
A Virtual Memory System Organization
for Bit-Mapped Graphics Displays

Anthony C. Barkans

Schlumberger Technologies, Inc. *

CAD/CAM Division Ann Arbor, Michigan USA

ABSTRACT

Described is a display sub-system, designed for support of a very high speed
rendering engine. It provides high-performance graphics to an enVironment that
consists of a hierarchy of resizable windows. The concept of virtual memory has
been applied with the organization of the virtual to physical address spaces having
a unique mapping that fits the organization of a bit-mapped graphics memory
display.

CR Categories and Subject Descriptors: 1.3.1 [Computcr Graphics]: Hardware
Architectures - raster display devices; 1.3.3 [Computer Graphics]: PIcture/Image
Generation - display algonthms.

Introduction

VIEWS, is a new graphics memory system developed to support rendering over one
million triangles per second in a full X Windows environment. The limitations of
current graphics memory architectures in this environment will first be reviewed.
These limitations necessitated a new approach based on the specific graphics
memory requirements of high-performance rendering in X. The resulting VIEWS
architecture is an innovative and practical solution which exceeded these
requirements.

Current Graphics Memory System Design

The designs of hardware memory systems for bit-mapped computer graphics have
often followed general-purpose CPU paradigms. The three methods developed for
mapping a CPU's address on to its physical memory are direct mapping,
segmented virtual memory, and paged virtual memory. All of these methods
have more recently been applied to graphics systems as graphics capabilities
increase.

Direct mapping of grafhics memory to the rendering engine's address space is the
textbook example [4 commonly used in current commercial systems. This
approach has the lowest cost for a minimum system designed with a frame buffer
containing only enough memory to refresh the CRT. Such systems have two
performance problems when used in a high performance window environment:

• 	 Currently with: Hewlett Packard, Graphics Technology Division,
3404 Harmony Road, Ft. Collins, Colorado USA

http://www.eg.org
http://diglib.eg.org

200

• 	The rendering engine must clip pixels to the boundaries of windows. These
boundaries can be almost arbitrarily complex. As rendering speed increases
and more windows are used simultaneously, clipping at full rendering speed
becomes very costly .

• 	As the user moves and deletes windows, exposure events must be sent by the
window manager to the graphics applications in other windows. These
applications must then redraw at least portions of their windows, using both
CPU time and graphics throughput.

Figure 1 shows a single memory plane of such a system and how its contents map
to the display surface of the CRT.

Physical Memory

CRT
Scan line 1

W1
-c·

W2

W3

I
I ~.~ w,1 w, lJ

Last Scan Une

Figure 1: A Direct Mapped Graphics Memory

To address the shortcomings of direct memory mapping in general purpose
computer systems, virtual memory systems were introduced. More recently the
concept of virtual memory has been applied to graphics memory systems. Several
commercially available VLSI chips [2,10] have support for segmented addressing
schemes and a complete system using segmented graphics memory has been
presented [7].
The use of segmented memory for graphics display sub-systems solves the
performance problems inherent in the direct mappin& systems. The segments are
allocated so that each window has a continuous piece of physical memory of
adequate size. Since the entire window is stored in the segment, the rendering
engine does not need to clip pixels. The physical memory is large, allowing
backin~ store for windows so that exposure events can be handled without
disruptmg the application processes and without additional rendering.
However, when segmented graphics memory is used, two new problem areas
emerge. The first is the problem encountered in general-J?urpose CPU segmented
memory systems which is also encountered in fjaphlcs segmented memory
systems. This is complicated memory allocation an large-grained fragmentation.
The problem of memory management is compounded as window resize operations
are allowed. The second is the assembly problem unique to graphics. Assembling
the multi-window display for viewing on the CRT requires accessing physically

201

disjoint memory locations from different windows to display adjacent pixels. This
is not feasible for high resolution displays with complete window capability. An
example of a CRT display and the physical memory content for a segmented
memory display is shown in Figure 2.

Physical Memory

Scan line 1 of W 1
~~...~J~I~~~lir-M~2-.----~

ofW1 I

CRT

W1

W2

W2 W3

W3 I

Figure 2: A Segmented Graphics Memory

To expand on the second segmentation problem it should be noted that a random
access to physical memory using today's DRAM technology requires about 150 nS,
while a high resolution CRT (1280 X 1024 at 60Hz non-interlaced) requires a
pixel clock of under 10 nS. If a system allowed an arbitrary number of windows at
arbitrary positions, then in the worst case a new window could start at each pixel
location and so require a random access to physical memory at the pixel clock
speed. Since physical memory can not be accessed at pixel clock speed, systems
have been designed where windows must be placed on fixed boundaries [7] or the
number of windows that may be displayed at one time are limited [1OJ.

The problems with segmentation were solved in general purpose computer systems
by using paged virtual memory systems. A design using a paged virtual memory
system for the CPU, where the CPU also serves as the rendering engine, has been
presented [1J. In this system graphics rendering used the same datapaths and
memory provided for the CPU. Since it was critical to CPU performance, this
memory system was designed for both CPU and graphics performance. A second
memory was needed for CRT refresh. .

Adding paged virtual memory to a dedicated graphics memory system solves the
segmentation problems except for the assembly problem. The paging method has
another graphICS specific problem. The page organization is awkward for graphics.
Shown in FIgure 3, is a CRT display and the physical memo!), contents. As can be
seen in the figure, Window 1 (WI) has a single scan lme that is stored in
physically disjoint pages. Note also that the data forming the scan line is not
aligned to word boundaries within the pa~e. This makes the control problem
more complex when moving graphics data WIth a small outline (such as a character
from a stored font) to an arbitrary location in a large window. This operation is
also limited in speed by the inability to fully use the static column access mode of
the DRAM chips to increase the transfer rate. The awkwardness of the paged

202

system is also evident when a window resize operation is perfonned. As an
example, if a window were to be expanded by one pixel on the left side, then the
data for the extra pixel on each scan line would have to be inserted at the start of
the data for each scan line. This would require reorganizing the data within all
pages that fonn the window. This problem is a conse'l.uence of the physical
memory organization not mapping to the requirements of wmdowed graphics.

Physical Memory

(Several pages per window) CRT

I Start scan

End scan line N in W 11
W3

W1

W2

I

Figure 3: A Paged Graphics Memory

Therefore as graphics memories have developed along the same lines as those of
general purpose CPU's, two important problems for graphics systems have not
been solved. One is the problem of assembling a multi-window image for CRT
refresh and the other is mapping virtual windows onto physical memory in a
manner which facilitates high perfonnance graphics operations.

Requirements for High Performance Rendering in the X Windows Environment

Users of modem computer graphics systems are starting to expect the ability to not
only run, but to interact simultaneously with multiple applications rS]. At the same
time users are requesting more graphics perfonnance. The basic functional
capabilities are being provided by building applications to run within window
systems such as X Windows [9].
The VIEWS graphics memory sub-system was developed in conjunction with a
high speed rendering engine that rendered over one million light-sourced triangles
per second [31. The system could also be used with other high perfonnance
rendering hardware [11J. The increased performance that users need is provided
by building such advanced rendering hardware.
VIEWS was conceived to support this full rendering speed in an X Windows
environment where window manipulations would appear instantaneous to the
system user. To meet this design goal without compromise, the development
process began with a list of system requirements. The list was broken into three
parts: perfonnance requirements, X Windows functional requirements, and
advanced graphics feature requirements. This list became the basis for the VIEWS
definition.

203

VIEWS Requirement List

1. PERFORMANCE REQUIREMENTS

- In order for the rendering hardware to run at full speed, window clipping
had to be hidden from the rendering process.

- The memory organization should use the fast access mode (Static
Column) of the DRAM chips whenever possible in rendering and data
copy operations. This means the structure of the memory chips must be
matched to the locality of graphics operations.

- Bandwidth reguirements for data movement must be minimized.
Specifically, pOInters should be changed rather than copying data for large
data movement operations such as switching buffers in double-buffering.

- The organization of data in the memory chips must allow the high speed
sequential accesses required for CRT refresh.

- The method used to map pixel X,Y addresses to the physical memory
array must not be so complicated that memory accesses become a
performance bottleneck.

2. 	 X WINDOWS FUNCTIONAL REQUIREMENTS

The display system may not limit the number of windows that can be
opened at once.

The display system must allow windows to be placed at arbitrary locations
on the display surface.

- Windows must be retained with effective utilization of available memory
and graceful degradation when memory capacity is exceeded.

- Resizing of windows should appear instantaneous to the user.

- The backing store should be expandable.

3. 	 ADVANCED GRAPHICS FEATURE REQUIREMENTS

- Double buffering must be supported.

Panning within a window must be supported.

- Anti-aliasing must be supported by allowing several frames of the same
scene to be stored and then combined to produce the final image.

- Video output should be flexible, to support several display formats.
These would include, a high resolution CRT display, NTSC vldeo, an as
yet undefined HDTV format, and a stereo display.

-	 Beyond double buffering the backing store should support many buffers
for storage and display of successive frames of animation sequences.

204

These requirements ruled out using a direct mapped frame buffer, so a virtual
memory graphics system was investigated.

The first problems that needed to be solved were the memory organization and
assembly problems. These problems are unique to supporting virtual memory in a
graphics environment. .

To solve the memory organization problems, a new virtual memory mapping
scheme was developed. By extending the same mapping technique the assembly
problem was solved and ALL the listed requirements for high performance
rendering in an X Windows environment were met.

Graphics Virtual Memory to Physical Memory Mapping

The common concept in the three memory of!~anizations already reviewed is the
memory space is treated as a linear or I·dimenSIOnal array. This IS true in both the
physical and virtual spaces. The key to solving the memory mapping problem was
to recognize that graphics virtual space is inherently 2-dimensional. VIEWS maps
a 2·D virtual address space on to a I·D physical space. The virtual space is
partitioned into rectangular regions, called tiles, that map into same·sized regions
of the linear physical memory space. The size and shape of these tiles are fixed
just as page size in a linear virtual memory system is fixed.

The transformation between the 2·D virtual space and the I·D physical memory
array is done as part of the address translation. In this system a 2-D virtual address
is sent to translation hardware where the mappin~ is done by a combination of a
translation RAM and a unique method of hardwinng the address lines through the
translation table into the physical memory array. A schematic view of the virtual
2·D address field and its connection to physical memory is shown below as Fi~ure
4. This translation hardware is analogous to the page translation hardware m a
CPU with paged virtual memory.

Virtual Y Address Virtual X Address
/' \./ "­

Window Y·Tile Y·Word X-Tile X·Word X-bit
ID Number Displacement Number Displacement Displacement
Field Field Field field Field Reid

Low Order
Address Bits

Physical
2-DX,Y
Offaet

Memory

L Translation High Order

L.......t Table Address Bits

PhYSical
Tile Number

,

Figure 4: A 2 Dimensional Virtual Address Translated for Physical Memory

205

From the virtual address field it can be seen that virtual space is treated as a 2-D
space, where the X bit displacement, X word displacement, and X tile number
form one axis and the virtual Y address forms the other.

In order to go from virtual space to physical space, the virtual X tile number and
virtual Y tile number are combined with the window ID to go through the
translation table to form part of the physical address. The rest of the physical word
address is formed by passing the X word displacement and Y word displacement
directly to the memory array. (As is typical in graphics, the X bit displacement is
used to build a mask that tells the graphics logic unit which bit to operate on
within the word rather than to address a word.)

Note, the field alignment is altered in the translation process. The X word and Y
word displacement fields from the virtual address are combined to form the low
order field of the physical address. This re-alignment does several things:

• 	The tile is stored in a linear array of physical memory, but represents a 2-D
region of virtual space.

• Data from the same rendering locality (pixels near each other in X and Y) are
mapped onto a contiguous sequence of physical memory words. This allows
fast static column accesses in the DRAM chips to pixels adjacent in either the
X or Y directions.

• 	The width of a window is removed from the address calculation. In every
previous method (direct, segmented, or paged), the data for adjacent scan lines
IS offset in linear address space by the length of a scan line in that window. In
this 2-D mapping, the word offset in physical memory is based simply on the
virtual X and Y offset of the pixel from its window origin.

An example of the mapping between the virtual space and the physical memory
has been selected such that the 2-D virtual space will map to a Row Address
Select (RAS) region in the linear DRAM address space. In other words the X
word and Y word displacement fields will be combined to form the Column
Address field going to the physical DRAM device. In Figure 5 a single tile from
the 2-D graphics space is shown. Shaded in the figure are the pixels that would be
stored in the same Row of a single DRAM device. Note that the bit position
within the word is obtained from the X bit displacement field.

bit 0 	 bit 31 bit 0 Bit

1

« First Word ,

Shaded Area
Represents
Pixels Stored
In Same DRAM

Virtu
y

Addr

I

I

t

ml
~Seco

Displacement

-Scan Line 0

nd Word

First Nth
Word Word

Figure 5: A 2-D Virtual THe Mapped on to a DRAM array

206

Figure 5 showed the mapping of the bits within a 2-D tile to a localized re~on of
the address space of the physical devices that form the memory array. Figure 6
expands on Figure 5 by showing how the example tile is held in the DRAM
memory array.

Shaded Area
Represents
Same Pixels
as Shaded
in Figure 5

DRAM Devices
for a single
Memory Plane

Memory
Accessed

one

t
BhO Bit 31

Figure 6: A Tile Stored in the Physical Memory Array

The term tile has been used in previous ~raphics memory system descriptions [51 to
denote the array of pixels addressed Simultaneously in the DRAM array. the
VIEWS system labels this same array of pixels a memory word. Data for this
group of pixels may be accessed in parallel in a single DRAM access time. In
VIEWS this word corresponds to a 1 x 32 horizontal row of pixels in order to
match the horizontal scan of both the CRT refresh and the rendering processes.

The VIEWS tile, in contrast, is a new concept analogous to a virtual memory page
but with a 2-D organization. In Figure 5, the example 2-D Virtual Tile is the
second level of the hierarchy of graphics locality and of DRAM access speed.
This large tile will contain the typical small vector, triangle, raster character, or
other graphics primitive. It can be accessed by a sequence of fast static column
cycles without resorting to full DRAM RAS cycles.

These VIEWS tiles are then organized into virtual 2-D spaces called canvas buffers
indexed by window rD. A canvas buffer contains all the tiles of a virtual window,
whether displayed or not. When a window is opened, a set of physical tiles are
allocated for its canvas buffer according to the size of the window. Then the
translation table entries are updated to establish the virtual-to-physical mapping.

A schematic representation of a tiled memory array is shown in Figure 7.
Window 2 (W2) has been shown filled with a crosshatched pattern on the CRT.
The tiles that form the canvas buffer for window 2 are also shown with a
crosshatched pattern. Note tbat the tiles forming the canvas buffer for window 2
may be disjoint in physical memory, just as pages for a linear address space may
be disjoint in a conventional CPU with a paged memory system. Also note that
within each tile there is a 2-D locality, just as a page has linear locality in the
conventional system.

Physical Memory CRT

x
W1

~ ~
i & ~ I

W3

I PO(';M
y >t

x t?2S
I /<I
I I

I

?'>c

Figure 7: A Tiled Graphics Memory

Extending The Virtual Memory Mapping Concept

The virtual memory organization presented solves the virtual to physical memory
mapping problem for graphics display systems. The second problem encountered
with adding virtual memory to the graphics system is the data assembly problem.

The assembly problem has been previously addressed. The solutions include
replacing the DRAMs used in the frame buffer with fast Static RAMs. Another is
to use a separate physical memory to assemble the frame r1]. Also a system that
avoids the assembly problem has been presented [12] with the frame store built
out of full custom wafer scale memory circuits.

The VIEWS CRT image is located in a contiguous rectangular virtual eanvas
buffer like any other window. This special canvas buffer, the scan buffer. is the
same size as the displayed image, with a direct mapping of the virtual pixel X,Y
address to the CRT image X,Y location. The scan buffer's image is composed of
sections of the various windows visible on the CRT, originating in their own
canvas buffers. As any canvas buffer, the physical tiles comprising the scan buffer
are scattered in available physical memory.

The traditional frame buffer has a physical mapping to the CRT. In contrast the
scan buffer exists in virtual space. However the physical organization of the scan
buffer is still critical to CRT refresh.

CRT refresh is accomplished by the sequential accessing of memory words across
one row of a single physical tile using static column cycles, followed by a full RAS
cycle to get to the next tile. Tile addresses are mapped from adjacent in virtual
and CRT image space to disjoint in physical memory space. By requiring the use
of DRAM rather than VRAM (dual-port video RAM), this approach necessitates
a hardware cost saving. The large memory word and ability to use static column
access mode result in adequate DRAM bandwidth for CRT refresh.

The scan buffer must be modified whenever windows are moved or double buffer
swaps occur. If the windows happen to be tile-aligned, the scan buffer is modified
by simply updating the translation table entries to map different physical tiles to

208

the CRT image. In this case, the scan buffer requires no additional physical
memory to be allocated for CRT refresh.

Windows are not typically tile-aligned. Therefore, tiles of the scan buffer
containing non-aligned windows must be allocated an additional physical tile into
which the correct data is copied from the appropriate canvas buffer(s). When
windows are moved or buffers swapped in double-buffering, the affected scan
buffer tiles need to be redrawn by data copying from the original canvas buffers.

When the contents of a window is updated but the window definition does not
change, the contents of the updated canvas buffer can be used to update the scan
buffer. The tile list that forms the scan buffer is left unchanged. SCan buffer tiles
fully covered by an aligned window have already been updated in physical
memory. In general, scan buffer tiles are recopied during CRT retrace from the
canvas buffer being updated using a high-speed BITBLT capability.

This paper is concerned with the organization of a virtual memory system for bit­
mapped graphics. As such, only a brief description of a system designed around
the concept will be discussed. First, the functional model will be presented
followed by a brief description of the hardware.

VIEWS Functional Model

The window system manager acts as a resource manager. This display sub-system
is seen as rendering and display resources. These resources are:

• 	The Scan Buffer - This serves the function of a traditional frame buffer. The
scan buffer is an image of the CRT screen built in a virtual graphics space.
The display system micro-processor builds the scan buffer from the VIsible
windows, stored in other tiles, and state information that tells the processor the
window priority and screen location. Note that the screen location information
could be a list of scan line endpoints for support of irregular shaped windows.

• 	The Canvas Buffers - These buffers store the entire rendered image for each
window. The scan buffer is built by combining parts of several canvas buffers.
The system design has two types of canvas buffers. These are the deep (24 bits
of color and 4 bits for overlays) and shallow (2 bits deep) canvases. This is
consistent with the X Windows scheme for bItmap allocation. The shallow
bitmaps are seen as storing alpha-numeric windows and glyphs [fonts].

• Color Look Up Tables were supported.

• 	The last resource that the window manger has access to in this system is the
general purpose micro-coded engine. This processor will process high level
commands that the window manger sends. These commands would include
window manipulation tasks, and some rendering tasks. The rendering task that
would be handled are alpha-numeric updates, some graphics updates and
cursor updates.

There will still be cases where the opened windows require more tiles than the
system has available. When this happens, tiles can be taken from a window not
being updated and used for the current window being rendered. It is important to
note that once the visible part of a window is placed in the scan buffer, removing
the canvas buffer will not affect the display. Also note, if the scan buffer is then
changed and the window that had its canvas buffer removed is now more exposed,
then an exposure event will be generated and sent back to the application
following the standard X protocol. In this case, the system performance will
degrade gracefully, and instantaneous window manipulation will no longer be
possible.

209

VIEWS Hardware Model

Shown in Figure 8 is the high level block diagram of the VIEWS system.

I
!
I lit"

Figure 8: VIEWS Block Diagram

The lines on the left side of Figure 8 show the pixel data and Z status bit entering
the VIEWS systems from the supported rendering engine [3].

The VIEWS ~ate array is an ASIC device that serves as the focal point of data
transfers withm the VIEWS system. The gate array caches the pixel data [5] from
the rendering engine, and is used to store data durin~ high speed data transfers
within the memory array (BITBLT). A display FIFO within the VIEWS gate array
allows static column mode accesses to be used for reading the tiles that form the
scan buffer during CRT updates. The contents of the display FIFO are
sequentiality output to the high speed logic section. One VIEWS gate array is
used (>er memory plane. The connection between the gate array and the memory
array IS 32 bits per plane. This datapath can support a maximum burst transfer rate
of 1.12 G bytes per second. There is more than enough bandwidth to allow a full
screen (1536 X 1152 pixels) image to be moved within the memory array and the
CRT to be updated within one frame time of 16.67 mS.

The Z win mask FIFO caches the Z win bits. These bits are used to condition the
control signals going to the VIEWS Gate Array.

The control logic contains all the address generation circuitry, the CRT refresh
control circuitry and the micro-coded processor. The micro-processor is
responsible for controlling the VIEWS environment, including processing
commands from the window manager, initiating and synchronizing VIEWS
hardware operations, managing data structures, and performing some low level
rendering tasks.

The image build table is the table in the processor's RAM space that defines the
way the scan buffer is built.

A simple static ram is used for the tile address translation table. The translation
table does not supply status information, such as a valid bit. Instead, the u­
processor that controls the sub-system has to keep track of the status of the

210

memory array. Part of the control process is to make sure that before the
rendering en~ine starts to update a wmdow all the required tiles are present in
memory. ThIS requirement assures that tile faults can not occur.

The memory array design supports several physical memory array sizes. The
maximum physical memory allowed by the design is 4K X 4K pixels in the deep
canvas buffers and scan buffer combined. The shallow buffers can be expanded to
8K X 4K pixels. Note that these limitations are due to the VIEWS implementation
and are not architectural limits.

The high speed logic includes ECL shift registers and a LUT/DAC used to drive a
high resolution (1536 X 1152 pixels) CRT display.

In VIEWS, the word size is 32 bits, so the bit displacement field is 5 bits long.
The tile size is 256 X 256 pixels. The X word displacement field is 3 bits (8 words
X 32 pixels/word = 256 pixels). The Y word displacement field is 8 bits. The
virtual space is limited to 4096 X 4096 pixels so the X tile displacement and Y tile
displacement fields are 4 bits each. The Window ID field is 8 bits long.

The memory array is designed using DRAMs and not VRAMs. The DRAMs cost
less and are more flexible on the output port than VRAMs. The control logic
allows the refresh to be programmed to any resolution (up to 1536 X 1152 pixels
at 60Hz). Some of the programmed resolutions excepted to be used are the very
high resolution mode, a high resolution mode (1280 X 1024), and NTSC video.
About 1/3 of the high speed BITBL T bandwidth is allocated for the display update
task.

Extensions and Limitations to Current System

The system as presented is designed to replace current high end display sub­
systems. The architecture would not be cost effective in today's low end graphics
systems. A low end implementation of this system would cost about the same as
current high end double buffered display sub-systems.

In a low end implementation about half the memory would be needed by the scan
buffer, leaving one screen sized piece of physical memory for the deep canvas
buffers. An area of several screen sizes, could also be included, for shallow canvas
buffers, without addin~ much cost. Such a system configuration would offer the
full functional capabilities of VIEWS, but may not deliver all the performance the
architecture can provide, since exposure events would be sent back to the
application programs often. One big advantage to using the VIEWS architecture
over current designs is that as the next generation of DRAMs become available
the memory chips could be changed, while all of the control hardware and
software remain untouched. At that time, the physical memory would hold a scan
buffer with tiles left over for 3 full screen sized deep canvas buffers.

As new generations of memory chips become commodity items, the price per bit is
reduced. The VIEWS memory oq~anization is well suited to take advantage of the
evolving DRAM technology. WIth proper care, a design today would not only
plan for the next generation of DRAMs, but allow for many future generations of
memory devices.

As larger memory arrays become economically feasible, the simple static ram
translation table in VIEWS could be replaced by the more sophisticated translation
means used in general purpose virtual memory CPU designs.

Another interesting extension to investigate would be sharing a large memory
array between the CPU and graphics memories. This has been done using a linear
map{>ing for both memories t1]. However the extension to this architecture would
reqUIre a process could request the physical memory map to a either a 2·D or
linear virtual space on a process by process basis. In other words both tiles and
pages would be held in the same phYSIcal memory array.

211

Conclusion
A system has been presented, that meets ALL the stated design goals. The system
allows high performance graphics in an environment that consists of a hierarchy of
resizable wmdows. By providing instantaneous response to most window
operations, the user can feel that he is interacting simultaneously with several
applications.
Industry standards and state-of-the-art performance are not mutually exclusive!
VIEWS is the first system designed to synergistically combine the industry
standard X Window system and state-of-the-art rendering technology for
unparalleled interactive graphics.

Acknowledgements
The author would like Jorge Lach to be recognized as co-inventor of the system
described. Thanked are Tom Durant for his work on the implementation details,
Michael Deering for his review of the system, and Roger Day for both his
leadership and moral support. Efforts by the rest of the Applicon engineering
crew are greatly appreciated.
The Hewlett Packard Graphics Technology group is thanked for supporting and
reviewing this paper, espeCially Gary Taylor.

REFERENCES

1. 	 Apgar, Brian et ai, "A Display System for the Stellar Graehics
Supercomputer Model GS1000", Computer Graphics, 22, 4, 1988,(Proc
SIGGRAPH)

2. 	 Asal, Mike et ai, 'The Texas Instruments 34010 Graphics System Processor",
IEEE CG&A 6, 10, (October 1986)

3. 	 Deering, M. et ai, 'The Triangle Processor and Normal Vector Shader: a
VLSI System for High Performance Graphics", Computer Graphics, 22, 4,
1988,(Proc SIGGRAPH)

4. 	 Foley, J. D. and Van Dam, A., "Fundamentals of Interactive Computer
Graphics", Addison-Wesley, 1982

5. 	 Goris, Andy et ai, itA Configurable Pixel Cache for Fast Image Generation",
IEEE CG&A 7, 3

6. 	 Hamacher, Carl V. et ai, "Computer Organization", Second Edition
McGraw-Hill 1984

7. 	 ligen, S. and Scherson, I.D., "Real Time Virtual Window Management for
Bit Mapped Raster Graphics", Proc. 5th International Conf. on Computer
Graphics in Japan, Springer-Verlag, Tokyo 1987

8. 	 Lantz, Keith A. et ai, "Reference Models, Window Systems, and
Concurrency", Computer Graphics, 21, 2, (April 1987)

212

9. 	 Scheifler, Robert W. and Gettys Jim, 'The X Window System", ACM
Trans. Graph. 5, 2 (April 1986)

10. 	 Shires, Glen, "A New VLSI Graphics Coprocesssor - The Intel 82786", IEEE
CG&A 6, 10, (October 1986)

11. 	 Swanson, Roger and Thayer, Larry, "A Fast Shaded-Polygon Rnederer",
Computer Graphics, 20,4, 1986,(Proc SIGGRAPH)

12. 	 Westmore, Richard J., "A Window-Based Graphics Frame Store
Architecture", ACM Trans. Graph. 7,4 (October 1987)

