in 3D space—uses a parametrization of that man-
ifold. For example, LIC can be extended to curved surfaces
by computing the convolution in the parameter space of a
curvilinear grid [FC95]. One of the problems of such an ap-
proach is the need for finding a parametrization, which can
be difficult and time-consuming. An alternative approach
overcomes issues of parametrization-oriented methods by
working in image space. For example, texture advection can
be applied in such a way [LJH03, vW03]. In this paper, we
follow an improved method that largely adopts an image-
space approach and overcomes problems related to tempo-
ral coherence and visualization quality [WE04]. All these
image-space methods are designed to work with GPUs to
achieve a high visualization speed.

There is a large body of research on utilizing cluster
systems to improve the performance of typical computer
graphics methods like ray tracing, volume rendering, and
polygon-based rendering. In general, parallel visualization
systems can be classified as sort-first, sort-middle, or sort-
last [MCEF94]. In addition, hybrid approaches combining
features of different partitioning strategies have been gain-
ing increasingly more attention, e.g., in the form of a hybrid
sort-first and sort-last method for parallel polygon render-
ing [SFLS00] or a hybrid object-space and image-space dis-
tribution scheme for volume rendering [GS02].

There is only little previous work on parallel meth-
ods specifically related to vector field visualization. Early
examples adopt multi-processor workstations, such as
SGI’s 4D/340 or Cray’s T3D, to parallelize particle trac-

ing [BMP∗90,Lan94,Lan95]. For texture-based flow visual-
ization, there exist parallel versions of LIC [CL95, ZSH97]
that run on massively parallel CPU systems. Similarly, the
GeoFEM [CFN02] system, which is designed for large
shared memory symmetric multiprocessor architectures like
the Earth Simulator, contains methods for parallel parti-
cle tracking and 3D LIC alike. More recently, Muraki et
al. [MLM∗03] described an approach using GPU-based clus-
ter systems for rendering volumetric data sets with an exten-
sion for visualizing 3D LIC volumes constructed in a pre-
processing step.

3. Image-Space LIC on Surfaces

In this section, we give a brief overview of the single-GPU
flow visualization method [WE04] that is used in this paper.
We adopt a Lagrangian approach to particle tracing as the
basis for LIC. The path of a particle is determined by the
ordinary differential equation

dr(t)
dt

= v(r(t), t) , (1)

where r(t) describes the position of the particle at time t and
v(r, t) denotes the time-dependent vector field. The positions
r ∈R

3 are restricted to locations on the surface embedded in
R

3. For a tangential vector field, Eq. (1) leads to curves that
stay on the surface.

So far, the vector and point quantities are given with re-
spect to physical space (P-space). The basic idea of image-
space methods is to perform the relevant computation in
image space. In fact, the image-space operations are per-
formed in normalized device space (D-space), which has
extent [0,1]3. D-space is ideal to compute LIC on a per-
pixel basis with respect to the image plane in order achieve
a largely output-sensitive algorithm and a uniform density
on the image plane. On the other hand, there are some as-
pects that are better represented in P-space, in particular,
the 3D noise input for LIC in order to guarantee frame-to-
frame coherence under camera motion. The advantages of
P-space and D-space representations are combined by com-
puting particle paths in both spaces simultaneously, as illus-
trated in Figure 1.

Explicit numerical integration, such as a first-order ex-
plicit Euler scheme, works with P-space coordinates rP ≡ r
and the original tangential vectors vP ≡ v to solve Eq. (1).
After each integration step, the corresponding position in D-
space is computed. The vector field is no longer given on a
P-space but a D-space domain, i.e., we have different rep-
resentations for the vector components and the associated
point on the surface. The modified particle-tracing equation
then is

drP(t)
dt

= vP(rD(t), t) , (2)

where rD and rP represent the same position with respect to
D-space and P-space, respectively.

c© The Eurographics Association 2006.



S. Bachthaler et. al. / Parallel Texture-Based Vector Field Visualization on Curved Surfaces Using GPU Cluster Computers

far clipping
plane

xP

zP

x
D

zD

near clipping

plane

far clipping
planezD

xD

view
frustum

near clipping
plane

viewfrustum

D−space oriented P−space oriented

Figure 1: Coupled D-space (left) and P-space (right) rep-
resentations of the same scene. c© 2004 Weiskopf and
Ertl [WE04].

The crucial step in making the integration process effi-
cient is to reduce the 3D representation of the quantities to a
2D D-space representation when possible. Since flow fields
are assumed to live on opaque surfaces, only the closest sur-
face layer needs to be considered. Here, the depth compo-
nent can be indirectly computed because the depth values of
the surface on which the visualization is computed is known.

The algorithm consists of two major parts. In the first part,
the 2D textures for starting positions rP and the vector field
vP are initialized by rendering the mesh representation of the
hypersurface. The closest depth layer is extracted by the z
test. The P-space positions are set according to the surface’s
object coordinates. The vector field texture is filled by vP,
which originates from slicing through a 3D texture that holds
the vector field data set. Because the vector field is usually
not tangential from construction, it has to be made tangen-
tial by removing the normal component, which is computed
according to the normal vectors of the surface mesh. In the
second part, Eq. (2) is solved by iterating over integration
steps. This part works on the 2D x–y sub-domain of D-space,
and it successively updates the coordinates rP and rD along
the particle traces, while simultaneously accumulating con-
tributions to the convolution integral.

The implementation of the complete visualization process
can be split into three stages: the projection stage, which
projects the surface geometry and the vector field onto the
image plane, the LIC stage, which computes the line integral
on the image plane, and the blending stage, which combines
a LIC image with the rendered image of the surface geome-
try. All three stages are implemented by vertex and fragment
programs to make use of the high processing speed of GPUs.

The projection stage produces three 2D textures as inter-
mediate results: the projected vector field vP, the start point
for particle tracing rP, and the rendered image of the illu-
minated surface. These three textures are filled in a single
rendering pass by using multiple render targets (MRTs). The

performance of the projection stage is comparable to the per-
formance of rendering the surface with illumination being
enabled—it just adds a few instructions that project the vec-
tor field and write out the initial coordinates for particle trac-
ing.

In contrast, the LIC stage is computationally more expen-
sive. This stage uses intermediate results from the projection
part to compute the line integral. It solves the particle trac-
ing Eq. (2) to advance positions along streamlines. Simul-
taneously, contributions to the line integral are accumulated
along the streamline. The input noise is stored in a 3D tex-
ture. Potential aliasing due to perspective foreshortening is
avoided by an adapted version of MIP mapping (see [WE04]
for details). The result of this stage is written to a 2D texture
that holds the gray-scale LIC image on the image plane. Par-
ticle tracing and integral accumulation are implemented in
a shader loop that advances along the streamline. Typically,
the number of iterations is between 40 and 300. Therefore,
the overwhelming performance costs are associated with the
LIC stage. Note that the LIC computation is only performed
for pixels that are covered by the projected surface geometry,
i.e., fragment processing is skipped for background pixels by
means of the early z test. The z values for this masking are
obtained from the projection stage. Masking leads to a ren-
dering run time that is proportional to the number of visible
pixels, i.e. output sensitivity is achieved to a large extent.

Finally, the blending stage combines the result of the LIC
stage and the lit surface generated in the projection stage by
blending and modulation. In this way, both the LIC texture
and the surface geometry are visualized at the same time.

This flow visualization technique completely re-computes
the LIC image for each frame. Therefore, the rendering per-
formance is not affected by deforming or changing the sur-
face geometry, or by moving the camera. In this way, this
approach is suited for interactive applications in which visu-
alization parameters can be rapidly changed by the user.

4. Parallel GPU-Based Visualization

In order to utilize the cluster environment in terms of render-
ing speed as well as memory scalability, we employ a hybrid
sort-first sort-last rendering scheme.

Our software architecture consists of two major elements:
a user application and distributed render clients. The user ap-
plication acts as the frontend that presents the final image of
the distributed rendering and handles user inputs. For ren-
dering, basic graphics functionality is sufficient and no spe-
cial hardware requirements need to be met, in particular not
the ones necessary for visualizing the vector data. The fron-
tend is connected to the PC cluster via TCP/IP allowing the
user to visualize data from a remote location. Each node of
the cluster system runs an instance of the render client that
visualizes parts of the final image depending on the user-

c© The Eurographics Association 2006.



S. Bachthaler et. al. / Parallel Texture-Based Vector Field Visualization on Curved Surfaces Using GPU Cluster Computers

viewer

node2 node3

node4

node4

node1

node1

projection
sort−last

sort−first
LIC

node2 node3

Figure 2: Overview of the communication architecture. The
viewer communicates with the cluster using TCP/IP (green
solid lines). Cluster-internal data transfer is driven by MPI
(blue dashed lines). In the first part of the algorithm object-
space partitioning is applied to the projection of the vector
field. Image-space partitioning is used for the LIC stage.

specified parameters, the number of cluster nodes used, and
the partitioning scheme.

The communication scheme for parallel visualization is
illustrated in Figure 2. The following steps are involved:
First, the viewer application sends a render request to a sin-
gle cluster node. Such a render request contains all informa-
tion necessary to render a single frame, e.g. camera param-
eters, lighting conditions, and LIC parameters. Second, the
request is then broadcast to all the other remaining cluster
nodes using MPI (message passing interface). We adopt this
two-level communication in contrast of a direct broadcast
of the user application in order to minimize the amount of
data to be sent over a possibly narrow-banded TCP/IP inter-
connection. Third, every cluster node processes the request
and renders an output image according to the given param-
eters. Image-space partitioning is based on stripes dividing
the framebuffer into separate areas each of which is assigned
to a different render node (see Section 5). Additionally, the
projection of the vector field onto the hypersurface can op-
tionally make use of object-space partitioning to exploit the
scalability of texture memory in a GPU-based cluster envi-
ronment (see Section 6). Finally, the content of the frame-
buffer within the assigned stripe is read back on each node
and sent to the user application. To reduce the overall amount
of data to be transferred over TCP/IP, we compress the data
using LZO real-time compression before sending. Note that
a two-level approach for communication would not reduce
the amount of transferred data in case of sort-first partition-
ing schemes, but would introduce additional overhead. The
user application decompresses the image tiles and composes
them into a final image that is shown to the user.

5. Image-Space Decomposition

Our method to accelerate surface LIC makes use of a sort-
first approach. The image plane is split into sub-images that
are rendered on separate cluster nodes. Ideally, the amount

of work per node is reduced to 1/n, where n is the number
of sub-images (i.e. number of cluster nodes).

5.1. Partitioning of Image Space

We partition the image space with a collection of horizon-
tal stripes. This partitioning affects the projection and LIC
stages alike.

For the projection stage, we do not separate the surface
geometry into different pieces for parallel rendering because
the size of the surface mesh does not pose a rendering bot-
tleneck in our case. Typical visualization meshes consist of
fewer than a million triangles. Therefore, each node holds a
copy of the complete surface geometry. For the time being,
we also assume that the vector field data is completely repli-
cated on each node. (This restriction is overcome by object-
space partitioning in Section 6.) In the projection stage, the
viewport needs to be adjusted to produce intermediate re-
sults only for the image-space stripe that is associated with
a respective render node. This is achieved by modifying the
view frustum of the camera. The parts of the geometry that
are not visible in the stripe are removed by view frustum
clipping.

The LIC stage works directly in image space. A render
node only processes those pixels that lie within its respective
stripe. In other words, the LIC computation is parallelized
with a sort-first approach because the computational domain
is partitioned without any overlap. Similarly, the blending
stage works directly on a per-pixel basis in the image stripe.

The construction of the final image is reduced to a sim-
ple tiling of intermediate image stripes. Here, the viewer ap-
plication needs an offset in addition to the content of a re-
spective stripe to place the received framebuffer content of
a stripe at the proper position in the final image. To calcu-
late this offset, only the heights of the stripes that are placed
below the current stripe are needed. As an example, the low-
ermost stripe does not need any offset (this is because the
framebuffer “begins” at the lower left corner). The stripe on
top of this stripe does need an offset equal to the height of
the first stripe, etc.

5.2. Continuous Border Transitions

A problem arises when the above stripe approach is used in
combination with particle tracing in the LIC stage: A parti-
cle trace that starts within one stripe may leave that stripe
and enter a neighboring stripe. In other words, particle trac-
ing breaks the per-pixel locality that has to be assumed for
a naive image decomposition. Once a particle trace leaves a
stripe, it has no longer access to required vector field infor-
mation. This leads to clearly visible border artifacts between
two stripes, as illustrated in Figure 3. The flow is interrupted
at the border and does not continue seamlessly into the next
stripe.

c© The Eurographics Association 2006.



S. Bachthaler et. al. / Parallel Texture-Based Vector Field Visualization on Curved Surfaces Using GPU Cluster Computers

buffer zone

LIC stage

viewer

projection stage

Figure 4: The buffer zone around an image stripe, as constructed in the projection stage and subsequently used by the LIC
stage.

Figure 3: Artifacts at stripe boundaries caused by missing
vector field data. Red arrows highlight stripe borders.

This problem can be overcome by increasing the spatial
domain of the available vector field data: The projection
stage has to produce stripes with an additional area at the
upper or lower parts of the stripe. Of course, this overlap-
ping area—or “buffer zone”—is only needed if a stripe has a
neighbor at the corresponding border, i.e., the uppermost and
lowermost stripes only need one buffer zone at the lower or
upper borders, respectively. Figure 4 shows how the buffer
zone is constructed in the projection stage and subsequently
used by the LIC stage. The buffer zone is only needed during
particle tracing and can be ignored for later process stages
of the visualization process. In particular, the starting points
for LIC traces (in the LIC stage), the blending stage, and
the readback of intermediate results from the framebuffer are
based on the original stripe area in order to avoid unneces-
sary computations.

The size of the buffer zone should be chosen cautiously
because it can unnecessarily slow down the rendering pro-
cess if set too big. Of course, if the buffer zone is too small,
the previously mentioned error remains visible. The size of
the buffer zone is determined by

sbuffer =
nconvolution

2
vmax∆t ,

where nconvolution is the number of convolution steps (the
size of the discretized LIC filter kernel), vmax is the maxi-
mum velocity magnitude in the data set, and ∆t is the step
size used for discretizing the LIC computation. The factor
1/2 reflects the fact that a symmetric filter kernel is used,

i.e. particle traces follow one half of the filter kernel in both
directions. The value sbuffer is the maximum distance along
a particle trace in image space and describes the worst case
when a streamline is perpendicular to the stripe border. For
consistency, the parameters vmax and ∆t need to be specified
with respect to image space as well. Note that vmax is read-
ily available for many applications. For example, streamline-
based LIC assumes that the vector magnitude is normalized
to unit length. As another example, the representation of vec-
tor data in 8-bit texture formats gives a direct bound for the
vector magnitude. The buffer zone is designed for the worst
case scenario with a conservative estimate for the particle-
trace length. More sophisticated estimates (e.g. by consider-
ing vector field direction) might lead to a reduced size of the
buffer zone, however, at the cost of a more time-consuming
computation of the estimate.

5.3. Load Balancing

In order to achieve an optimal overall performance, every
node of the cluster should be assigned an equal share of the
workload. So far, image-space partitioning relies on static
stripes that divide the viewport in equally sized areas. How-
ever, the determining factor for performance is not the size
of the area in image space, but the actual number of frag-
ments of the surface geometry that need to be processed.
It is obvious that a node with a stripe fully covered by the
surface model is far slower than a node assigned to a com-
pletely empty region. To overcome this problem we adopt a
dynamic adjustment of the height of the stripes depending
on the associated workload. We use two alternative methods
to determine the workload: a timing-based method that actu-
ally measures the workload, and a pixel-counting approach
that provides an estimate for the computation time based on
the number of pixels.

For the timing-based method, the time needed to finish
rendering is continuously measured on every cluster node.
These timings are then gathered for the current frame and
used to adjust the stripe heights for rendering the subse-
quent frame: The stripe heights are modified relative to the
speed differences between nodes. The underlying assump-
tion is that the timings are a good estimate for the rendering
times of the following frame, which is reasonable when there
is temporal coherence for rendering. The timing-based ap-

c© The Eurographics Association 2006.



S. Bachthaler et. al. / Parallel Texture-Based Vector Field Visualization on Curved Surfaces Using GPU Cluster Computers

intermediate buffer histogram final stripes

w
hi

te
 p

ix
el

s

stripe 2 stripe 3 stripe 4stripe 1

Figure 5: Computing the estimate for the pixel-counting approach. Pixels of the downsampled rendering (left) are stored in an
accumulated histogram (center). The stripe sizes (along the horizontal axis of the histogram) are determined by inverting the
accumulated histogram for equally sized pixel intervals (along the vertical axis). The stripes are shown to the right.

proach can be implemented with almost no overhead or ad-
ditional processing. It just involves taking the start and end
times for rendering, and transferring those times when the
intermediate images are sent between nodes for final ren-
dering. The main drawback is that the optimal size for the
stripes is typically not achieved completely. This is to some
extent due to inaccuracies of time measurements in connec-
tion with high frame rates. But more importantly, this issue
is related to the partially violated assumption of perfect tem-
poral coherence. If the content of the framebuffer changes
rapidly, temporal coherence between consecutive frames di-
minishes and the load balancing is less effective.

The second approach uses a pixel-counting algorithm to
avoid the aforementioned drawbacks. The idea is to ob-
tain an estimate of the framebuffer content before render-
ing. With a good estimate, the workload can be adjusted in
a way that every node gets the same number of fragments
of the geometry model assigned for LIC processing. Since
the workload is mainly dependent on the amount of frag-
ments the vector fields gets projected on, this approach al-
lows for an effective load balancing. Since computing the
estimate has to be fast to minimize overhead, we render a
downsampled image of the geometry model first. In order
to assure the accuracy of the estimation a tradeoff between
the inherent overhead and the used quality needs to be made.
For all our tests and performance measurements a factor of
one-fifth for each dimension was chosen. The geometry is
rendered completely unshaded to further speed up process-
ing. The result of this render process is read from the frame-
buffer to generate an accumulated histogram. For each row,
the number of pixels covered by the geometry model is de-
termined and summed up consecutively. Figure 5 shows the
relationship between framebuffer content and the accumu-
lated histogram. We divide the total number of pixels by the
number of cluster nodes to obtain the ideal number of pixels
per node. Using the inverse of the histogram, equally sized
intervals (where the interval size corresponds to the number
of pixels per node) are mapped to actual stripe heights in the
framebuffer. The pixel-counting approach is computed with

the current camera parameters and, thus, is not affected by
changes of framebuffer contents. The main disadvantage is
the slightly higher rendering overhead, especially for large
surface meshes.

6. Object-Space Partitioning

Not only can a cluster be used to scale rendering speed, but
also to scale available memory because each node provides
some fixed amount of memory. The goal to achieve the best
performance by using multiple processors is often on a par
with the goal to visualize very large vector fields. To display
huge vector fields, the considerably larger combined texture
memory of the PC cluster is used.

The vector field has to be partitioned because the texture
memory of a PC cluster is not available in one piece—it is
distributed memory. We adopt a bricking approach known
from parallel volume rendering: The vector field is divided
into bricks, and each of these bricks corresponds to a sub-
volume of the vector field. A single cluster node works on
its assigned brick. The brick size (or the number of nodes)
should be chosen so that the vector field data of a brick fits
in the texture memory of a single node’s GPU.

Only the projection stage is affected by bricking because
the 3D vector field is only used in that part of our surface LIC
algorithm. The following modifications need to be incorpo-
rated. First, it has to be ensured that a cluster node gener-
ates a projected vector field only within its own brick. Six
brick-aligned clip planes are used to cut the surface geome-
try away for regions outside the brick. Second, a compositing
step needs to be included to reconstruct the full image-space
based vector field. Compositing is distributed among nodes,
with the same stripe-based organization that is used for the
LIC stage. Therefore, every node has to send its content of
the corresponding stripe to the cluster node that is respon-
sible for this stripe. Here, we must pay attention that the
nodes send stripes including the buffer zones. In this sort-
last approach, the intermediate vector field images are com-
posited in a back-to-front order. Since the surface geometry

c© The Eurographics Association 2006.



S. Bachthaler et. al. / Parallel Texture-Based Vector Field Visualization on Curved Surfaces Using GPU Cluster Computers

Table 1: Performance with varying amount of nodes, rendered on a 800×800 viewport. Numbers in brackets denote speedup.

number of cluster nodes 1 2 3 4 5 6 7 8

FPS static stripes 2.23 3.86 (1.7) 2.82 (1.3) 4.01 (1.8) 4.12 (1.8) 5.07 (2.3) 5.06 (2.3) 6.29 (2.8)
FPS dynamic time-based - 4.00 (1.8) 5.62 (2.5) 6.67 (3.0) 7.91 (3.5) 9.10 (4.1) 10.12 (4.5) 10.89 (4.9)
FPS dynamic pixel-based - 3.83 (1.7) 5.21 (2.3) 6.29 (2.8) 7.25 (3.3) 8.14 (3.7) 8.95 (4.0) 9.67 (4.3)

is opaque, alpha blending is not needed. In fact, similarly
to painter’s algorithm, incoming non-background pixels just
overwrite existing pixels. The result of this compositing is a
complete projection of the vector field for that stripe.

The LIC stage is not affected by these modifications be-
cause it uses only the result of the projection part. Therefore,
the object-space partitioning of the data set can be directly
combined with the image-space decomposition for the LIC
computations.

7. Results and Discussion

All measurements were conducted on a GPU-based cluster
with eight render nodes. Each node runs two AMD Opteron
processors at 2.18 GHz and is provided with 4 GB of system
memory. For rendering, all nodes have an NVIDIA GeForce
6800 Ultra with 256 MB of texture memory installed. The
cluster’s internal communication is driven by MPI over an
Infiniband interconnection that provides low latency times
and data transfer rates of up to 800 MB per second. In our
test environment, the PC running the viewer application is
connected to the cluster using a Gigabit Ethernet network.

To demonstrate the scaling behavior of our system we
first show the results obtained with an increasing number
of nodes used for rendering on a 800×800 sized viewport
using a 1283 sized vector field. During this test series no
object-space partitioning was carried out in order to provide
comparability and to avoid effects caused by a compositing
stage or a corresponding communication scheme. The sur-
face is generated by rendering the GLUT teapot that rotates
around the main axis while the measurement was taken (see
color plate Figure I). With this constant change of the ren-
dered image, we try to simulate reproducible user interaction
and allow for measuring the effects of the dynamic stripe
adaption under realistic conditions. Table 1 documents our
results for three test series, either using a static distribution
with equally sized areas in image-space or using one of the
two dynamic load balancing techniques from Section 5.3.

The speedup obtained in the static case using all eight
cluster nodes is only a factor of 2.82, compared to the sin-
gle node setup. This small speedup is mainly caused by a
highly imbalanced distribution of the workload throughout
the cluster. With increasing number of nodes, the top and
bottom stripes receive a rapidly decreasing number of frag-
ments of the surface model, while the number of fragments
for the center stripes decreases only slowly. Adding dynamic

load balancing significantly improves the performance of
the complete system. For both dynamic load balancing tech-
niques, an 8-node configuration achieves a speedup of over
4.3, with an average frame rate of approximately 10 fps. In
all measurements, the timing-based method performed better
than the pixel-counting approach, which is due to the higher
overhead for computing the pixel-counting estimate. How-
ever, for other tests with less temporal coherence between
frames, we already experienced that the performance gap
between the timing-based and pixel-counting approaches
closed. If more parameters change in-between frames, such
as the geometry of the surface, we expect to achieve a per-
formance advantage with the pixel-counting approach.

Adding the object-space partitioning scheme to the pro-
jection stage allows us to increase the size of the visual-
ized vector field at the cost of additional communication
and compositing. For performance measurements, we used
a 5123 vector field with an overall data amount of 1.28 GB.
Distributing the data using all eight cluster nodes leads to
nearly 200 MB of texture data assigned to each cluster node,
which is close to the texture limit of the used GPUs. Us-

Figure 6: Resulting image of distributed rendering with
eight GPU nodes. The geometric object was modeled by Sam
Drake and tesselated by Amy Gooch and Peter-Pike Sloan.

c© The Eurographics Association 2006.



S. Bachthaler et. al. / Parallel Texture-Based Vector Field Visualization on Curved Surfaces Using GPU Cluster Computers

ing the same parameters and geometry as stated above, we
achieved a rendering rate of 3.08 fps for static image-space
load balancing and 3.79 fps for both dynamic load balancing
methods (with eight nodes). For comparison, the 1283 sized
data set renders at 3.11 fps and 3.90 fps, respectively. As
described, using object-space partitioning requires an addi-
tional compositing step for the projected vector field, which
is also the main reason for the measured drop in perfor-
mance. Taking this overhead into account we achieve an al-
most optimal scaling behaviour for the GPU memory.

Figure 6 shows the result of flow visualization on a more
complex surface mesh with 25000 polygons and a 5123 sized
vector field. When rendering on a 800×800 viewport with
eight nodes, we obtained 2.22 fps.

8. Conclusions and Future Work

We have presented a parallelized algorithm for surface LIC
on a GPU-cluster architecture. The key elements are a sort-
first strategy with image-space decomposition to distribute
the workload for expensive LIC computations, and a sort-
last approach with an object-space partitioning of the vec-
tor field to increase the available GPU memory. We have
demonstrated that the sort-first and sort-last methods can be
combined to a hybrid technique in order to benefit from both
of their advantages. We have also addressed issues such as
dynamic load balancing or the reduced locality of particle
tracing, which can be solved by introducing buffer zones.
Our performance measurements have shown that our imple-
mentation provides an acceptable performance scaling be-
havior for moderately sized GPU clusters. An equally im-
portant benefit is that object-space decomposition enables
us to visualize large vector field data sets interactively; and
memory scaling comes at a negligible performance cost.

For future work, parallel rendering could be extended to
the projection of the surface geometry itself in order to visu-
alize extremely large surface meshes.

References

[BMP∗90] BANCROFT G. V., MERRITT F. J., PLESSEL T. C.,
KELAITA P. G., MCCABE R. K., GLOBUS A.: FAST: a multi-
processed environment for visualization of computational fluid
dynamics. In Proc. IEEE Visualization (1990), pp. 14–27. 2

[CFN02] CHEN L., FUJISHIRO I., NAKAJIMA K.: Parallel per-
formance optimization of large-scale unstructured data visualiza-
tion for the Earth Simulator. In Proc. Eurographics Workshop on
Parallel Graphics and Visualization (EGPGV) (2002), pp. 133–
140. 2

[CL93] CABRAL B., LEEDOM L. C.: Imaging vector fields us-
ing line integral convolution. In Proc. ACM SIGGRAPH (1993),
pp. 263–270. 1, 2

[CL95] CABRAL B., LEEDOM L. C.: Highly parallel vector
visualization using line integral convolution. In Proc. Seventh
SIAM Conference on Parallel Processing for Scientific Comput-
ing (PPSC) (1995), pp. 802–807. 2

[FC95] FORSSELL L. K., COHEN S. D.: Using line integral con-
volution for flow visualization: Curvilinear grids, variable-speed
animation, and unsteady flows. IEEE Transactions on Visualiza-
tion and Computer Graphics 1, 2 (1995), 133–141. 2

[GS02] GARCIA A., SHEN H.-W.: An interleaved parallel vol-
ume renderer with PC-clusters. In Proc. Eurographics Workshop
on Parallel Graphics and Visualization (EGPGV) (2002), pp. 51–
59. 2

[JEH00] JOBARD B., ERLEBACHER G., HUSSAINI M. Y.:
Hardware-accelerated texture advection for unsteady flow visu-
alization. In Proc. IEEE Visualization (2000), pp. 155–162. 2

[Lan94] LANE D. A.: UFAT: a particle tracer for time-dependent
flow fields. In Proc. IEEE Visualization (1994), pp. 257–264. 2

[Lan95] LANE D. A.: Parallelizing a practicle tracer for flow vi-
sualization. In Proc. Seventh SIAM Conference on Parallel Pro-
cessing for Scientific Computing (PPSC) (1995), pp. 784–789. 2

[LHD∗04] LARAMEE R. S., HAUSER H., DOLEISCH H.,
VROLIJK B., POST F. H., WEISKOPF D.: The state of the art
in flow visualization: Dense and texture-based techniques. Com-
puter Graphics Forum 23, 2 (2004), 143–161. 2

[LJH03] LARAMEE R. S., JOBARD B., HAUSER H.: Image
space based visualization of unsteady flow on surfaces. In Proc.
IEEE Visualization (2003), pp. 131–138. 1, 2

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. IEEE Computer
Graphics and Applications 14, 4 (1994), 23–32. 2

[MLM∗03] MURAKI S., LUM E. B., MA K.-L., OGATA M., LIU

X.: A PC cluster system for simultaneous interactive volumetric
modeling and visualization. In Proc. IEEE Symposium on Par-
allel and Large-Data Visualization and Graphics (PVG) (2003),
pp. 95–102. 2

[SFLS00] SAMANTA R., FUNKHOUSER T., LI K., SINGH J. P.:
Hybrid sort-first and sort-last parallel rendering with a cluster of
PCs. In Proc. Eurographics / ACM SIGGRAPH Workshop on
Graphics Hardware (2000), pp. 97–108. 2

[vW91] VAN WIJK J. J.: Spot noise – texture synthesis for data
visualization. Computer Graphics (Proc. ACM SIGGRAPH 91)
25 (1991), 309–318. 2

[vW02] VAN WIJK J. J.: Image based flow visualization. ACM
Transactions on Graphics (Proc. ACM SIGGRAPH 2002) 21, 3
(2002), 745–754. 2

[vW03] VAN WIJK J. J.: Image based flow visualization for
curved surfaces. In Proc. IEEE Visualization (2003), pp. 123–
130. 1, 2

[WE04] WEISKOPF D., ERTL T.: A hybrid physical/device-space
approach for spatio-temporally coherent interactive texture ad-
vection on curved surfaces. In Proc. Graphics Interface (2004),
pp. 263–270. 1, 2, 3

[WHE01] WEISKOPF D., HOPF M., ERTL T.: Hardware-
accelerated visualization of time-varying 2D and 3D vector fields
by texture advection via programmable per-pixel operations.
In Proc. Vision, Modeling, and Visualization (VMV) (2001),
pp. 439–446. 2

[ZSH97] ZÖCKLER M., STALLING D., HEGE H.-C.: Parallel
line integral convolution. Parallel Computing 23, 7 (1997), 975–
989. 2

c© The Eurographics Association 2006.



S. Bachthaler et. al. / Parallel Texture-Based Vector Field Visualization on Curved Surfaces Using GPU Cluster Computers

Figure I: Image taken from the the performance measurement
series.

Figure II: Resulting image of distributed rendering with eight
GPU nodes.

c© The Eurographics Association 2006.


