
IMAGINE - The IMAGe engINE

Hans de Vries

Arcobel Graphics BV.

Hambakenwetering 1,

5231 DD 's Hertogenbosch

the Netherlands

Tel: +31 73 444144

Fax: +31 73 444150

Email Businesscontacts:std@arcobe1.nl

Email Author:hdv@arcobel.nl

IMAGINE: Bringing high end
DTP and 3D graphics to the mil­
lions.

The tremendous computing power needed for the inter­
active processing and generation of visual information
is more and more becoming a major technology driver
in the consumer market. Illustrative are the bench­
marks used by Mac World magazine recently at the in­
troduction of the new generation of Power PC MACs (a
major commercial event) used to compare the process­
ing power of the Power PC with the Intel Pentium and
486: Almost all of them where DTP image processing
benchmarks. The majority of the word processor users
(estimated at over 100 million people world wide) will
evolve to DTP software in the coming years, following
the line of ever improving (color) printers and scan­
ners at steadily eroding prices. The use of 3D graphics
is quietly growing among professional users like Archi­
tects and Engineers. 3D graphics will explode when
accelerators will reach price levels low enough for the
game industry and will be one of the main ingredients
for future multimedia platforms.

Our studies of how the modern general purpose pro­
cessors handles typical image processing. and graphics
operations reveal a remarkable lack of efficiency. The
actual effective use of transistors lays somewhere be­
tween 1% and 4%. This efficiency gap is the main reason
for a continuing stream of special purpose integrated
circuits. Almost daily new ASICS are developed for fil­
tering, color conversion, compression, raster, screening,
alpha blending, affine transformation, 3D rendering etc.
These special purpose devices often outperform their
general purpose counterparts by a factor of 25 or more,

in general with a lot less transistors. These devices are
able to reach near 100% efficiency levels.

Arcobel Graphics has devoted the past 3 years on
closing this efficiency gap. Based on many years of expe­
rience in building high end graphics and image process­
ing accelerators and the knowledge of high end ASIC
design it has produced a processor which can execute
general purpose C code at a comparable speed but also
can replace all of the mentioned special purpose ASICS
with a performance which is equal or higher in many
cases. It's first generation design (Figure 1), named
The IMAGINE (the IMAGe engINE) - available in 50,
67 and 75 Mhz versions - now beats the Power PC
MACs with a factor of 50 for almost all DTP image
processing functions including all the ones used in Mac­
World.

The set of design principles used to reach these speeds
(merely the result of efficiency) is referred to as HISC
for Hierarchical Instruction Set Computer, much in the
same way as RISC was a set of design principles to im­
prove on the processor generation often years ago. Hier­
archical Instruction Sets allow the programmer to delve
deeper and deeper in the available processing hardware
in order to improve the efficiency of the available tran­
sistors.

The Research and Design phase of the project was
however not Processor technology driven but Algorithm
driven. The starting point where the building blocks of
a typical RISC processor, minimal special purpose hard­
ware was allowed. This gives you the basic ingredients
like an ALU, a register file, a barrel shifter, a multiplier
and Bus interface units. The internal configuration and
the overall composition of these units should adhere to
two apparently distinctive worlds: The General Purpose
processor, optimised to execute C programs at a com­
parable speed but it also should be able to mimic a wide

12

mailto:Author:hdv@arcobel.nl
mailto:Businesscontacts:std@arcobe1.nl
http://www.eg.org
http://diglib.eg.org

range of special purpose hardware. The configuration
of an elementary RISC processor is well defined, but
what about all the graphic and image processing algo­
rithms Here Arcobel Graphics could build on many
years of experience in building special purpose proces­
sors based on massively parallel bit-slices and dataflow
signal processors and implementing algorithms on these
machines.

The Press and PrePress industry has historically been
somewhat mysterious, unlike the automotive, petrol or
computer industry. It's major players are virtually not
known by the general public which has hardly an idea
of all the processing steps which are involved in pro­
ducing the magazines and newspapers which they con­
sume in such big numbers. The first printing machines
in the western world where designed some 550 years
ago, all in a 250 mile radius from the birthplace of the
Arcobel graphics IMAGINE processor by Laurents Jan­
szoon Coster at Haarlem (The Netherlands) and Johann
Gutenberg at Mainz (Germany).

If you extent this radius to 500 miles today then the
Press and PrePress companies within that region add
up to a worldwide number one industrial force in this
market segment. This industry has produced many ex­
cellent high end graphics computers and special pur­
pose hardware purely for it's own usage. Sometimes
with $1,000,000+ price tickets, used by specialists, and
known only to industries insiders.

It is hardly surprising that the IMAGINE found it's
birthplace in the centre of this area with it's historical
industrial reputation kept over half a millennium. The
invention of the press more then 500 years ago brought
information printed in text and illustrations to millions
of individuals. A processor like the IMAGINE turns con­
sumers into producers as did the typewriter and the
word processor for text and linework. The IMAGINE en­
ables high resolution photographic (color) illustrations
(often containing 32 Mbyte or more per page) to be
handled interactively. Editing operations like rotation,
scaling, filtering, brush based blending, geometric trans­
formation are all handled in real time as well as printing
preparation functions like half toning or error diffusion
based rasterisation and RGB to CMYK conversion.

3D perspective texture mapping is another of the
IMAGINE's talents. Texture mapping brings the reality
to Virtual Reality applications and g~es. New In­
tel/Microsoft standards provide the interface layers be­
tween the IMAGINE and 3D standards like Open GL and
Hoops and Chicago based 3D texture mapped games,
allowing the IMAGINE to be used as a Plug in and Run
performance booster.

The successor(s) of the IMAGINE will focus on board
level integration and cost engineering to reach price
levels which are within everybody's budget. It can
do so because of it's inherent efficiency which provides

the necessary processing power with a minimal amount
of transistors (650,000), considerably lessthan current
market leaders like the Pentium and the Power PC. Key
to this efficiency is the set of HISC principles which are
explained in more detail below. The small transistor
count also enables ultra high performance parallel ver­
sions by quadrupling the functional units running at an
increased clock speed of 133 MHz to 150 MHz at the
first half of 1996. Such a processor provides an aston­
ishing 100 billion 8 bit operations (100,000,000,000) per
second. It can run C programs 4 times faster as the cur­
rent version by using super scalar techniques and runs
graphics and image processing functions 10 times faster
by up scaling the SIMD word size and vector length.

The Hierarchical Instruction Set
Computer (HISC) Principle
CISC, RISC, HISC
10 times the Efficiency = 10 times
the Performance

The HISC principle has been developed by Arcobel
Graphics B.V. to tackle the issue of efficiency and thus
of performance of application specific processors. For
a wide range of graphics and image processing func­
tions an increase of efficiency in excess of 1000% can be
achieved compared with the fastest available RISC and
CISC processors.

HISC recognises the fact that performance and effi­
ciency are inextricably linked and that a lack of perfor­
mance is essentially a lack of efficiency. It offers a set
of principles which dramatically improve the efficiency
and thus the performance of the processor.

The implementation of HISC principles uses ad­
vanced and novel arithmetic hardware design techniques
to combine a "faster than RISC" processor with a very
wide range of ultra high speed graphics and image pro­
cessing functionality. The compatibility of HISC with
super- pipelining and super-scalar design techniques
will ensure leading edge performance levels for many
years.

In retrospect it has become apparent that, in real­
ity, the efficiency of general purpose processors has de­
creased by a factor of 10 in the last 15 years. To illus­
trate this point consider the dominant family of Com­
plex Instruction Set Computers (CISC) processors over
the last 20 years, the Intel 80XXX family.

In 1974, when Intel introduced the 8080 processor,
some 5000 transistors were integrated into the device.
By 1993, and the launch of the Pentium processor, this
figure had rocketed to over' 3 million. That is 600
times more than its predecessor. However, not only
did the gate count increase dramatically, but so also

13

did the clock frequency, which multiplied by a factor of
around 33.

If one ignores the internal usage of the transistors it
would be reasonable to expect (though perhaps some­
what naively) a performance improvement of around
20000 (600x33). In reality however, the actual per­
formance improvement (as bench-marked) over the 19
year period, is only in the order of several hundred,
not twenty thousand times. Why'? Because the main
obstacle in fully exploiting increasing hardware densi­
ties, shrinking geometries and increasing gate counts,
lies in making the most efficient use of these available
hardware resources. Then what about the Reduced In­
struction Set Computer (RISC)'?

A (still growing) set of design techniques is embodied
by the RISC concept. One of the original RISC goals
of achieving single cycle operations was a big step for­
ward towards more efficient hardware use - the Arith­
metic Logic Unit (ALU) could be activated every cycle
instead of once every three to six cycles. A logical de­
velopment of this technique is that of super- pipelining,
for which the same logic can be used two or more times
by incorporating intermediate pipeline registers. The
first part of the logic can start a new operation whilst
the rest is still finishing the previous operation(s).

The RISC concept is therefore based on using as few
instructions as possible. The idea behind this is that
it will enable the fastest hardware and thus the fastest
processors. However, many of the most useful instruc­
tions are deliberately omitted because this would make
the hardware too complex and therefore too slow. This
principle has been shown to be erroneous during the
initial design stages of the IMAGINE (the device which
will become the tangible implementation of the HISC
principle). Hardware efficiency presents almost no prob­
lems for special purpose hardware since it is designed
to perform a single or a few closely related tasks. Good
examples of this type of hardware are image processing
and compression/ decompression chips which can reach
speeds of billions of operations per second (BOPS) eas­
ily.

If, however, a more general set of operations has to be
performed, devices have to be added for each and every
operation; the efficiency dilemma strikes back in an­
other way. Dedicated special purpose hardware is only
truly effective in situations which require limited func­
tionality. Special purpose hardware is typically 25 to
100 times faster than general purpose processors with
as many or less transistors, depending on the type of
operation being performed. This means that a general
purpose processor executes graphics and image process­
ing functions with a relative efficiency ofonly 1 %to 4%.
In other words, the transistors in the device are only
used 1% to 4% of the time or, when they are used, 96%
to 99% of the time they are used "in the wrong way".

Although it would be unfair to take this statement too
literally, it does highlight the fact that there is consider­
able scope for the development of innovative hardware
design techniques, which can produce spectacular per­
formance gains.

Hierarchical levels

The HISC approach starts at the level of the functional
units which are embodied in every RISC and CISC
processor (Figure 2). These represent the most ba­
sic programming level and at this level compatibility
with standard processor design, languages and oper­
ating systems can be found. A complete set of basic
units is provided at this level and will certainly include
an arithmetic logic unit, a barrel shifter and a multi­
plier/accumulator. However, although residing at the
lowest programming level, these functional units are
formed from sub-units, these sub-units from other sub­
units, and so on, down to transistor level. At these
sub-unit levels techniques can be applied to make most
efficient use of the hardware, with a minimum overhead
in terms of additional hardware (i.e. transistors).

As mentioned above, the design rule associated with
the RISC concept of omitting a large number of instruc­
tions has been found to be erroneous during initial de­
sign of the IMAGINE . 33% faster cycle times have been
achieved for the functional units than those found in a
number of some RISC processors which used a compara­
ble process. It has become apparent that the techniques
developed have enabled the production of faster func­
tional units, in spite of their much richer instruction
set.

In order to better understand how this improvement
has been achieved, an overview of some of the used tech­
niques is presented below, together with some details
on how they can be implemented in a general purpose
imaging and graphics processor.

Wordlength partitioning

A good example of low efficiency usage is when opera­
tions are performed on short wordlength operands (8 or
16 bit) by 32 bit functional units. A 32 bit processor is
not faster when handling 8 bit operations, even though
only a proportion of the hardware is utilised. This in­
ability of general purpose processors to deal efficiently
with short wordlenghts is one of the key reasons for the
performance gap between special purpose and general
purpose hardware. The hardware incorporated in a typ­
ical 32 bit ALU or barrel shifter could, if the transistor
. elements would have been re-arranged and extra control
logic would have been added,- perform four 8 bit opera­
tions or two 16 bit operations per cycle. This efficiency
increase would be of a linear nature.

14

However, a 32 bit multiplier requires approximately
16 times as many transistors than an 8 bit multiplier.
Consequently, performing four 8 bit multiplications in
parallel would only utilize some 25% of the available
gates. Using the internal Wallace tree and intelligent
control logic, the 32 bit multiplier could perform sixteen
8 bit multiplications and twelve 8 bit additions in a sin­
gle cycle. These operations can represent matrix-vector
multiplications (specifically 4x4 matrices) or quadruple
4x 1 products. Functions of this type are particularly
llseful in both graphics and image processing.

A conventional 32 bit multiplier thus contains almost
:l.ll the logic required to perform twenty-eight 8 bit op­
~rations instead of only one. In effect, we may conclude
&hat something like 96% of the hardware is left unused
If a 32 bit multiplier is used for 8 bit multiplications.

In the IMAGINE a 32 bit word can represent a single
32 bit word, two 16 bit words or four 8 bit words. All the
functional sub-units can perform SIMD type operations
:m these parallel data types. The multiplier (Figure 4)
~as internal data and co-efficient pipelines to supply
the operands for matrix x vector operations. The ALU
:an generate four 8 bit based status flags or two 16
:>it based status flags. The internal 32 bit register file
:an be accessed for independent 8 bit and 16 bit words.
::::onditional accessing and write enabling are possible on
Ul 8 bit and 16 bit basis. The efficiency gain possible
:>y wordlength partitioning is exploited to the full by
:he IMAGI!iE in a way which is optimised for graphics
Uld image processing.

Heterogeneous partitioning

A. conventional device has several sections each with
~ts own functionality, for example the ALU, the bar­
~el shifter, the multiplier/accumulator etc. Only one of
:hese sections is used per operation, while the other ones
,tay idle. Many functions, however, can be mapped on
:l. model in which these sections are separated into dis­
;inct and independent functional units. Each functional
mit has its own output bus. The inputs to each func­
jonal unit are provided by multiplexers which are ca­
:>able of selecting the input from other functional units.
rhe result from each unit is stored into a register which
:irives the output bus belonging to that specific unit.
::::oncatenation of functional units which enables multi­
)le instruction per cycle is especially effective for vector
;ype operations.

The IMAGINE has eight internal buses and eight inter­
llal functional units. The functionality and interconnec­
~ivity provided are the result of analyzing a very broad
range of graphics and image processing functions. Each
Ilnit is represented by its own, relatively small, field in
Ghe 64 bit instruction word which encodes the basic in­
struction for that specific unit.

This means that all the units can operate in parallel

which, in effect, makes the instruction word a "moder­
ate sized" Very Long Instruction Word (VLIW). This
level can be seen as the second programming level, with
the first and simplest, being the RISe leveL Newer opti­
mising compilers which have sufficient data dependency
analysis capabilities, can exploit these to generate faster
and more efficient code.

Heterogeneous VectorjStream opera­
tions

Processing vectors or streams of data mean that an in­
struction is repeated a number of times. Typically this
will range from 8 to 32 times in continuous bursts, up
to several million times in repeated bursts. In this situ­
ation there is no need for the instruction to be supplied
on each and every cycle.

The IMAGINE will be equipped with more than 600
bits devoted to extended instructions which are stored
in control registers located within the various functional
units. The basic 64 bit instruction word can select ex­
tended functions which use information stored in these
control registers. The actual instruction word length
for these extended operations is thus much longer.

This level can be viewed as the third and most com­
plex programming level. It turns the ineffective func­
tional unit found in standard RISe and else proces­
sors into an ultra high speed heterogeneous multi-vector
processor that can perform intelligent conditional oper­
ations on parallel streams of data.

Parallel Conditional Processing
(General and Application Specific)

It is clear that the most practical ways ofobtaining opti­
mum efficiency from arithmetic hardware leads to SIMD
and vector type operations. In graphics and image pro­
cessing terms these can be translated to blocks of pixels
which are processed with identical instructions. The
pixel is no longer treated as an individual (i.e. point
operation) but as an element in a group, upon which
certain operations are performed. In many cases how­
ever, it is necessary to handle individual pixels without
loosing the inherent parallelism provided by this ap­
proach.

It is essential to be able to perform if-then-else type
operations in a parallel way. For SIMD and vector
processing type operations, the program control flow
is identical for all pixels. This means that typical con­
ditional control flow, with conditional program jumps
and calls, cannot be used.

However, RiSe can use parallel conditional data flow
instead of serial conditional· control flow and consid­
erably enhance the flexibility of the functional units.
Many more algorithms can thus be implemented in high

15

speed parallel versions. A general type of parallel con­
ditional processing is implemented within the address
generator of the three port register file. Up to sixteen
parallel conditional data flow operations can be per­
formed and twelve register addresses can be calculated
with conditional offsets and increments. Four condi­
tional write enables are generated each cycle, depending
on parallel status information.

Application level parallel conditional processing is
used to support a number of algorithms which are typ­
ical for many graphics operations. Special hardware is
included to generate two-dimensional masks which de­
termine if pixels are inside or outside lines, polygons or
other arbitrary shapes.

Functional Completeness

When dealing with low-level efficiency gains, small de­
tails become extremely important in sustaining high ef­
ficiency levels under many different circumstances. If
the basic efficiency level is high, then functional com­
pleteness is of critical importance.

For example: The C commands P::;::A~B and
P.=AggB use the barrel shifter available in almost all
of the newer RISC processors. Doing so the command
can be executed in a single cycle. In C the operand B
can be both positive and negative - when it is negative
"shift left" becomes"shift right" and vice versa.

However, popular processors (SPARC, MIPS ...) have
"copied" the shift left and shift right operations from
earlier CISC processors, where B is always positive.
Consequently the C compiler has no option but to insert
extra code to check the sign ofB, perform a conditional
branch and then carry out one of the two shift instruc­
tions. Despite the larger number of transistors used to
integrate a barrel shifter, the omission of a few extra
gates to check the sign of B unfortunately causes the
efficiency for this type of operation to drop to around
25%.

Although these extra instructions have relatively lit­
tle impact on CISC processors (which needed up to 32+
cycles merely for the shifting operation) they cripple the
much more efficient RISC processor.

To make matters worse both the SPARC and the
MIPS processors only look at the five least significant
bits of the B operand in order to determine the num­
ber of positions to shift (the 8086 microcode keeps on
shifting for thousends of cycles if B is large). This im­
plies, however, that a shift over 35 positions has the
same end result as a shift over only 3 positions. This
also conflicts with the definition of the C shift functions
and the compiler, yet again, has to add extra code to
check if operand B is out of range. This obviously com­
pounds the problem and as a result, the efficiency level
now drops below 10%. This means that the processor

with a barrel shifter is only 2 to 3 times faster than a
processor without one.

It is obviously very difficult to predict exactly how
hardware will be used in practice and to provide capa­
bilities to address all possible problems. However, by
consistently applying the general principle of functional
completeness, much can be done to improve efficiency at
this leveL Thus in the IMAGINE , the barrel shifter will
be capable of shifting by a range-tested 2's complement
operand.

Completeness is essential in multiplicative operations
and so the multiplier in the IMAGINE can orthogonally
perform signed, unsigned and mixed mode multiplica­
tions for all word sizes and modes (Figure 4). further­
more words can be interpreted as integers, fixed point
and normalised fixed point numbers. All these cases ap­
pear frequently in graphics and image processing func­
tions. (The number of basic multiplications modes is
786!)

In order to achieve functional completeness, it is
sometimes necessary to sacrifice pure mathematical in­
tegrity in order to produce a product which will operate
satisfactorily over a wide range of functions. For exam­
ple, a typical mathematical inconsistency can be found
in many international graphics and image processing
standards, where normalised numbers lie in the range
of N = 0.0 to LO (including N = 1.0) and where the
numbers are represented by unsigned fixed point num­
bers in the range of 0 to 255. In this case there are
256 discrete values but the maximum value which may
be represented is effectively 255/256 (i.e. less than 1).
Therefore multiplying a value N by the nearest approx­
imation to 1 (255/256) will result in an erroneous value.

Taking the example further, a pixel's transparency
value can be represented by an 8 bit unsigned
number in the range 0 to 255. Thus 0.0 is
(correctly) represented by 0, but 1 will be rep­
resented by 255 instead of by 256. this means
that 0.11111111xO.nnnnnnnnn, which should always
be equal to O.nnnnnnnn, will in fact be equal to
255/256xO.nnnnnnnnn (Le. 0.99609370xO.nnnnnnnn).
Repeated operations in which such differences are ne­
glected will show visible errors. A good example is the
fading of the background of a picture constructed with
high quality alpha plane merging.

Since we cannot change standards to be mathemati­
cally consistent it is often necessary to add some" non­
mathematical" compensation. The IMAGINE multiplier
employs user selectable rounding logic to deal with this
kind of effect.

Conclusions

The HISC principle recognises that the lack of per­
formance of CISC and RISe processors compared to
special purpose hardware, is essentially a lack of ef­

16

ficiency. It specifies a set of design principles such
as wordlength partitioning, heterogeneous partitioning
and stream processing which can potentially increase
performance by a factor of 15 to 35 times for a number
of functions. In order to broaden the range of func­
tions which can be implemented, HISC also makes use
of the principles of parallel conditional processing and
functional completeness.

The IMAGINE is the first processor based extensively
on HISC principles and will result in multi-functional
arithmetic hardware units which are capable of sup­
porting many different functions, without incurring the
performance degradation associated with RISC. In fact
design testing shows that IMAGINE provides faster func­
tional units than the leading RISC processors, while re­
taining the same process technology.

The HISC concept is compatible with super pipelined
and super scalar design techniques which it can fully ex­
ploit for its own purpose which will ensure a competitive
edge for many years to come.

o

HISC and IMAGINE are trademarks of Arcobel Graphics B.V.

Pentium, 8086 and 8080 are trademarks of Intel.

SPARC is a. trademark of SPARC Interna.tional,

all other trademarks acknowledged.

17

--

REOlS'mR ItlRIVERS I DECODERS
elk

IMAGE MEMORY

Synchronous (Burst) SRAM or EDRAM

DATA RAM
IIpIO 32 Mop By«

~
COMMAND BUFFER

ANDIIO

I

L~ ~; ~l.l. ~ ~.!,L:.:..:: ~
r===i1

DRAM!

d VRAMOIOATAIm!L3l
--tIl R.esct'" 4GipByIC -

CoCEO'
COCEI'
lBdir
m..'

RAddr"
CAddt"

_.3 ~ RAS
o.K' RAS'

CAS'
Global· -:::1 CAS

DinClk

HiXAdO•.2
IMAGINE

cJ 1ADOR
8000 MIPS

_.IS

TRIOl!' TRIOl!'GRAPHICS & MEIWE' MIiJWI!'

+-­
 BOR' IMAGE PROCESSOR BGA'" OSFl- ::I~:~
---.,. Int&cql'" DSF2

+- lrnAetl'" MlCD PORT ==~: :: 11->1 {'I'RIl'LE~ IIIIV,,:IU' S'TS:::: \'RAM
mtVocS. TSEa'" ONLY

TSEb'r !Wail' !'Wait' 510

I Dl' '1'1 ii 11

I

clk VIDEO'IlMlNG II.
Sync ImcnupIs

Synchronous (Burst) SRAM or EDRAM lIe: ~II
.pI!> 32 Mop By« EO ~IDEOINSTRUCTION RAM INPUT RAMDAC

VlllEO IN VIDEO OUT ~
t -I-

Figure 1: System Concept: IMAGINE plus external memories.

18

CopyriJIU _ ClTapblcs 1994IMAGINE

96 X 32 bit

VARIABLE WORD LENGTH
THREE PORT REGISTER FILE

SlIlI'TVARIABLE LENGTH
BARREL

ROTATE/SHIFT UNIT

VARIABLE LENGTH R IC=======::::::::====:;:;:::=!

ARITHMETIC ulC=====~==~~~

LOGIC UNIT S C========::::;===:::::;:;:::::~

MULTIPLIER PIPELINE

VARlABLE

UlNGIIT

MULl1MODE

MULTI­
PLIER Mbl::,===:====::*==~

VARIABLE LENGTH I

UNARYFUNCTIONUNITIC=======~====:;:;:::=!

IEEE 754 FLOAT

To Range Mask
& Statu. Rc.c.

OS'
DOO.• 31

E:~&t
B":r.
~

Inn DATA TRANSFER UNIT Iq

DAZ..24
B_3'
IlD"
WR'

InA DATA ADDRESS UNIT

I

1mO••3l

Ibn IMAGE 110 UNIT Iq

Figure 2: Data Processing Units of the IMAGINE •

19

SINGLE CYCLE TROUGHPUT MULTIPLIER FUNCTIONS

32 BIT MULTIPLIER
MaO.. Ma31 MbO..Mb31

1 J l 1 J l
sigDCdlunsigncd sigocdlunsigncd

type
2 I ~~~~nt . t

--1-7 ~:=.'W'~ point 32x32=48

1
s;gnluns;gn MULO..47

DUAL 16 BIT MULTIPLIER
MaI6• .Ma31 MbI6• .Mb31 MaO..MaIS MbO. .MbIS

10 10 10 10

sgnJuns,n sgnluasgnsgnlunsgn SgnlunsgD

iD:fict;~cr
t)llC ~I ::"rm.r!"~ 16x16=24t)llC ~I ~onn~~ 16x16=24

I'Dd.norm.flXCd md.DOnnflXcd

1c=l 1 c=l
SgnlUDSgn MUL24••47 "nlunsgn MULO • .23

16 BIT COMPLEX NUMBER MULTIPLIER
MaI6• .Ma31 MaO.MaIS MbI6• .Mb31 MbO. .MbIS o Cl DO
REAL PART IMM.PART REAL PART !MM. PART

t)llC~IH'"T"";n\ . (16.16)x(16.16)=(24.24)normIlXCd P.9IDt
rouDd.nonn:flxcd point

c=l c=l
MlJL24..47 MULO . .23
REAL PART !MM. PART

16 BIT 2D VECTOR MULTIPLIER
Ma16 . .Ma31 MaO.Ma1S MbI6. .Mb31 MbO.,MIS

DO Cl 0
Xcomp. Ycomp. Xcomp. Ycomp.

t)llC~Iir.T"";nt . (16.16)x(16.16)=(24.24)normIlXed P.9lftt
round.norm:flxcd point

c=l c=l
MlJL24..47 MULO • .23

DOT PRODUCT CROSS PRODUCT

Figure 3: Multiplier modes (32 bit, double 16 bit and quadruple 16 bit).

20

http:16.16)x(16.16)=(24.24
http:16.16)x(16.16)=(24.24

SINGLE CYCLE TROUGHPUT MULTIPLIER OPERATIONS

QUAD 8 BIT MULTIPLIER
M44..l1 Mb24 • .31 MbI6 . .2l MIlS •• IS MbO..7

10 10 10 10 10
!Ius sIus sIus sIus sIus

lfttegq' 2type ~t~-+-7 8x8=12 8x8=12=nt ~8x8=12 8x8=12rnd.nr:r.. rnd.Itt.Il'.

0 0 0
MUU6..47 MUL24•.3S MULI2 • .23 Ml}l.l)..ll

MATRIX x VECTOR MULTIPLIER I QUAD INPRODUCT MULTIPLIER

sIus sIus

t~ 8x8=12
md.n.r. IX

~

S/U,

imfIX Itt
• tlt
md,ar,(ut

Iius

8x8=12 ~
"'" lIu,=8x8=12rnd.At:r.. ~

"'"
~mrt. ..
meI,Dr.fix

"'"
8x8=12

<:3-24..31 ~:31Of 0-16..23 ~1~::Ror m::l~or m:i'"
.1 .0 .1 .0

sIus sIus

~m"! 8x8=12
md.1lt.(lX

sIus

i!*&et'

~rnd.ar:r..

.1 .0 .1 .0
lIu, sIus

fix . tim
• IX 8x8=12
nId....flx

i;tlt~ or

Iius

8x8=12

.1 .1 .0

sIus sIus

iI':~~ 8x8=12::r..

s/us

8x8=12

0-16..23

.1.0 J,.o

0l-16..23 ~IU'"
J, .0
lIu, "'"
itut:gct
fapo;tlt
norin.£", 8x8=12
md.nrIiX

0.
MULl6••47

i;tH~ or
,-::.J,-=_J,:.:-.o=--,
"'" "'"

~ rnd.",:r..=8x8=12

.1 .1.0
lIu. "us

Cl.o..7

.1 .0 .1.0.1.0 J,O
 t.o J,O .1 .0 J,O

2:::

0.

MULI2..23

•

~J}or

.1 .1.0
sIus "'";­typo fix~tl:t~ :.!fx 8x8=12 ~ ~

C~. .lS ~::l~or
.1 .0 J, .0

sIus "u.
in.~ct

fill~nt

oorin.fht 8x8=12
mlittria

CO-O..7 l:1l:8J'"
J, .0 J, .0
sIus;- """
r1X~Dl
•••in.fix 8x8=12
rnd,nr.fa

Figure 4: Multiplier modes (quadruple 8 bit and 16 fold 8 bit)_

21

http:rnd,nr.fa
http:rnd.Itt.Il

IMAGE MASK GENERATOR REGISTERS

WlNOOW XMINlMUM, MAXIMtJM POI.YGON STARTCOOR.EN'!ltY IMAGE MASK~L

--- -_.­ --~ POLYGON END COOR.ENTRY POLYGON STARTIEND COOI!..IUiG.

COMl'UOO ALPHA MASK .REGISTER 0

COMl'UOO ALPHA MASK .REGISTER I

COMl'UOO ALPHA MASK REOlSmR 2

SPAN IJN1S 3 MINlMUM, I COMl'UOO ALPHA MASK REOlST£Il3

COMBINED MASK ASSEMBLY

n
15 u

TRANSPARENTMASK

-ll -n:----~v~~'!_

!MAGE MASK: MSKO•.3

PIXEL MASK REGISTERS

IJN1S 0. TRANSPARENT MASK

IJN1S I, TRANSI'AlUiI>'TMASK

IJN1S 2. TRANSPARENTMASK

1JN1S3, TRANSPARENT MASK

1JN1S0. OPAQUEMASK

IJN1S I. OPAQUE MASK

IJN1S 2, OPAQUE MASK

1JN1S3, OPAQUEMASK

IMAGE MEMORY ACCESS GENERATOR REGISTERS

!MAGE MEMORY ACCESS CONTROL 0 ADORESS POINTER \ lMASK REF)

BtrPLANEMASK II APDIU!SS POINTER 2

POIUlROUND COI.OR APDIU!SS POINTER 3

BACKGROUND COLOR DlSPI.AY ADDRi!SS POINTER I

ACT\JAL!MAGE ADDIU!SS D DlSPI.AYADORESS POINTER 2

Figure 5: Register model of the Parallel Mask generator.

IN11lRNALDATAlIUS

n n
POLYGON~ EOOB
ENTIUI!S~

.[J,

WINDOW ~

MASK MASK

GENERAnON GENERAnON
~
.[], .[],

n
COMI'UOO

ALI'HA
MASK

ODDIEVEN RUI.E

WINDING RUI.E

ANn·ALlASING

.[],

n
S7RAIOHT

CLIP
MASK

COI.ORk

Z·BUfFER
 iC=J~E7

RANOE-OIllCK

.0.

22

