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Abstract

In this paper we describe a multipurpose tool for analysis of the performance characteristics of computer
graphics hardware and software. We are developing Qsilver, a highly configurable micro-architectural simulator
of the GPU that uses the Chromium system’s ability to intercept and redirect an OpenGL stream. The simulator
produces an annotated trace of graphics commands using Chromium, then runs the trace through a cycle-timer
model to evaluate time-dependent behaviors of the various functional units. We demonstrate the use of Qsilver on
a simple hypothetical architecture to analyze performance bottlenecks, to explore new GPU microarchitectures,
and to model power and leakage properties. One innovation we explore is the use of dynamic voltage scaling
across multiple clock domains to achieve significant energy savings at almost negligible performance cost.
Finally, we discuss how other architectural features and experiments might be incorporated into the Qsilver

framework.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture

1. Introduction

Simulation has long been a vital tool for the study and design
of computer architecture, but simulation of graphics archi-
tecture presents some unique challenges. Commodity graph-
ics hardware is evolving at a tremendous rate, with each
successive generation adding not only performance but fun-
damentally new functionality. In the time required to build
a complex simulation infrastructure, the simulated architec-
ture can easily become obsolete. Furthermore, the architec-
ture of modern graphics processors or GPUs are largely se-
cret; vendors in the highly competitive PC graphics arena
are reluctant to release architectural details, such as tex-
ture cache design, even to their registered game develop-
ers. Most GPU simulators today can be broadly classified
as cycle-accurate circuit-level simulations, which are ex-
tremely costly to run and available only to vendors because
of the enormous manpower they require to produce, and
functional emulators, which model the user-level interface
(for example, a shading assembly language or API) without
any underlying architectural structure. This situation, cou-
pled with the sheer complexity and performance of mod-
ern GPUs, presents a significant challenge for researchers
interested in exploring architectural innovations, modeling
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fine-grained effects such as intra-frame performance bottle-
necks, or simulating power, leakage, and thermal properties
of GPUs.

We present a simple, flexible simulation framework for
graphics architectures that fills the gap between cycle-
accurate VHDL/Verilog models and functional emulators.
Our framework builds on the Chromium system [7], which
intercepts and processes streams of OpenGL calls. We use
Chromium to record a trace of graphics instructions during
an application and then to instrument the rendering pipeline
to accumulate statistics during playback of that trace. The
instrumented trace is then run through the simulator itself,
which is essentially a queue-driven, cycle-timer model of
data and computation flow through the functional stages,
decoupled by queues and caches, of the GPU. The result-
ing simulation framework is fine-grained enough to be use-
ful for a variety of tasks — for example, we demonstrate
power modeling of a hypothetical architecture — but efficient
enough to analyze long (multi-second) runs of real-world ap-
plications. The framework is also flexible, allowing greater
or lesser amounts of detail to be modeled and providing a
natural structure for adding experimental pipeline stages or
functional units via Chromium stream processing units or
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SPUs. We call our fast Chromium-based simulation frame-
work Qsilver.

To demonstrate the applicability of Qsilver, we present
two simple studies. First, we analyze the performance of a
simple hypothetical architecture running the recent Splash
Damage game “Return to Castle Wolfenstein: Enemy Terri-
tory.” We show that, as might be expected, different stages
of the GPU pipeline act as the bottleneck during differ-
ent frames and during different segments of a single frame.
Next, we build a power model of the hypothetical architec-
ture and use Qsilver to explore power-related architectural
optimization.

Note that these studies serve as illustrative examples
rather than serious architectural experiments. Our hypotheti-
cal GPU pipeline is a prototype, modeled only coarsely, and
our power model represents a best-guess estimate of a cur-
rent graphics processor. We emphasize that our goal here is
not to perform conclusive architectural research but to de-
scribe a useful tool and demonstrate the sort of interesting
studies that vendors and researchers, armed with the archi-
tectural details that our prototype model lacks, could easily
perform with the Qsilver approach.

2. Related work and meotivation

The advent of detailed but flexible, configurable, cycle-
accurate CPU simulators in the 1990s for complex, super-
scalar architectures served as the catalyst for an explosion of
quantitative research in the computer architecture commu-
nity. The most prevalent simulator in academic architectural
research is SimpleScalar [3]; other simulators used in spe-
cific circumstances include Rsim [6] for multiprocessors, as
well as Simics [10] and SimOS [13] for capturing operating-
system and multi-programmed behavior.

By describing instruction flow at the granularity of indi-
vidual steps through the CPU pipeline, these simulators al-
lowed research and design to move beyond simplified, im-
precise analytical models or cumbersome, logic-level mod-
els. Instead, architects could analyze detailed tradeoffs un-
der realistic workloads and estimate how various microarchi-
tectural choices affected instruction throughput. Examples
include the impact of different cache and branch predictor
algorithms, the impact of different superscalar out-of-order
instruction-issue designs, and the ability to evaluate a host of
novel CPU organizations such as hyper-threading.

Subsequent power-modeling capability launched another
round of innovation by allowing architects to estimate the
energy efficiency of different processor organizations, verify
that new microarchitecture innovations are justifiable from
an energy-efficiency standpoint, and explore microarchitec-
tural techniques for managing energy efficiency. The domi-
nant power model today is Wattch [4], which uses calibrated
analytical models to allow flexible and configurable estima-
tion of power for a variety of structures, structure sizes, or-

ganizations, and semiconductor technology generations or
“nodes”. Other power models that use circuit-extracted data
have been described, but they are based on a specific im-
plementation and tend to be inflexible, especially in terms
of scaling to future semiconductor technology nodes. These
two approaches can be combined, using the circuit-extracted
model as calibration for Wattch’s analytical models; see
for example a recent study of hyper-threading using IBM’s
circuit-extracted PowerTimer [9].

Our goals with Qsilver are to stimulate the same kind
of innovation in the GPU community, to stimulate greater
cross-fertilization with the general-purpose CPU architec-
ture community, and to enable new studies in power-aware
and eventually thermal-aware design. The purpose of this pa-
per is to report results with a prototype to show the value of
this kind of simulation approach.

3. A framework for simulation of graphics architecture

Driving our simulator is a trace of graphics commands, in-
strumented with additional statistics that describe the be-
havior of those commands. For example, in our system the
graphics command that produces a triangle to be rasterized
would be annotated with the total number of fragments gen-
erated, number of fragments written to the depth buffer, av-
erage number of texels accessed per fragment, and so on.
Exactly which statistics must be gathered depends on the
level of architectural detail we wish to model. We then feed
this instrumented trace into a “cycle-timer” model that sim-
ulates the flow of data and computation through each stage
in the decoupled microarchitecture of the GPU. From the
cycle-timer model we can count the number of operations
and estimate the computational load in each unit that we
model, which in turn provides a basis for modeling power
dissipation. We can also examine high-level behavior such
as the migration of performance bottlenecks (vertex process-
ing, fragment processing, memory bandwidth, etc.) between
or within frames.

3.1. Capturing the trace

We use Chromium [7] both to capture the original trace and
to gather the statistics used to instrument it. Chromium is
a system for manipulating streams of OpenGL commands;
common uses include splitting rendering across multiple
machines for tiled display or implementing sort-first and
sort-last parallel graphics architectures on clusters of PCs.
The use of Chromium simplifies the task of capturing the
behavior of real-world applications, since Chromium can
be applied non-invasively to applications for which source
code is not available and can store an application’s OpenGL
stream to disk for playback and reproducible analysis later.
Chromium also lets us avoid the development and running-
time overhead of implementing simulations of low-level
structures, such as rasterization or texture filtering hardware.
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Instead we use OpenGL itself as a rasterization engine, and
instrument the OpenGL stream using mechanisms such as
occlusion queries (see http://oss.sgi.com/projects/ogl-
sample/registry/ARB/occlusion_query.txt) and pro-
grammable shaders to gather the essential statistics.
For example, we employ a Chromium SPU that renders
each triangle twice, once into the destination image buffer
and once into a scratch buffer in which the depth test is
disabled. Occlusion queries wrapped around both triangles
provide a count of fragments drawn and fragments created,
which we later use for estimating computational load and
memory bandwidth used by the fragment processor and the
depth buffer.

Specifically, our prototype simulator implements the fol-
lowing SPUs:

Expand vertex arrays. For efficient rendering, OpenGL
applications generally collect object geometry into vertex
arrays. To simplify the task of associating fragments with
the primitives (vertices and triangles) that produce them, we
dereference vertex arrays into immediate-mode glBegin,
glvertex, glEnd calls. Note that we can easily retain
the vertex array organization in our annotations if, for exam-
ple, we wish to accurately simulate the post-transform ver-
tex cache (but our current prototype simply uses a statistical
model of cache hits).

Triangulate complex geometries. We wish to count total
versus occluded fragments generated by each primitive, but
complex primitives such as triangle strips can self-occlude.
In this SPU we split triangle strips, triangle fans, and com-
plex polygons into triangles so that our occlusion queries are
guaranteed to measure only planar polygons. Though our
prototype implementation does not do so, this SPU could
also generate triangles for other primitives such as thick lines
and point sprites.

Unfold display lists. We also store display lists and play
them back when referenced in the OpenGL stream. In addi-
tion to potentially containing self-occluding geometry, dis-
play lists may encapsulate changes to rendering state. These
must be exposed to the simulator since we wish to track in-
formation such as texture accesses, which are affected by the
number of textures bound, MIP-map filtering mode, etc.

Count visible fragments rasterized. The aforemen-
tioned SPUs condition the OpenGL stream for annotation;
this SPU begins the actual data collection. As each triangle
is rendered, we enclose it in an occlusion query, which re-
turns the number of fragments that pass the depth test. We
store this information in the annotated trace that will later be
used to drive the cycle-timer model.

Count total fragments rasterized. To get an accurate es-
timate of depth-buffer bandwidth, we must also count total
fragments rasterized. We do this by rendering each polygon
again, this time into a separate buffer with the depth test dis-
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abled. Again, an occlusion query returns the total number of
fragments rasterized.

Count average texture accesses per fragment. The
number of texture accesses depends on several things: how
many textures are bound, what form of texture filtering is
enabled, and the per-pixel texture LOD of the fragments.
Full trilinear MIP-mapping presents a challenge because the
number of texels read for magnification (4) is different from
the number read for minification (8). We could use a soft-
ware rasterizer that directly evaluates per-fragment texture
LOD, but this sacrifices much of the simplicity and speed
that we gain by using Chromium and OpenGL to perform
rasterization and filtering. Instead, we obtain an average tex-
ture access count by binding a texture that encodes the MIP
level directly, then binding a fragment program that kills
fragments based on the hardware-filtered texture value. An-
other occlusion query counts surviving fragments and uses
the result to calculate average texture accesses per fragment.

In practice, the last three SPUs can be combined to in-
crease rendering efficiency. In our experiments with the En-
emy Territory game, the entire process of annotating a pre-
recorded OpenGL trace, preparing input for the simulator
core, runs at near-interactive rates, roughly 3-15 frames per
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Figure 1: The functional units and data flow of our hy-
pothetical graphics architecture. The units can be classi-
fied as queues, caches, or data processing components. The
fragment queue separates the vertex- and pixel-processing
components of the GPU; we exploit this decoupling in the
multiple-clock-domain experiment of Section 5.2.2.

3.2. Applying the cycle-timer model

The instrumented trace consists of a stream of geometric
primitives annotated with statistics denoting fragments pro-
duced and occluded, texture accesses, and potentially other
information (such as vertex indices for post-transform cache
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analysis), as well as the relevant graphics state (such as num-
ber of textures, number/kind of lights, and texture filtering
state) for each batch of geometry. Once the trace is acquired
we next run a cycle-timer simulation that pulls the fragments
and vertices, cycle by cycle, through each stage of the GPU
pipeline. The pipeline is modeled as a series of functional
units connected by queues and caches; Figure 1 shows our
prototype model of a hypothetical fixed-function GPU.

In the cycle-timer model, Qsilver repeatedly advances a
global time counter by one cycle and advances the simula-
tion stage-by-stage backwards through the pipeline. For ex-
ample, each cycle a maximum number of fragments may be
written to the framebuffer (possibly limited further by mem-
ory bandwidth to the color and/or depth buffers). This in-
crements operation counters in the “Framebuffer ops™ unit
(representing arithmetic operations performed for blending,
Z-buffer comparison, etc) and drains the queue between that
unit and the fragment processor. If the fragment processor is
ready to produce a fragment (actually the fragment processor
operates on tiles, which are 2x2 fragments in our model),
the processed fragments are added to the queue. The rate
of the fragment processor depends on the computation de-
manded by the rendering state (e.g., how many textures to
interpolate), on the annotated trace statistics for that set of
fragments (e.g., how many texture value interpolations are
necessary due to magnification/minification), on the intrin-
sic architectural parameters of the fragment processor (how
many pipelines, how deeply pipelined), and on the band-
width to texture memory (accounting for texture cache be-
havior, which we currently model only statistically). Note
that in a given cycle, the fragment processor may stall for
several reasons: the subsequent queue may be full (this gen-
erally implies the system is framebuffer bound), because the
texture fetches cannot be performed (system may be texture
bound, or poor texture cache locality), or because the incom-
ing queue is empty (vertex or rasterization bound). As the
fragment processor produces fragments we increment oper-
ation counters that reflect the arithmetic operations incurred
per fragment.

Qsilver follows a similar process through the various
stages of the cycle-timer model. The fragment processor
drains the “fragment queue”, a queue of fragment inter-
polants (again, organized into tiles) filled by the rasterizer.
This queue effectively partitions the GPU into vertex- and
pixel-processing components; since a full or empty frag-
ment queue implies that the vertex or fragment processor is
stalled, queue occupancy provides a metric for whether the
system is currently transform- or fill-rate limited. We there-
fore use occupancy to drive the multiple-clock domain ex-
periment described in Section 5.2.2.

The rasterizer, which in our prototype incorporates prim-
itive assembly, fills the fragment queue and drains the post-
transform cache. Computational operations executed by the
rasterizer are derived from the number of fragments gener-

ated per primitive (available from our annotated trace) and
the number of active interpolants (dictated by current render-
ing state). The post-transform cache is modeled as a simple
FIFO, which accurately reflects current architectures, but we
do not currently model cache hits for indexed vertex arrays.
Instead, the post-transform cache is treated as a queue, filled
by the vertex processor.

The vertex processor (modeled as two separate pipelines
in our hypothetical architecture) performs significantly
more arithmetic per operation than other units. Again,
the details depend on rendering state (e.g., number and
kind of lights). To estimate the computational load of
transforming and lighting vertices, we use a collec-
tion of compiled assembly code for implementing a
fixed-function pipeline on programmable GPUs, ob-
tained from a Cg model provided by Nvidia online
(http://developer.nvidia.com/object/cg_fixed_function.html).
This code includes the various permutations of point, direc-
tional, and spot lights, local- versus infinite-viewer lighting,
and so on; we simply scale the appropriate operations by
the number of lights and count the total operations. The
vertex processor drains a pre-transform cache of vertices,
which we approximate as a perfect (no-miss) cache in our
prototype model.

To summarize, Qsilver runs a cycle-timer model that steps
cycle-by-cycle; during each cycle every functional unit ei-
ther advances in its computation, possibly producing an out-
put for the next stage and incurring the cost of that computa-
tion’s operations, or stalls as it waits on a queue or cache. By
analyzing the activity of the various stages of the cycle-timer
model over time, we can study the performance and bottle-
necks of the system; by augmenting this information with a
power model we can examine the power characteristics of
the system. The simulation advances relatively quickly by
architectural simulation standards; a simulated frame in our
Enemy Territories study requires approximately 10-15 sec-
onds to process on a 1.7GHz AMD Athlon with 512 MB
RAM. This enables rapid exploration of design parameters
such as the studies presented in Section 5.

4. Modeling power

To model power in Qsilver, we estimate the power for primi-
tive operations like cache accesses, queue accesses, floating-
point operations, register accesses, etc. Then, by identifying
the primitive operations comprising a functional block in our
pipeline, we can construct a power estimate for it.

To estimate the power for each primitive operation,
we extract the cost of similar operations from an indus-
trial, architecture-level power model to which we have ac-
cess. This model is based on circuit-extracted data for a
180nm high-performance superscalar microprocessor. We
then scaled these estimates to match the structure sizes and
bit-widths used in Qsilver, and further scaled them to the ap-
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propriate technology node according to cv? f (power is pro-
portional to cv? f, where C is capacitance, V is voltage, and
f is frequency. All of these scale with each successive gener-
ation of semiconductor technology). In our case, the current
Qsilver prototype resembles an Nvidia GeForce 4 (but tuned
to drive low framebuffer resolutions—see below), so we have
chosen to model a 150 nm implementation running at 1.8 V
and 300 MHz. Although there will certainly be differences
in circuit-design style between a high-performance CPU and
our GPU, the relative power cost among different operations
in the high-performance superscalar CPU is likely to be a
reasonable indicator of relative cost in the GPU. We also
cross-checked the relative power dissipated in each primi-
tive against both Wattch and a second industrial model; of
course, these too are models for high-performance CPUs.

Although our current power-modeling approach is ad-
mittedly crude, it enables us to construct a prototype that
demonstrates the potential benefits of modeling power in the
GPU. Even though the prototype power model is clearly im-
precise and not suited for detailed modeling, it allows us
to explore basic energy-efficiency tradeoffs like the benefits
of a more aggressive vertex or fragment engine, the ability
of runtime techniques to reduce power in response to time-
varying application behavior, and the affect of design trade-
offs on leakage power as it grows in importance with future
technology generations.

The structures in the GPU fall into four major categories:
cache, queue, register, and arithmetic. For the cache, queue,
and register structures, after scaling the power value ex-
tracted from the reference model to account for CV?> f, we
further scale it to account for the width, height, and num-
ber of ports in the GPU. For purposes of our prototype, we
scale linearly with each dimension. For example, our ref-
erence model uses a direct-mapped, 64 KB, single-ported
cache, while our texture cache has four ports. After scaling
for technology, we therefore account for the extra ports by
multiplying by four.

The data-processing units—for example, the vertex
transform-and-light unit—are less straightforward. We deal
with these units by assuming they are driven either by mi-
crocode or a finite state machine and determine the primitive
operations they execute, such as dot products, multiply-adds,
etc—for this, we use the collection of compiled assembly
code for the model of the fixed-function vertex processor.
We then further break these down into basic floating-point
multiplies and adds wherever possible (the main exception
being transcendental functions). In the case of the vertex
transform-and-light unit, we assume that because these op-
erations are so complex, it is not pipelined, but rather it con-
sists of a floating-point multiply-add array and that each mi-
crocode operation makes one pass through this hardware.
(This assumption is also the basis for our model of how many
cycles it takes to traverse the transform-and-light stage.)
Our reference power model is also based on a floating-point
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multiply-add array (double-precision in this case), so after
scaling to account for cv? f» we can simply scale the result-
ing power value to account for the number of bits involved
in each microcoded step. We currently scale linearly with the
number of bits in each operation, although this oversimpli-
fies the actual power scaling. In addition to the cost of the
arithmetic operations, we also account for the power dissi-
pated in the microcode memory and in reading and writing
the register file.

Finally, we augmented the power estimate for each block
to include power due to leakage currents. Leakage current
arises from the fact that in deep-submicron technologies,
transistors are never fully cut off. At 150 nm, leakage al-
ready accounts for approximately 10% of total power dis-
sipation (this assumes an operating temperature of approxi-
mately 100°C, since leakage is exponentially dependent on
temperature). Non-ideal device scaling means that leakage
is growing proportionally worse with each successive tech-
nology generation; the International Technology Roadmap
for Semiconductors (ITRS) [18] projects that it will grow
to 50% or more within a few years as we reach the 70 nm
node. This is important because it means that units which
are clock gated still dissipate substantial power, and so try-
ing to improve energy efficiency by reducing switching ac-
tivity and/or improving clock gating will be less helpful in
future generations, while optimizations that put blocks to
sleep (like disconnecting them from their voltage supply us-
ing sleep transistors) or reduce the operating voltage (as in
the multiple-clock-domain results presented in Section 5.2.2,
become more helpful.

Following the approach used in Wattch, we model leakage
as a simple fraction of the unconstrained switching power.
When a unit is idle and clock gated, instead of dissipating
its associated dynamic power that has been derived from
our reference model, it dissipates a technology-dependent
fraction thereof. The appropriate leakage ratio is taken from
ITRS, e.g., 10% for 150nm and 50% for 70nm.

Again, this power model is imprecise and can only serve
as a prototype. We have made many guesses or simplify-
ing assumptions about the internal microarchitecture of the
GPU, unit latencies and power dissipation, and so forth;
and our power estimates are derived from data for a high-
performance microprocessor that may use different circuit-
design styles than would be employed for a GPU. Just as
developing a more detailed and accurate performance model
is an important area for future work, so is developing a de-
tailed and accurate power model.

Validating the current prototype model is difficult, be-
cause we have no reference against which to compare. We
can however perform some sanity checks. First, we verified
that power dissipation in each block tracks its activity factor.
Next, we looked at the power density in each block. The two
blocks dissipating the most power are the vertex engine and
texture cache, both dissipating about 12 W at peak. Based
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on the rough GeForce 4, 12mm x 12mm floorplan in Fig-
ure 2 [17], this corresponds to about 0.7 W/mm?, which is
reasonable. Though we might expect each block to have a
similar peak power density, the fragment engine only dissi-
pates about 4.5 W. This may seem surprising given that the
fragment processor is typically considered a computational
“hot spot”, but we have tuned our theoretical pipeline for a
relatively low-resolution 800x600 display—more appropri-
ate for a game console architecture than the PC graphics chip
we are using as a guiding floorplan. The lower resolution
leads to a correspondingly lower overall arithmetic intensity,
thus the apparent anomaly in power density. Similarly, the
rasterizer only dissipates about 2.5 W. This is because our
model of rasterizer operations does not include some com-
putations: edge setup, primitive assembly, or clipping. Hav-
ing verified that the relative power dissipation in each block
is reasonable given the actions we are modeling, we also ver-
ified that total power dissipation, including blocks and activ-
ities we do not yet model, will be within a range of about
50-75W.
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Figure 2: GeForce 4 die photo from [17]. Note that the func-
tional blocks in this marketing image are likely incorrect.

5. Experiments and results
5.1. Performance analysis and experiment

One application of Qsilver is to analyze performance of a
real application on a particular (perhaps hypothetical) archi-
tecture, with very fine granularity, enough to analyze intra-
as well as inter-frame phenomena. For example, Figure 6 il-
lustrates the evolution of a typical frame from Enemy Terri-
tory, along with timelines of some statistics from our model.
Analysis of this timeline reveals interesting bottlenecks and
behaviors. Images (a-d) are partially rendered frames at a
certain cycle count; the ability to easily record such frames
is a nice byproduct of using Chromium. In (a), the game
is rendering a skybox using multiple passes, some textured
and others untextured. As could be expected, the bottle-
neck is the fragment engine; vertex throughput is quite low
(though notice that the textured pass uses additional poly-
gons, perhaps so that fast-reject triangle culling will reduce

rasterization load). In (b), the system has turned to rendering
small details of trees and buildings; the vertex engine is now
plateaued at maximum capacity and the game is transform
limited. Shortly afterwards, (c) shows a sudden shift: the
game is now rendering a road surface that contains few poly-
gons, occupies much of the screen, and uses a MIP-mapped
texture. Finally, in (d) the game is finishing the small head
in the lower-left corner, which comprises many very small
polygons and is thus heavily vertex-bound.

Of course, Qsilver can also be applied to the traditional
task of microarchitectural simulators: performance studies.
In the next section we describe a performance and power
study based on varying the throughput of the fragment and
vertex engines. One could also analyze performance while
varying parameters such as the texture cache, queue lengths,
memory architecture, and so on.

5.2. Experiment: power-aware graphics architecture
5.2.1. Energy-efficiency tradeoffs

To illustrate the value of Qsilver for power-aware design,
we conduct two simple experiments in which we vary the
throughput of the fragment and vertex engines to find the
highest-performance and most energy-efficient design points
(which are typically not the same points). Figure 3 plots the
energy-delay-squared (EDZ) product [20], energy (E), and
performance (frame rendering time, T) as a function of frag-
ment processing rate. Figure 4 plots the same metrics as a
function of vertex processing rate. All three metrics have
been normalized to the results obtained with our default con-
figuration: 5 cycles per tile for the fragment engine and 38
cycles per vertex for the vertex engine (no lighting is used in
this experiment).

Clearly, the faster the engine, the better the throughput,
but throughput reaches a point of diminishing returns at 4 cy-
cles per tile in the fragment engine, at which point the power
required to further improve performance is disproportionate
to the miniscule marginal benefit. This makes 4 cycles/tile
the energy-efficiency optimum, as shown by the ED? prod-
uct. Note that this optimum differs slightly from the design
point we initially chose, as might be expected in an early
prototype model.

A similar trend is observed for vertex rate, where di-
minishing returns in terms of performance are not clearly
present, but energy begins to rise disproportionately at the
most aggressive throughput settings. The ED? optimum is
therefore at 5-6 cycles/vertex.

These qualitative trends in these results are fairly insensi-
tive to our power modeling assumptions, shifting the curves
up or down on an absolute scale but leaving them essentially
unchanged once normalized.

ED? has been established by the low-power design com-
munity as a sound figure of merit for trading off energy
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Figure 3: Performance (T) and energy-efficiency data ( ED?
and E) for different fragment-processing rates. All results are
normalized to our base case, which is 5 cycles/tile. Note also
that in all cases, a smaller ratio is better.
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Figure 4: Performance (T) and energy-efficiency data ( ED?
and E) for different vertex-processing rates. All results are
normalized to our base case, which is 18 cycles/vertex.

and performance. When considering the energy efficiency
of different design choices, it is insufficient to simply look
at average power, because £ = Pt, and so if reducing av-
erage power comes at a cost of increased execution time,
more energy may actually be consumed. Energy is also a
poor metric when performance matters, since a reduction in
energy only means that more power was saved than perfor-
mance was lost. To cope with this, E - ¢ has been proposed
as a heuristic figure of merit, where the execution time # is
also referred to as delay (D), hence the term “energy-delay
product”. This metric simply assumes that energy and per-
formance are equally important. Better yet is the ED? prod-
uct, which is more rigorous because it provides a metric of
energy efficiency that is independent of the nominal supply
voltage. It is therefore an accurate indicator of the unique
contribution of microarchitectural or runtime power man-
agement that could not be achieved by simply choosing a
different supply voltage at runtime. As an example, consider
the the data above: if higher throughput is not needed—that
is, the performance need not be any better than 1.0—then 4
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cycles/tile is still the best configuration, because the chip’s
voltage can be reduced by 12%, yielding a 23% energy sav-
ings. The results presented here are only an illustration of
the kind of tradeoff analysis that an infrastructure like Qsil-
ver permits.

5.2.2. Multiple clock domains (MCD)

The notion of using multiple independent “clock domains”
has been broached in both the GPU and CPU communities,
e.g. [8, 14, 15] as a way to enhance clock speed by reduc-
ing the impact of clock skew and as a way to save power by
allowing voltage and frequency to be dynamically reduced
in clock domains that do not need to run at peak speed (dy-
namically changing voltage and frequency is often referred
to as dynamic voltage scaling or DVS). In this paper, we fo-
cus on the power implications. Although MCD can provide
substantial benefits, there are manufacturing and potential
performance costs. MCD requires the ability to manufac-
ture chips with independent voltage islands and independent
clock domains, increasing testing costs; furthermore, each
time the voltage and frequency settings are changed, the chip
must stall while the voltage changes and the clock’s phase-
locked loop resynchronizes. A typical overhead for this is
10 ps.

In our GPU model, there are two natural clock domains—
the vertex and fragment engines—with the fragment queue
serving to decouple the two (see Figure 1). Since the GPU
tends to alternate between being fragment and vertex bound,
one or the other domain is typically stalled and can run at
significantly lower voltage and frequency with minimal im-
pact on overall fill rate. When the queue is full, this means
the GPU is fragment bound, the vertex engine is effectively
stalled, and it should reduce its voltage and frequency. Like-
wise, when the queue is empty, the GPU is vertex bound, the
fragment engine is stalled, and it should reduce its voltage
and frequency.

Specifically, we implemented a simple state machine that
monitors the fragment queue. To avoid unnecessary changes
in DVS setting and the associated overhead, the controller
employs hysteresis by requiring the queue to stay within
10% of empty or full for 50,000 cycles before lowering the
DVS setting by 10%. Then once the queue passes an ap-
propriate high or low water mark to indicate that execution
behavior is changing, the DVS setting is restored to its full
value.

Figure 5 compares energy and performance both with and
without MCD for three different leakage ratios. Again we
use ED? as the figure of merit to trade off performance and
energy and determine optimal energy efficiency. In fact, re-
gardless of whether E or ED? is used, MCD is clearly en-
ergy efficient. For a 10% leakage ratio, MCD improves ED?
by 11% with only a 1.5% performance loss. It achieves this
by minimizing power dissipation when one or the other do-
main is stalled. Because leakage is exponentially dependent
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on voltage, MCD becomes even more advantageous at fu-
ture technology nodes where leakage is a greater fraction of
total power dissipation. When a domain is stalled but in a
low voltage and frequency state, not only is dynamic power
reduced, but leakage power is dramatically reduced as well.
With the leakage ratio at 50%, the ED? improvement reaches
30%. These represent energy savings of 13-30%.
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Figure 5: Performance and energy-efficiency data of MCD
for different leakage ratios. All results are normalized to the
base case (with no MCD) for the appropriate leakage ratio.
Smaller y-axis values are better, representing better perfor-
mance and better energy efficiency.

6. Discussion and limitations

Some tradeoffs accompany the decision to use Chromium,
rather than writing or modifying a software rendering sys-
tem such as Mesa [12], to generate the instrumented trace.
Chromium’s plug-in architecture makes it fast and simple
to further annotate the stream by writing additional SPUs,
or adding functionality to existing SPUs. We feel that the
framework is quite flexible and, with some ingenuity, can in-
corporate a wide range of architectural experiments. For ex-
ample, we plan in future work to explore the effects of Z,,;,,
culling [2] and Zyax or hierarchical Z-buffer culling [5, 11].
Typical hardware implementations of these ideas organize
the depth buffer into 8 x 8 pixel tiles, and track the maximum
or minimum depth, respectively, within the tile. If a given tri-
angle is known to lie further than the maximum depth of a
tile (for example, the distance to the triangle’s nearest vertex
is greater than that maximum depth), rasterization may be
skipped in that tile; if the triangle’s furthest vertex is closer
than the tile’s minimum depth, rasterization may proceed
without requiring any Z-read operations.

To incorporate such tiled Z-buffer schemes, we propose
to add another scratch buffer, with 1/8" the linear resolu-
tion of the frame buffer, to the Qsilver annotator. This buffer
stores at each pixel the maximum and minimum depth of
the corresponding 8x 8 tile of the framebuffer, and is up-
dated after every primitive by running a min-max fragment
program on the pixels of the scratch buffer affected by that

primitive (easily accomplished by rasterizing a “fat” ver-
sion of the primitive, or its bounding box, into the low-
resolution scratch buffer). The min-max fragment program
simply pools the pixels in the corresponding tile of the full-
resolution depth buffer (bound as an input texture) and com-
putes their min and max values. Given this low-resolution
buffer, we can easily use an occlusion query and a special-
purpose fragment program to render the primitive (at full
resolution) and count how many fragments would pass the
Zimin OF Zmax tests.

Another motivation for using a hardware-accelerated an-
notation process via Chromium is speed: the use of hardware
rasterization can be considerably faster than using an instru-
mented software renderer, typically in scenarios (high reso-
lutions, full-screen stencil shadow buffer effects, etc) where
the system is heavily fill-bound. Indeed, on our test platform
a typical 50-frame trace from Enemy Territories runs 1.8
faster through the Qsilver annotator than through uninstru-
mented Mesa at 1280x1024, and 2.6 x faster at 1600x1200.

It must be noted, however, that incorporating the annota-
tions necessary to evaluate new architectural embellishments
can be expensive, since every additional rendering pass and
scratch buffer increases the number of pipeline flushes, con-
text switches, and rendering calls. Furthermore, there are
fundamental limitations to what data can easily be collected
by our hardware-based annotator using fragment programs
and occlusion queries. Our annotation approach is well-
suited for collecting aggregate information: how many frag-
ments get rasterized, pass the depth test, get textured with
magnification versus minification, etc. While such informa-
tion is sufficient for a wide range of studies, some experi-
ments may require precise information about the positions or
values of individual fragments. For example, it might prove
difficult to study the effects of a Z-compression scheme in
which memory bandwidth depended on the exact contents
of the Z-buffer. In such a situation a user would likely wish
to revert to instrumenting a software rasterizer, such as in
Mesa, to track and collect the necessary data. Conveniently,
Mesa implements the OpenGL API and can be incorporated
directly into Qsilver’s Chromium framework. This would al-
low the user to use the rest of the Qsilver framework and to
re-use existing OpenGL traces, etc. It may even be possi-
ble to mix Mesa and hardware-accelerated OpenGL using
different SPUs in Qsilver, for example running the slower
Mesa rasterizer only for polygons or rendering intervals for
which a particular architectural embellishment (e.g. a texture
caching or compression scheme) was being evaluated.

7. Conclusions and future work

We have described Qsilver, a framework for power and per-
formance analysis of graphics hardware. We have used Qsil-
ver to develop a prototype power and performance model of
a hypothetical GPU, and shown how this model allows:
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e Fine-grained analysis of rendering behavior and bottle-
necks, which can be used to optimize rendering systems.

e Architectural power and performance tuning, such as bal-
ancing the fragment-engine throughput to match the ver-
tex engine’s throughput.

e Evaluation of new architectural techniques for perfor-
mance or power, such as Z,,;, culling or the use of DVS
across multiple clock domains.

Our goal in developing Qsilver is to create a tool that
will not only serve as a useful system for application perfor-
mance analysis, but also stimulate research on GPU archi-
tecture and power-aware design in the same way that similar
capabilities in the CPU community have fostered an explo-
sion of research. It is important to note that we have designed
Qsilver to be sufficiently flexible to model a wide array of ar-
chitectures. We specifically wanted to ensure that it would be
useful for modeling radical architectures to explore possible
GPU architectures for future generations of graphics cards.

The next step in our work is refining our prototype to
faithfully model a cutting-edge, programmable GPU. Then
Qsilver makes possible a variety of interesting avenues for
future work. For example, we would like to experiment with
architectural innovations such as Delay Streams [1]. We are
also particularly interested in modeling thermal effects. With
a faithful performance and power model, and the addition of
a more detailed floorplan, Qsilver can be augmented with a
thermal model such as HotSpot [ 19] to dynamically simulate
on-chip temperatures. This is an increasingly important area
of research as high-performance GPUs become prohibitively
costly to cool. For example, the tendency to oscillate be-
tween being vertex-bound and fragment-bound suggests that
the GPU will in fact oscillate between thermal hotspots in
these two regions. By smoothing out these hotspots spatially
and temporally, temperature-aware design at the architec-
tural level can significantly reduce cooling costs [16].
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Figure 6: The evolution of a frame in the Enemy Territories game.
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