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Abstract

This thesis explores applications of vector field processing to shape deformations.
We present a novel method to construct divergence-free vector fields which are
used to deform shapes by vector field integration (Chapter 2). The resulting de-
formation is volume-preserving and no self-intersections occur. We add more
controllability to this approach by introducing implicit boundaries (Chapter 3), a
shape editing method which resembles the well-known boundary constraint mod-
eling metaphor. While the vector fields are originally defined in space, we also
present a surface-based version of this approach which allows for more exact
boundary selection and deformation control (Chapter 4). We show that vector-
field-based shape deformations can be used to animate elastic motions without
complex physical simulations (Chapter 5). We also introduce an alternative ap-
proach to exactly preserve the volume of skinned triangle meshes (Chapter 6).
This is accomplished by constructing a displacement field on the mesh surface
which restores the original volume after deformation. Finally, we demonstrate
that shape deformation by vector field integration can also be used to visualize
smoke-like streak surfaces in dynamic flow fields (Chapter 7).

Kurzfassung

In dieser Dissertation werden verschiedene Anwendungen der Vektorfeldverar-
beitung im Bereich Objektdeformation untersucht. Wir präsentieren eine neuar-
tige Methode zur Konstruktion von divergenzfreien Vektorfeldern, welche mittels
Integration zum Deformieren von Objekten verwendet werden (Kapitel 2). Die so
entstehende Deformation ist volumenerhaltend und keine Selbstüberschneidungen
treten auf. Inspiriert von etablierten, auf Randbedingungen beruhenden Meth-
oden, erweitern wir diese Idee hinsichtlich Kontrollierbarkeit mittels impliziten

Abgrenzungen (Kapitel 3). Während die ursprüngliche Konstruktion im Raum
definiert ist, präsentieren wir auch eine oberflächenbasierte Version, welche ein
genaueres Festlegen der Abgrenzungen und bessere Kontrolle ermöglicht (Kapi-
tel 4). Wir zeigen, dass vektorfeldbasierte Deformationen auch zur Animation von



elastischen Bewegungen benutzt werden können, ohne dass komplexe Simulatio-
nen nötig sind (Kapitel 5). Desweiteren zeigen wir eine alternative Möglichkeit,
mit der man das Volumen von Dreiecksnetzen erhalten kann, welche mittels Skelett-
Animation deformiert werden (Kapitel 6). Dies erreichen wir durch ein Deforma-
tionsfeld auf der Oberfläche, das das ursprüngliche Volumen wieder hergestellt.
Wir zeigen ausserdem, dass Deformierungen mittels Vektorfeld-Integration auch
zur Visualisierung von Rauch in dynamischen Flüssen genutzt werden können
(Kapitel 7).
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1
Introduction

Deforming shapes under a number of constraints is a standard problem in Com-
puter Graphics. For instance, a character animation can be achieved by deforming
the shape of the character according to its underlying skeleton. Elastic bodies are
deformed by performing simulations based on physical laws. In industrial design,
fair surface deformations are obtained by minimizing curvature energy.

In this thesis, we handle the constraint of volume preservation by constructing spe-
cial vector fields and using these to deform shapes. As it turns out, this approach
is both computationally efficient and gives physically plausible results.

In Chapter 2, we present a novel method to construct divergence-free vector
fields. This mathematical construction method neither requires precomputations
nor special data structures like grids or meshes. We show that path line integra-
tions of these vector fields can be a powerful shape deformation tool with several
desirable properties: Due to the zero-divergence, the volume of a shape is pre-
served during deformation. This leads to rather realistic results because the shape
appears to consist of a real, incompressible material. The path line integration in-
herently prevents self-intersections during deformation without the need for com-
plex collision detections. Furthermore, the deformation is defined for all points in
space, making it independent of the shape representation. This also makes a GPU
implementation straightforward, which is able to deform rather complex meshes
in real-time.

1



Chapter 1. Introduction

Chapter 3 extends this method to be more controllable by introducing implicit
boundaries. This allows the user to specify the support regions of the deformation
on the shape surface rather than in space. The resulting shape editing system
resembles traditional boundary constraint editing methods with the addition of
volume preservation and prevention of self-intersections.

Chapter 4 adds even more controllability by performing all computations on the
vertices of a triangle mesh and by steering the deformation path by a 3D paramet-
ric curve. The advantage of this approach is that the deformation regions can be
specified per-vertex. Together with the modifiable deformation path, this enables
a more exact control over the resulting deformation. While this surface-based
approach abandons the automatic prevention of global self-intersections, it still
preserves volume and allows for more extreme deformations without distortions
resulting from volume preservation.

In Chapter 5, we demonstrate that the idea of vector-field-based shape deforma-
tions can also be used to animate secondary motions of elastic incompressible
materials. We use simple oscillating mass-spring systems to generate dynamic
divergence-free vector fields in and around shapes. By performing a kinematic
simulation of the mass-spring systems and by deforming the shape according to
the resulting vector field, rather realistic secondary deformations can be added to
an existing animation, giving the impression of an elastic, incompressible mate-
rial. While the method is based on a simple heuristic model, it turns out to be an
efficient way to emulate elastic objects in real-time on the GPU.

Chapter 6 introduces an alternative method to preserve the volume of a triangle
mesh in a single step by displacing the mesh vertices along a user-defined vector
field. The required computation is quite straightforward and involves the solu-
tion of a cubic equation, which gives the needed scaling of the displacement field.
While the previous numerical integrations only approximately preserve volume,
this method is exact since it is a direct closed-form solution. We showed how this
idea can be applied to mesh skinning to get realistic skeletal character deforma-
tions.

In Chapter 7, we use vector field integration to visualize smoke-like surfaces in

2



dynamic flow data sets. Being based on semi-transparent triangle mesh surfaces,
the method presented in this thesis is the first one which is able to visualize streak
surfaces interactively in time-dependent flow fields. This was possible by avoid-
ing expensive remeshing but by coupling the transparency of the triangles to the
distortion of the surface. Thanks to the surface representation, the resulting smoke
visualization contains self-shadowing and looks rather sharp and detailed even for
coarsely sampled meshes. A similar look wouldn’t be possible in real-time for
particle-based or volumetric methods. Using the same representation, also time
lines, streak lines and wool tufts can be visualized.

3
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2
Vector-Field-Based Shape Deformations

Shape deformations is a well-researched area in computer graphics and anima-
tion with many applications ranging from automotive design to movie production.
A variety of techniques have been developed to transform an original shape into
a new one under a certain number of constraints. These constraints can be for
instance performance, detail preservation, feature preservation, volume preserva-
tion, avoidance of (local or global) self-intersections, or local support. In addition,
different metaphors for an intuitive definition and handling of the deformation ex-
ist, like the free movement of certain handles [SF98, BK03a, PKKG03], a two-
handed metaphor [LKG+03], or the movement of a 9 dof object [BK04].

Most existing deformation approaches have in common that they are defined as
a map from the original to the new shape, i.e. there is no information about in-
termediate deformation steps. For many applications, the user wants to explore
the deformation in an interactive manner, i.e. he wants to see a smooth change
from the original to the desired shape moving along certain paths. This means
that the deformation has to be recomputed again and again at interactive frame
rates. To do so, parts of the deformation can be precomputed and reused for every
intermediate deformation, see for instance [BK04, BK05].

We introduce an alternative approach to describe shape deformations. We as-
sume that the shape is given as a triangle mesh. We construct a C1 continuous
divergence-free 3D time-dependent vector field v and obtain the new positions

5



Chapter 2. Vector-Field-Based Shape Deformations

path lines of v
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Figure 2.1: (a) Vector-field-based shape deformation: every vertex of the original
shape undergoes a path line integration of v to find its new position. (b) Blending
function b(r).

of every vertex p of the shape by applying a path line integration of v starting
from p. This approach is motivated by two observations. First, it corresponds
to the metaphor of smooth deformations by observing the paths of the vertices
over time. Second, due to the zero-divergence of v we get a number of desired
properties of the deformation for free. In particular, the following properties hold:

• No self-intersections (neither local nor global) can occur. This is due to the
fact that path lines do not intersect in the 4D space-time domain [TWHS05].

• The deformation is volume-preserving. This is a well-known property of
divergence-free vector fields [Dav67].

• The deformation preserves the smoothness of the shape to first order. This is
due to the C1 continuity of v: Under a path surface integration, the normals
of the evolving shape depend on ∇v. Hence, for a C1 continuous v no
discontinuities of the surface normals appear during the integration.

• The deformation preserves details and sharp features in the sense that no
smoothing due to an energy minimization occurs.

Figure 2.1a gives an illustration of the main idea.

In addition to the above-mentioned properties of v, we construct it to be non-
zero only in a certain area to obtain a local support of the deformation. Although
divergence-free vector fields have been used to model the flow of fluids [FF01],
we are not aware of any approach to use them for the interactive deformation of
solid shapes.

6



2.1. Related work

This chapter is organized as follows: Section 2.1 gives an overview of related
methods. Section 2.2 describes how to construct the locally supported divergence-
free vector field v. Section 2.3 shows a number of modeling metaphors of our
technique. Section 2.4 gives implementation details. Section 2.5 gives an eval-
uation of our technique and compares it with other approaches. Conclusions are
drawn in Section 2.6.

2.1 Related work

Current shape deformation approaches can be classified as surface based meth-
ods or space deformation methods. Surface based methods define the defor-
mation only on the shape’s surface. A common approach is to specify a num-
ber of original and target vertices and compute the remaining vertex positions
by a variational approach [WW92, Tau95]. Multiresolution methods are well-
established because of their ability to speed up computations and preserve fea-
tures [ZSS97, GSS99, KCVS98, BK04]. More recently, approaches have been
proposed which rely on the solution of the Laplace/Poisson equations [Ale03,
LSCO+04, SLCO+04, YZX+04, LSLCO05, ZRKS05]. These approaches end
up in the repeated solution of a large sparse linear system. Space deformation
techniques modify objects by deforming their embedded space. Prominent rep-
resentatives of this are free-form deformation methods which can be classified
as lattice-based [SP86, Coq90, MJ96], curve-based [Bar84, SF98], or point-based
[HML92, HHK92]. Different basis functions to define the space deformation have
been applied, like radial basis functions [BK05] or swirls [ACWK04]. [ZHS+05]
extends the Laplacian approach from surface based techniques to a volumetric
approach. An often addressed issue when dealing with space deformations is the
avoidance of self-intersections [AWC04, MW01, GD01]. A number of space de-
formation techniques are designed to be volume preserving in a global [HML92,
DG95, RSB96, AB97, ACWK04] or local [BK03b] way. The constraint of volume
preservation promises to give physically more plausible and natural deformations.
[ACWK04] presented the first space deformation that is both volume-preserving
and foldover-free.

7
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2.2 Constructing the vector field v

The construction of the deformation vector field v is the core of our approach. It
must be flexible enough to describe a variety of different deformations, but simple
enough to be computed and updated on-the-fly. We present the construction of v
both for 2D and 3D. While we use the 3D case for our applications, the 2D case
serves mainly for illustrating the concept. Also, we formulate the construction
in the static (time-independent) context because the extension to time-dependent
fields is straightforward.

It is a well-known fact [Dav67] that a 2D divergence-free vector field v can be
constructed as the co-gradient field of a scalar field p(x,y):

v(x,y) =

(
−py(x,y)
px(x,y)

)
. (2.1)

Here, px and py denote the partial derivatives ∂ p
∂x and ∂ p

∂y , respectively. In 3D, a
divergence-free vector field v can be constructed from the gradients of two scalar
fields p(x,y,z), q(x,y,z) as

v(x,y,z) = ∇p(x,y,z) × ∇q(x,y,z). (2.2)

We are going to construct v as a piecewise field: inside a certain region, v should
be a simple and well-defined field, such as constant (describing a simple transla-
tion of parts of the shape) or linear (describing a rotation). We call this region the
inner region of the deformation. Also, we have an outer region in which we have
a zero deformation, i.e., v ≡ 0. Between them there is an intermediate region in
which v is blended between inner and outer region in a globally divergence-free
and C1 continuous way. We specify the different regions implicitly by defining a
scalar region field r(x) with x = (x,y) or x = (x,y,z), and two thresholds ri < ro.
Then a point x is in the inner region if r(x) < ri, x is in the intermediate region if
ri ≤ r(x) < ro, and x is in the outer region if ro ≤ r(x).

Let e(x), f (x) be two C2 continuous scalar fields which are supposed to define

8



2.2. Constructing the vector field v

v in the inner region, i.e. v = ∇e×∇ f there. Then we can define the piecewise
scalar fields p,q as

p(x) =


e(x) if r(x) < ri

(1−b) · e(x) + b ·0 if ri ≤ r(x) < ro

0 if ro ≤ r(x)

(2.3)

q(x) =


f (x) if r(x) < ri

(1−b) · f (x) + b ·0 if ri ≤ r(x) < ro

0 if ro ≤ r(x)

(2.4)

where b = b(r(x)) is a blending function given in Bézier representation as:

b(r) =
4

∑
i=0

wi B4
i

(
r− ri

ro− ri

)
(2.5)

where B4
i are the Bernstein polynomials [Far02], w0 = w1 = w2 = 0 and w3 =

w4 = 1. Figure 2.1b illustrates b. Note that in (2.3) and (2.4) the term b · 0 can
safely be removed. We left it in the equation to show that in the intermediate
region, p is a weighted combination of e and 0, and q is a weighted combination
of f and 0.

(2.2)–(2.5) give a C1-continuous divergence-free vector field v if the scalar fields
e, f ,r together with the thresholds ri,ro are given and e, f ,r are C2-continuous.
This is ensured because the blending function b is designed to have a sufficient
number of vanishing derivatives at r(x) = ri and r(x) = ro. A proof of this is in
Section 2.2.2. Also note that from e, f ,r and their first order partials, v can be
computed in a closed form. Section 2.2.2 shows this as well.

We illustrate our concept with a 2D example. Setting the region field r(x,y) =
x2 +y2, ri = 1 and ro = 4, the inner region is the unit circle, while the intermediate
region is the ring between the radii 1 and 2. We want v = (u,v)T to be constant
inside the inner region. To do so, e is the linear field e(x,y) = v x−u y from which
(2.3) and (2.1) give v in all regions. Figure 2.2a illustrates p in the inner and outer
region as height field. Figure 2.2b additionally considers p in the intermediate
region. Figure 2.2c shows the resulting v as a Line Integral Convolution (LIC)

9
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(a) (b)

(c)

x
y

x

p p

y

yx

Figure 2.2: Constructing a constant v inside the inner region: (a) p as height field
in inner and outer region, (b) p in all regions, (c) v in inner and intermediate
region.

image in the inner and intermediate region. In the outer region, v is constant zero.

2.2.1 Special Deformations

Theoretically, every divergence-free vector field v can be considered in the in-
ner region, i.e., arbitrary C2 scalar fields e, f can be chosen. However, for our
applications we particularly used constant, linear, and quadratic vector fields.

A constant vector field v in the inner region describes a translation inside this
region. To get a constant field v = (u,v,w)T with ‖v‖= 1, we choose two arbitrary
orthogonal vectors u, w with ‖u‖ = ‖w‖ = 1 and uv = uw = vw = 0. Also, we
have to set a center point c inside the inner region. This is necessary because e, f

have a constant to be added as degree of freedom. The center point c fixes this by
setting e(c) = f (c) = 0. Then the linear scalar fields

e(x) = u (x− c)T , f (x) = w (x− c)T (2.6)

produce v because (2.6) yields ∇e≡ u and ∇ f ≡ w.

A linear vector field v is used to describe a rotation inside the inner region. Given
a rotational axis by a center point c and the normalized axis direction a, the field e

is linear with the gradient a, while the field f is quadratic, describing the squared

10
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Euclidean distance to the rotation axis:

e(x) = a (x− c)T , f (x) = (a× (x− c)T )2. (2.7)

2.2.2 Continuity

Given the C2 continuous scalar fields e, f and the C2 continuous region field r with
the thresholds ri,ro, we show that v constructed by (2.2)–(2.5) is divergence-free
and C1. The zero-divergence follows directly from (2.2) [Dav67]. For showing the
C1 continuity, we have to consider the boundaries of the regions, i.e., the locations
x with r(x) = ri and r(x) = ro.

For r(x) = ri, (2.5) gives

b = 0 ,
d b
d r

= 0 ,
d2 b
d r2 = 0. (2.8)

For b = b(r(x)), basic rules in differential calculus give

∇b =
d b
d r

∇r , J(∇b) =
d b
d r

J(∇r) +
d2 b
d r2 ∇r ∇rT . (2.9)

To prove that v is C1, we have to show

∇e × ∇ f = ∇((1−b) e) × ∇((1−b) f ) (2.10)

J(∇e × ∇ f ) = J(∇((1−b) e) × ∇((1−b) f )) (2.11)

(2.2)–(2.4) give that the left-hand side of (2.10) describes v in the inner region,
while the right-hand side describes v in the intermediate region. (2.11) does so
for the Jacobian of v in inner and intermediate region. Applying basic rules of
differential calculus, we get

∇((1−b) e) = (1−b) ·∇e − e∇b (2.12)

∇((1−b) f ) = (1−b) ·∇ f − f ∇b (2.13)

11
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and

J(∇((1−b) e)) = (1−b) J(∇e) − ∇e ∇bT

− e J(∇b) − ∇b ∇eT (2.14)

J(∇((1−b) f )) = (1−b) J(∇ f ) − ∇ f ∇bT

− f J(∇b) − ∇b ∇ f T (2.15)

Inserting (2.8),(2.9) into (2.12),(2.13),(2.14),(2.15) we get

∇((1−b) e) = ∇e , ∇((1−b) f ) = ∇ f (2.16)

J(∇((1−b) e)) = J(∇e) , J(∇((1−b) f )) = J(∇ f ) (2.17)

which gives (2.10),(2.11). In fact, (2.16),(2.17) show that p and q defined in (2.3),
(2.4) are C2 across locations with r = ri.

For r(x) = ro, (2.5) gives

b = 1 ,
d b
d r

= 0. (2.18)

To prove that v is C1, we have to show

∇((1−b) e) × ∇((1−b) f ) = 0 (2.19)

J(∇((1−b) e) × ∇((1−b) f )) = 0 (2.20)

where the left-hand side of (2.19) describes v in the intermediate region and the
right-hand side in the outer region. Inserting (2.9),(2.18) into (2.12), (2.13) gives
(2.19). Inserting (2.9),(2.18) into (2.14), (2.15) together with J(a×b) = J(a)×
b+a×J(b) gives (2.20). It shows that at locations with r = ro, p and q are only
C1, whereas v is C1 as well. The C1 continuity of p and q is sufficient here because
we have the additional condition that v equals zero.

Note that (2.12),(2.13) together with (2.9) and d b
d r = 2r

ro−ri
from (2.5) gives the

closed form of v if e, f ,r and their first order partials are given.

12
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Figure 2.3: Volume-preserving deformation of the hand model (36619 vertices):
no skeletal hand model is involved, no self-intersections occur.

2.3 Modeling metaphors

Our approach works as a simultaneous path line integration and updating of v. In
fact, at a certain time, for every vertex one integration step of a numerical path
line integration of v is carried out. Then v is updated, i.e., the defining fields
e, f ,r together with ri,ro are changed before the next integration step is carried
out. There are different strategies to define and update v, leading to a number
of modeling metaphors of our technique. Before describing them in detail, we
explain the visualization of the deformation tools, i.e., v at a certain time. We
represent the region field r by a red semitransparent isosurface r(x) = ri and a
green surface r(x) = ro separating the different regions of the deformation. If we
use a constant v in the inner region (Section 2.2.1), we show it by an arrow whose
origin is the central point c and whose direction denotes v. Figure 2.4a shows an
example where r describes the distance to a certain point and c is in the center
of the inner region (red sphere). If we apply a rotation inside the inner region
(Section 2.2.1), we show c and the central axis. If we combine it with a linear r, the
isosurfaces r(x) = ri and r(x) = ro are planes. In order to make the deformation
local, we restrict it to a cylinder with the main axis parallel to ∇r and c on the
main axis. Figure 2.4b shows the tool. Since this way the deformation vector field
v is discontinuous across the cylinder barrel, the tool is only applicable if no part
of the shape intersects the cylinder barrel at the beginning of the deformation.
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Figure 2.4: Deformation tools: (a) translation, (b) rotation inside the inner region.

2.3.1 Implicit Tools

For the metaphor of implicit tools, we define an arbitrary scalar field r together
with ri and ro. Usually, r is a simple function describing the distance to a point
(Figure 2.5) or a line segment (Figure 2.6). Furthermore, c is located in the center
of the inner region of the deformation. Inside this inner region, v is constant,
describing a translation where its length and direction is determined by position
and movement of an interactive input device (e.g. a mouse). When the tool is
interactively moved, v is updated on-the-fly according to the movement. The step
size of the path line integration is chosen so that the path line follows the path
of the tool: if the interactive motion changes the position of the tool by ∆r, then
the integration inside the inner region moves the points by ∆r as well (see Section
2.4.1 for more detail). This way we get the following property: If at the beginning
of the deformation parts of the surface are in the inner region of the tool, they
follow the path of the tool. Figure 2.5 shows an example. If at the beginning of
the deformation the inner region is completely outside the shape, the shape will
never enter the inner region. Figure 2.6 illustrates this. Figure 2.7 shows the result
of an extreme deformation by moving the tool toward and through the shape: no
self-intersection can occur.
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(a) (b)

(c) (d)

Figure 2.5: Deforming a sphere with an implicit tool: the parts inside the inner
region follow the path of the tool.

Figure 2.6: Moving the implicit tool toward the shape: the inner region never
enters the shape.

2.3.2 Deformation Painting

In this modeling metaphor, the tool is moved along a path on the surface of the
shape. For this path, the surface is locally deformed into or out of the shape.
If the tool is at the location xs on the shape at a certain time, we use r(x) =
‖x−xs‖, ri = 0, and ro is interactively chosen to steering the area of influence of
the deformation. This means that the inner region is only the point xs for which
we use a constant v in the direction opposite to the surface normal of xs. Figure
6.3 shows an example of deformation painting on a hand model.
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(a)
(b) (c)

Figure 2.7: (a),(b) Moving an implicit tool through a sphere shape: no self-
intersections occur. (c) Same shape as (b) but with cutting plane.

Figure 2.8: Deformation painting on a hand model.

2.3.3 Moving point sets

In this metaphor, we mark a number of points on the shape. These points may be
isolated or located on a curve. Then we set r as a smooth approximated distance
function to this point set, ri = 0, and ro is interactively chosen. Inside the inner
region, a constant v is used. For the distance function to the point set, we used the
approach described in [BS04]. Figure 2.9 illustrates an example. The barycenter
of all points is used as c. Note that in this scenario the inner and the intermediate
regions may consist of multiple unconnected parts.

2.3.4 Collision tools and shape stamping

In this scenario, the tool is described by an arbitrary closed tool shape for which a
repeated collision detection with the deformed shape is carried out. To do so, we
used an approach using bounding box hierarchies implemented in [Col]. Being
based on the detected collision points, r is constructed to be zero only in the
areas of collision. Similar to moving points sets, we used a smooth approximated
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(a) (b) (c)

Figure 2.9: Moving point sets: the inner region consist of two unconnected parts
close to the eyes of the bust.

(a) (b) (c) (d)

Figure 2.10: Collision tools. (a),(b) The inner and the intermediate region consists
of unconnected parts. (c),(d) Shape stamping: a Y-shaped tool is stamped onto a
sphere.

distance function for r along with ri = 0. Inside the inner region, v is constant for
every time step, following the path of the input device. Figures 5.6a,b illustrate
the region function for the hand shape. Here, both the inner and the intermediate
region consist of several unconnected parts. Figure 2.11 shows the deformation
of the fan data set using the hand tool. Note that the sharp features are preserved
under the deformation.

We also used this modeling metaphor for shape stamping: Moving the tool shape
toward the deforming shape leaves the footprint on the deforming shape. Figures
5.6c,d show an example stamping a Y-shaped tool shape onto a sphere. Figure
2.13 shows the deformation of the crater data set by using the Armadillo model as
tool.
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Figure 2.11: Deforming the fan data set.

Figure 2.12: Feature preservation: (a),(b) Deforming a model with small details.
(c),(d) Bending Armadillo’s leg.

2.3.5 Twisting and Bending

Up to now, the vector field inside the inner region was constant. Now we apply
linear and quadratic vector fields to get twisting and bending effects. For a twist-
ing, r is linear and its gradient corresponds the direction of the twisting axis. The
point c is on the twisting axis, and the rotational axis for the inner vector field
coincides with the twisting axis as well. Inside the inner region we use a linearly
increasing rotation defined by e(x) = (a (x− c)T )2, f (x) = (a× (x− c)T )2. Fig-
ure 2.14 shows an extreme twisting of the box model (51202 vertices) as well as
a moderate twisting of the camel model.

To get a bending effect, we used the bending tool described in Figure 2.4b. The
region field r is linear and its gradient is perpendicular to the rotation axis. The
thresholds ri,ro are chosen such that r(c) = 0.614ri +(1−0.614)ro. This choice
comes from the definition of the blending function: b(0.614) ≈ 1/2. During the
bending, the gradient of r is changed with half the angle speed as the rotation in
the inner region. Figure 2.15 gives an example. e(x) and f (x) describe a rotation
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Figure 2.13: Armadillo on the moon: deforming the crater data set with the Ar-
madillo as tool.

(Equation 2.7). Figure 2.3 shows some deformations of the hand data. The result
looks rather realistic, even though no skeletal hand model is involved. Figure 2.16
shows the bending of the Armadillo model.

Figure 2.17 shows two shapes created from a sphere in an interactive session by
applying all modeling metaphors described above. The session time for each of
the models was approximately 30 minutes.

2.4 Implementational Details

2.4.1 Integration with adaptive stepsize

Different approaches for a numerical stream/path line integration have been stud-
ied [NHM97], where higher order techniques with an adaptive stepsize turned out
to have the best trade-off between speed and accuracy. Thus, in our implementa-
tion we used a fourth order Runge-Kutta integration with adaptive stepsize. If a
constant stepsize were chosen, the interplay between integration and updating v
is simple: for each vertex, one integration step is carried out, then v is updated.
For an adaptive step size, the synchronization between integration and updating v
is explained in the following example: suppose we use an implicit tool where the
mouse moves the central point from ci at the time ti to ci+1. Further assuming that
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(a)

(f)

(c)

(e)

(b)

(d)

Figure 2.14: Twisting the box model: (a) placing the tool, (b)-(e) twisted models,
(f) twisted camel.

Figure 2.15: (a),(b) Bending a cylinder. (c) Box after bending.

ci and ci+1 are in the inner region of the deformation, v has to fulfill

v(ci, ti) = v(ci+1, ti+1) = (ti+1− ti) · (ci+1− ci) (2.21)

Following the description of path lines in [TWHS05], we integrate the 4-dimensional
vector field

ṽ(x, t) =

(
(1− t−ti

ti+1−ti
)vi + t−ti

ti+1−ti
vi+1

1

)
(2.22)

with an adaptive stepsize from a point (x, ti) until it reaches a point (x́, ti+1). In
(2.22), ti+1 is chosen to fulfill (2.21) and vi, vi+1, are computed from r(x) =
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(a) (b) (c)

Figure 2.16: Bending the Armadillo model.

(a) (b)

Figure 2.17: Shapes created from spheres in an interactive session.

‖x− ci‖ and r(x) = ‖x− ci+1‖ respectively.

2.4.2 Remeshing

Obviously, large deformations on triangle meshes can cause unpleasing artifacts
due to an undersampling of the surface (Figure 2.18a). Furthermore, undersam-
pling can lead to significant volume changes. We deal with this problem by re-
sampling (remeshing) the mesh. For doing so, a variety of approaches exist (see
[AUGA05] for a survey). For our algorithm, we used some ideas from [GD99].
The basic idea is to do the remeshing not on the deformed but on the original
shape, and let the new vertices undergo the same deformation as the original ver-
tices.
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1. While the user performs a deformation on the mesh, the undeformed mesh
M and the deformation path (the subsequent translations/rotations) are stored.

2. When the user finishes the operation (in our implementation: when the user
releases the mouse button), all edges (ordered by length) of the deformed
mesh M′ are tested for refinement: if an edge is longer than a certain thresh-
old or the angle between the normals of the end-vertices is large, an edge
split is performed both on M and M′. Using the stored deformation path, all
new vertices of M are deformed, i.e., path line integrated. Finally, the new
vertex positions are copied to the corresponding vertices of M′.

3. In order to guarantee a uniform distribution of the vertices and to eliminate
slivers (long, thin triangles), we apply a diffusion of the vertices in M′: first,
all moved vertices and their immediate neighbors are marked for diffusion.
Each marked vertex is moved toward the barycenter of its 1-ring. Afterward,
the vertex is projected back onto the surface of the undiffused mesh. This
operation is repeated for a fixed number of steps.

4. Subsequent edge splits increase the overall vertex valence and some defor-
mations produce surfaces that are oversampled. Both issues are tackled by
a decimation step on M′: All edges whose length is smaller than a certain
threshold and whose vertex normals enclose a small angle are collapsed at
their midpoints.

5. Step 3 is performed again, where the vertices involved in edge collapses are
considered as moved vertices.

Figure 2.18 (b) shows a mesh after an application of the above algorithm.

2.4.3 GPU Implementation

Being based on path line integration of single points and being without the need
for additional information like mesh connectivity or a skeleton, our deformation
approach is highly parallelizable using graphics hardware. We implemented a
vertex program to perform an adaptive fourth order Runge-Kutta path line inte-
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(a) (b)

Figure 2.18: Remeshing. (a) Mesh during deformation, (b) mesh after deforma-
tion and remeshing.

gration of points. All necessary parameters like translation vector, rotation axis,
contact points etc. are passed to the shader as uniform variables. The resulting
positions are rendered to a floating point framebuffer. Due to the incremental na-
ture of the algorithm (collision detection after each small deformation, painting on
a continually deforming surface etc.) a read-back of the computed points has to
be performed after each deformation. Although this drops performance, the com-
putation is still about ten times faster than on the CPU. A detailed performance
evaluation can be found in Section 2.5.

2.5 Evaluation and Comparison

In this section we give an evaluation of our technique and compare it with other
deformation approaches. We do so in terms of visual quality, other modeling
metaphors, speed and accuracy.

Visual quality: To get a comparison with existing techniques, we apply our
technique to a number of standard test data sets for which other deformation ap-
proaches have been reported in the literature. The twisting of a box (Figure 2.14)
has been considered in [YZX+04, LSLCO05, ZHS+05]. Our result shows the
behavior of a volume-preserving twisting even for an extreme deformation. The
effect of bending a cylinder has been demonstrated for different approaches in
[BK03b, BK04, ZHS+05]. Our result (Figures 2.15a-b) shows a realistic look-
ing bend without self intersections. Also, the bending of the box (Figure 2.15c)
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and the deformation of the hand (Figure 2.3) look plausible and do not contain
self-intersections. Furthermore, small scale features are deformed in a plausible
manner (Figure 2.12).

Other modeling metaphors: Our implicit tool metaphor using r as the distance to
a point (Figures 2.5, 2.7) is similar to the swirling sweepers metaphor [ACWK04].
However, our metaphor is more flexible in the sense that other implicit functions
can be used (Figure 2.6). Moreover, contrary to swirling sweepers our method
does not have to choose an appropriate number of basic swirls to approximate the
final deformation.

Many modeling metaphors [BK04, SLCO+04, BK05] work by setting areas of
zero deformation and areas of full deformation on the surface. Then the full de-
formation is defined by a sequence of translations and rotations. Our tools have a
similar metaphor, with the main difference that we define the regions of zero and
full deformation implicitly, i.e. by marking the underlying space. This may create
problems in areas where surface parts of zero and full deformation are spatially
close to each other (for instance the fingers of a hand). For these cases we use the
cylinder tool (Figure 2.4b) and restrict the definition to the area inside the cylinder.

Speed: The performance of our approach depends on a number of factors: the
number of vertices inside the inner region of the deformation, the number of ver-
tices in the intermediate region, the chosen modeling metaphor, and the chosen
region field r. In general, vertices in the intermediate region are more expensive
to integrate than vertices in the inner region because v has a more complicated
form there. Also, a simple r (such as the distance to a point in an implicit tool)
gives a higher performance. Finally, for the metaphor of shape stamping, the ad-
ditional collision-detections drops the performance. To get an evaluation of the
performance of our approach, we consider a number of benchmark deformations.
We placed an implicit tool describing the distance to a point in such a way that
no vertex of the shape is in the outer region (i.e., that all vertices have to be in-
tegrated), and that most of the vertices are in the (most expensive) intermediate
region. Then we applied a rather strong deformation. Figure 2.19 shows the four
benchmark deformations by the initial and final shapes as well as used deforma-
tion tools. Here, the sphere-shaped intermediate region (green) has been cut out
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(a) (b) (c) (d)

(e) (f)
(g)

(h)

Figure 2.19: Benchmark deformations. First line: original shapes and parts of
tools. Second line: deformed shapes and parts of tools.

model #vert #steps sps(CPU) sps(GPU)
bust 30696 212.737 31.65260 292.2210

hand 36619 186.194 26.94950 257.8860
armadillo 172974 152.656 5.79448 61.8539

dragon 437645 249.196 2.29102 27.2049

Table 2.1: The benchmark shows that even rather large meshes can be deformed
interactively.

at the black boundary lines.

Table 2.1 shows the performance on a AMD Opteron 152 (2.6 GHz) with 2 GB
RAM and a GeForce 6800 GT GPU. There, #vert denotes the number of vertices
of the model, #steps denotes the number of integration steps to come from the
original to the final shape, sps(CPU) gives the number of integration steps per
second for the CPU implementation, and sps(GPU) does so for the GPU imple-
mentation.

It turns out that even for rather large meshes the deformations can be carried out
in an interactive manner.
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model orig. shape deformed shape error
sphere Fig. 2.5a Fig. 2.7b -0.001060

box, twisted Fig. 2.14a Fig. 2.14d 0.000781
box, bent Fig. 2.14a Fig. 2.15c 0.000751

fan Fig. 2.11a Fig. 2.11c -0.000007
armadillo Fig. 2.16a Fig. 2.16c 0.001344

dragon Fig. 2.19d Fig. 2.19h -0.001520
spider Fig. 2.5a Fig. 2.17a 0.001875

own monster Fig. 2.5a Fig. 2.17b 0.000070

Table 2.2: Measurements show that the volume change is minimal even for strong
deformations.

Accuracy: The statement that our approach is volume-preserving holds only if
every surface point of the shape undergoes an exact path line integration. In re-
ality, we carry out a numerical integration only for discrete surface points: the
mesh vertices. Thus, slight changes of the volume during the deformation can be
expected. However, Table 2.2 shows that they are minimal even for strong defor-
mations. Here, we measured the error as error = volume(deformed shape)

volume(original shape) −1.

2.6 Discussion

We introduced an alternative approach to shape deformations by carrying out a
path line integration of a time-dependent vector field for each shape vertex. This
way, simple properties of the vector field lead to useful properties of the defor-
mation: A divergence-free vector field gives a volume-preserving deformation,
self-intersections cannot occur, and sharp features are preserved. We have also
shown that the performance of the deformation suffices for real-time applications
for moderately large meshes. The accuracy of volume preservation is rather high.

There is a number of issues for future research. First, the performance can further
be increased by a multi-processor parallelization of the integration. This is possi-
ble because the integration of the vertices can be carried out independently of each
other. Second, since the method does not rely on any connectivity information of
the mesh, an application to point-based shape representations seems possible.
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3
Implicit Boundary Control of

Vector-Field-Based Shape Deformations

We introduced a method to construct and integrate divergence-free vector fields
to obtain volume-preserving deformations without self-intersections. We used
rather simple implicitly defined tools like spheres or cylinders to constrain the de-
formation to certain areas of a shape. In some situations however, a more precise
control over the deformation influence is desired. The user often wants to specify
precisely which parts of the shape should be deformed and which parts should not
be deformed at all. An established method in the area of shape editing is placing
boundary constraints on the surface, i.e. the user draws two curves on the surface.
The region enclosed by the first curve undergoes a full deformation, e.g. a trans-
lation or rotation. The region enclosed by the second curve is not deformed at all.
In the region between both curves, the deformation is smoothly blended between
full and no deformation.

In this chapter, we present a method which brings both approaches together. The
user can define the deformation impact by drawing two boundaries onto the sur-
face of the shape and can deform the shape in a volume-preserving and foldover-
free manner with respect to these boundaries. While in most existing approaches
boundaries are constraints of an optimization, we introduce implicit boundaries,
which are defined by closed polygons and give a direct mathematical solution of
a smooth blending function which defines the amount of deformation for every

27



Chapter 3. Implicit Boundary Control

point in space.

This chapter is organized as follows: In Section 3.1, we briefly review the vec-
tor field construction method. Section 3.2 describes how implicit boundaries are
defined and how they can be used together with vector-field-based shape defor-
mations to deform triangle meshes. Section 3.3 demonstrates several application
scenarios, while Section 3.4 goes into the details of the implementation and an-
alyzes the performance. Finally, Section 3.5 discusses the presented method and
possible future research.

3.1 Vector Field Construction

In the previous chapter, we introduced vector-field-based shape deformations as
a tool with several desirable properties. Due to the C1 continuity of the vec-
tor fields, the resulting deformation is smooth. Due to the path line integration,
self-intersections are prevented. Since the vector fields are divergence-free, the
volume of the shape remains constant under deformation. Thanks to the direct
mathematical formulation of the vector fields, the deformation is independent of
the shape representation, requires neither special control structures nor precom-
putations. Let’s briefly review the method in a time-independent context – the
extension to the time-dependent case is straightforward.

Given two C2 continuous scalar fields p,q : IR3→ IR, a C1 continuous divergence-
free vector field v can be constructed from the gradients of p and q as

v(x,y,z) = ∇p(x,y,z)×∇q(x,y,z). (3.1)

Simple deformations can be constructed with this method using linear or quadratic
scalar fields. In particular, a translation can be achieved by using two linear fields

e(x) = u(x− c)T , f (x) = w(x− c)T , (3.2)

where u and w are orthogonal normalized vectors and c is an arbitrary center
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point. Since u and w are the gradients of e and f , respectively, u×w defines the
translation direction. A rotational vector field can be constructed from a linear
and a quadratic field:

e(x) = a(x− c)T , f (x) = (a× (x− c)T )2 (3.3)

The rotation axis is defined by the normalized vector a, while c describes the
rotation center.

By performing a stream line integration (or path line integration for the time-
dependent case) of each mesh vertex in the resulting vector fields, it is possible
to rotate and translate a mesh arbitrarily. Obviously, such transformations can be
achieved more easily and efficiently by other means. However, we can create more
complex and local deformations by blending the scalar functions e, f using a third
function b, the blending function. In the previous chapter, the blending is done in
a piecewise manner, where b is the function of a distance field. Alternatively, we
can define b more generally as a C2 continuous field b : IR3→ [0,1]. Given b, we
can define the blended fields

p(x) = b(x) · e(x) (3.4)

q(x) = b(x) · f (x). (3.5)

Using (3.2) for translations or (3.3) for rotations, we can insert (3.4) and (3.5) into
(3.1) to obtain a divergence-free vector field, which describes

• a full translation/rotation at points where b(x) = 1,

• a zero-deformation where b(x) = 0,

• a smoothly blended deformation for points where 0 < b(x) < 1.

By defining an appropriate blending function b, it is possible to specify which
points in space should be deformed by what amount. Figure 3.1 demonstrates
this in the 2D setting. Since the blending is done before the cross product of the
gradients is computed (Equation 3.1), the resulting vector field is still divergence-
free. Since p and q are C2 continuous, the resulting vector field v is C1 continuous
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Figure 3.1: Blending the deformation. A linear field (left), describing a translation
along its isolines, is multiplied with a blending function (center left). The result
is a blended field (center right) from which a divergence-free deformation field
(right) can be computed.

(see Chapter 2).

3.2 Deformation Blending

In the following sections, we will show a method to construct a blending func-
tion which can be used for boundary constraint modeling using vector-field-based
shape deformations.

3.2.1 Implicit Boundaries

From a technical point of view, we don’t use the term boundary constraints in the
sense of an optimization problem, but use boundary constraints as user defined
positions in space where the surface should be deformed in a prescribed manner.
From the user’s point of view, our approach resembles other boundary constraint
modeling approaches: the user draws two boundaries on the surface, where the
outer boundary defines the support of the deformation, while the inner boundary
defines the control handle of the deformation. Figure 3.2 illustrates this.

Since the method of vector-field-based shape deformations is not a surface-based
technique but describes space deformations, the boundaries have to be defined in
space and not only on the surface. Therefore, we formulate them implicitly. We
do so by constructing a smooth implicit function for both the inner and the outer
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3.2. Deformation Blending

Figure 3.2: By drawing boundaries onto the surface, the user can define a support
region (here the body) and a handle region (head).

boundary. More precisely, we define for each boundary a closed piecewise linear
curve, i.e. a ring of connected line segments. Then we use an approximate smooth
distance field to each curve as implicit function. Given n points b j, 1 <= j <= n

with bn+1 := b1, defining such a polygonal curve, we can compute an approximate
distance field using the technique from [BS04] as follows: Given the Euclidian
distance fields l j(x) of each line segment defined by the endpoints b j, b j+1, we
get

d(x) =
1

k

√
n

∑
i=1

1
(li(x))k

(3.6)

This corresponds to the R-equivalence l1(x) ∼ ... ∼ ln(x) described in [BS04],
which joins the distance fields l j(x) to a smooth approximate one. k is a positive
integer, which basically controls the “exactness” of the distance field: the greater
k, the more the approximation approaches the real distance field of the polygonal
curve, which, in general, contains discontinuities. The smaller we choose k, the
smoother the approximation becomes. In our implementation, we use k = 2 in
order to obtain smooth deformations even for coarse polygons.
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Figure 3.3: Left: an implicit boundary defined by a few points. Right: the corre-
sponding vertices marked.

Given such a scalar field for both the inner and the outer boundary, i.e. di(x) and
do(x), we want to constrain the deformation as follows:

• if di(x) = ti, we want full deformation,

• if do(x) = to, we want no deformation,

• else, we want a smooth blending between full and zero deformation.

ti and to are user-adjustable thresholds which define the thickness of the innner
and outer boundary, respectively. Visually, an implicit boundary can be seen as
a closed tube with adjustable thickness running over the surface, as depicted in
Figure 3.3. Besides the necessary implicit formulation, this has the advantage that
the number of polygon vertices is independent of the mesh resolution, and the user
can define smooth boundaries with only a few points, which is especially useful
for parallel computation on the GPU. In order to avoid discontinuities in the de-
formation, the user has to avoid intersections between inner and outer boundary.
For instance, when deforming the Dragon’s mouth as in Figure 3.4, the boundary
thickness has to be chosen such that the boundaries don’t touch each other be-
tween upper and lower jaw. The points b j and ti, to have to be chosen such that
the boundary area on the surface is connected, i.e., it divides the shape into two
parts. For given ti, to, this can always be achieved by increasing the density of the
control points b j and by placing them close to sharp features.
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3.2. Deformation Blending

3.2.2 Smooth Blending

Having the implicit boundaries defined, we need to construct a function that can
be used to blend smoothly from full deformation to zero deformation between
inner and outer boundary. This can be accomplished in a straightforward way
by interpolation with inverse distance weighting [She68]. We define the blending
function as

b(x) =
1

(di(x)−ti))3 ·1+ 1
(do(x)−to))3 ·0

1
(di(x)−ti))3 + 1

(do(x)−to))3

(3.7)

In the limit, the following holds: b(x) = 1 for di(x) = ti and b(x) = 0 for do(x) =
to. Because of the cubic weights, b(x) has two vanishing derivatives at points with
di(x) = ti or do(x) = to. As we will see later, this is an important property which is
needed to perform the deformation of the mesh in a piecewise manner. A further
degree of freedom can be achieved by multiplying the weights with user-defined
factors. This is especially useful to control bend deformations.

So far, we have a C2 continuous blending function b which can be used together
with Equations (3.4), (3.5) to construct blended scalar fields with (3.2) for trans-
lations or with (3.3) for rotations. Using (3.1), we can construct a divergence-
free vector field, which deforms the mesh (nearly) according to the boundary
constraints. Vertices on the inner boundary, i.e. with di(x) = ti, are fully de-
formed because for them b(x) = 1 holds. Vertices on the outer boundary, i.e.
with do(x) = to, are not deformed because for them b(x) = 0 holds. For all other
vertices, the deformation is smoothly blended between full and zero deformation.

3.2.3 Piecewise Deformation

By simply applying such a deformation to the whole mesh, vertices outside of the
support region will be deformed as well and vertices in the handle region won’t
undergo a constant deformation, in general. We therefore need to perform the
deformation in a piecewise fashion, which is quite simple. Vertices belonging to
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the handle region and the inner boundary are deformed in full, i.e. they undergo
a constant translation or rotation (e.g. the head and the boundary on the neck in
Figure 3.2). Vertices in the support region (body between the boundaries in Figure
3.2), not belonging to any boundary, are deformed using the blended fields (3.4),
(3.5). All other vertices are not deformed at all. Thanks to the two vanishing
derivatives of the blending function at the boundaries, this piecewise deformation
is C1 continuous. Furthermore, the property of volume preservation still holds as
long as no self-intersections occur. Self-intersections can only occur between the
deforming parts of the mesh and the non-deforming parts.

Mathematically, we also could instead define the blending function in a piecewise
fashion, such that the resulting deformation would be exactly the same. Tech-
nically, deforming the mesh in the piecewise manner described above is more
efficent because the handle region can be deformed directly using a rigid transfor-
mation and the zero-deformation vertices are not considered at all.

3.2.4 Integration in Space Time

The description of the blending function is based on a time-independent context.
However, since the inner boundary is actually moving over time, the blending
function has to be updated within each integration step. This is straightforward:
at the beginning of the integration, the inner boundary polygon is at its original
position. Then, with each integration step, the position is updated by the amount
corresponding to the step size. For instance, for a rotation, the polygon points are
rotated step by step until the full rotation is reached.

3.3 Applications

In principle, every deformation that is constructable as the cross product of two
gradients can be used with the described approach. However, we confine ourselves
to two simple, yet effective transformations: rotation and translation. Obviously, a
scaling transformation wouldn’t make sense, since we want to preserve the shape
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Figure 3.4: Popular application scenarios for boundary constraint modeling.

volume. As we will see in this section, this toolset allows for a variety of useful
deformations.

In order to control translation and rotation, the user can place a knob somewhere
on the mesh surface, and a joint somewhere in space. In most of the figures, the
knob is depicted as a yellow stick, e.g. on top of the bust in Figure 3.2. The joint is
a small white sphere, usually placed somewhere in the support region. The knob
resembles typical Gizmo objects found in many shape modeling systems, which
can be used to control transformations by grabbing and dragging it at different
points. The knob is a simplified version because only translation and rotation are
supported.

3.3.1 Rotation

In order to rotate the handle region, the user drags the knob, where the knob
movement is constrained to a fixed radius about the joint position. From the dis-
placement of the knob position, the rotation axis and angle can be determined
with respect to the joint position. Using the joint position as rotation center c in
(3.3), a deformation that bends the shape can be accomplished by integrating the
mesh vertices until the rotation angle is reached. In contrast to Chapter 2, where
the shape is continually updated, the integration restarts from the original mesh
every time the knob position changes. Figure 3.4, as well as Figure 3.2, shows
this approach applied in various scenarios known from the Literature. The defor-
mation looks rather realistic thanks to the volume-preservation and avoidance of
self-intersections and even high resolution models can be deformed interactively.

Figure 3.5 demonstrates how local details are deformed: The “teeth” of the comb-
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Figure 3.5: Local details are slightly distorted in strongly deformed areas (left)
and never intersect with each other (right).

Figure 3.6: By translating the horse head, the neck deforms in a natural manner.

like shape don’t touch each other during deformation and their distortion seems
appropriate with respect to the global deformation.

Also twisting is possible by simply using the vector between joint and knob as
rotation axis. A more uniform twisting deformation can be achieved with two
quadratic scalar fields as described in Chapter 2.

3.3.2 Translation

When the user wants to translate the handle region, he or she can drag the knob
freely in space. The joint is ignored for this deformation type. However, also the
translation (3.2) requires a center point c. In this case we use the barycenter of the
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Figure 3.7: “Wrinkles” can be produced by translating the handle accross the
surface. Although they appear to be rather strong, no self-intersections of the
surface occur.

control points of the inner boundary.

In Figure 3.6, the user drags the head of a horse model. The shape of the neck
automatically adapts to the new position. Due to the constant volume, the neck
becomes thinner when the head is pulled.

Interesting effects can be achieved by carefully selecting boundaries and moving
the handle parallel to the surface: as shown in Figure 3.7, the deformation auto-
matically produces “wrinkles” on the cheek of the face, which is a result of the
volume preservation and the prevention of foldovers. Although the “wrinkles”
appear to be rather strong, no self-intersections of the surface occur.

3.4 Implementation and Performance

As shown in the previous chapter, the performance of the integration can be in-
creased by a large amount by shifting the computation to the GPU, where multiple
path lines can be integrated in parallel. This is also possible with this approach:
since the number of boundary control points is usually low, these points can be
passed to the shader as a simple array. We implemented two vertex programs, one
for translation and one for rotation, which can be controlled by passing transla-
tion vector, rotation axis, angle etc. to them. During the integration, the polygon
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shape vertices boundary points v/s (integration) v/s (integ. + normals)
box 47,296 8 788,267 647,890

dragon 86,814 23 413,400 369,421
leg 1 31,014 17 449,478 382,889
leg 2 31,014 17 443,057 364,871

finger 2725 14 454,167 454,167

Table 3.1: Performance benchmark: complex meshes can be deformed interac-
tively.

points of the inner boundary are updated internally with respect to the transla-
tion/rotation, as described in Section 3.2.4. Except for the extraction of the handle
and support region (Section 3.2.3), no further preprocessing is required. After in-
tegration, vertex positions are read back from video memory and the mesh normals
are computed. An alternative approach would be to compute normals directly on
the GPU using the Jacobian of the vector field, similar to [BK05]. This would
decrease the integration performance because of the necassary computation of Ja-
cobians in each integration step, but would clear the CPU from doing this task
and redundatize the readback of vertex positions. However, we have not tested
this alternative yet. As we will see in the following performance analysis, the nor-
mal computation on the CPU makes only a small fraction of the total deformation
time.

The performance of the approach strongly depends on the “amount” of deforma-
tion, i.e. how far the handle is translated or rotated. This is because the numerical
path line integration adapts its step size according to the complexity of the vector
field and the duration of the integration. In order to present a meaningful state-
ment about performance, we measured the times of usual “real-world” deforma-
tions, namely the ones depicted in Figure 3.4. Table 3.1 lists the deformed shapes
(from left to right in Figure 3.4) and the benchmark results. v/s (integration) is
the number of vertices per second for integration only and v/s (integ. + normals)

the number of vertices per second for integration plus normal computation. The
measurements were made on a 2.6 GHz Opteron CPU and a GeForce 6800 GT
graphics card. They show that complex meshes can be deformed interactively.
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3.5 Discussion

Figure 3.8: When the boundaries move
close to each other, the shape is distorted.

We presented a shape deformation
technique based on vector field in-
tegration which incorporates implicit
boundaries to steer the impact of the
deformation.

By using vector-field-based shape
deformations, our deformations are
volume-preserving and foldover-free,
giving the user the impression of work-
ing with real, incompressible mate-
rial. While the original approach de-
fined the regions of influence by sim-
ple implicit objects, the new method
constructs a smooth blending function
based on implicit boundaries. That
way, the user can specifiy the impact
of the deformation directly on the sur-
face of the shape.

Thanks to the polygonal representation of the implicit boundaries, they are inde-
pendent of the resolution of the deformed mesh. In most cases, a small number of
control points suffices to define the boundaries.

Since the description of boundaries is simple (a small set of points), the numerical
path line integration can be computed on the GPU and even complex models can
be deformed interactively.

The approach has the following restrictions:

Self-intersections. Self-intersections are only avoided for the deforming regions
of the shape surface because the deformation is carried out in a piecewise fashion.
It is e.g. possible to bend the finger in Figure 3.4 such that the finger tip intersects
the thumb or other parts of the hand. An additional collision detection would solve
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the problem, but would also drop performance.

Close boundaries. When inner and outer boundary are close to each other, the
gradient of the resulting blending function is high in these regions. This can result
in unpleasing deformations. E.g., when an extreme bending is performed (Figure
3.8), the boundaries approach each other, and the box is distorted more and more
at its center (but nevertheless preserves its volume). A possible solution would
be to perform such deformations (even more) piecewise, by using for example a
third boundary between inner and outer boundary and constructing two blending
functions: the first one blends between inner and central boundary, the other one
between central and outer boundary.
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4
Explicit Control of Vector-Field-Based Shape

Deformations

In the previous chapter, we introduced implicit boundaries as a means of more
precise control over the deformation. While volume preservation and prevention
of self-intersections are obvious advantages over related methods, the method has
two drawbacks that we would like to overcome in this chapter.

On the one hand, the specification of influence regions is not per-vertex, i.e. it is
not as precise as in comparable boundary constraint shape editing systems. In-
stead, the user has to specify tube-like boundaries on the surface and has to make
sure that all boundary vertices are inside the tube. In contrast to this, existing
boundary constraint methods allow for an exact selection of boundary vertices.

On the other hand, strong distortions can occur if two boundaries are located close
to each other, as discussed in the previous chapter. This is because of the fact that
the blending function and its gradient is defined in space and not only on the shape
surface.

In this chapter, we present an approach which defines all fields on the surface of
the shape. This has the advantage that a more precise defintion of the deformation
boundaries is possible and more extreme deformations can be performed without
distortions. In addition, the user can not only define start and end state of the
handle region, but also the intermediate steps of the deformation by specifying a
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3D parametric curve along which the deformation should be carried out.

Section 4.1 describes our approach from the user’s point of view. Section 4.2
shows the underlying vector field construction. Section 4.3 gives details about our
GPU-based implementation. Section 4.4 describes different applications, among
them a scenario which - from the users’s point of view - is similar to boundary
constraint modeling. Section 4.5 evaluates our method, while conclusions are
drawn in Section 4.6.

4.1 Our approach from the user’s point of view

In this section we give a user’s oriented view to our approach. The main difference
to the previous method is that we define the regions of deformation directly on the
shape instead of implicitly by a scalar field. Given a shape (here defined as triangle
mesh), the user defines a continuous scalar function s(x) on the shape. Together
with two thresholds si < so, s defines three regions of deformation on the shape: A
vertex x in the inner region (s(x)≤ si) undergoes a full deformation, a vertex x in
the outer region (so ≤ s(x)) remains undeformed, whereas the deformation in the
intermediate region (si < s(x) < so) is obtained by a blending approach. Without
loss of generality, we use si = 0 and so = 1 throughout this chapter.

Furthermore we note that in the inner and the outer region, s does not contribute
to the computation of the deformation. Therefore we can safely set s = 0 in the
inner region and s = 1 in the outer region. We achieve a continuous scalar function
s ∈ [0,1] on the shape which defines for every vertex x:

s = 0 → full deformation

0 < s < 1 → blended deformation

s = 1 → no deformation.

Figure 4.1 illustrates the scalar field s on a shape by color coding: blue means
s = 0, red means s = 1, while the intermediate color values are smoothly color
interpolated. In addition to this color coding, the separation curves between the
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Figure 4.1: (a) The deformation is defined by two closed polygons on the shape
and a parametric curve c(t); (b) path line integration at t = 1/2; (c) path line
integration at t = 1 is the desired deformation.

different regions are highlighted. Also in this and the following images the small
white sphere on the curve visualizes the current integration time, while the dark
sphere represents the target time for the integration. The target time can be inter-
actively moved by the user.

During the deformation (i.e. the path line integration of the vertices), the location
of the vertices change. During this process we keep s(x) constant to the originally
assigned values unless s is recomputed on the user’s request at a certain stage of
the deformation.

To define the full deformation (i.e. the deformation in the inner region) itself, most
modern approaches define a handle which is interactively placed at its destination
point and orientation. Due to its nature, our approach is able to consider not
only the end point of the deformation but also the way it takes. Therefore, we
define the deformation by a parametric curve c(t), t ∈ [0,1], where c(0) lies on the
inner region of the shape. Note that c can be constructed in two ways: either by
explicitly defining the curve (e.g., as B-spline curve), or by interactively moving
c(0). Figure 4.1 explains an example.

In addition, a twisting effect during the deformation can be obtained by defining
a continuous scalar function α(t), t ∈ [0,1]. It describes the twisting angle during
the deformation along c(t): during the complete deformation (i.e., the path line
integration from t = 0 to 1), a twisting by the angle α(1)−α(0) is carried out. If
α(t) =const, no twisting is involved into the deformation.
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4.2 Constructing the vector field

In this section we describe how to use the method from Chapter 2 with a control
of the deformation as described in Section 4.1. It turns out that we can rely on
the vector field construction described in (2.2)–(2.5). In fact, we only have to
modify the definition of e, f and r to get the desired control of the deformation.
The choice of r is responsible to control the regions of deformation on the surface,
while e, f describe the deformation in the inner region.

4.2.1 Constructing r

The function r(x, t) together with ri,ro define the region of the deformation. Con-
ceptually, r has to be defined as a time-dependent volumetric function, since both
r and ∇r contribute to the definition of v by (2.2)–(2.5). However, r and ∇r are
only evaluated at the surface of the shape, i.e. at the shape vertices. We use this
fact to estimate r and ∇r at each vertex x out of the scalar field s which is only
defined on the shape. In fact, we set r(x, t) = s(x) for each vertex. To estimate
∇r(x, t), we consider s at x and all adjacent vertices in the 1-ring of x. To do so,
we apply a least-squares fitting approach of the linear approximation of r in the
neighborhood of x: We solve[

r(x, t) = s(x) , ∇r(x, t) ·n(x, t) = 0

∑y∈R1(x)(r(y, t)− s(y))2→min

]
(4.1)

where R1(x) is the 1-ring of x and n(x, t) is the estimated shape normal at the
vertex x. This means that we assume a zero direction derivative of r in normal
direction. Assuming r to be linearly approximated, (4.1) has a unique solution for
r and ∇r. Finally we set ri = 0 and ro = 1 to get a complete estimation of r,ri,ro

from the explicitly defined s.
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4.2.2 Constructing e, f

The scalar fields e, f are responsible for the definition of the deformation in the
inner region. They have to be chosen such that the deformation in the inner region
follows the curve c(t), and no distortions in the inner region are introduced during
the deformation. To do so, we can choose e, f to define a rotation or a translation,
and

v(c(t), t) = ċ(t). (4.2)

Since c(0) is in the inner region of the deformation, this is equivalent to

∇e(c(t), t)×∇ f (c(t), t) = ċ(t). (4.3)

In order to define a translation in the inner region, we define v(x, t) = v(t) as
a time-dependent constant field in the inner region. To do so, e, f are time-
dependent linear scalar fields with

∇e(x, t) · ċ(t) = ∇ f (x, t) · ċ(t) =

∇e(x, t) ·∇ f (x, t) = 0, (4.4)

‖∇e(x, t)‖= ‖∇ f (x, t)‖=
√
‖ċ(t)‖, (4.5)

e(c(t), t) = f (c(t), t) = 0.

Note that (4.5) gives a unique definition of e, f except for one degree of freedom:
the direction of ∇e (or ∇ f respectively) can be chosen arbitrary but perpendicu-
lar to ċ(t). However, it turns out that this degree of freedom does not have any
influence on the definition of v. Figure 4.2 illustrates a local translation of the
inner region along the curve c(t). As we can see there, the inner region follows
the curve c(t) but does not change its orientation.

In order to enable both the location and the orientation to follow c(t), we define
the inner deformation as a rotation around a rotational axis perpendicular to the
osculating plane of c and passing through the curvature center of c. In fact, we
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Figure 4.2: Local translation along the curve c(t) for t = 0,1/2,1: the inner region
follows the curve but does not change its orientation.

Figure 4.3: Local rotation along the curve c(t) for t = 0,1/2,1: the inner region
follows the curve both in location and orientation.

compute the curvature center as

z(t) = c+
c̈(ċ · ċ)2− ċ(ċ · ċ)(ċ · c̈)
(ċ · ċ)(c̈ · c̈)− (ċ · c̈)2 (4.6)

and the direction of the rotation axis as

t(t) = (ċ× c̈). (4.7)

Then e(x, t), f (x, t) are defined as

e = t · (x− z) , f = (t× (x− z))2− (c− z)2. (4.8)

It is straightforward exercise in algebra to show that (4.6), (4.7) and (4.8) give
(4.3). Figure 4.3 illustrates a local rotation of the inner region: both its location
and its orientation move along c(t).

In order to incorporate an additional twisting along the tangent of c, we define
an additional divergence-free vector field ṽ out of the scalar fields ẽ, f̃ , r̃ similar
to (2.2)–(2.5) by setting r̃ = r and ẽ, f̃ defining a rotation around the axis c(t)+
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Figure 4.4: Local rotation and twisting along the curve c(t) for t = 0,1/2,1.

λ ċ(t). In fact, we set

ẽ(x, t) =
α̇(t)
2π

(x− c(t)) · ċ(t), f̃ (x, t) = ((x− c(t))× ċ(t))2. (4.9)

Then ẽ, f̃ define a new vector field ṽ which is simply added to v(x, t) for the path
line integration. Figure 4.4 illustrates a twisting effect.

4.3 Implementation

In order to get interactive deformations for complex meshes, we shift the compu-
tation to the GPU. Here we use a General Purpose GPU Computing (GPGPU) ap-
proach: All necessary data is stored in textures, and the computation is performed
in a fragment shader by rendering a quad. When we want to deform a mesh, we
first have to store the initial vertex positions together with the scalar field s in a
texture, the vertex texture. Similarly, normals and gradients are stored in the nor-

mal texture and the gradient texture, respectively. Since the estimation of normals
and gradients depends on the mesh connectivity, we also need to represent vertex
connectivity as texture: We store up to eight indices of the neighbor vertices for
each vertex in the connectivity texture (we only used meshes with a vertex valence
smaller than nine). While the connectivity stays fixed throughout the deforma-
tion, vertex positions, normals and gradients are updated in each integration step.
This is realized by four fragment shaders, which are called consecutively in each
integration step.

Normal shader. In this shader, the normal of a vertex is computed as the normal-
ized sum of the normals of the adjacent triangles. The necessary input is the vertex
texture and the connectivity texture. The result is written to the normal texture.
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Gradient shader. This shader estimates the gradient ∇r as described in Section
4.2.1. For this estimation, it uses the the vertex texture, the normal texture and the
connectivity texture and renders the result to the gradient texture.

Smoothing shader. Due to small scale normal variations, the previously com-
puted gradient is generally not smooth enough to give smooth deformations. To
solve this problem, the smoothing shader performs a Laplacian smoothing on the
estimated gradient: For a fixed number of steps, the gradient vector of each vertex
is moved towards the mean gradient of its 1-ring neighborhood. This shader needs
the normal texture, gradient texture and connectivity as input and overwrites the
gradient texture.

Deformation shader. This shader performs the actual deformation after the gradi-
ent has been estimated. It computes a divergence-free vector field as described in
Section 4.2 and performs one integration step of this field. In order to be robust,
we use one fourth-order Runge-Kutta step here. The input of this shader is the
vertex texture and the gradient texture. The result is written to the vertex texture.

Using these shaders, the mesh can be deformed without readback from graphics
memory, which would be a bottleneck. Only when we need to access the data
(usually after the deformation), we read it from the respective textures.

4.4 Applications

In this section we introduce different choices of s,c,α to obtain different applica-
tion scenarios.

4.4.1 Geodesic level deformation

The main advantage of the described approach is the fact that we can define the
influence of the deformation directly on the surface, while we previously used
implicitly defined 3D scalar fields like the Euclidean distance for this purpose.
Using a smooth approximation of the geodesic distance to a point on the surface,
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Figure 4.5: The squirrel model is deformed from start to target handle.

we can define the influence of the deformation more intuitively: The user simply
selects a vertex on the shape, and the geodesic distance field g(x) of this point is
approximated on the surface. For this, we use Dijkstra’s algorithm and smooth the
scalar values afterwards using a kernel with local support. That way, we make sure
that the resulting deformation is smooth. Using two user-adjustable thresholds
gmin,gmax, we define s(x) as

s(x) =


1− g(x)−gmin

gmax−gmin
if gmin < g(x) < gmax

1 if g(x)≤ gmin

0 if gmax ≤ g(x)

(4.10)

In Figure 4.6 the user has selected the middle finger of a hand shape by clicking
on the tip of the finger. By adjusting the thresholds gmin,gmax, the regions of full
and zero deformations have been set such that the deformation affects only this
finger.

4.4.2 Emulation of boundary constraint modeling

In boundary constraint modeling, three regions of deformation are painted onto
the surface. They correspond to the regions which are defined by the scalar field s.
Note that s actually contains more information than used for boundary constraint
modeling: In the intermediate region (i.e., at vertices x with 0 < s(x) < 1), the
deformation depends on s. Therefore, in order to emulate boundary constraint
modeling, the scalar field s in the intermediate region has to be chosen automati-
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Figure 4.6: Using the geodesic distance field of a point on the tip of the middle
finger, we can deform the finger without affecting other parts of the shape.
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Figure 4.7: Computing s(x) by approximating the geodesic distance between a
vertex x and the inner/outer region.

cally. To do so, we compute the approximate geodesic distance gi(x) of a vertex
x to the inner region on the shape, and we compute the approximate geodesic dis-
tance go(x) of x to the outer region. Here we use the same smooth approximation
as in Section 4.4.1. In fact, we compute and store the scalar fields gi and go for
every vertex in the inner region first by growing from the boundary between inner
and intermediate, and intermediate and outer region respectively. Then we set

s(x) =
go(x)

gi(x)+go(x)
0+

gi(x)
gi(x)+go(x)

1. (4.11)

Figure 4.7 gives an illustration. Figure 4.8, 4.9 and 4.10 show examples how this
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Figure 4.8: By drawing boundaries (white) onto the neck of the horse, the user
can specify the influence regions of the deformation.

approach can be used to deform different shapes.

To steer the inner deformation, boundary constrained modeling approaches use
a handle which can freely be placed. Since our approach is volume-preserving,
we do not consider scaling and therefore use a 6-DOF handle defined by a 3D
location h, a (normalized) normal vector m, and a (normalized) binormal vector
w with w ·m = 0. In order to move a handle (h,m,w) to (ĥ,m̂, ŵ), we construct
a cubic curve c(t) and a twisting function α(t) such that the deformation realizes
the moving of the handle. We construct c(t) as a cubic Bezier curve with the
Bezier points

b0 = h , b1 = h+
1
3
(m · (ĥ−h)) ·m (4.12)

b2 = ĥ− 1
3
(m̂ · (ĥ−h)) · m̂ , b3 = ĥ.
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Chapter 4. Explicit Control

Figure 4.9: Due to the chosen boundaries (white), both the head and the front legs
of the cow model undergo a full deformation.

Figure 4.10: By choosing appropriate boundaries on Armadillo’s arm, realistic
bending deformations can be obtained.
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Figure 4.11: (a) constructing the cubic Bezier curve c(t) to move (h,m,w) to
(ĥ,m̂, ŵ); (b)-(c) computing α0 and α1 for constructing α(t).

Figure 4.12: Our approach allows for rather strong bending deformations. The
deformation behavior can be controlled by adjusting the radius of the curve.

Figure 4.11a gives an illustration. Figure 4.12 shows a rather strong bending
deformation of the models.

In order to compute the twisting function α(t), we compute α0 as the angle be-
tween b2p −h and w where b2p is the projection of b2 onto the plane through h
perpendicular to m. Figure 4.11b illustrates this. Furthermore, we compute α1 as
the angle between b1p− ĥ and ŵ where b1p is the projection of b1 onto the plane
through ĥ perpendicular to m̂. Figure 4.11c illustrates this. Then we can compute
α(t) = (1− t) α0 + t α1 which defines the desired twisting.

In interactive applications, the deformation is not always defined by start and tar-
get handle but by interactively moving the handle. Our vector field based approach
can deal with this as well: if the handle (h,m,w) is simply translated to (ĥ,m,w),
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Chapter 4. Explicit Control

Figure 4.13: Thanks to the surface-based definition of r(x, t) and the curve-guided
deformation, extreme deformations like knots are possible.

we can emulate this by constructing c(t) = (1− t) h + t ĥ and α(t) =const. If
on the other hand the handle (h,m,w) is not moved but only rotated along the
axis h + λ t to the handle (h,m̂, ŵ), we can construct a vector field realizing this
rotation by choosing z = h and

e(x, t) = t · (x− z) , f (x, t) = (t× (x− z))2. (4.13)

4.4.3 Knots and extreme deformations

There are deformations which can hardly be achieved by approaches based on
a certain energy-minimization. Examples are ”knots” in a shape or an extreme
twisting. Since our approach doesn’t steer the inner deformation by a handle but
by a curve and a twisting function, we can handle such deformations. Figure 4.13
shows an example of making a ”knot” into a cylinder model. Figure 4.14 shows a
box which is twisted and at the same time deformed along a curve.

4.5 Evaluation

In this section we evaluate our approach concerning performance, volume preser-
vation, and possible self-intersections.
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Figure 4.14: Also extreme twistings combined with a deformation along the con-
trol curve are possible.

model fig. vertices t/step [ms] vol. error
box 4.3 2,462 4 1.8%
bar 4.12 9,730 9 0.4%

squirrel 4.5 9,995 9 0.08%
horse 4.8 19,851 22 0.7%

cylinder 4.13 21,302 20 1.6%
hand 4.6 53,054 55 0.01%

Table 4.1: The benchmark shows that the GPU implementation performs interac-
tively and the volume change is very low.

4.5.1 Performance and volume-preservation

In Table 4.1, we see a performance benchmark of our GPU implementation, per-
formed on a GeForce 7800 GTX graphics card. In addition, we measured the
change of volume with respect to the undeformed shape. Since the required num-
ber of steps depends on the amount of deformation, we have measured the required
time for one integration step. For a complete deformation along a cubic Bezier
curve, we used 200 – 300 steps to get accurate results. For the time-per-step mea-
surement, we deformed each model completely, i.e. all vertices were integrated.
For the volume measurement, we measured the error after the final deformation
depicted in the respective figure, in order to give the reader an illustration.
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Figure 4.15: Our deformations tend to prevent local self-intersections, while
global self-intersections are possible.

4.5.2 Self-intersections

The shape deformation technique from Chapter 2 guarantees to prevent local and
global self-intersections because the computation is based on globally defined 3D
continuous scalar fields. Since the method in this chapter computes r locally on
the shape surface, global self-intersections cannot be excluded any more. For
example, our method does not check if parts of the inner region intersect parts of
the outer region during the deformation. However, due to the fact that path lines
do not intersect in space-time domain, our method can still guarantee that no local
self-intersections occur. Figure 4.15 shows an example of an extreme deformation
where global self-intersections occur but local self-intersections are excluded.

While our deformations do not prevent global self-intersections, they are nev-
ertheless volume-preserving with respect to our definition of volume: Given the
shape represented as a closed triangle mesh, we define its volume as the sum of the
signed volumes of the tetrahedrons formed by the mesh triangles and the origin.
It turns out that our method preserves this volume even during self-intersections.
The toleration of global self-intersections has the advantage that more extreme de-
formations are possible without introducing distortion artifacts. Figure 4.16 shows
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Figure 4.16: While the original vector-field-based shape deformation method
(left) prevents global self-intersections, it introduces strong distortions under
extreme deformations. Our surface-based method (right) tolerates global self-
intersections, with the advantage that extreme deformations are free of distortions
and the amount of deformation can be exactly controlled.

a comparison of a strong bending deformation using the method from Chapter 2
and the method from this chapter. Using the original method, it is hard to con-
trol the deformation precisely and strong distortions of the shape occur. Using our
method, the volume is preserved more uniformly while the amount of deformation
can be precisely controlled.

4.6 Discussion

4.6.1 Contributions

We presented an approach to explicitly control vector-field-based shape deforma-
tions. In the following, we list the most relevant contributions:

Exact control: In contrast to the original approach presented in Chapter 2, where
the region of influence was controlled by simple implicit objects like spheres or
cylinders, our new approach permits an exact control of the deformation by defin-
ing the deformed regions directly on the surface.

Extended steering of the deformation: Contrary to boundary constraint model-
ing, the definition of the inner deformation is steered by a curve and a function.
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Chapter 4. Explicit Control

This way, deformations can be handled which can hardly be achieved with energy-
minimizing approaches.

Efficient deformations on the GPU: In order to make the method suitable for
interactive applications, we implemented it on the GPU. The main difference to
the original method described in Chapter 2 is that our implementation does not
need any read-backs from GPU to CPU during the deformation.

4.6.2 Inherited features

By utilizing the vector-field-based shape deformation technique, our approach in-
herits the following features:

Intuitive editing: By utilizing divergence-free vector fields, the shape’s volume
remains constant under deformation. This way, the deformations look natural and
help the user to edit shapes in an intuitive manner.

Avoidance of local self-intersections: Due to the nature of path line integration,
no local self-intersections can occur during the deformation.

4.6.3 Limitations

Our deformation technique has some restrictions and limitations which we list
below.

Global self-intersections: Contrary to the method from Chapter 2, our method
cannot guarantee to avoid global self-intersections.

Vertex dependencies: The method in Chapter 2 is able to integrate the vertices
of the mesh independently of each other. Contrary to this, the surface-based ap-
proach needs the connectivity information of the mesh to estimate the volumetric
field r out of the surface field s.
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5
Elastic Secondary Deformations by Vector

Field Integration

As demonstrated in the previous chapters, the vector-field-based shape deforma-
tion method tends to produce physically plausible results. This is due to the fact
that the way it preserves volume gives the impression of working with real incom-
pressible material. This property makes the method also attractive for animation:
For instance, the soft tissue of human beings or animals is (nearly) incompressible.
In this chapter, we explore applications of vector-field-based shape deformations
to model this kind of animation.

For the treatment of many applications, a deformation or animation can be di-
vided into a primary and a secondary structure [OZH00]. A primary anima-
tion/deformation performs rather large and global changes of the shape. Typi-
cal examples are keyframe animations, interactive movement of solids, rigid body
simulations including collision detection, or the interactive deformation of shapes.
In addition to this, secondary deformations perform rather small changes of the
shapes but contribute significantly to the realism of the scene. Secondary defor-
mations can be explicitly modeled (e.g. facial animations or lip synchronization in
animated full-body human characters) or they can be derived from the primary an-
imation/deformation by assuming certain elastic material properties of the shape.
An example of secondary deformations are jiggling and bouncing effects on the
moving skin on a human body [PH06].

59
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In the following, we present an approach to model elastic secondary deformations
by constructing and integrating time-dependent divergence-free vector fields. Elas-
tic deformations are connected to certain intrinsic forces and tend to move back to
the original shape if these forces cease. This way, jiggling and oscillating effects
can be represented. The deformation described here is steered by incorporating
basic mechanical laws coming from the primary animation/deformation. In fact,
a low number of mass-spring sets is simulated to steer the deformation. The re-
sults of this simulation are used for an on-the-fly construction of time-dependent
vector fields, delivering the new position of each vertex by a numerical path line
integration. It guarantees that the deformations are volume-preserving, and with-
out (local or global) self-intersections.

To model secondary deformations which are derived from a primary motion, two
general approaches are possible. Firstly, physically based approaches consider the
inherent structure of the shape to simulate the deformations. Secondly, heuristic
approaches describe the deformation by a low number of parameters in order to
obtain plausible and fast deformations without the explicit consideration of phys-
ical laws. The technique presented here can be considered as a compromise be-
tween the two general approaches. While the deformation is described by a simple
heuristic model (a lower number of mass-spring sets), their kinematic simulation
is exact as well as the deformation itself is guaranteed to preserve important phys-
ical properties (volume, avoidance of self-intersections). In particular, it turns
out that these properties are strong enough to yield plausible deformations if the
mass-spring sets are placed in an appropriate way.

The rest of the chapter is organized as follows: Section 5.1 reviews related work
and Section 5.2 describes our vector-field-based approach. Section 5.3 describes
how our model can handle collisions in the primary animations. Section 5.4 de-
scribes details of our GPU based implementation. Section 5.5 applies our tech-
nique to different approaches for the primary animations: interactive moving of
solid bodies, keyframe animations, rigid body simulations, and interactive defor-
mations. We evaluate and compare our method in Section 5.6 and conclusions are
drawn in Section 5.7.
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5.1 Related work

There is a huge body of approaches to define animations and deformations. Here
we only mention approaches which explicitly deal with secondary deformation/motion,
or which can incorporate secondary motion effects. In general, all approaches aim
in finding appropriate combinations of physically exact simulations and simplify-
ing assumptions to get plausible deformations at interactive rates.

Mass-spring systems are an intuitive technique to deform objects realistically. Ini-
tially used for facial modeling [PB81], other fields like skin, fat and muscle sim-
ulation [CHP89, TW90, TW91, NT98] and interactive animation of structured
deformable objects [DSB99] have been addressed using mass-spring systems. In
order to simulate larger mass-spring systems in real-time, [GEW05] developed a
GPU implementation which simulates spring elongation and compression on the
graphics card and renders the deformed surface.

The Finite Difference Method has been introduced by [TPBF87] as a tool to sim-
ulate elastically deformable models. The Finite Element Method has been used
to simulate elastic [DDCB01, GKS02, MDM+02] and elastoplastic fracturing
[OBH02, MG04] material. The method has also been used to obtain interactive
skeleton-driven deformations [CGC+02, ZG05] and physically based rigging of
deformable characters [CBC+05]. By employing modal analysis, which reduces
the computational complexity of such simulations remarkably, [JP02, CK05] were
able to obtain complex deformations at ineractive rates on the GPU. [TBHF03]
used the Finite Volume Method to simulate skeletal muscle. [JP99] proposed the
Boundary Element Method for simulating deformable objects accurately and in-
teractively.

The above-mentioned approaches have in common that they rely on connected
structures like mass-spring networks, grids or volumetric meshes. In contrast to
this, mesh free methods [DC96, Ton98] abandon connectivity. Point based anima-
tion allows for animation of elastic, plastic and melting objects [MKN+04]. Here,
both the particles on which the simulation is carried out and the object surface are
represented by points without connectivity.
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Chapter 5. Elastic Secondary Deformations by Vector Field Integration

Trying to strictly adhere the laws of physics in order to get realistic deformations
often comes at the cost of performance. This makes it difficult to simulate scenar-
ios of moderate complexity in real-time. Non-physically motivated approaches
sacrifice realism for performance. [MHTG05] proposed a geometrically moti-
vated model for simulating deformable objects. This mesh free approach replaces
energies by geometric constraints and forces by distances between current and
goal positions. This way, the dynamic simulation is efficient and unconditionally
stable.

5.2 Our approach

The main idea of our approach is to control the secondary deformation by a low
number of parameters which we describe as a number of mass-spring sets (Sec-
tion 5.2.1). For each of the mass-spring sets we define a local deformation which
is based in the integration of a divergence-free vector field (Section 5.2.2). Based
on this, different ways of composing them are possible (Section 5.2.3). Also, the
impact of a particular deformation can be limited to certain parts of the shape (Sec-
tion 5.2.4). Section 5.2.5 describes how to place and parametrize the mass-spring
sets. Section 5.2.6 describes how a level-of-detail approach can be incorporated
into our concept.

5.2.1 Mass-spring sets

Mass-spring systems are popular and well-understood tools to simulate various
phenomena, among them deformations. Here we use a very simple one-degree-
of-freedom mass-spring system and call it a mass-spring set (this naming should
reflect that this is indeed one of the simplest mass-spring systems one can imag-
ine). It consists of two points p,q which are connected by a spring with stiffness
k and damping parameter c. The spring has a length of zero, i.e. p and q coincide
in the rest state. While p is considered as a fixed anchor point inside a shape,
q is equipped with a certain mass mq. Then the position of q can be simulated
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Figure 5.1: (a) A mass-spring set: p is a fixed point inside the shape, q is a freely
moving point, equipped with a mass mq; (b) configuration to define deformation
dp,q,ro and vector field wp,q,ro .

by basic rules of mechanics if the shape (and therefore p inside it) undergoes a
primary motion. In fact, our simulation includes spring damping, inertia, and the
repeated conversion of potential and kinetic energy. See the corresponding sec-
tion on mass-spring systems in [NMK+06] for an explanation of these methods.
Figure 5.1a illustrates a mass-spring set.

5.2.2 Constructing the deformation

For a mass-spring set with the points p,q at a certain location, we define a space
deformation dp,q,ro : IR3→ IR3 with the following properties:

dp,q,ro(p) = q (5.1)

dp,q,ro(x) = x for dist(x,pq) > ro (5.2)

dp,q,ro is C2 continuous (5.3)

dp,q,ro is volume preserving (5.4)

dp,q,ro does not produce self-intersections (5.5)

where dist(x,pq) describes the minimal Euclidean distance between a point x
and the line segment pq. The positive value ro controls the area of impact of the
deformation. The main idea to get dp,q,ro is to construct a divergence-free time-
dependent vector field vp,q,ro(x, t) and obtain dp,q,ro as the result of a path line
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integration of vp,q,ro . To do so, we define the auxiliary vector field

wp,q,ro(x, t) = γ (α a+β b) (5.6)

with

a = q−p , m = (1− t) p + t q , b = x−m (5.7)

α = r2
o−5 b2 , β = 4 ab , γ =

(
r2

o−b2)3

(r2
o)

4 .

Figure 5.1b illustrates this. Then it is a straightforward exercise in algebra to show
that wp,q,ro has the following properties:

wp,q,ro ((1− t) p + t q , t) = q−p (5.8)

wp,q,ro = 03 for r2
o = b2 (5.9)

∇wp,q,ro = 03,3 , ∇∇wp,q,ro = 03,3,3 for r2
o = b2 (5.10)

div(wp,q,ro)≡ 0 (5.11)

where 03, 03,3, 03,3,3 are the 3D zero tensors of order 1,2,3, respectively. (5.9) and
(5.10) mean that for r2

o = b2, wp,q,ro and its first and second order partials vanish.
Now we can define vp,q,ro as

vp,q,ro(x, t) =

{
wp,q,ro(x, t) for b2 ≤ r2

o

03 else
(5.12)

and dp,q,ro as the result of a path line integration over the time interval [0,1]:

dp,q,ro(x) = x+
∫ 1

0
vp,q,ro(x(s),s) ds. (5.13)

Then (5.9), (5.10) and (5.12) give that vp,q,ro is C2 continuous, which implies
(5.3). (5.8) yields (5.1). (5.2) follows from the piecewise definition of vp,q,r0 in
(5.12). (5.4) and (5.5) follow directly from (5.11) [vFTS06]. Note that vp,q,ro is a
piecewise polynomial vector field of degree 8. Figure 5.2 illustrates vp,q,ro(x,0),
vp,q,ro(x, 1

2), vp,q,ro(x,1) for ro = 1
2‖q−p‖ using illuminated stream lines [ZSH96].
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Figure 5.2: vp,q,ro(x, t) with t = 0, 1
2 ,1 for ro = 1

2‖q−p‖.

Note that the vector field v constructed by (2.2) – (2.5) defined in Chapter 2 is a
piecewise C1 continuous vector field of degree 16 (if r describes the the Euclidean
distance to a center point). The vector field vp,q,ro defined by (5.6)–(5.12) appears
to be significantly simpler and smoother: C2 continuous and of degree 8. This
enhancement is achieved by letting the inner ring of the deformation collapse to
a point, making the expensive (in terms of polynomial degree) C1 joint between
inner and intermediate region unnecessary. In fact, wp,q,ro was constructed similar
to [vFTS06] as

r(x) = (x−m)2 , ri = 0 (5.14)

and wp,q,ro = ‖q−p‖·(∇p×∇q) with p =(1−b)·e+b ·0 and q =(1−b)· f +b ·0
where e, f are linear scalar fields with (∇e)2 = (∇ f )2 = 1, ∇e ·∇ f = ∇e · a =
∇ f · a = 0, and e(m) = f (m) = 0. Since this way the inner region vanishes, the
blending function can be simplified to

b(r) =
2

∑
i=0

wi B2
i (

r− ri

ro− ri
). (5.15)

with (w0, ...,w2) = (0,1,1). This explains the reduction in the polynomial degree
in wp,q,ro . To explain the improved continuity, we note that v constructed by (2.2)–
(2.5) is actually C1 at the joint between inner and intermediate region, and it is C2

between intermediate and outer region. Since we make the inner region disappear,
the remaining global continuity is C2.
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5.2.3 Composition of vector field integration

In general, more than one mass-spring set is independently used to get the de-
sired elastic deformation. Since any linear combination or time-concatenation of
divergence-free vector fields is divergence-free as well, there are two simple op-
tions to compose two or more mass-spring sets. Let two mass spring sets be given
by p1,q1,ro1 and p2,q2,ro2 respectively. Then we use the following composi-
tions:

1. Adding the vector fields: the deformation is obtained by a path line integra-
tion of v(x, t) = vp1,q1,ro1 +vp2,q2,ro2 over the time interval [0,1].

2. Concatenating the vector field: here

v(x, t) =

{
vp1,q1,ro1(x, t) for 0≤ t < 1
vp2,q2,ro2(x, t−1) for 1≤ t ≤ 2

is integrated over the time interval [0,2].

Note that concatenating the vector fields corresponds to a concatenation of dpi,qi,roi:
the integration of v(x, t) leads to dp2,q2,ro2(dp1,q1,ro1(x)).

In order to deform smaller details of the shape correctly, they are deformed by
first using an addition of vector fields with small influences. Then the shape is
further deformed by concatenating an addition of vector fields with larger influ-
ences. Figure 5.3 illustrates this and Section 5.4.1 gives more details about our
implementation of this approach.

5.2.4 Deformation skinning

Being a space deformation, the described deformation technique may not produce
desirable results if independent parts of the shape are spatially close to each other.
For instance, suppose a mass-spring set is placed in the right foot of the camel
model (Figure 5.4 left). When the spring is elongated, the left leg can enter the
influence region and will be deformed as well. In order to prevent such situations,
we need a mechanism to constrain the deformation to a specific segment of the
shape. We use an extension to a standard technique called matrix palette skinning
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Figure 5.3: For 0 ≤ t < 1, small details are deformed using an addition of vector
fields. Afterward, for 1≤ t ≤ 2, larger areas are deformed using vector fields with
larger influence.

(indexed skinning), which is both GPU-friendly and straightforward to implement
[LKM01]. It works by assigning a set of usually four index-weight pairs to each
vertex. Each index points to an element of a matrix palette, which is an array of
4x4 matrices defining affine transformations. A vertex is deformed by comput-
ing its transformations for all four indices and computing the weighted sum of
them. Usually, an animated character is segmented into its different body parts,
and a transformation is assigned to each segment. The weight for this transfor-
mation is 1 for most vertices of the segment – only at the joints, where two or
more segments meet, the weights are chosen such that a smooth blending between
the different transformations is achieved. Usually the weights are specified to-
gether with a skeleton (which defines the affine transformations of the segments)
by an animator in a 3D authoring tool. We extend this by additionally assigning
a list of mass-spring sets to each segment. Each list of mass-spring sets defines a
composed vector field. This means that instead of a palette of matrices, we have
a palette of matrices plus vector fields. The extended skinning algorithm works
basically the same as before: the vertex is deformed by transforming it using ma-
trix multiplication and by afterward deforming it using vector field integration,
for each of the four palette indices. The resulting vertex is again the weighted
sum of these four deformed positions. Section 5.4.2 describes the implementa-
tion in more detail. Figure 5.4 shows how a mass-spring set deforms a leg of the
camel model without affecting other body parts by using deformation skinning.
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Figure 5.4: Using deformation skinning, the deformation described by the mass-
spring set can be constrained to one leg of the camel.

Note that this surface-based skinning does not prevent global self-intersections
and does not exactly preserve volume at the parts where different deformations
are blended. However, global self-intersections can be avoided by performing an
additional collision detection between shape segments. The areas where multiple
deformations are blended (e.g. at the joints of a character) are usually small, so
the effect of non-exact volume-preservation is negligible.

5.2.5 Setting the mass-spring sets

The physical plausibility of our approach strongly depends on number, location
and parametrization of the mass-spring sets. Since it turns out that a rather low
number of mass-spring sets already gives pleasing results and that the location of
”good” sets follows the shape intuitively, we left the placing of the mass-spring
sets to the user. However, in our experiments we realized a number of rules of
thumbs to get pleasing secondary deformations.

Mass-spring sets should be placed close to the center of large homogeneous areas.
If only one mass-spring set is used, it should be placed close to the center of
gravity of the object. Furthermore, the area of influence should approximately
reflect the size of the object. In addition, further mass-spring sets with smaller
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Figure 5.5: Level of detail: with increasing distance, more and more mass-spring
sets can be omitted.

area of influence can be placed into distant parts of the shape like head, legs or
ears. Furthermore, mq,k,c have to be set for each mass-spring set. We have
chosen mq proportional to the area of influence while k is constant for all springs.
That way, mass-spring sets with larger influence move more slowly than others,
resulting in a composition of motions with different frequencies.

5.2.6 Level of detail

Motivated by the fact that mass-spring sets which are far away from the viewer
and/or have a small influence radius are visually not significant, we can take ad-
vantage of a simple level of detail technique in order to increase performance. Let
p be the anchor point and ro be the radius of influence of a mass-spring set. Given
the distance d between p and the viewer, we use this mass-spring for deformation
only if ro > t ·d, where t is a user defined threshold. That way, only mass-spring
sets that are close enough and whose influence is large enough are considered
during deformation. Figure 5.5 illustrates this.

5.3 Collision handling

Realistic secondary deformations should be able to react properly on collisions of
the shape coming from the primary animation. In this section we show that our
approach does so by simply concatenating an additional vector field to the integra-
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tion. This enables us to combine our technique with a rigid body simulation. The
idea is to allow objects to penetrate during the rigid body simulation and adding
a repelling force which is proportional to the depth of penetration. In order to re-
move the penetration, we deform the soft object by integrating a new concatenated
vector field up,q,ri,ro(x, t). This way we can simulate elastic collisions.

5.3.1 Definition of up,q,ri,ro

The construction of up,q,ri,ro follows Chapter 2 in the following way: A center
point c should be translated along a direction vector d to c+d by integrating over
a time interval of 1; ri and ro denote the inner and outer radius of the deformation.
We apply (2.2)–(2.5) with the choices r(x, t) = ‖ c + t d− x ‖ and e(x, t), f (x, t)
are linear scalar fields with (∇e)2 = (∇ f )2 = 1, ∇e ·∇ f = ∇e · d = ∇ f · d = 0,
and e(c+ t d, t) = f (c+ t d, t) = 0. Then we get up,q,ri,ro(x, t) = ‖d‖ · (∇p(x, t)×
∇q(x, t)).

5.3.2 Placing the vector field

After defining up,q,ri,ro(x, t), we need to place it such that it deforms the shape real-
istically under collision. More precisely, we have to choose c, d, ri,ro such that in-
terpenetrations between the elastic body and the collision geometry are canceled.
We assume that the collision geometry (i.e. the objects that the body can collide
with) is decomposed into convex hulls. While automatic methods exist [LA04],
we decomposed our scenes manually. As described in Section 5.2.4, the mesh of
the elastic object may be decomposed into different segments. From now on, we
treat each segment independently as an elastic body. Let B be an elastic body pen-
etrating a convex part C of the collision geometry. Furthermore let cB be the center
of gravity of B and cC be the center of gravity of C. Then, for ri we choose the
maximum distance between cC and all points in C, i.e. ri = max{‖x−cC‖ : x∈C}.
That way, we make sure that C lies completely in the inner region with the result –
as we will see later – that no point of B ever enters C. The parameter ro basically
determines the (visual) softness of the material: the smaller ro, the softer appears
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5.3. Collision handling

Figure 5.6: (a) Body B penetrates collision geometry C with penetration depth d.
(b) The vector field is placed by setting parameters p,q,ri,ro appropriately.

the material. We found that setting ro−ri proportional to the size of the body gives
pleasing results. To do that, we use the maximum distance of all points of B from
cB as a measure for the size of B and compute ro = ri + s ·max{‖x−cB‖ : x ∈ B},
where s is a user defined softness factor. In our tests we used values between 1
and 2. Of course, ri and ro can be precomputed for better performance.

To simplify matters, we allow only translations along the vector cB− cC. In order
to determine c and d, we first compute the maximum penetration depth d of B

in C along the vector r = cC−cB
‖cC−cB‖ . Figure 5.6 illustrates this. Then we can set

c = cC +dr
and d = cC− c. If we now center C at c instead of cC, C and B would touch each
other but not interpenetrate. Furthermore, since all points of C are completely in
the inner region, where we have a constant vector field, no point of B can ever
enter C during integration. Altogether, the deformation defined by up,q,ri,ro(x, t)
cancels the penetration of B into C by pushing the penetrating parts of B out of C.

In the case of multiple collisions, for each convex collision geometry C that is pen-
etrated by B, we compute the corresponding vector field up,q,ri,ro(x, t) as described
above. These fields are summed up and finally concatenated with the vector field
computed from the mass-spring sets (Section 5.2.2).
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5.4 Implementation

The presented deformation technique is totally independent of any mesh connec-
tivity information or control lattices like grids or volumetric meshes. It is based on
an integration of vector fields defined by a relatively small number of mass-spring
sets. This fact allows for a direct GPU implementation of the shape deforma-
tion. While the simulation of the mass-spring movements is still carried out on
the CPU, the resulting spring positions are sent to the GPU which is responsible
for deforming and rendering the mesh. Since the deformation always starts from
the original, undeformed mesh, the original mesh can be stored as a static vertex
buffer (together with buffers for normals, indices, weights etc.) in video memory,
i.e. the vertex positions don’t have to be updated. Practically this means that the
mesh is deformed by rendering it. This is a contrast to the GPU implementation
in Chapter 2, which relies on a read-back of vertex positions from video memory,
which is a performance bottleneck.

5.4.1 Composition

As mentioned in Section 5.2.3, we can compose vector fields in two ways: ei-
ther by addition or by concatenation. In order to get the best results, we use a
combination of both. We construct three vector fields vlocal,vglobal,vcollision and
concatenate them. vlocal is the summation of all vector fields defined by mass-
spring sets whose radius is smaller than some user defined threshold. This means
that vlocal gives a rather local deformation. vglobal is a summation of all vector
fields defined by mass-spring sets whose radius is larger than the threshold. That
way, it deforms the shape more globally. Finally vcollision is constructed as de-
scribed in Section 5.3 and concatenated to the other fields. Figure 5.7 illustrates
this.

72



5.4. Implementation

Figure 5.7: (a) A body (green) is deformed locally using vlocal . (b) Afterward, it is
deformed more globally by vglobal which is defined by mass-spring sets with larger
influence. (c) Finally the penetration into the collision object (grey) is reversed
using vcollision.

5.4.2 Skinning and integration

As explained in Section 5.2.4, we combine the vector field integration with matrix
palette skinning in order to constrain the deformation to specific segments and to
be able to emulate elasticity for animated objects and characters. A vertex x is
deformed using the following formula:

x′ =
4

∑
k=1

wkdik(Mikx). (5.16)

Here, ik,wk are the index-weight pairs for this vertex, Mik is the ikth matrix from
the matrix palette, and dik(.) is the ikth deformation from the vector field palette.

The algorithm can be optimized by skipping index-weight pairs whose weight is
zero. The numerical integration needed for dik is carried out using a standard Euler
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integration of the composed vector fields from Section 5.4.1. It turns out that even
a small number of integration steps gives pleasing results. In our implementation
we used twelve steps.

5.4.3 Normal computation

In order to get a correct lighting of the deformed shape, we need to compute the
deformed normals as well. Since we want to avoid read-backs from the GPU,
we cannot employ standard methods considering for instance the 1-ring neighbor-
hood of a vertex. Our solution works as follows: Instead of deforming only the
vertex x, two additional points x1,x2 in the tangent plane of x and close to x are
deformed using the same indices and weights as x. Then the deformed normal
can be computed as the normalized of (x′2−x′)×(x′1−x′), where x′,x′1,x

′
2 are the

deformed positions of x,x1,x2 respectively.

5.4.4 GPU implementation

The necessary parameters like spring positions, elongations and bone matrices are
passed to the vertex shader as uniform variables. As mentioned above, the ver-
tices, indices, weights, normals etc. are stored as static buffers in video memory.
In order to prevent vertices from being deformed multiple times, we exploit the
vertex cache by computing cache-optimized triangle strips of our models. For that
purpose, we used the NvTriStrip library1.

5.5 Applications

In this section we apply our technique to different kinds of primary animations.

1http://developer.nvidia.com/object/nvtristrip library.html
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Figure 5.8: Skeletal animations become more lifelike by adding secondary ani-
mations of muscles and fat.

5.5.1 Keyframe animation

In interactive applications like games, character animation is usually performed
via skeletal animation. That means that for every part of the body a rigid trans-
formation is defined to get different poses of the character. Being rigid, these
transformations cannot describe elastic secondary deformations resulting from
jiggling muscles or fat. In order to demonstrate our method, we have built a sim-
ple keyframe animation system based on a linear interpolation between different
character poses. Figure 5.8 shows the animation of a boxer with and without our
secondary deformations. Here, the animator has placed 13 masses with different
influences in the character. During the animation, the corresponding mass-spring
sets are simulated based on the movement of the body parts. Then the shape is de-
formed and rendered by the GPU (see Section 5.4). The secondary deformations
introduced by vector field integration enhance the visual appearance and make the
animation more lifelike.

5.5.2 Interactive moving and deformation

Even simple operations like moving or rotating objects as well as applying stan-
dard deformation techniques can be visually enhanced by adding elastic secondary
deformations to the object. In Figure 5.9 the cow model is deformed and moved
interactively. In addition, the mass-spring sets which are placed throughout the
body are simulated based on the resulting motion. By choosing different influ-
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Figure 5.9: During interactive movement and deformation of the cow model, dif-
ferent parts of the body jiggle elastically with different frequencies.

ence radii, masses and spring parameters, realistic looking motions of fat and
muscle can be emulated. Usually, mass-spring sets with low influence and mass
are placed at small details (like the ears of the cow model) to get fast vibrations
there, while large and plump regions (like the belly of the cow model) are de-
formed by mass-spring sets with large mass and influence.

5.5.3 Rigid body simulation

In order to get realistically moving and colliding elastic bodies, we apply our sec-
ondary deformation to rigid body simulation methods. That means that an object
is represented by one or more rigid bodies which are interconnected by joints.
These rigid bodies are simulated using a standard rigid body dynamics system.
For our implementation, we used the Newton Game Dynamics2 library. Using de-
formation skinning (Section 5.2.4), we get a ragdoll simulation of the object. In
order to make the object appear more elastic, each rigid body is rotated towards
its rest pose during the simulation. This basically means that the bodies are inter-
connected by elastic joints. Furthermore, we have to allow the object to penetrate
the collision environment, such that we can apply the collision handling algorithm
from Section 5.3. During penetration, we apply an impulse to the object which is
proportional to the penetration depth. That way, we get an elastic collision.

Figure 5.10 shows a scene of a camel model falling through a scene composed
of walls and bars. The model is composed of 7 different rigid bodies for legs,
body, neck and head, and 5 mass-spring sets are distributed in the model. In the

2http://www.newtondynamics.com
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Figure 5.10: A camel ragdoll falls through a tower with obstacles.

Figure 5.11: While the model is pulled through the ring, its volume is preserved
and intersections with the ring geometry are avoided.

scene shown in Figure 5.11, a head model simulated by one rigid body and five
mass-spring sets is dragged through a ring. Here we can see how the volume of
the shape is preserved and intersections with the collision geometry are avoided.
Figure 5.12 shows how the shape is deformed by multiple draggers. Each dragger
contributes a new vector field to the integration.

5.6 Evaluation and Comparison

In order to get a formal evaluation of the approach, physically exact ground truth
deformations of real models are necessary. Since our approach is heuristic in
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Figure 5.12: Using vector field integration, multiple draggers can be used to de-
form the model. Even after extreme deformations, the model returns to its original
shape.

Figure 5.13: In order to evaluate the visual plausibility of our approach, we com-
pared a real jelly (left) with a virtual jelly whose secondary motion is emulated by
our system (right).

nature, we prefer to use the visual plausibility as one parameter of our evaluation.
The examples show that the secondary deformations look rather realistic even
though only a low number of steering parameters are used. In order to get a
comparison between a real elastic incompressible material and our method, we
recorded a video of a jelly. In Figure 5.13 we see a real jelly which is shaked in
order to obtain inertial motion. As a result, the small knobs on the jelly jiggle
with different frequencies. We modeled this jelly using our approach, which is
shown in Figure 5.13. Here we placed mass-spring sets with different masses and
influence radii in the knobs, which took us less than one minute. When the virtual
jelly is shaked in our system, the resulting deformation looks quite similar to the
real one.
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Fig. #t #s #m fps
5.9 5,804 9 8 374 – 376
5.8 15,596 8 13 133 – 135

5.10 19,536 7 5 101 – 125
5.11 16,532 1 4 55 – 135
5.9 5,804 9 8 302 – 355

5.14 345,944 7 10 10 – 14

Table 5.1: Performance benchmark for several models. #t is the number of trian-
gles, #s the number of skinning segments, #m the number of mass-spring sets and
fps the number of frames per second (worst and best).

Another point of evaluation is the choice and parametrization of the mass-spring
sets. Without doing a formal user study, we presented the system to different
people (mainly students). It turned out that even when using the system for the
first time, it took them only a few minutes of ”playing around” with the mass-
spring sets to get realistic secondary deformations similar to the ones shown in
the figures.

Furthermore, a number of ”hard” evaluations are possible concerning the follow-
ing properties: due to its nature, our deformations are volume preserving, C2

continuous for mass-spring simulations (but only C1 if collision treatment is in-
volved), and without any self-intersections. We believe that these conditions are
strong enough to produce visually plausible deformations even though no explicit
physical model is involved. Thanks to the avoidance of complex physical simula-
tions, the method is stable. Figure 5.12 shows a shape that undergoes an extreme
deformation during collision and still returns to its rest state afterward.

Due to the fast vector field integration and the GPU implementation, the algorithm
allows to emulate high resolution models at interactive rates. For instance, the
model shown in Figure 5.14, consisting of 345,944 triangles, 7 segments and 10
mass-spring sets, can be deformed and simulated at 10-14 frames per second.
Table 5.1 shows detailed benchmark results for different scenes, measured on an
2.6 GHz CPU with a GeForce 7800 GTX graphics card.

Comparison to existing approaches.
In order to evaluate our contributions, we point out the most important differences
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Figure 5.14: Also high-resolution models consisting of several hundred thousands
of triangles can be deformed in real-time.

to previous approaches of deformable object modeling.

In contrast to mass-spring systems, our mass-spring sets are not interconnected.
This makes the simulation straightforward to implement, intuitive, fast and sta-
ble. Furthermore, since the actual deformation is performed by an integration
of divergence-free vector fields, the volume of the shape is preserved and a low
number of mass-spring sets suffices to give plausible deformations.

While Finite Difference Methods, Finite Element Methods and Finite Volume
Methods require control structures like grids or volumetric meshes, our approach
is mesh-free. This allows for a fast and intuitive placement of mass-spring sets
and requires no preprocessing.

Existing mesh-free methods like point based animation usually require a larger
amount of particles in the shape than our approach needs mass-spring sets. This
is because of the fact that the underlying physical simulation requires a certain
particle density in order to be accurate. In contrast to this, our method gives
plausible results even for a small number of mass-spring sets, which is due to its
inherent volume-preserving nature.

The geometrically motivated approach by [MHTG05] resembles our approach in
the sense that it is mesh-free, requires a small number of particles and exchanges
physical accuracy for interactivity and stability. However, this approach does not
preserve the volume of the shape, which is especially noticeable for large deforma-
tions. While this approach needs to embed the shape into regularly placed cubical
regions to get more detailed deformations, our method requires mass-spring sets
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with appropriate influence radii and positions.

Limitations.
Like most related approaches, the presented work has some limitations. We did
not consider collisions between multiple elastic bodies. Here, a convex decom-
position of the colliding shapes and a similar algorithm as presented in Section
5.3 might work out. Furthermore, the vector fields described by the mass-spring
sets perform only translations in their inner regions. That way, bending or twist-
ing deformations are not directly possible. Here, rotational fields as presented in
Chapter 2 might be a solution. Also a resampling of the deformed mesh is not ap-
plicable to our approach, because it is GPU based without read-backs. Although
highly controllable compared to related approaches, steering the deformation ex-
actly is difficult due to the simple, implicitly defined influence of the mass-spring
sets and their corresponding vector fields. Using deformation skinning, prevention
of global self-intersections and exact preservation of volume are not guaranteed,
as depicted in Figure 5.4. However, we believe that deformation skinning adds to
the visual plausiblity and furthermore integrates well with existing skeleton-based
animation frameworks.

5.7 Discussion

In this chapter we made the following contributions:

• We introduced the construction and integration of divergence-free vector
fields to get elastic secondary deformations.

• In comparison to Chapter 2, we enhanced the used vector fields both in
polynomial degree and continuity.

• Contrary to Chapter 2, the GPU implementation does not perform any read-
back operations during the integration. This allows real-time deformations
even for fairly large shapes.

• We have shown that vector field integration can also be used to avoid un-
wanted intersections and penetrations of soft objects in rigid body deforma-
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tions. It turns out that the combination of rigid body simulation as primary
animation and our secondary deformation based on vector field integration
gives a realistic emulation of elastically deforming models. Furthermore,
it can be built on top of an existing rigid body system, which makes the
implementation more unified and robust.

Our deformations are stable, smooth, and, without deformation skinning, volume
preserving and free of self-intersections. They allow to apply LOD approaches.
Furthermore, they can be used on top of arbitrary primary animations.
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6
Volume-preserving Mesh Skinning

Mesh skinning is a standard technique which is widely used in Computer Graph-
ics, especially in the context of character animation. The idea is to bind a mesh
to a skeleton whose joints can be transformed in order to obtain a smooth non-
rigid deformation of the surrounding mesh. The deformation of each mesh vertex
is computed as a weighted blend of the joint transformations. While the method
is intuitive and fast, producing convincing and physically plausible deformations
can be quite challenging. Common problems are unnatural volume changes in de-
forming joint regions – examples are the well known ‘collapsing joint’ and ‘candy
wrapper’ effects.

We present a technique which automatically preserves the volume for arbitrary
skeletal mesh deformations. The volume-preservation can be adjusted manually
by defining weights on the mesh surface. That way, the animator can precisely
control how the volume is preserved to get more realistic deformations. The
presented method has a number of advantages over existing volume-preserving
deformation approaches:

• The volume preservation is exact.

• The volume correction is obtained directly by a closed-form solution.

• Even during strong articulations the volume is preserved without distortion
artifacts.
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• No additional volumetric structures like control meshes, tetrahedral meshes
or implicit deformers are required.

• The animator has precise control over the volume preservation. It is possible
to define per-vertex how the volume should be preserved.

6.1 Approach

Let us consider a triangle mesh with vertex positions P = [p1, ...,pn] and a trian-
gulation T ⊆ {1, ..n}3. In this notation, T contains for each triangle a triple of
vertex indices. If the surface is a closed manifold, we can compute the volume
of the shape as the sum of the signed volumes of the tetrahedra formed by each
triangle and the origin:

volume(P) =
1
6 ∑

(i, j,k)∈T
pi · (p j×pk) (6.1)

In above formula ’·’ denotes the scalar product and ’×’ the cross product. Given a
deformed mesh with vertex positions P′ = [p′1, ...,p

′
n] and the same triangulation,

we want to modify P′ so that the volume of the deformed mesh is the same as
the volume of the undeformed mesh. To do so, we define a displacment field
V = [v1, ...,vn] which tells for each vertex position p′i in which direction and how
strong it has to be moved so that the original volume is reached. The displacement
field can be freely defined as long as it changes the volume of the shape. The exact
scaling of V can be computed automatically, as we will see below. Formally, we
want the following condition to hold:

volume(P′+λ ·V) = volume(P) (6.2)
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6.1. Approach

λ is the factor by which V needs to be scaled. The remaining task is to find a λ

which fulfills Equation 6.2. By insertion and reordering we get

∑
(i, j,k)∈T

(p′i +λvi)((p′j +λv j)× (p′k +λvk))

−pi(p j×pk) = 0

⇔ c0 +λc1 +λ
2c2 +λ

3c3 = 0 (6.3)

with

c0 = ∑
(i, j,k)∈T

p′i(p
′
j×p′k)−pi(p j×pk),

c1 = ∑
(i, j,k)∈T

p′i(p
′
j×vk)+p′i(v j×p′k)

+vi(p′j×p′k),

c2 = ∑
(i, j,k)∈T

p′i(v j×vk)+vi(p′j×vk)

+vi(v j×p′k),

c3 = ∑
(i, j,k)∈T

vi(v j×vk).

The cubic equation (6.3) has up to three real solutions λ 1. Since we want to
change P′ as little as possible, we choose the solution whose absolute value is
minimal.

In a nutshell, we can preserve the volume of arbitrary deformations in the follow-
ing way:

1. Deform the mesh vertices P to get P′.

2. Define a displacement field V.

3. Compute scaling factor λ .

4. Set the final vertex positions to P′+λV.

1We use Cardano’s method for solving cubic equations.
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In the following section we will see how this approach can be applied to skeleton-
based mesh skinning. We propose a method to automatically define V for arbitrary
skeletal deformations and how to adjust V manually to get more complex volume-
preserving deformations.

6.2 Volume-preserving mesh skinning

Standard mesh skinning usually works by binding a skeleton to a mesh where the
influence of each joint has varying weights across the mesh vertices. The weights
are set by the animator during the rigging process. The mesh is deformed by
blending joint transformations with respect to these weights. Given k joints with
transformation matrices M1, ...,Mk ∈ IR4×4 and vertex weights W1, ...,Wk with
Wi = [wi,1, ...,wi,n], let the weights be defined such that they sum up to one for
each vertex, i.e. ∑

k
i=1 wi, j = 1 for j = 1, ...,n. Each deformed vertex position is

computed as a linear combination of the transformed bind positions:

P′ =
k

∑
i

Wi ·Mi(P) (6.4)

Here, ’·’ denotes the componentwise scalar multiplication and Mi(P) is the trans-
formation of all points P by joint matrix Mi.

Since our volume preservation is global, we need to carry out the deformations at
each joint one after another. We do this in hierarchical order, i.e. we start at the
root joint and traverse recursively along the children. For each joint deformation,
we apply our volume correction algorithm and thus can perserve the volume lo-
cally at the corresponding joint. After each deformation, P is replaced by P′. To
simplify matters, we consider in the following only one deformation at one joint,
i.e. we assume that P and the bone transformations Mi are initialized properly.

First, we construct an initial displacement field U in bind pose which will be used
to construct V for each joint deformation. Given start position ai and end position
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Figure 6.1: (a) The vector field di evaluated at a number of sample points x j. (b)
We obtain U by blending the fields di at the mesh vertices.

bi of each bone in bind pose, we can define a 3D vector field

di(x) = x− (ai + clamp(
(bi−ai) · (x−ai)
‖bi−ai‖2 )(bi−ai)) (6.5)

with

clamp(δ ) =


0 if δ < 0
1 if δ > 1
δ else.

(6.6)

Visually, di(x) is the vector from the closest point on bone segment (ai,bi) to x,
as illustrated in Figure 6.1a.

Now we define U as the blended combination of all fields di:

U =
k

∑
i

Wi ·di(P) (6.7)

That way, we get a smooth vector field pointing away from the skeleton (Fig-
ure 6.1b), which is ideal for our volume correction algorithm. We can now define
the deformed field

U′ =
k

∑
i

Wi · (Mi(P+U)−Mi(P)) (6.8)
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analogously to the skinning equation (6.4)2. Finally, the displacment vector field
for the current deformation is defined as

V = S ·U′ (6.9)

where S = [s1, ...sn] defines a weighing factor at each vertex which basically de-
scribes how much the volume correction should affect this vertex. As we will see
in Section 6.3, S can be defined manually on the vertices to get complex, user
defined deformations. However, there is also an automatic method to generate
useful weights at a joint. Given the current joint j and its parent joint i, we simply
set S = Wi ·Wj. In most cases, S has large weights near the joint and decreasing
weights away from the joint. That way, V is only non-zero close to the joint and
thus the volume is corrected locally in that region.

6.3 Applications

Using the automatic displacement field construction described in the previous
chapter, it is possible to directly preserve the volume of skinned meshes with-
out user interaction. Figure 6.2 shows an example of a bar-shaped mesh which
is skinned using a simple skeleton. Using our method, the volume is uniformly
and smoothly preserved around the joint regions which gives the impression of
deforming a real incompressible solid.

In some cases, uniform volume preservation is undesirable, e.g. when the arm of
a human character is bent, we don’t want volume preservation at the hard elbow
but rather at the soft muscle and tissue areas near that joint. The animator can
model this with our approach by painting the weights S by which U′ is multiplied
(see Equation 6.9) interactively on the vertices. He is not restricted to use posi-
tive weights, also negative weights can be used to achieve interesting effects like
muscle bulging or foldings, as demonstrated in Figure 6.3.

Figure 2.3 demonstrates how this technique can be used to model realistic skin and

2Mi(P+U)−Mi(P) is used to transform U without translation.
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Figure 6.2: (a) A bar is skinned using a skeleton consisting of three bones. (b) The
deformed mesh using standard mesh skinning and (c) using volume-preserving
mesh skinning.

Figure 6.3: The animator can paint positive (pink) or negative (green) weights
interactively on the surface. That way, soft tissue deformations and foldings can
be modeled.

muscle deformations. Figure 6.4 shows a comparison between traditional mesh
skinning and volume-preserving mesh skinning. In Figure 6.4b, where standard
mesh skinning was used to twist the arm of a model at the shoulder joint, the
‘candy wrapper’ effect is clearly visible in the shoulder region. This unnatural
loss of volume can be prevented with volume-preserving mesh skinning, as shown
in Figure 6.4c, where the shoulder region deforms more naturally without volume
change.

All models shown in the images were posed in real-time. The deformation of
a mesh consisting of 20,000 triangles takes about 28 milliseconds per joint on a
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2GHz notebook.

6.4 Discussion

Figure 6.4: (a) A character in bind pose.
(b) Using traditional mesh skinning, the
twisting deformation produces a ‘candy
wrapper’ effect in the shoulder region,
while volume-preserving mesh skinning
(c) deforms the shoulder naturally.

We introduced a straightforward, but
nevertheless effective method to per-
form mesh skinning with volume-
preservation. The key contributions
are:

Exact volume preservation: The ac-
curacy of volume preservation often
depends on the mesh resolution or the
numerical accuracy of the algorithm
[AS07, LCOGL07, SHB07]. Our ap-
proach can handle arbitrary coarse
meshes and does not rely on a numer-
ical approximation, but preserves the
volume exactly as a closed-form solu-
tion.

Closed-form solution: In contrast to
previous volume preservation meth-
ods, our approach neither requires
non-linear opimizations [HSL+06] nor
numerical vector field integration [AS07].

Especially the vector field integration methods have the drawback that large defor-
mations require longer integrations. Our solution is obtained directly, no matter if
the deformation is small or large.

Strong articulations: Strong articulations, like bending an arm by more than 90
degrees, are often problematic and lead to distortions near the joint area [vFTS07,
AS07]. Instead of turning off volume preservation for such deformations [AS07],
our method can handle strong articulations without problem.
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Surface-based volume correction: Volume-preserving mesh skinning does not
require control meshes [HSL+06], implicit deformers [AS07] or multiresolution
representations [SHB07]. The computation is carried out on the mesh surface and
can be controlled on a per-vertex basis: The animator can specify a scalar field
on the surface which steers the behavior of the volume correction during defor-
mation. While vector-field based approaches like [AS07] model tissue variation
by 3D implicit functions, our approach can handle arbitrary complex variations
without performance impact since the variation is defined on the vertices. In fact,
the runtime of our algorithm is proportional to the number of vertices times the
number of joints that affect the deformation.

Our approach has some limitations compared to existing deformation techniques.
In particular, it does not preserve local surface features and does not automat-
ically prevent self-intersections. However, traditional mesh skinning, which is
still a standard in character animation, doesn’t have these features either: Feature
preservation is usually not required for characters and self-intersections resulting
from strong articulations are quite common during character posing [BWK03].
For instance, the pose of the rightmost character in Figure 2.3 produces self-
intersections which are not noticeable at all. In fact, automatic prevention of
self-intersections and volume preservation at the same time during strong artic-
ulations is not possible without distortion artifacts up to now [vFTS07, AS07].
We believe that it is a good compromise to keep the volume preservation and
leave the prevention of self-intersections up to the animator.
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7
Smoke Surfaces: An Interactive Flow

Visualization Technique Inspired by

Real-World Flow Experiments

Flow visualization is an active field of research. A variety of techniques for the
interactive exploration of flow phenomena has been developed. One approach is to
resemble well-accepted techniques from experimental flow visualization. Among
them, smoke visualization plays an important role: in a real flow of gases, smoke
is advected and its temporal behavior gives information about the flow. Often, the
smoke is advected from line structures (e.g., from a burning stick), or it is inserted
from certain points (smoke nozzles). Another common technique in experimental
flow visualization are wool tufts where small yarns are attached to a body and
observed during the flow experiment.

To use smoke in (computer aided) flow visualization, it is represented either in a
volumetric, a particle based, or an image based way. All these approaches have
proven to be useful. In a volumetric approach, the smoke is represented as a
density scalar field, making a high resolution or an adaptive grid necessary to
capture certain details. Particle based approaches usually need a high number of
particles to represent smoke.

In this thesis we propose an alternative representation of smoke: a semi-transparent
streak surface. This approach is inspired by artistic smoke photographs as shown
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in Figure 7.1. In this image, smoke was advected from a stick, i.e., a line-like
seeding structure. Together with appropriate lighting conditions, expressive and
aesthetic photographs of real-world smoke were obtained. In Figure 7.1 the smoke
clearly forms a semi-transparent surface structure which can be interpreted as a
streak surface. Hence, Figure 7.1 makes us believe that semi-transparent streak
surfaces can give expressive visual representations of a flow if we follow the
smoke metaphor, i.e., if the surface is rendered to look like smoke.

Stream surface integration is a standard approach in flow visualization. However,
the integration of streak surfaces in time-dependent flows is fundamentally dif-
ferent, because it requires an adaptive remeshing of the complete surface at every
time step. Up to now, this prevented streak surfaces from being used in interactive
applications.

The main idea of our method is to use streak surfaces without any adaptive remesh-
ing, i.e., the triangular mesh representing the streak surface has a fixed topology
and connectivity. This will lead to large and non-regular triangles e.g. due to di-
verging flow, but these areas become less visible because of the optical model for
smoke that we apply for the rendering. This way, we combine two advantages: the
surface looks like a smoke structure, and no time is spent for surface remeshing.

The smoke surface technique obtained this way can be enhanced in several ways.
By coloring the mesh vertices, we can visualize time lines and streak lines within
the streak surface. The seeding can also be done starting from all vertices of
a surface at the same time, leading to semi-transparent time surfaces. Smoke
nozzles can be simulated by setting certain parts of the streak surface invisible.
Finally, wool tufts can be mimicked by seeding short and narrow streak surfaces
close to the obstacles in the flow.

Section 7.1 gives an overview over related visualization techniques. Section 7.2
describes our approach in detail. Section 7.3 describes modifications and enhance-
ments. Section 7.4 applies the approach to a number of test data sets. Section 7.5
evaluates our approach while conclusions are drawn in Section 7.6.
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7.1 Related Work

Smoke is a well-researched subject in both computer graphics and visualization.
While several offline techniques for the realistic rendering of smoke exist [KH84,
JC98], we restrict the overview here to realtime smoke rendering methods.

Probably the most often used approaches for realtime smoke rendering are based
on particles. Here, a (usually large) set of particles is seeded into a flow and ad-
vected over time. Surface-particles [vW92] are represented as points with nor-
mals and can be rendered efficiently to visualize flow. Another early method
to render particle-based volumetric data is texture splatting [CM93]. In recent
years, point sprites [KW05] and semi-transparent textured billboards with opac-
ity values proportional to the density value of the particles [Hol03] have become
a popular method for particle rendering. In order to reduce artifacts for highly
stretched flows, blob particles [SF93, AN05] can be used. They are basically el-
lipsoid particles that can be stretched and split during animation. By considering
the spherical geometry of the particles during fragment processing, spherical bill-
boards [USKS06] eliminate clipping and popping artifacts which occur when the
particles flow around other objects in the scene. By using a variant of the depth
difference technique, non-photorealistic cartoon rendering of smoke particles is
possible [SMC04].

With the increasing power of graphics hardware, realtime volumetric rendering
methods of gaseous phenomena are becoming more and more popular. Ani-
mated clouds can be rendered realistically using a slice-based volumetric render-
ing scheme [SSEH03]. By shifting complex computations to the GPU, realtime
performance is obtained. By utilizing the latest features of current graphics hard-
ware (rendering to 3D textures, geometry shader, stream out), real-time volumet-
ric smoke, fire and water with fluid dynamics have recently been made possible
[TL07, CLT07]. Here, the actual rendering is performed via ray casting on the
GPU. Using compensated ray marching [ZRL+08], it is possible to incorporate
dynamic environment lighting into interactive smoke rendering.

In computer graphics, meshes have been used in the context of cloud rendering
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Figure 7.1: Artistic photographs of real smoke. From [Bre05].

[Gar85, TB02, BNL06].

In flow visualization, a number of approaches has been developed to create smoke-
like images. Flow volumes [MBC93] were introduced as the volumetric counter-
part to stream lines. Using volumetric meshes composed of transparently ren-
dered tetrahedra, the technique allows for interactive exploration of vector fields.
Particle based methods [KKKW05, BSK+07] use a large number of particles to
get a smoke impression. Image based smoke visualizations are mentioned in
[vW02]. As an alternative to smoke, dye has been proposed to visualize vector
fields [Wei04]. Virtual tufts for flow visualization are described in [SP02].

7.2 Approach

The main idea of our approach is to represent smoke as a triangular mesh of a
fixed topology and connectivity. We use an (m+1)× (n+1) vertex array (xi, j i =
0, ...,m; j = 0, ...,n) defining a closed surface of cylinder topology, i.e., we assume
x0, j = xm, j for j = 0, ..,n. We call the polygon (xi,0, ..,xi,n) the i-th column, while
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Figure 7.2: Streak surface at time t0 + i ·∆t.

the polygon (x0, j, ..,xm, j) is the j-th row. As seeding structure we use a polygon
(s0, ...,sn).

For initialization, all vertices are set to the seeding structure, i.e., xi, j = s j. Starting
at t0, columns of the array are successively released into the flow. The integration
of the i-th column starts at time t0 + i ·∆ t for i = 0, ...,m− 1. Note that once a
column is released into the flow, it has to be advected in every time step – this is
in contrast to stream surfaces, where only the currently last column is integrated.
After m time steps, all columns have been consumed at the seeding curve and
the complete surface is unfolded into the flow. The seeding continues with the
first column, i.e., the vertices of the currently “oldest” column (longest time in
the flow) are reset to the seeding structure. This way, a continuous seeding of the
streak surface over an unlimited time is possible. Re-allocation is not necessary
during the integration: vertices at the end of the streak surface are re-used at the
start of it. Figure 7.2 gives an illustration of the streak surface at time t0 + i ·∆t.

Note that our system allows to change the location of the seeding polygon in-
teractively. Certain optional parts of the opacity computation (explained in the
following section) may make it desirable to choose the step width ∆ t such that the
triangles are approximately equilateral shortly after their advection started.
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Figure 7.3: Configurations for computing (a) αdensity and (b) αshape.

Representing a streak surface with a fixed resolution and connectivity seems to be
unsuitable since adaptive schemes have already proven their usefulness for much
simpler flow features such as stream surfaces. The fixed resolution will lead to
situations where e.g. triangles become rather large due to diverging flow behavior.
However, the main goal of our approach is not to extract perfect streak surfaces,
but to render smoke based on such surfaces. As we will see in the following
section, the optical model for smoke already gives that smoke becomes less visible
in areas with diverging behavior. In other words, larger triangles are less visible
due to the smoke metaphor and therefore the advantages of the fixed resolution
(mainly interactivity and ease of implementation) outweigh its shortcomings in
our case of smoke rendering.

7.2.1 Opacity Computation

Optical Model of Smoke

To represent the density of smoke, we assume a triangle x0,x1,x2 to have a certain
small height h, i.e., we consider it to be a rather flat prism evenly filled with
smoke. Figure 7.3a illustrates the configuration. We assume the viewing ray
p(t) = e+ tr with ‖r‖= 1 entering the prism in the point p0 = e+ t0r and leaving
in p1 = e+ t1r. Then the α value describing the absorption is [Max95]

α = 1− e−
∫ t1

t0
τ(t)dt (7.1)
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where τ(t) = τ(p(t)) is the extinction coefficient at the location p(t) describing
the rate that light is occluded. Since we assume τ to be constant inside the prism,
(7.1) simplifies to

α = 1− e−(t1−t0)τ . (7.2)

Let γ be the angle between r and the normal n of the triangle. Then (t1−t0) = h
cosγ

under the assumption that the viewing ray intersects only the spanning triangles
of the prism. This gives

α(h) = 1− e−
h τ

cosγ . (7.3)

Since h is assumed to be rather small, α(h) can be linearized by a Taylor expan-
sion to

α(h) = α(0)+h
dα

dh
(0) =

h τ

cosγ
. (7.4)

Assuming a particle model for the smoke (i.e., the smoke consists of a number
of small absorbing particles, τ linearly depends on the particle density inside the
prism: τ = c np

area(x0,x1,x2)
where c is a certain constant and np is the number of

particles within the prism. This yields

αdensity =
k

area(x0,x1,x2) cosγ
(7.5)

which describes the α value representing the smoke density inside the prism. The
constant k = hcnp steers the initial density at seeding time. Note that due to the
linearization, αdensity can be outside the interval [0,1]; in this case, it has to be
clamped to [0,1].

The physically motivated αdensity has been used for all smoke visualizations through-
out this chapter and it steers the main visual appearance of all these images. How-
ever, in a few situations αdensity does not suffice to compensate for the fixed res-
olution and connectivity of our mesh. Usually these are small areas where the
surface flows around some obstacle or becomes too distorted. The perfect solu-
tion in these cases would be to increase the resolution, but this also implies to
reduce the speed and responsiveness of the application. If interactive frame rates
are desired, we have to trade accuracy for speed eventually. In the following sec-
tion we have identified some situations leading to visual clutter due to a locally
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(a) Integrated triangle. Shown are
three instances.
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Figure 7.4: Distortion of a equilateral triangle integrated towards the saddle point
in the linear vector field v = (x,−y)T .

too coarse mesh resolution and propose solutions.

Optional Opacity Parameters

In order to detect cuts or other areas where the triangulation does not describe the
smoke surface well,1 we consider a measure of the local quality of the mesh trian-
gles. Note that the area of a triangle does not suffice to detect surface cuts. Figure
7.4a shows an example. There, we have a simple linear vector field containing a
saddle point toward which a triangle is integrated while a separation takes place:
one vertex moves to the left-hand side, while two go to the right-hand side. This
is a typical configuration for a cut surface ending in a long thin triangle which
should be set invisible. Note that the area of the triangle is almost constant during
the integration (see the dotted line in Figure 7.4b).

A well-accepted measure of the shape quality of a triangle x0,x1,x2 is the ratio of
the shortest edge length to the radius r of the circumcircle [She02]. The solid line
in Figure 7.4b shows the behavior of this measure in the configuration of Figure

1Such unsuitable triangles are also the ones connecting the last column of the streak surface
with the (freshly reset) first column.
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7.4a. Since r = d0d1d2
2 area(x0,x1,x2)

with d0 = ‖x2−x1‖, d1 = ‖x0−x2‖, d2 = ‖x1−x0‖,
we use this to define the shape quality parameter as

αshape =
(

4 area(x0,x1,x2)√
3 max{d0 d1 , d1 d2 , d2d0}

)s

. (7.6)

Note that αshape = 1 for an equilateral triangle, and that αshape gets smaller the
”less equilateral” the triangle is. The positive constant s steers how strong the
influence of αshape is relative to αdensity: the smaller s is, the less influential is
αshape. For our visualizations s was chosen between 0.5 and 1.

In regions of high Mean curvature of the streak surface, the non-adaptive mesh
may not be an appropriate representation. In order to make the surface less visible
in this case, we introduce αcurvature reflecting the curvature. For a vertex x0, we
compute this as

αcurvature = 1−b ·max{|n0 ei| : i = 1..valence(x0)} (7.7)

where n0 is the estimated surface normal at x0 , i iterates over all vertices xi in the
1-ring of x0, and ei = xi−x0

‖xi−x0‖ . If all vertices of the 1-ring of x0 are approximately
in the tangent plane of x0, αcurvature is close to 1. The positive constant b deter-
mines how strong a large surface curvature influences αcurvature. We have chosen
b = 2 and clamp αcurvature to the interval [0,1].

Smoke tends to disperse and fade over time. To simulate this behavior, we intro-
duce an additional alpha value α f ade. Given the age t of a vertex, which is the
time passed after the vertex was seeded, and a maximum age tmax, which is the
age when a vertex should become invisible, we can compute α f ade as

α f ade = 1− t
tmax

. (7.8)

We choose tmax as the maximum integration time of a vertex before it is seeded
again, i.e., tmax = m∆t.

The final α value including all opacity parameters is computed such that it is not
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larger than its smallest component:

α = αdensity αshape αcurvature α f ade. (7.9)

In practice, we define α per-vertex such that we get a piecewise linear interpola-
tion across the surface. To achieve this, we set αdensity and αshape of a vertex to the
minimum value of its adjacent triangles; αcurvature and α f ade are already defined
per-vertex. αdensity, αshape, αcurvature and α f ade have to be clamped to the interval
[0,1] before applying (7.9).

The final α is steered by three degrees of freedom: k for the initial smoke density,
s for the influence of the shape parameter, and b for the influence of the curvature.

Remark: Formulae (7.5) and (7.6) seem to suggest to compute αdensity αshape

directly and not separately because area(x0,x1,x2) cancels out. This fails because
αdensity and αshape have to be clamped separately. Only clamping (αdensity αshape)
for a triangle with small γ (i.e., close to a silhouette) can make it visible even
though it has a bad shape quality.

7.2.2 Implementation

In our OpenGL implementation, we used depth peeling [Eve01] in order to avoid
depth-sorting of triangles, which would be computationally expensive and can
produce artifacts at overlapping triangles. Depth peeling basically works by ren-
dering fragments into different layers which are superimposed afterwards to get
the final image. We used four layers in our implementation, which seems to be
sufficient for smoke rendering. A big advantage of this method is the fact that we
can render the surface as a single triangle strip without changing connectivity.
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7.3 Enhancements and Modifications

Our approach to rendering smoke surfaces updates the set of vertices by means
of advection and computes the alpha values in each frame. Other parts like the
connectivity of the surface or rgb-color values remain constant. In this section we
propose a number of simple modifications to these constant parts that allow us
to achieve a variety of different visualization styles. In particular, we are able to
depict streak and time lines, reproduce the visual appearance of smoke nozzles, in-
tegrate time surfaces, and mimic an important real-world visualization technique
called wool tufts. All these modifications are done in a rather simple prepro-
cessing step. Therefore, they do not influence the rendering performance of our
technique.

7.3.1 Streak and Time Lines

A streak line is the connection of all particles set out at different times but the same
point location. In an experiment, one can observe these structures by constantly
releasing dye into the flow from a fixed position. The resulting streak line consists
of all particles which have been at this fixed position sometime in the past. Such
lines can also be found on our smoke surface under the assumption that the seeding
curve remains constant. In this case, the vertices representing a streak line are
found in a fixed row of the vertex array: these vertices have been seeded at the
same position in space but at different times. Hence, we can depict a streak line
by assigning a different color to a row of the array. Figure 7.5a illustrates this.

A time line is the connection of all particles set out at the same time but different
locations, i.e., a line which gets advected by the flow. An analogon in the real
world is a yarn or wire thrown into a river, which gets transported and deformed
by the flow. However, in contrast to the yarn, a time line can get shorter and
longer. In our implementation, the vertices representing a time line are found in a
fixed column of the vertex array: these vertices have been seeded at the same time
along the seeding curve. Hence, we can depict a time line by assigning a different
color to a column of the array. Figure 7.5b illustrates this.
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(a) Coloring fixed rows in the array
reveals streak lines.

(b) Coloring fixed columns in the array
reveals time lines.

Figure 7.5: Smoke surface in a simple vector field which is constantly seeded at
the left seeding line. Streak and time lines can easily be shown on the smoke
surface using a simple preprocessing step and at no cost for the rendering perfor-
mance.

7.3.2 Time Surfaces

Up to now, we seeded particles continuously at a curve – thereby creating a streak
surface. We may as well spread out the complete surface in the volume and start
the integration of all vertices at once. The surface gets advected and distorted by
the flow. In fact, this is a time surface, since all vertices have been seeded at the
same time but at different locations. One may think of this as a carpet thrown into
a river and transported by the flow.

A problem with this approach is that the surface may rather quickly leave the
domain or the visualized smoke simply dissolves after some time. Hence, we
have to come up with a scheme for re-injecting smoke. In our implementation,
we allow the user to have a small number of time surfaces that can be started and
reset interactively.

Time surfaces can aid in understanding the distortion introduced by the flow field.
To do so, we color a number of columns and rows in our array such that a uniform
grid appears on the surface.2 Figure 7.6 shows this for the flow behind a circu-
lar cylinder (explained in Section 7.4.1). After some integration steps, the grid

2Note, that all these grid lines are time lines and not streak lines.
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T = t0

T = t43

T = t277

p0 p1

p2p3

Figure 7.6: Time surface spanned by the points p0, . . . ,p3 and transported by the
flow behind a circular cylinder. A uniform grid becomes visible by coloring some
columns and rows of the internal array differently. After some integration steps,
this elucidates the distortion introduced by the flow.
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(a) Flow around an automobile. From [Use]. (b) Flow around a dragon fly.
From [TTS+04].

(c) Flow around an airfoil visualized using smoke injected from nozzles aligned along
the seeding line at the left.

Figure 7.7: Injecting smoke from nozzles is a common technique in real-world
experiments to yield clearer visualizations. The upper row shows photographs
from such setups. We can reproduce this with our system (lower image) either by
setting alpha values to constant zero or by breaking the connectivity.

lines clearly allow to distinguish between regions of e.g. rotational and laminar
behavior. Furthermore, the direction of rotation becomes visible.

7.3.3 Smoke Nozzles

In flow experiments it is common to inject smoke not from a line but from nozzles
aligned in a line. Figures 7.7a-b show this. We can easily achieve this effect
by setting the alpha value of every other row of the array to constant zero. This
has been done in Figure 7.7c to visualize the flow around an airfoil (described in
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Section 7.4.3).

However, this means that vertices are advected that will never be seen in the visu-
alization. To avoid this, we may as well break the connectivity between adjacent
rows, i.e., we do not triangulate between two rows. In fact, this splits our seeding
curve into different parts which may now be placed arbitrarily in the domain.

7.3.4 Wool Tufts

In many applications it is of great interest to analyze the flow in the proximity of
a boundary, e.g. where the flow might detach from the body of an airfoil or car.
Such a flow separation at a boundary often indicates the presence of a recircu-
lation zone which has a negative effect on the drag of the body. Therefore, the
design goal of engineers is often to reduce flow detachment. It is commonly visu-
alized in real-world experiments using so-called wool tufts: these are small yarns
attached to the body. The different orientations and movements of wool tufts dur-
ing the experiments allow the experienced viewer to draw conclusions about flow
separation.

We mimic wool tufts by placing a rather high number of small seeding curves
close to the boundary in a flow field. An example of this can be seen in Figure
7.10a where we did this for the flow around an airfoil (described in Section 7.4.3).
In our implementation, this can easily be achieved by breaking the connectivity
between adjacent rows as described earlier. The result is a set of streak ribbons
visualizing the flow in the proximity of the boundary. There are two important
differences to real wool tufts. First, real wool tufts have a mass whereas streak
ribbons represent the movement of massless particles. Second, our streak ribbons
can change their length and therefore they indicate the velocity of the flow not
only in terms of direction, but also in terms of magnitude.
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7.4 Results

7.4.1 Flow Behind a Circular Cylinder

Figure 7.6 and 7.8 demonstrate the results of our method applied to a flow behind
a circular cylinder. The data set was derived by Bernd R. Noack (TU Berlin) from
a direct numerical Navier Stokes simulation by Gerd Mutschke (FZ Rossendorf).
It resolves the so called ‘mode B’ of the 3D cylinder wake at a Reynolds number
of 300 and a spanwise wavelength of 1 diameter. The flow exhibits periodic vortex
shedding leading to the well known von Kármán vortex street [ZFN+95]. Figure
7.6 shows the integration of a time surface including a number of time lines. Af-
ter some time, the smoke surface clearly shows the distortion introduced by the
vortices in the wake of the cylinder. Figure 7.8 shows the smoke surface advected
from a seeding line closely behind the cylinder. To enhance depth perception, the
shadow of the smoke was projected to the back wall. Since we work with a tri-
angular mesh, shadow computation is straightforward. Due to the periodic vortex
shedding the smoke forms patterns of swirling motion after some integration steps
– a clear indication of the von Kármán vortex street.

7.4.2 Flow Behind a Square Cylinder

In Figure 7.9 we visualized the flow around a confined square cylinder. This is a
direct numerical Navier Stokes simulation by Simone Camarri and Maria-Vittoria
Salvetti (University of Pisa), Marcelo Buffoni (Politecnico of Torino), and Angelo
Iollo (University of Bordeaux I) [CSBI05] which is publicly available [Int]. It is
an incompressible solution with a Reynolds number of 200 and the square cylinder
has been positioned symmetrically between two parallel walls, where one of them
is the wall with the shadow shown in Figure 7.9. The flow has periodic boundary
conditions in spanwise direction.

In contrast to the previous cylinder data set (Section 7.4.1), this simulation is
initiated from an impulsive start-up and the periodic vortex shedding develops
with time. This allows us not only to study this interesting phenomenon, but also
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(a) 75k vertices, αdensity and αshape. (b) 675k vertices, αdensity.

Figure 7.8: Flow behind a circular cylinder. Smoke surface with different resolu-
tions visualized with shadow to enhance depth perception.

to evaluate how our visualization technique performs with increasing unsteadiness
of the flow. In order to show the alternating behavior of the vortex shedding, we
seeded two smoke surfaces (25000 vertices in total) such that the red one passes
above the cylinder and the blue one below.

The flow shows a rather steady behavior for the first time steps and the smoke
surface develops almost like an ordinary stream surface. In fact, stream and streak
surfaces coincide for steady flows. Once the vortex shedding starts, the flow be-
comes more unsteady – parts of the smoke are ripped off and transported down-
stream. Note that all the smoke in Figure 7.9 is internally represented by two
smoke surfaces. This example shows that our alpha computation (Section 7.2.1)
works reliable even in such challenging situations and produces convincing re-
sults. At the end of the transient, the flow develops a von Kármán vortex street
with a pronounced three-dimensionality nicely captured by the smoke visualiza-
tion. We conclude that the visual impression created by smoke surfaces comes
closer to real smoke with increasing unsteadiness of a flow.

7.4.3 Flow Around an Airfoil

Figures 7.7c and 7.10 show the flow around a Swept-Constant-Chord-Half-model
(SCCH) of an airfoil that was simulated by Bert Günther (Technical University
Berlin) at a Reynolds number of 106 [GTP+07]. The data set exhibits periodic
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Figure 7.9: Flow behind a square cylinder. Time is increasing from top to bottom.
First the smoke is gathering in a recirculation bubble behind the obstacle. After
some time the shedding starts which creates vortices with alternating rotational
behavior. Later, the flow develops a pronounced three-dimensionality which per-
fectly can be observed in the smoke structures.
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boundary conditions, but note that the airfoil has a sweep angle to the incoming
flow direction of 30◦. The angle of attack is 6◦ – thereby conforming to a land-
ing situation. The turbulence was simulated by a combined URANS and DES
approach.

The wool tufts visualization of Figure 7.10a allows to describe the underlying
physics of this flow. The wool tufts follow the profile on the main element of the
airfoil, which means that the flow is still attached to the body. A strong jet of fluid
is coming through the gap between the main element and the rear flap as shown by
the wool tufts seeded under the body and reaching through the gap. The result of
this jet is a detachment of the flow. This can clearly be seen from the wool tufts on
the rear flap since they do not follow anymore the general flow direction. Instead,
they are directed towards the viewer indicating a strong cross flow section, which
is caused by the sweep angle. The wool tufts at the end of the rear flap elucidate
the most prominent feature of this flow: a strong vortex created periodically at this
position.

In order to increase the lift of such an airfoil, our cooperation partners from the
Technical University Berlin try to avoid or minimize both the detachment of the
flow at the end of the main element and the periodic vortex shedding at the rear
flap. Our wool tufts visualization allows to study both phenomena and has been
found useful not at least because of its interactivity. However, the wool tufts vi-
sualization shows only the flow in the proximity of the body and does not allow
to study the complete characteristics of the flow. Therefore we seeded smoke sur-
faces close to the regions of flow detachment and vortex creation (Figure 7.10b).
This allows us to study the development of these structures away from the body.

Figures 7.10c-d show the same airfoil, but now a so-called active flow control
technique has been applied in order to manipulate the flow structures and achieve
a higher lift. This has been done by periodically injecting air at the top of the rear
flap (close to the gap). Both visualizations confirm that this excitation led to a
better attached flow and less stronger vortex shedding.
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(a) Wool tufts, unexcited
case.

(b) Smoke surface, unexcited case.

(c) Wool tufts, excited case. (d) Smoke surface, excited case.

Figure 7.10: Unexcited and excited flow around an airfoil. The wool tufts are
mimicked using streak ribbons seeded close to the boundary of the airfoil. For
example for the unexcited case, their length and orientation shows that the flow
detaches from the airfoil and creates a large recirculation zone over the rear flap.
Furthermore, the strong vortex created at the bottom of the rear flap becomes
obvious. The smoke surfaces are rendered with 40k vertices. They clearly show
that the excitation strategy is successful in diminishing the vortex created at the
bottom of the rear flap.

7.4.4 Ahmed Body

Figure 7.11 shows the turbulent flow around a bluff body – the so-called Ahmed
body. This data set has been computed by Erik Wassen (Technical University
Berlin) using a Large-Eddy simulation scheme at a Reynolds number of 500000
based on model length and incoming velocity [WT07]. Incoming flow is assumed
to come from frontal direction. The body stands on a fixed floor with a certain
distance to the ground, i.e., a small layer of fluid is passing beneath the model.
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The Ahmed body is a generic model for a vehicle, which has been used here in a
version with a slanted rear end. The inclination angle of 25 causes a detachment
of the flow and the resulting recirculation zone has a rather turbulent behavior
over the ramp as it can be observed in Figure 7.11. The wool tufts visualization in
Figure 7.12 clearly shows that this recirculation zone affects the vertical rear end
as well: the streak ribbons point upwards from their seeding position. In contrast
to this, the very last row of ribbons at the vertical rear end points in downstream
direction. This indicates the presence of another shear layer created between the
recirculation zone and the flow coming from under the body.

Further important structures in this flow are the two vortices created at the upper
corners of the ramp. The smoke surface visualizations in Figures 7.11 and 7.13
reveal the cone-like shape of these vortices. It is known that they have a strong
impact on the drag of the body. Using our smoke visualization technique we are
able to infer a number of important parameters of these vortices: extent, rotation
axis, as well as orientation and speed of rotation.

7.5 Evaluation

7.5.1 Performance

Since the technique is based on the integration of triangular meshes, we can
achieve an interactive performance of the integration even in a CPU-based im-
plementation. In fact, we used the capabilities of graphics hardware for the semi-
transparent rendering of the triangles only. Table 7.1 shows the results of our
performance measurements for smoke surfaces with different resolutions. Note
that in our implementation the flow data set is given on a regular grid, making the
performance depending only on the size of the streak surface and not of the data
set. In fact, all visualizations in this chapter use a streak surface of 50000 or less
vertices, leading to interactive frame rates in an CPU based implementation.
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Vertices Fps Rendering Integration Alpha + normals
5000 85 1 ms 6 ms 4 ms

10000 44 1 ms 13 ms 9 ms
20000 25 4 ms 21 ms 15 ms
30000 18 4 ms 31 ms 21 ms
40000 14 4 ms 39 ms 29 ms
50000 11 6 ms 48 ms 37 ms

Table 7.1: Performance figures of our implementation tested on a 2.6 GHz
Opteron CPU with 2 GB RAM and a GeForce 7800 GTX. Fps stands for frames
per second, Rendering gives the rendering time of the semi-transparent surface,
Integration the time for the integration of all vertices, and Alpha + normals the
computation time for vertex normals and alpha values.

7.5.2 Correctness

In our approach we propose to represent smoke surfaces using meshes with a
fixed medium resolution and fixed connectivity in order to maintain interactive
frame rates. As already argued in Section 7.2, this is feasible since the physically
motivated opacity αdensity (7.5) gets lower with increasing triangle area, i.e., larger
triangles are less visible due to the smoke metaphor anyway.

However, fixed resolution and connectivity produce artifacts e.g. where the smoke
flows around obstacles or when the surface becomes strongly distorted. We ad-
dressed these problems by introducing αshape and αcurvature, which are designed
to lower the opacity of the surface at places where it deviates too much from the
“real” streak surface. Is the result still correct in the sense that all flow features
like vortices are shown in the visualization?

To answer this question we produced “ground truth” visualizations using streak
surfaces with excessive resolutions, rendered them using αdensity only and com-
pared the results with their medium-sized counterparts. Figure 7.8 shows this for
the flow behind a circular cylinder. The resolution of the surface in Figure 7.8b is
nine times larger than in Figure 7.8a. As it can be seen, both versions faithfully
represent the vortices of this flow and show very similar smoke patterns.

Figure 7.13 shows such a comparison for the Ahmed data set. Although the res-
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olution of the two surfaces differs by a factor of 16, the low-res surface nicely
captures all structures of this turbulent flow. In particular, the conical vortices
coming from the corners of the ramp have a disrupted smoke appearance on both
sides, i.e., this is a pattern of this flow and not due to the additional opacity pa-
rameters for the low-res surface. Note that although the Ahmed body itself is
symmetrical, the flow around it is not (mainly due to turbulence).

We conclude that our method produces physically correct renderings considering
the given resolution when αdensity is applied only. The optional parameters αshape

and αcurvature have been carefully designed to reduce visual clutter caused by lo-
cally too coarse resolutions while keeping the overall appearance very similar.

7.5.3 Perception

In terms of perception, the question arises: does the visualization really look like
smoke? To answer this, we did not do a formal user study. However, informal
reactions of a number of people confronted with the visualizations (visualization
experts, flow simulation experts, and non-experts) unanimously agreed that they
indeed see smoke.

Another question is whether the technique is able to detect relevant features in the
flow. Here we refer to the tested applications in Section 7.4. Since part of the data
sets were known in advance, we could confirm that smoke surfaces indeed were
able to detect relevant features.

7.5.4 Comparison to other smoke visualization techniques

Using particle-based methods, a large number of particles would be necessary to
get a detailed, surface-like smoke appearance as in Figure 7.1. Being surface-
based, our method is able to get this kind of appearance directly and requires a
rather low number of vertices. In contrast to particle-based representations, self-
shadowing is straightforward because the surface normals are available in our
mesh representation.
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While volumetric methods are well-suited for the visualization of thick and diffuse
smoke, thin surface-like smoke structures would require high-resolution voxel
grids, which comes at the cost of memory usage and speed. In contrast to this,
our surface-based approach can visualize surface-like smoke using a rather low
mesh resolution.

Smoke surfaces do not intend to replace particle-based or volume-based smoke vi-
sualization techniques. However, for some situations we see advantages of smoke
surfaces, making them an alternative to previous techniques. Smoke surfaces are
simple: less geometric primitives are necessary to obtain expressive visualizations
than for particle based or volumetric approaches. Because of this, no specialized
graphics hardware is required for integration to obtain interactive frame rates. In
general, smoke surfaces are the appropriate smoke representation if the smoke has
an approximate surface shape, i.e., the seeding structure is a moving curve.

7.5.5 Limitations

Our method has a number of limitations. Our current implementation handles
regular grids only and requests that the complete time-dependent data set is kept
in main memory. However, these are not structural problems of smoke surfaces
but general challenges for every interactive visualization software.

If the smoke to be visualized is known to be not surface-like but really volumetric
(e.g., if the seeding structure is a volume instead of a line structure), then smoke
surfaces are not the appropriate method. In these cases, particle based or volumet-
ric approaches will give better results.

7.6 Discussion

In this chapter, we have made the following contributions:

• We introduced a new representation of smoke in a flow: as semi-transparent
streak surface.
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Figure 7.11: Smoke surface with 40k vertices seeded shortly before the ramp and
visualized with αdensity, αshape, αcurvature, and α f ade.

Figure 7.12: Wool tufts attached to the body. They indicate a recirculation zone
at the vertical rear end where they are oriented upwards.
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646k vertices
αdensity

40k vertices
αdensity, αshape, αcurvature

Figure 7.13: Smoke surface with different resolutions viewed from the back. The
high-res surface on the left serves as a ground truth. The low-res version can be
rendered interactively and shows the same smoke structures, but needs additional
opacity terms to hide distorted triangles.
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• For the first time, streak surfaces are used for an interactive visualization
of time-dependent flow fields. This was possible by avoiding an expensive
adaptive remeshing of the surface.

• By coupling the opacity of the triangle to their area, shapes, and curvatures,
we obtain the impression of smoke seeded from line structures. This allows
an intuitive and interactive exploration of the flow.

• By slightly changing the setup, we obtained a representation of wool tufts
which are well-known from experimental flow visualization.

For future research, the performance can be further increased. Table 7.1 clearly
shows that the current bottle neck is the integration and the computation time
for normals and α-values. Transforming them to the GPU may further improve
performance. Furthermore, the approach should be extended to handle irregular
grids, and an out-of-core mechanism should be included to handle data sets which
do not fit into main memory.
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8
Conclusion

In this thesis, we explored several applications of vector field processing to the
area of shape deformations. We investigated vector fields as a tool to deform
shapes in different application scenarios. As it turned out, simple properties of the
vector field often lead to useful properties in the deformation. Complex results
like volume preservation can be achieved elegantly by equipping the vector field
with simple mathematical properties like zero-divergence. Smooth vector fields
lead to smooth deformations and time dependent flows can be used to generate
complex animated smoke-like surfaces by a simple vector field integration. While
we addressed many areas from the computer graphics area, like shape modeling,
shape editing, simulation, animation and visualization, we believe that there is still
a multitude of further applications of vector fields to shape deformations which
should be addressed in future research.

121



Chapter 8. Conclusion

122



Bibliography

[AB97] F. Aubert and D. Bechmann. Volume-preserving space deformation.
Comput. and Graphics, 21(5):6125–639, 1997.

[ACWK04] A. Angelidis, M.-P. Cani, G. Wyvill, and S. King. Swirling-
sweepers: Constant-volume modeling. In Computer Graphics and

Applications, 12th Pacific Conference on (PG’04), pages 10–15,
2004.

[Ale03] M. Alexa. Differential coordinates for local mesh morphing and
deformation. The Visual Computer, 19(2):105–114, 2003.

[AN05] Alexis Angelidis and Fabrice Neyret. Simulation of smoke based
on vortex filament primitives. In SCA ’05: Proceedings of the 2005

ACM SIGGRAPH/Eurographics symposium on Computer anima-

tion, pages 87–96, 2005.

[AS07] Alexis Angelidis and Karan Singh. Kinodynamic skinning using
volume-preserving deformations. In SCA ’07: Proceedings of the

2007 ACM SIGGRAPH/Eurographics symposium on Computer an-

imation, pages 129–140, Aire-la-Ville, Switzerland, Switzerland,
2007. Eurographics Association.

123



Bibliography

[AUGA05] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene. Recent Advances

in Remeshing of Surfaces. Springer, 2005.

[AWC04] Alexis Angelidis, Geoff Wyvill, and Marie-Paule Cani. Sweepers:
Swept user-defined tools for modeling by deformation. In Proceed-

ings of Shape Modeling and Applications, pages 63–73. IEEE, June
2004.

[Bar84] A. Barr. Global and local deformations of solid primitives. In SIG-

GRAPH ’84: Proceedings of the 11th annual conference on Com-

puter graphics and interactive techniques, pages 21–30, New York,
NY, USA, 1984. ACM Press.

[BK03a] G. H. Bendels and R. Klein. Mesh forging: editing of 3d-meshes
using implicitly defined occluders. In SGP ’03: Proceedings of

the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry

processing, pages 207–217, Aire-la-Ville, Switzerland, Switzerland,
2003. Eurographics Association.

[BK03b] M. Botsch and L. Kobbelt. Multiresolution surface representa-
tion based on displacement volumes. Computer Graphics Forum,
22(3):483–491, 2003. (Proceedings Eurographics 2003).

[BK04] M. Botsch and L. Kobbelt. An intuitive framework for real-time
freeform modeling. ACM Trans. Graph., 23(3):630–634, 2004.

[BK05] M. Botsch and L. Kobbelt. Real-time shape editing using radial
basis functions. Computer Graphics Forum, 24(3):611–621, 2005.
(Proceedings Eurographics 2005).

[BNL06] Antoine Bouthors, Fabrice Neyret, and Sylvain Lefebvre. Real-time
realistic illumination and shading of stratiform clouds. In Euro-

graphics Workshop on Natural Phenomena, pages 41–50, 2006.

[Bre05] William Brennan. Smoke abstractions, 2005.
http://www.pbase.com/billyb2/.

124



Bibliography

[BS04] A. Biswas and V. Shapiro. Approximate distance fields with non-
vanishing gradients. Graphical Models, 66(3):133–159, 2004.

[BSK+07] Kai Bürger, Jens Schneider, Polina Kondratieva, Jens Krüger, and
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