Eurographics Workshop on 3D Object Retrieval (2012)
M. Spagnuolo, M. Bronstein, A. Bronstein, and A. Ferreira (Editors)

Parallelized algorithms for rigid surface alignment on GPU

Aviad Zabatani, Alex M. Bronstein®

School of Electrical Engineering, Tel Aviv University
aviad.zabatani@gmail.com, bron@eng.tau.ac.il

Abstract

Alignment and registration of rigid surfaces is a fundamental computational geometric problem with applica-
tions ranging from medical imaging, automated target recognition, and robot navigation just to mention a few.
The family of the iterative closest point (ICP) algorithms introduced by Chen and Medioni [YC] and Besl and
McKey [PB92] and improved over the three decades that followed constitute a classical to the problem. However,
with the advent of geometry acquisition technologies and applications they enable, it has become necessary to
align in real time dense surfaces containing millions of points. The classical ICP algorithms, being essentially se-
quential procedures, are unable to address the need. In this study, we follow the recent work by Mitra et al. [NJM]
considering ICP from the point of view of point-to-surface Euclidean distance map approximation. We propose a
variant of a k-d tree data structure to store the approximation, and show its efficient parallelization on modern
graphics processors. The flexibility of our implementation allows using different distance approximation schemes
with controllable trade-off between accuracy and complexity. It also allows almost straightforward adaptation to
richer transformation groups. Experimental evaluation of the proposed approaches on a state-of-the-art GPU on
very large datasets containing around 10 vertices shows real-time performance superior by up to three orders of
magnitude compared to an efficient CPU-based version.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction assigning each point on the query to its nearest neighbour on
the template. Once the correspondence has been established,
the aligning transformation is found by minimizing some er-
ror criterion, and is applied to the query. Since this usually
changes the closest point correspondences, the above two
steps are iterated. Being essentially a sequential procedure,
ICP is unable to address the need of real time alignment of
dense surfaces containing millions of points, which is be-
coming necessary with the advent of affordable geometry
acquisition technologies and the applications they enable.

Alignment and registration of rigid surfaces is a fundamen-
tal computational geometric problem with applications rang-
ing from medical imaging, automated target recognition, and
robot navigation just to mention a few. Given two surfaces,
often referred to as the template and the query, each repre-
sented in its own system of coordinates, the goal of regis-
tration is to find a rigid transformation (translation, rotation,
and, possibly, reflection) optimally aligning one surface with
the other. The family of the iterative closest point (ICP) al-

gorithms introduced by Chen and Medioni [YC] and Besl In this study, we follow the recent work by Mitra et al.

and McKey [PB92] and improved over the three decades
that followed (see, e.g., [RLO1] for a systematic overview)
constitute a classical to the problem. ICP algorithms first es-
tablishes the correspondence between the two surfaces by

T Research supported by the Israeli Science Foundation and the
German-Israeli Foundation.

(© The Eurographics Association 2012.

[NJM] considering ICP from the point of view of point-
to-surface Euclidean distance map approximation. We take
advantage of modern programmable graphics hardware and
propose parallelized algorithms for efficient surface registra-
tion based on distance map approximation. The flexibility of
our implementation allows using different distance approx-
imation schemes with controllable trade-off between accu-
racy and complexity. Experimental evaluation of the pro-

delivered by

DIGITAL LIBRARY
diglib.eg.org

EG EUROGRAPHICS

DOI: 10.2312/3DOR/3DOR12/017-023

www.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/3DOR/3DOR12/017-023

18 A. Zabatani and A. M. Bronstein / Parallelized algorithms for rigid surface alignment on GPU

posed approaches on a state-of-the-art GPU on very large
datasets containing around 10 vertices shows real-time per-
formance superior by up to five orders of magnitude com-
pared to a CPU-based version.

This paper is organized as follows: in Section 2 we for-
mulate the rigid registration problem and briefly overview
different approximations of the surface-to-surface distances
constituting the objective function being minimized. Sec-
tion 3 is dedicated to a self-contained derivation of a New-
ton descent-based rigid registration algorithm introduced in
[NIM].

In Section 4, we describe a parallel implementation of the
algorithm, and in Section 5 show its experimental evaluation.
Finally, Section 6 concludes the paper.

2. Distances between surfaces

Let S and Q be some two-dimensional surfaces in RS, to
which we refer as to the template and the query, respec-
tively. We aim at finding a Euclidean isometric x — Rx+t
parametrized by an orthonormal 3 x 3 rotation matrix R and
a 3 x 1 translation vector t that minimizes some measure of
misalignment between the template S and the transformed
query RQ +t,

%ij:l dRQ+1,8). (1)

Out of a wide variety of possibilities to define a mis-
alignment criterion between two surfaces, a non-symmetric
squared distance

4*(Q,8) = Y wqd’(q,S),)
qeQ

where the weight wq represents, for example, the discrete
area element of the point q, and d>(q,S) is the squared
point-to-surface distance between a query point q and the
template S.

Since the template is fixed, theoretically, dz(-,S) can be
pre-computed as a Euclidean distance map from S. For ex-
ample, fast marching algorithms simulate the propagation of
a wave-front starting at S; the time of a arrival of the front
to a point represents the value of the distance map at that
point. However, while the computation and the storage of the
exact distance map are relatively expensive, surface registra-
tion tasks are known to work well with approximate distance
maps. In what follows, we detail three of such commonly
used approximations.

Far field approximation. When a query point q is suffi-
ciently distant from the template surface S, the point-to-
surface distance can be approximated by the distance to the
closest point s* on the surface,

d*(q,8) = min flq—s"||" 3)

This leads to a positive definite quadratic distance map ap-
proximant

d*(a,8) = q'q—25""q+s"s",)
where s™ is the closest point depending on q.

Near field approximation. When a query point q is close to
the template surface, the distance map can be approximated
as a point-to-plane distance obtained by projecting the vector
q —s" onto the normal n to S at the point s*,

d*(q,8) = (n.q—s")’

q'nn"q—25"Tnn"q+s*Tnn"

s, (9

Second-order approximation. While both the near- and
the far-field cases constitute merely a first-order approx-
imation to the true distance map, Pottmann and Hofer
[PHO3,PLHO04] showed the following second-order! approx-
imation:

d*(q,8) = 6)

8778p1<e1aq_s*>2+ 5*892 <e25q_s*>2+ <n7q_s*>27
where e, e,,n are the vectors of the principal frame at the
point s* corresponding, respectively, to the principal cur-
vature directions and the normal; p; are the corresponding
principal curvature radii; and 8 = +||q —s*|| is the signed
distance with the sign determined by the projection on the
normal, signd = sign (n,q —s™).

Note that the above expression generalizes the near- and
far-field approximations, corresponding to & < p; and & >
pi, respectively. Since the distance approximant may become
negative for some query points, the authors proposed a non-
negative version,

o) *
dz(q7$) = maX{W,O} <el,q7S >2+

max{%ﬁ} <627Q—S*>2+ <H7CI—S*>2~ @)
—pP2

As in the case of the first-order approximants, the second-
order counterpart is also a positive definite quadratic func-
tion in q,

d*(q,S) = q"Aq—25"TAq+s"TAs* ®)
with
A = max {L,O}ew?—i—max{L,O}ezeg—&—nnT.
d—p; d—p2

We conclude that the point-to-surface distance can be ex-
pressed as the positive definite quadratic function

d*(q,S) = ¢"A(q)g—2b" (@)g+c(q),)

T The approximation is first-order at the points of the medial axis
of S, where the distance map is not C'.

(© The Eurographics Association 2012.

A. Zabatani and A. M. Bronstein / Parallelized algorithms for rigid surface alignment on GPU 19

with the coefficients A(q), b(q), and c¢(q) depending on the
closest point s*.

3. Rigid registration

In order to solve the minimization problem (1), one has to
minimize the approximate surface-to-surface distance over
rotation matrices and translation vectors. Since imposing the
unitarity constraint R™R = I on the rotation matrix results
in second-order constraints that are difficult to deal with,
a common alternative is the parametrization of rotation us-
ing Euler angles. However, such a parametrization implies
a complicated relation between the optimization variables
(the angles) and the result of the transformation. Follow-
ing [NJM], we linearize the rotation matrix under the small
rotation assumption, obtaining the skew-symmetric matrix

1 —0; 0,
R ~ 0, 1 —03 (10)
-0, 03 1

where 6 = (91792793)T is the vector of the Euler angles
parametrizing the rotation. The application of the transfor-
mation to a point q can be therefore expressed as

—q2 g3 0 1 0 O 0
Rq+t ~ q1 0 —qg3 0 1 O (¢)—i—q
0 —a @ 0 0 1
= Q(q)x+gq, (11)

where xT = (OT,tT) is the combined six-dimensional vector
of the optimization variables.

3.1. Objective function

Our next goal is to express the objective function (2) with re-
spect to the selected problem parametrization. Let us first ex-
amine an individual squared point-to-surface distance term.
The influence of the transformation on the quadratic squared
distance approximant (9) translates into the complicated re-
lation

d*(Rq+1,8) = (Rq+t) A(Rq+t)(Rq+t)
—2b" (Rq+t)(Rq+t) + c(Rq+t), (12)

in which the coefficients of the quadratic function depend on
the transformed query point q. However, under a small trans-
formation assumption, we abandon this dependence obtain-
ing a simpler approximant d 2 d?,

d*(Rq+t,8) = (13)
(Rq+6)"A(q) (Rq+1) —2b"(q)(Rq-+1) +-c(q),
Substituting (11) into the above result yields a quadratic
function in the vector of optimization variables x,
A*(Rq+1,8) ~ x QTAQx —2(Q"b+ Q"ATq) 'x+
(a'Aq—2b"q+¢) = x"F(q)x — 2" (@)x +h(q),
14

(© The Eurographics Association 2012.

where the coefficients are given by

F(q) = Q(q)"A(q)Q(q)
g(q) = Q"(q)b(q) + Q" (@A (q)q
h(q) = q"A(q)q—2b" (q)q+c(q). (15)

Finally, plugging in the latter result into the squared surface-
to-surface distance (2) yields

d*RQO+1,8) ~ x'F(Q)x—2g" (Q)x+h(Q), (16)

with the coefficients

F(Q) =) wqF(q)
qeQ

g(Q) = Y wqslq)
qeQ

h(Q) =) wqh(q). (17)
qeQ

Note that the above coefficients depend on the surface Q and
have to be recomputed each time it is transformed. Further-
more, we emphasize that (16) approximates the true objec-
tive (12) only for small transformations.

3.2. Numerical optimization

The approximate objective function (16) is a positive definite
quadratic function in six variable, whose minimizer is given
by the solution of the linear system

F(Q)x = g(Q). (18)

The corresponding transformation can be described in ho-
mogeneous coordinates as

- (1) (19)

where 0T = (0,0,0), and © and t are the components of the
vectors X.

However, since the approximation made in (16) is valid
only for small transformation, applying T to O can actually
increase the value of the true objective function. Mitra et
al. [NJM] proposed to regard the solution z merely as a de-
scent direction, in which a fractional step Q' =T%Qis per-
formed with a selected to be small enough to guarantee suf-
ficient decrease of the objective. The resulting optimization
algorithm is usually referred to as damped or safe-guarded
Newton descent. While it is possible to use exact line search
in order to establish the optimal value of o minimizing the
objective over the ray {T*Q : o > 0}, inexact line search is
often preferred due to its lower computational complexity.
Algorithm 1 outlines a variant of inexact line search known
as Armijo rule. Note that while the descent direction is estab-
lished from the approximate objective (16), the line search
is performed on the exact one in order to guarantee its de-
crease.

20 A. Zabatani and A. M. Bronstein / Parallelized algorithms for rigid surface alignment on GPU

input : descent direction x; parameters ,0 € (0,1)
output: step size o

Setp = 2(XTF(Q)X — gT(Q)X)
Construct T according to (19)

Seta=1

while d(T*Q,S) —d*(Q,S) > cop do
‘ o= Pa

end

Algorithm 1: Armijo rule for fractional step selection.

input : template surface S; query surface Q
output: query surface Q registered to the template

repeat

foreach q € Q do
Construct or fetch distance approximation
coefficients A(q),b(q), and c(q)
Construct coefficients F(q),g(q), and (q)
according to (15)

end

Construct quadratic approximant coefficients

F(Q),g(Q), and h(Q) according to (17)

Find Newton direction x = F~!(Q)g(Q)

Construct transformation T according to (19)

Using Armijo rule, find step size o

Transform query surface Q = T*Q

until convergence;

Algorithm 2: Rigid surface registration algorithm
[NIM].

The entire rigid registration algorithm is outlined in Al-
gorithm 2. As a stopping criterion, either the change in the
transformation ||T — I|| or the value of the objective itself
can be used. Note that the algorithm returns the transformed
query surface TQ optimally registered to the template. If the
transformation itself is sought after, it can be composed from
the iterates Ty as T = Ty" Tg”:ll ----- T

3.3. Distance approximation coefficients

Despite its apparent departure from the classical ICP
schemes iterating nearest neighbour search with optimal
alignment of sets of corresponding points, Algorithm 2 still
conceals nearest neighbour search, as the construction of
the coefficients A(q),b(q), and ¢(q) is based on the closest
point s*.

Since a point s € S constitutes the closest point to all
query points belonging to the Voronoi region

V(s) = {q:llg—sl| < llq—s'||vs' €S}, (20

the coefficients A,b, and ¢ are constant in each such V(s).
Representing the Voronoi decomposition of the space in-
duced by the points of the template surface and storing
the approximation coefficients corresponding to each region
effectively undoes the need of explicit nearest neighbour
search.

In [NJM], Mitra et al. proposed to use an octree structure
to store and efficiently fetch the quadratic approximant coef-
ficients. In this study, we adopt a more flexible data structure
resembling a k-d tree and describe its parallel implementa-
tion on graphics hardware.

4. Parallel implementation

‘We propose four parallel algorithms taking advantage of the
GPU to perform the closest point correspondence search or
evaluate d2(Q,S) in (2), accelerate the application of the
transformation R,t to the query, and evaluate the objective
function (16) at every iteration. The CPU is used to build a
generalized k-d tree data structure utilized for the efficient
point-to-surface distance approximation including the cal-
culation of the quadratic approximant coefficients in (15);
to solve the the 6 x 6 Newton system for the transformation
parameters; and to control the flow of the algorithm (Figure
2). The template itself is stored in the GPU memory, since it
is static throughout the entire process, while the query shape
changing at every iteration is stored in the CPU and copied to
the GPU for computation. To overcome the GPU’s inability
to work efficiently with irregular memory access patterns,
we propose a parallel implementation of the k-d tree opti-
mizing the access to the nodes storing the template vertices
in subsection (4.2). Also, the use of simple instruction and
frequent storage of intermediate results in the GPU registers
were used to avoid branching and complex instruction that
are known to be less efficient on the GPU. This led to an ef-
ficient parallel GPU implementation of the k-d tree structure,
the main ingredient of ICP.

In the accompanying implementation, we supply a simple
interface allowing to specify the distance function used in
(2) by changing the calculations of the stored distance coef-
ficients. The resolution of the tree is also controllable, allow-
ing to trade off accuracy with execution time.

4.1. Algorithms

The following algorithms were implemented:

CPU ICP [CCICP]. A serial implementation of the clas-
sical ICP as introduced by Chen and Medioni [YC] using
the ANN library for efficient nearest neighbour search. This
implementation is presented as a baseline for measuring the
performance of the parallel algorithms.

GPU ICP [GCICP]. An implementation of the classical

(© The Eurographics Association 2012.

A. Zabatani and A. M. Bronstein / Parallelized algorithms for rigid surface alignment on GPU 21

ICP as introduced by Chen and Medioni [YC], using the
GPU to perform the correspondence search and to apply the
transformation in each iteration.

Approximate GPU ICP [GCAICP]. An implementation
of the classical ICP with approximation of the using the k-d
Tree cell to store the geometric mean mass point of all the
vertices in that cell, thus avoiding the in-vertex search and
the back search,and as result reducing the iteration time the.
Uses the GPU to perform the correspondence search and to
apply the transformation in each iteration.

Revised GPU ICP. An implementation of the registration
algorithm proposed by Mitra et al. [NJM] on GPU with the
far-field distance map approximation ((GRICPPT]) and the
near-field distance map approximation ((GRICPPL]).

4.2. Parallel k-d Tree

The computation of the point-to-surface distance map is
the core of the registration algorithm and is the most time
consuming operation. The brute force approach is based
on evaluating the distance function from each of the tem-
plate vertices followed by selecting the vertex with the min-
imal distance. Such a naie approach has the complexity of
O (m x n) with m being the template size and n the query
size. In order to decrease the distance evaluation time, we
used a variant of the k-d tree data structure. k-d tree is a bi-
nary space partitioning tree in which each node splits the
space along a plane normal to one of the axes (yet, having
an arbitrary offset). Leaf nodes create a partition of R3, with
each leaf corresponding to a single cell of the partition. In the
traditional k-d tree, each such cell is linked to a template ver-
tex; given a query vertex, the tree is traversed from the root
down to the leaf into whose cell the query vertex belongs,
thus establishing the closest point correspondence. Instead
of associating each cell merely to a template vertex, we as-
sociate it to the quadratic approximation coefficients, such
that all query vertices belonging to a particular cell will use
the same Q, b, and c to evaluate the approximate squared dis-
tance map. The refinement of the tree cell size (by increasing
the number of levels) improves the accuracy of the distance
map approximation at the expense of higher computational
complexity. The coefficients are calculated one time on tree
construction; by storing the coefficient at intermediate levels
allows trading off between accuracy and speed in run-time
rather than at initialization time.

Distance computation using the k-d tree has the time com-
plexity of O (n) with an accuracy-dependent constant; when
the computation is parallelized for p query vertices, the pro-
cess is accelerated by the factor p. The main difficulties in
parallelizing the k-d tree are the random access patterns of
tree search due to data-dependent branching, as well as ef-
ficient storage of the tree. As there is no way to change or
know ahead of time the access patterns, we construct the tree

(© The Eurographics Association 2012.

Figure 1: Visualization of the quadratic distance map from
the template shape (left) to the query shape (right). 1 repre-
sents point to plane distance and 2 represents point to point
distance

off-line and serialize its nodes to the GPU constant LFU-
cached memory ordered by their level and position in the
tree (Figure 3). This makes the root and the first tree levels
cached and allows fast access to them, while the least ac-
cessed nodes are not cached an have slower access. This ar-
rangement also reduces the probability of bank conflicts for
typical access patterns, thus further accelerating the mem-
ory access. The serialization process also reduces the storage
complexity by extracting the template vertices and arranging
them in an array referred by index only. Since the approxi-
mation coefficients rather than the actual vertex coordinates
are used for distance computation, a significant amount of
space is saved.

5. Results

We evaluated the proposed approach on a state-of-the-art
Tesla C2070 GPU on inputs ranging from 10° to 10° ver-
tices. For reference, results of an optimized sequential ICP
algorithm using ANN library executed on modern Intel Xeon
E5620 2.4 GHz are given.

5.1. Iteration time

In many applications, the surfaces are roughly registered and
ICP is used to refine their alignment. In such cases, the num-
ber of iterations required to converge is small. To evalu-
ate the performance of different alignment algorithms, we
benchmarked the execution time of a single iteration for dif-
ferent input sizes. Execution times are summarized in Fig-

22 A. Zabatani and A. M. Bronstein / Parallelized algorithms for rigid surface alignment on GPU

Build kd tree

Serialize tree to GPU

ul Start ICP iteration

/ \
Calculate d*(Q,5)| Caleulate d*(0,S) Calculate i*(0,5). Calculate d*(0.5)
| (¢}

Compute Newton Direction)

Evaluate Cost

Evaluate Cost Evaluate Cost
Function

Function ‘ Function

Sufficient Cost Decrease? |
Calculate Transformation
/ \

Apply Apply
transformation transformation

[Stop?

Figure 2: The flow of the paralleled ICP algorithm, taking
advantage of the graphic hardware to compute the indepen-
dent steps of the algorithm. The Gray steps are done in se-
rial, while the Pink steps are done in parallel.

Evaluate Cost
Function

Apply
transformation

Apply
transformation

Figure 3: Visualization of the memory layout of the tree in
the GPU memory

ure 4 (left); the right-hand plot depicts the speed-up factor
of the parallel implementations relative to the serial coun-
terpart. For large data, acceleration of up to 300 times is
observed, with the parallel algorithm spending from 80 to
300 milliseconds per iteration. This enables real-time perfor-
mance. In this experiment, sufficiently deep trees were used
to make the approximate distance function within 1% error
compared to its exact value. Lowering the accuracy further
reduces the execution time.

5.2. Convergence time

For the completeness of the execution time benchmarks,
we also measured to time different algorithms take to con-
vergence given the same input. Algorithms based on New-
ton steps (GRICPPT and GRICPPL) require a significantly
smaller number of iterations compared to the standard ICP,
as shown in Table 1. This results in even higher speed-up
factors than those observed for a single iteration.

Figure 5 depicts the convergence time and relative speed-
up (compared to the serial version) of different alignment al-
gorithms. We observe an acceleration of up to 1000 times

CCICP | GCICP | GCAICP GRICPPT | GRICPPL

62 35 47 17 5

Table 1: The average number of iteration in each of the al-
gorithms (subsection 4.1) for all input sizes

compared to the serial version. In absolute figures, align-
ment of surfaces containing one million vertices takes less
than 1.5 seconds. Again, we note that lowering the distance
computation accuracy further improves performance.

5.3. Accuracy

In order to test the accuracy of different algorithms, we eval-
uated the alignment error according to

e = IR™'R" —I|[p + ||Rt — "], @1

where R, t is the computed transformation, and R*, t* is the
groundtruth transformation. Table 2 summarizes the relative
errors (compared to the exact ICP) averaged over various in-
put sizes. Note that accuracy degradation due to the distance
approximation is insignificant; further improvement in accu-
racy can be achieved by increasing the tree depth.

Algorithm| GCICP | GCAICP | GRICPPT| GRICPPL

Error 99.98% | 99.83% 99.3% 98.87%

Table 2: Average relative alignment errors of different algo-
rithms computed for various input sizes

5.4. Tree construction

The construction of the k-d tree is performed offline on the
CPU and then serialized to the GPU. This initialization pro-
cess limits the application of our proposed method to tem-
plates that do not change frequently. We note that construc-
tion time depends on the template size and the tree depth.
The construction of the tree with 17 levels for a template
containing 5 X 10° vertices takes less than 2.5 seconds. The
GPU acceleration of this process will be explored in future
work.

6. Conclusion

We presented a parallel implementation of the rigid surface
alignment recently introduced by Mitra et al. [NJM], opti-
mized for graphical hardware. Our implementation is based
on a variant of the k-d tree data structure, which is more
efficient than the originally proposed octree. Experimental
evaluation of the proposed algorithm on a modern GPU ap-
plied to very large datasets containing millions of vertices
shows real-time performance superior by up to three orders
of magnitude compared to an efficient CPU-based version.
The paper is accompanied by code, in which a simple in-
terface allows to control the accuracy-complexity trade-off

(© The Eurographics Association 2012.

A. Zabatani and A. M. Bronstein / Parallelized algorithms for rigid surface alignment on GPU 23

Figure 4: Execution time in milliseconds of a single ICP iteration (left) and relative speed-up compared to the CPU version as

a function of the input size(right).

Figure 5: Execution time in milliseconds until convergence of ICP (left) and relative speed-up compared to the CPU version

as a function of the input size(right).

and supply user-defined distance function. In future studies,
we are going to extend the approach to richer families of
transformations including local and global affine transfor-
mations.

References

[NJM] N. J. MITRA N. GELFAND H. P. L. G.: Registration of
point cloud data from geometric optimization perspective. 1, 2,
3,4,5,7

[PB92] P. BESL N. M.: A method for registration of 3-d shapes.
1

[PHO3] POTTMANN H., HOFER M.: Geometry of the squared

(© The Eurographics Association 2012.

distance function to curves and surfaces. Visualization and Math-
ematics III, Springer (2003), 221-242. 2

[PLHO4] POTTMANN H., LEOPOLDSEDER S., HOFER M.: Reg-
istration without icp. Computer Vision and Image Understanding
95,1 (2004), 54-71. 2

[RLO1] RUSINKIEWICZ S., LEvOoYy M.: Efficient variants of
the ICP algorithm. In Proc. 3D Digital Imaging and Modeling
(2001), IEEE, pp. 145-152. 1

[YC] Y. CHEN G. M.: Object modeling by registration of multi-
ple range image. 1,4, 5

