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Abstract

The structural organization of neural circuitry is an important determinant of brain function. Thus, knowing the
brain’s wiring (the connectome) is key to understanding how it works. For example, understanding how sensory
information is translated into behavior requires a comprehensive view of the microcircuits performing this trans-
lation at the level of individual neurons and synapses. Obtaining a wiring diagram, however, is nontrivial due
to size, complexity and accessibility of the involved brain regions. Even when such data were available, it were
difficult to analyze. Here we describe how a network of ~0.5 million neurons and their synaptic connections,
representing the vibrissal area of the rat primary somatosensory cortex, can be reconstructed. Furthermore, we
present a framework for visual exploration of synaptic connectivity between (groups of) neurons within this model.
It includes, first, the Cortical Column Connectivity Viewer (CCCV) that provides a hybrid abstract/spatial repre-
sentation of the connections between neurons of different cell types and/or in different cortical columns. Second,
it comprises a 3D view of cell type-specific synapse positions on selected morphologies. This framework is thus
an effective tool to visually explore structural organization principles at the population, individual neuron and

synapse levels.

1. Introduction

One fundamental question in neuroscience is how brains
translate sensory information into behavior. In order to un-
derstand such processes it is essential to obtain structural
descriptions of the involved microcircuits, its neuronal el-
ements and their synaptic interconnections, the ‘connec-
tome’ [STKOS]. A convenient model system to investigate
the relationship between sensory stimuli and behavioral re-
sponses is the rodent whisker system (Fig. 1a). Tactile in-
formation obtained from a single facial whisker is conveyed
via the brainstem and thalamus to the vibrissal area of the
primary somatosensory cortex (barrel cortex, S1, Fig. 1b) in
a segregated manner, i.e. there is a 1-to-1 correspondence
between each whisker and a cortical barrel column [Hel07].
Further, single whisker input is sufficient to trigger simple
behaviors, such as decision-making [CSO7].

One way to create an anatomically realistic model of the
barrel cortex would be by dense reconstruction of neuron
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morphologies and their synaptic contact sites within one an-
imal from electron-microscopic data. However, dense re-
constructions of volumes as large as a cortical column or
even the barrel cortex are, at present, not feasible [Hel07,
Obella]. We therefore use a ‘reverse engineering’ approach:
anatomical information, including spatial neuron distribu-
tions and 3D morphologies, obtained from different (light-
microscopic) image modalities and different animals is reg-
istered into a common reference frame. After placement of
axon and dendrite morphologies, the spatial distribution of
synaptic contacts between the different cell types and in dif-
ferent columns is estimated based on structural overlap.

Recently, this approach has been applied to create a re-
alistic model of the population of excitatory neurons in a
single cortical column [Obella,Lanl1] and its synaptic in-
nervation by thalamo-cortical (VPM) axons. This model thus
allowed for the quantitative and visual analysis of cell type-
specific innervation patterns. Here, we extend this model to
the entire barrel cortex, including 10 different cell types and
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Figure 1: (a) Sensory input from a whisker is conveyed via brain stem (1) and thalamus (2) to its associated cortical column in
S1 (3) (image modified from [HelO7]). (b) Barrel cortex layout as seen from the top. (c¢) Connectivity matrix visualization by

the heatmap view of the framework.

24 barrel columns, resulting in a network consisting of ~0.5
million neurons and their synaptic connections (see Fig. 1).

Due to the increase in size and complexity, analyzing
the synaptic connectivity within such a data set is non-
trivial. We present an analysis framework for the interac-
tive investigation of synaptic connectivity. A major com-
ponent of this framework is the Cortical Column Connec-
tivity Viewer (CCCV), a tool for interactive visualization
of the connection strength between (groups of) neurons in
cortical columns, using a hybrid spatial/abstract view. To-
gether with a 3D visualization of the sub-cellular distribution
of synapses, this framework yields insight into connectivity
from the neuron population down to the sub-cellular scale.

2. Neuroscientific Research Questions

The model of the barrel cortex contains a wealth of con-
nectivity information. Important questions that could be an-
swered on the basis of this information include:

Q1 Where does a neuron or group of neurons obtain input
from, i.e. to which presynaptic cells is it connected? Or,
conversely, where does a presynaptic group project to?

Q2 How does thalamic innervation differ between columns
and between cell types in the columns?

Q3 How are synapses distributed on the postsynaptic cell?
Can cell type-specific clustering of synapses at particu-
lar locations be identified?

Q4 How large is the input of surrounding columns com-
pared to intra-column input for different cell types?

Answers to these questions would help to identify local
(intra-column) and long-range (inter-column) microcircuits
involved in processing of tactile information obtained from
single or multiple whiskers. Furthermore, at the subcellu-
lar level, cell type-specific distributions of synapses may be
directly compared to functional imaging data [Var11] to un-
derstand how cell function relates to its structural properties.

3. Related Work

The reverse engineering approach to establish an anatomi-
cally realistic neuron population has recently been used to
model and analyze the structure (but not the connectivity) of
the rat hippocampus [RBA12]. Burysjuk et al. [Bor11] use a
similar approach to model a tadpole spinal cord and its con-
nectome, albeit using an axon growth algorithm instead of
anatomical reconstructions. No references were found, how-
ever, on the modeling of the rat barrel cortex.

Lin et al. [Lin11] present a tool for issuing spatial queries
on a database containing reconstructed Drosophila neurons
registered into an atlas. Although this provides informa-
tion about neural connectivity based on spatial proximity,
it does not permit quantitative conclusions about connectiv-
ity strength as this requires realistic estimates of number and
type of neurons.

Brain connectivity can be studied at different scales,
ranging from the macroscale (connections between brain
regions) to the microscale (connections between individ-
ual cells). At the mesoscale, connections between medium-
sized neuron populations, e.g. cortical columns, are stud-
ied [STKOS]. Independent of scale the connection pattern
can be represented by a graph, which, in the context of con-
nectomics, is often represented by a connectivity matrix.
The nodes represent anatomical units, e.g. synapses, neu-
rons, groups of neurons or brain regions, depending on the
scale. The links represent connections between the nodes
and are either binary, indicating the presence of a connec-
tion, or weighted, quantifying the connection strength. The
most appropriate way to obtain connectivity information de-
pends on the scale [Pfil2]. At the macroscopic level, fiber
tracking of axons in diffusion tensor imaging (DTI) is a tech-
nique to identify connections [HaglO]. At smaller scales
mainly electron- or light-microscopic techniques with ap-
propriate stains are used [Klel1].
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Brain networks can be analyzed mathematically (using
methods and concepts from the fields of graph/network the-
ory and topology [Kaill]), and /or visually. Creating easily
interpretable visualizations of brain networks is non-trivial,
as such a network is often a complex graph embedded in
3D. For example, axonal tracts obtained by DTI fiber track-
ing can be directly rendered in 3D. However, their number
and density causes clutter and hampers interpretation, requir-
ing techniques such as abstraction and filtration [JDL12] to
create effective visualizations. Being a graph, the connec-
tion matrix can be visualized using common graph visu-
alization methods. The most common method is direct vi-
sualization by a heatmap (Fig. 1c), where the connection
strength between each pair of nodes is color-coded [Bas11].
The main disadvantage is that this visualization provides no
spatial context. To aid their interpretation, heatmaps can be
complemented by a 3D visualization of the anatomical el-
ements, represented by the nodes. Often these elements are
brain regions, e.g. obtained by segmenting MRI data. They
are displayed in 3D using surfaces (see e.g. [Gerl1,Bas11])
or volume rendering [Guol2], thereby color-coding some
network property of the nodes. Alternatively, node-link di-
agrams based on a force-directed layout algorithm [Hag(08]
or connectograms [Iri12] are used. These, however, suffer
from clutter when network complexity increases. A disad-
vantage of multiple complementary views is that switching
incurs mental effort.

Concluding, at present anatomically realistic 3D models
of the rat barrel cortex at cellular resolution do not exist.
In addition, general tools for analyzing connectivity infor-
mation, such as the heatmap or variations of node-link dia-
grams, have severe drawbacks. Dedicated tools for analyzing
multiscale connectivity information between neuron popula-
tions within and across cortical columns are lacking.

4. Methods
4.1. Creation of a Barrel Cortex Model

The goal is to create an anatomically realistic model of the
excitatory neuron population within the barrel cortex. The
‘reverse engineering’ approach used in [Obella] to model
a single column is extended for this purpose. The following
anatomical data form the input of the model:

Soma density field, the number of somata per 50 x 50 x
50 ,le3 grid cell. This (preliminary) data is obtained by auto-
matic counting of somata in confocal images, as in [Mey10].

Column metadata of the 24 cortical columns: center, axis
(approximately perpendicular to the pia), radius [Egg12] and
a label, derived from their position in the barrel field (see
Fig. 1b), identified by a row (A-E) and arc (1-4), with addi-
tional columns o0 in front of the first arc.

Cell type metadata of the 10 modeled cell types. Each cell
type is named after the cortical layer in which their somata
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are predominantly located, with an optional subtype indica-
tion, e.g. Layer 4 pyramidal (L4py) neurons. Provided is also
the number of presynaptic contact sites (boutons, B) per um
axon and the number of postsynaptic contact sites (spines, G)
per um dendrite. At present, these are given constants (0.33
and 0.5 resp. [Lan11]), and identical for all cell types.

3D morphologies of 10 cell types in 24 columns. Approxi-
mately 100 dendritic and ~60 axon morphologies have been
reconstructed from brightfield microscopy images [Obella,
Bru09,Obel1b] and registered into all columns [Egg12], re-
sulting in ~2700 morphologies.

In contrast to the single-column model [Obel 1a], care has
to be taken to correctly populate the entire region, including
the septum. To achieve this, the boundaries between different
cell type mixtures have to be defined for the entire region. In
addition, the orientation of dendritic morphologies has to be
adjusted to point towards the pia.

The mixture of cell types varies with cortical depth. In
order to model the correct mixture of cell types at each loca-
tion, a set of curved, nearly-parallel surfaces bounding dif-
ferent mixture types and spanning the entire barrel field is
computed as follows. First, the mixture boundaries within a
representative column (e.g. C2) are determined [Obel1a]. To
achieve this, the position and cell type is determined for all
somata of the dendritic morphologies in the column. Then,
the soma positions are projected onto the column axis and
binned into 50 um intervals. Finally, the cell type mixture for
each interval is computed. When neighboring intervals have
different mixtures, a boundary point is defined between them
on the column axis. The resulting set of points is transferred
to all other column axes, applying a scaling to reflect the dif-
ferences in column length. A surface between corresponding
boundary points on all column axes is created by Delaunay
triangulation. Fig. 2a shows the resulting surfaces.

The local dendrite orientation is computed by interpolat-
ing the axis direction of the 3 nearest columns at each point.
To speed up computation, this local axis direction is precom-
puted by sampling on a uniform grid A (503 ,um3 voxels).

Based on this data, the model of the barrel cortex is cre-
ated as follows. First, a realization of soma positions is com-
puted that satisfies the given soma density field, see Fig. 2b.

Second, each soma is assigned a cell type (Fig. 2c). The
mixture region containing a soma is determined by finding
the intersection with the boundary surfaces above and below
the soma along the direction of the axis of the nearest col-
umn. The soma is randomly assigned a cell type satisfying
the mixture for this region.

Third, dendrite morphologies are placed at the computed
soma positions (Fig. 2d). For each soma, a dendrite mor-
phology, which soma position is close (< 50 um) to the com-
puted soma position, of the assigned cell type and column
that is closest to the soma is picked. This morphology is
transformed as follows: 1) rotation around the column axis,
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Figure 2: Left: establishing the barrel field neuron population. For illustrative purposes, each step of the population assembly
is shown in a different column and for a small number of morphologies only. a) Mixture region boundary surfaces (clipped).
b) Soma distribution inside a column. c) Cell type assignment. d) Dendrite reconstructions, colored by cell type. e) VPM axon
reconstructions. Center, right: Illustrative example of the computation of synaptic connectivity for a small neuron population.
Maximum intensity projections of the bouton (g) and spine density (h) of the axonal branches of a presynaptic neuron group
(f, grey) and dendritic branches of the entire population (f, colored), respectively, sampled on a uniform grid. Based on these
numbers, the synapse distribution (i) between a single postsynaptic neuron and the presynaptic group is computed using Eq. (3).

such that the orientation with respect to the column center
is retained; 2) translation of the reconstructed soma posi-
tion to the new one; 3) scaling along the column axis so the
dendrite remains within the column; 4) rotation around the
soma, such that the orientation towards the pia surface is re-
tained; the new orientation is looked up in the axis field A.

Finally, reconstructed axons of neuron types for which
dendrites are placed are duplicated such that their number
equals the number of dendritic reconstructions. VPM axons
are also duplicated; their number is determined by counting
the somata in their respective thalamic region [Obel1a].

The result of the final step is a population P of axon and
dendrite morphologies placed in 3D space. Each morphol-
ogy has a cell type. Given the definition of the column cylin-
ders, for each dendritic morphology its nearest column is
computed and whether its soma is inside or outside this col-
umn. This allows us to define groups of morphologies: a
group G consists of all neurons of cell type ¢t hav-
ing their soma inside column col. In addition, we define the
groups GVPM.col) consisting of VPM cells, whose somata
are located in the thalamus instead of the columns, but have
axons projecting mainly into their respective columns col.

4.2. Computation of Synaptic Connectivity

Synapse numbers are estimated based on structural overlap
between axons and dendrites, commonly referred to as Pe-
ters’ rule [Pet79]. The volume V containing all neurons is
therefore partitioned into a uniform grid of volumetric ele-
ments (of grid cell size 503 ,um3 in our case, related to the
registration error of the morphologies into barrel field refer-
ence system [Eggl2]). Specifically, the number of synapses

is determined by dividing the local number of presynap-
tic contact sites (boutons) on the axons among the local
number of postsynaptic contact sites (spines) on the den-
drites. Given the bouton and spine densities B, ¢, the num-
ber of boutons B(c,x) of neuron ¢ within grid cell x is
B(c,x) = B Laxon(c,x), where Laxon(c, X) is the axon length
of ¢ in x. The number of spines SP(c,x) is, analogously,
SP(c,x) = 6 Lyengrire(c,X). The number of boutons of an
entire presynaptic group is obtained by summing over all
neurons in the group:

B(Gprevx): Z B(i,x), (€Y

i€Gpre
and for the number of spines of the entire population:
SP(Px) =Y SP(j,x). ®)
jeP
The number of synaptic contacts S(Gpre, ¢, X) of a presynap-

tic neuron group Gpre With a postsynaptic cell ¢ within grid
cell x is computed as follows:

B(Gpre,X)

S(Gpre, C, X) = SP(C,X) . SP(P X)

3

From these single-cell synapse distributions, we can com-
pute different statistical quantities of interest, e.g. the total
number of synapses S(Gpre, ¢) of ¢ with a presynaptic group:

S(Gpr€7c) = Z S(Gpre'7c7x)7 4)
xeV

or the total number of synapses of a postsynaptic group with
a presynaptic group:

S(Gpre7Gpost): Z S(Gpreyc)- 5)
c€Gpost

(© The Eurographics Association 2012.



V.J. Dercksen et al. / Synaptic Connectivity in Anatomically Realistic Neural Networks: Modeling and Visual Analysis 21

Dividing by the number of postsynaptic cells |Gpos | results
in the average number of synapses per postsynaptic cell:

A 1
S(Gpre; Gpost) =

- S(Gpre, ). 6
‘Gpost| ( pre C) ()

ce Gpmr

Computing S(Gpre, Gpost) for all combinations of pre- and
postsynaptic groups results in a connectivity matrix M, rep-
resenting the total number of synapses between each pair of
groups. This can be done analogously for the matrix M con-
sisting of S (Gpre, Gpost) entries.

4.3. Framework for Visual Analysis of Synaptic
Connectivity at Multiple Scales

The framework consists of multiple coordinated views and
follows the Model-View-Controller paradigm. The model
consists of:

e neuron population P,

e network metadata: column geometry and cell type prop-
erties (e.g. bouton/spine density),

e synapse evaluator proxy providing values of connectivity
matrices M, M and synapse densities for the 3D view,

e selection of pre- and postsynaptic groups {Gpre}, resp.
{ Gposl},

e and a selected postsynaptic neuron ¢ € {Gpost }-

To ensure interactive response times, the connectivity ma-
trix values are precomputed. The 3D synapse distributions
are computed on-the-fly using cached values of frequently
used fields (population spine density grid SP(P,x) and bou-
ton densities for all groups B(Gpre,X)).

The framework presents the user the following views:

e Cortical Column Connectivity View (CCCV),

e 3D view showing the synapse density as well as synapse
distributions on the dendrites of individual neurons,

e heatmap view of a connectivity matrix (requested by user,
because it is a familiar standard visualization).

Whereas the CCCV and the heatmap visualize connectivity
at the scale of cell populations, the 3D view shows synap-
tic innervation at the subcellular scale. Both the heatmap
and the CCCV can display either the values of M or M.
The user can explore the connectivity information by inter-
actively defining selections {Gpre} and {Gpost } for which
the synapse information is to be shown in the CCCV. This
can be done either in the CCCV or in the heatmap; the se-
lection is automatically propagated to the other view (in the
heatmap, the selection is simply highlighted, as it always
shows the entire matrix). In addition, a single neuron of
any of the selected postsynaptic groups can be selected, for
which the synapse distribution is displayed in detail in the
3D view. Single neurons can be selected by picking from a
list, sorted by neuron group. By iteratively modifying the
selection in a targeted manner the user can drill down in
the data, while increasing insight. The framework is imple-
mented in ZIBAmira (http://amira.zib.de).
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4.4. Cortical Column Connectivity View

To overcome the main disadvantage of the heatmap (no spa-
tial reference), we devised a visualization that presents the
essential connectivity information within and between cor-
tical columns in a semi-spatial context. In the CCCV, the
columns are displayed in 2D as contours (Fig. 3a). Their po-
sition approximates their relative position within the cortical
sheet (Fig. 1b), thus creating a spatial reference. A more ex-
act mapping of the cortical sheet to the 2D plane would be
conceivable, but for our application this approximation suf-
ficed. In each contour the pre- and postsynaptic connectivity
values are displayed as bars. The vertical ordering of the cell
types follows the cortical layering and is therefore a rough
approximation of the spatial column axes (Fig. 3c).

The user explores the connectivity information by interac-
tively specifying selections {Gpr } and {Gpost } (Fig. 3b,c).
When a selection has been defined, the bars on the left side
of each column show for each selected presynaptic neuron
group the sum of synapses this group projects to. Conversely,
the bars on the right side display the sum of synapses each
postsynaptic group receives from the selected presynaptic
groups. The sum of all values on the presynaptic side thus
always equals the sum of values on the postsynapic side.

4.5. 3D View of Subcellular Synapse Distributions

The purpose of the 3D view is two-fold: first, it visualizes
subcellular differences in synaptic density by coloring the
morphology of a selected postsynaptic neuron ¢ by the lo-
cal synapse density S({Gpre},¢,Xx) (see Fig. 5a). Second, it
shows the distribution of synapses on the dendritic branches
of ¢, colored by presynaptic cell type, in order to identify
subcellular regions of preferred synaptic innervation for dif-
ferent presynaptic cell types (Fig. 5b).

The synapse positions are determined by randomly plac-
ing S(Gpre,c,x) synapses on the dendrites of ¢ within the
503 ,um3 grid cell x, for each Gpre € {Gpre }. When more de-
tailed information concerning the true distribution along the
dendrites becomes available, this can be incorporated.

5. Application Example

To show how the framework is used to obtain insight into the
synaptic connectivity in the barrel cortex model, we apply it
to answer the questions posed in Section 2.

In order to quantify thalamic input into the barrel cortex
(Q1, Q2), we select all presynaptic VPM groups by clicking
on the PRE-VPM box (Fig. 3b). The total presynaptic num-
ber of synapses of these groups is indicated by the black bars
in Fig. 3a. We observe that the VPM cells corresponding to
the central columns and the E-row provide most input, and
that the cells in these columns receive most input. Further we
observe, that the relative amount of synapses per postsynap-
tic group is similar for each column: Layer 4 star pyramids
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Figure 3: (a) The CCCV lays out all columns according to their position in the cortical sheet. The bars show the number of
synapses selected that presynaptic groups (left, here: all VPM groups) share with selected postsynaptic groups (right, here: all
other cell types). (b) cell type legend that is displayed as part of the CCCV, and which can be used to make selections. (c) One
example column in the CCCV. The rendered elements can be used for defining selections. Here the presynaptic L4ss group of
column D2 has been selected (as indicated by the dashed line). Multi-selection is achieved by holding a modifier key. Values

can be displayed as text (only one value shown for illustration).

(L4sp) and spiny stellates (L4ss) receive most input, whereas
L2 and L3 cells hardly receive any (as reported in [Obel 1a]).

To reveal how one of the central columns (D2) is inner-
vated by its corresponding VPM axons (Q1), we select the
presynaptic D2-VPM group and all postsynaptic D2 groups
(Fig. 4a). Again we observe that L4sp and L4ss receive the
largest number of synapses from VPM (indicated by the red
arrows). To determine whether this is due to the large num-
ber of neurons in these two groups, we display the average
number of synapses per postsynaptic neuron (Fig. 4b) and
observe that this is the case, and that among all cell types
actually Layer 4 pyramids (L4py) receive most synapses per
cell from VPM.

To find out what other cell types a L4py neuron gets input
from (Q1), we select all presynaptic groups and the postsy-
naptic L4py group in D2. Most input is due to L4ss and L4sp
(Fig. 4c, red arrows). As pyramidal cells have distinct den-
dritic compartments with short, highly arborized basal den-
drites around the soma and a long apical dendrite extending
towards the pia, we ask whether there is cell-type specific
clustering of synapse positions on the dendrites (Q3). We
therefore switch to the 3D view, select a L4py cell and ob-

serve that synapses are densest close to the soma (Fig. 5a).
The main input types are L4ss and L4sp. Restraining the se-
lection to these types and showing the synapse positions (5b)
reveals that these cell types mainly innervate the basal den-
drites. This raises the question what cell types connect to the
apical dendrite. We broaden the selection to all presynaptic
cell types and zoom in on the apical tuft (5c). The L2, L3 and
LS5 slender-tufted (L5st) cells seem to dominate the synaptic
input to the tuft. Indeed, if we look at the L2-L4py synapses
only (5d,e), we observe that L2 predominantly innervates the
apical dendrite.

What cells does L2 receive input from, when not from
VPM? Selecting the postsynaptic L2 group in D2 immedi-
ately provides the answer (not shown due to space limita-
tions). To differentiate between intra-column input and input
from surrounding columns (Q4), we first select all presynap-
tic D2 cell types and observe that L2 in D2 is innervated by
~3.8 million synapses (Fig. 4d). Selecting all presynaptic
cell types in the columns surrounding D2 reveals that L2
in D2 receives more input from neighboring columns (~4.3
million synapses), mainly from L5st (4e).

(© The Eurographics Association 2012.
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Figure 4: (a) Total number of VPM synapses with D2 cell types.(b) Average number of VPM synapses. (c) Average number
of synapses that an L4py neuron receives from other cell types in D2. (d) Intra-column L2 innervation (total synapses). (e) L2
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Figure 5: (a) Synapse density color-coded on L4py dendrites. (b) Synapse positions of presynaptic L4ss and L4sp cells. (c)
Synapses on apical tuft. (d) Number of synapses for the L2-L4py connection in the CCCV. (e) L2 synapse positions.

6. Discussion

The barrel cortex model described here enables the study
of its (sub)cellular architecture region and synaptic connec-
tions. The most important assumptions for model validity are
that (i) the reconstructed morphologies are a representative
sample of the true population and that (ii) the computation
of the synaptic connectivity based on Peters’ rule is a good
estimate. See [Obella] for a more detailed discussion.

The information displayed by the CCCV is to a large ex-
tent the same as a heatmap representation. The main dif-
ferences are the aggregation of connectivity matrix values
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when more than one pre- or postsynaptic group is selected,
and the semi-spatial context, aiding localization and the in-
vestigation of the interaction between columns. Whether it
can replace the heatmap, which is more generally applicable
and currently the familiar standard representation, remains
to be seen. However, as they share the same data structure
(the connectivity matrix) they can easily be used side-by-
side in an integrated framework. The CCCV is not limited to
the barrel cortex, but can be used for all regions located on
a curved 2D surface, such as the cortical sheet. The size of
the brain region that can be studied using the CCCV is, how-
ever, limited by the number of columns that fit on the screen.
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While the framework presented here allows to study connec-
tivity from the level of synapses and individual neurons up to
cortical areas containing several dozens of columns, such as
S1, larger models spanning more scales and eventually rep-
resenting entire brains will undoubtedly be developed. Their
investigation requires visualization tools that extend the mul-
tiscale approach to the entire hierarchy.

The modeling approach and the visualization framework
are considered very useful by domain experts from the Max
Planck Florida Institute: “This set of tools allows scientists
to investigate structural organization principles at the scale
of an entire cortical area with sub-cellular resolution. In par-
ticular cell type- and location-specific connectivity patterns
are accessible for the first time, and may be extended and/or
compared to more direct connectivity measurements from
electron microscopy. The 2D layout of columns and cell
types is a great advantage of the CCCV over the heatmap
representation as it aids in localization and understand-
ing of column interactions. The various selection options
make query specification simple, resulting in short question/
response iterations. It is therefore fun to work with.”

7. Conclusion

We extended an existing reverse engineering approach
[Obella] to create a neural network model of the rat barrel
cortex and its synaptic connections. The presented visual-
ization framework offers a highly interactive tool to explore
the complex connection patterns contained in such models
at multiple scales. The CCCV is a new interactive tool to
investigate connections between groups of cells in differ-
ent cortical columns. A 3D view shows synapse positions
on individual neurons. We showed that the framework aids
neuroscientists in answering important biological questions.
We believe that such a multiscale visualization approach is
a promising direction to obtain insight in connectomics data
of ever-increasing size and complexity.
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