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ABSTRACT 

Described is a display sub-system, designed for support of a very high speed 
rendering engine. It provides high-performance graphics to an enVironment that 
consists of a hierarchy of resizable windows. The concept of virtual memory has 
been applied with the organization of the virtual to physical address spaces having 
a unique mapping that fits the organization of a bit-mapped graphics memory 
display. 

CR Categories and Subject Descriptors: 1.3.1 [Computcr Graphics]: Hardware 
Architectures - raster display devices; 1.3.3 [Computer Graphics]: PIcture/Image 
Generation - display algonthms. 

Introduction 

VIEWS, is a new graphics memory system developed to support rendering over one 
million triangles per second in a full X Windows environment. The limitations of 
current graphics memory architectures in this environment will first be reviewed. 
These limitations necessitated a new approach based on the specific graphics 
memory requirements of high-performance rendering in X. The resulting VIEWS 
architecture is an innovative and practical solution which exceeded these 
requirements. 

Current Graphics Memory System Design 

The designs of hardware memory systems for bit-mapped computer graphics have 
often followed general-purpose CPU paradigms. The three methods developed for 
mapping a CPU's address on to its physical memory are direct mapping, 
segmented virtual memory, and paged virtual memory. All of these methods 
have more recently been applied to graphics systems as graphics capabilities 
increase. 

Direct mapping of grafhics memory to the rendering engine's address space is the 
textbook example [4 commonly used in current commercial systems. This 
approach has the lowest cost for a minimum system designed with a frame buffer 
containing only enough memory to refresh the CRT. Such systems have two 
performance problems when used in a high performance window environment: 
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• 	The rendering engine must clip pixels to the boundaries of windows. These 
boundaries can be almost arbitrarily complex. As rendering speed increases 
and more windows are used simultaneously, clipping at full rendering speed 
becomes very costly . 

• 	As the user moves and deletes windows, exposure events must be sent by the 
window manager to the graphics applications in other windows. These 
applications must then redraw at least portions of their windows, using both 
CPU time and graphics throughput. 

Figure 1 shows a single memory plane of such a system and how its contents map 
to the display surface of the CRT. 
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Figure 1: A Direct Mapped Graphics Memory 

To address the shortcomings of direct memory mapping in general purpose 
computer systems, virtual memory systems were introduced. More recently the 
concept of virtual memory has been applied to graphics memory systems. Several 
commercially available VLSI chips [2,10] have support for segmented addressing 
schemes and a complete system using segmented graphics memory has been 
presented [7]. 
The use of segmented memory for graphics display sub-systems solves the 
performance problems inherent in the direct mappin& systems. The segments are 
allocated so that each window has a continuous piece of physical memory of 
adequate size. Since the entire window is stored in the segment, the rendering 
engine does not need to clip pixels. The physical memory is large, allowing 
backin~ store for windows so that exposure events can be handled without 
disruptmg the application processes and without additional rendering. 
However, when segmented graphics memory is used, two new problem areas 
emerge. The first is the problem encountered in general-J?urpose CPU segmented 
memory systems which is also encountered in fjaphlcs segmented memory 
systems. This is complicated memory allocation an large-grained fragmentation. 
The problem of memory management is compounded as window resize operations 
are allowed. The second is the assembly problem unique to graphics. Assembling 
the multi-window display for viewing on the CRT requires accessing physically 
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disjoint memory locations from different windows to display adjacent pixels. This 
is not feasible for high resolution displays with complete window capability. An 
example of a CRT display and the physical memory content for a segmented 
memory display is shown in Figure 2. 
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Figure 2: A Segmented Graphics Memory 

To expand on the second segmentation problem it should be noted that a random 
access to physical memory using today's DRAM technology requires about 150 nS, 
while a high resolution CRT (1280 X 1024 at 60Hz non-interlaced) requires a 
pixel clock of under 10 nS. If a system allowed an arbitrary number of windows at 
arbitrary positions, then in the worst case a new window could start at each pixel 
location and so require a random access to physical memory at the pixel clock 
speed. Since physical memory can not be accessed at pixel clock speed, systems 
have been designed where windows must be placed on fixed boundaries [7] or the 
number of windows that may be displayed at one time are limited [1OJ. 

The problems with segmentation were solved in general purpose computer systems 
by using paged virtual memory systems. A design using a paged virtual memory 
system for the CPU, where the CPU also serves as the rendering engine, has been 
presented [1J. In this system graphics rendering used the same datapaths and 
memory provided for the CPU. Since it was critical to CPU performance, this 
memory system was designed for both CPU and graphics performance. A second 
memory was needed for CRT refresh. . 

Adding paged virtual memory to a dedicated graphics memory system solves the 
segmentation problems except for the assembly problem. The paging method has 
another graphICS specific problem. The page organization is awkward for graphics. 
Shown in FIgure 3, is a CRT display and the physical memo!), contents. As can be 
seen in the figure, Window 1 (WI) has a single scan lme that is stored in 
physically disjoint pages. Note also that the data forming the scan line is not 
aligned to word boundaries within the pa~e. This makes the control problem 
more complex when moving graphics data WIth a small outline (such as a character 
from a stored font) to an arbitrary location in a large window. This operation is 
also limited in speed by the inability to fully use the static column access mode of 
the DRAM chips to increase the transfer rate. The awkwardness of the paged 
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system is also evident when a window resize operation is perfonned. As an 
example, if a window were to be expanded by one pixel on the left side, then the 
data for the extra pixel on each scan line would have to be inserted at the start of 
the data for each scan line. This would require reorganizing the data within all 
pages that fonn the window. This problem is a conse'l.uence of the physical 
memory organization not mapping to the requirements of wmdowed graphics. 
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Figure 3: A Paged Graphics Memory 

Therefore as graphics memories have developed along the same lines as those of 
general purpose CPU's, two important problems for graphics systems have not 
been solved. One is the problem of assembling a multi-window image for CRT 
refresh and the other is mapping virtual windows onto physical memory in a 
manner which facilitates high perfonnance graphics operations. 

Requirements for High Performance Rendering in the X Windows Environment 

Users of modem computer graphics systems are starting to expect the ability to not 
only run, but to interact simultaneously with multiple applications rS]. At the same 
time users are requesting more graphics perfonnance. The basic functional 
capabilities are being provided by building applications to run within window 
systems such as X Windows [9]. 
The VIEWS graphics memory sub-system was developed in conjunction with a 
high speed rendering engine that rendered over one million light-sourced triangles 
per second [31. The system could also be used with other high perfonnance 
rendering hardware [11J. The increased performance that users need is provided 
by building such advanced rendering hardware. 
VIEWS was conceived to support this full rendering speed in an X Windows 
environment where window manipulations would appear instantaneous to the 
system user. To meet this design goal without compromise, the development 
process began with a list of system requirements. The list was broken into three 
parts: perfonnance requirements, X Windows functional requirements, and 
advanced graphics feature requirements. This list became the basis for the VIEWS 
definition. 
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VIEWS Requirement List 

1. PERFORMANCE REQUIREMENTS 

- In order for the rendering hardware to run at full speed, window clipping 
had to be hidden from the rendering process. 

- The memory organization should use the fast access mode (Static 
Column) of the DRAM chips whenever possible in rendering and data 
copy operations. This means the structure of the memory chips must be 
matched to the locality of graphics operations. 

- Bandwidth reguirements for data movement must be minimized. 
Specifically, pOInters should be changed rather than copying data for large 
data movement operations such as switching buffers in double-buffering. 

- The organization of data in the memory chips must allow the high speed 
sequential accesses required for CRT refresh. 

- The method used to map pixel X,Y addresses to the physical memory 
array must not be so complicated that memory accesses become a 
performance bottleneck. 

2. 	 X WINDOWS FUNCTIONAL REQUIREMENTS 

The display system may not limit the number of windows that can be 
opened at once. 

The display system must allow windows to be placed at arbitrary locations 
on the display surface. 

- Windows must be retained with effective utilization of available memory 
and graceful degradation when memory capacity is exceeded. 


- Resizing of windows should appear instantaneous to the user. 


- The backing store should be expandable. 


3. 	 ADVANCED GRAPHICS FEATURE REQUIREMENTS 

- Double buffering must be supported. 

Panning within a window must be supported. 

- Anti-aliasing must be supported by allowing several frames of the same 
scene to be stored and then combined to produce the final image. 

- Video output should be flexible, to support several display formats. 
These would include, a high resolution CRT display, NTSC vldeo, an as 
yet undefined HDTV format, and a stereo display. 

-	 Beyond double buffering the backing store should support many buffers 
for storage and display of successive frames of animation sequences. 
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These requirements ruled out using a direct mapped frame buffer, so a virtual 
memory graphics system was investigated. 

The first problems that needed to be solved were the memory organization and 
assembly problems. These problems are unique to supporting virtual memory in a 
graphics environment. . 

To solve the memory organization problems, a new virtual memory mapping 
scheme was developed. By extending the same mapping technique the assembly 
problem was solved and ALL the listed requirements for high performance 
rendering in an X Windows environment were met. 

Graphics Virtual Memory to Physical Memory Mapping 

The common concept in the three memory of!~anizations already reviewed is the 
memory space is treated as a linear or I·dimenSIOnal array. This IS true in both the 
physical and virtual spaces. The key to solving the memory mapping problem was 
to recognize that graphics virtual space is inherently 2-dimensional. VIEWS maps 
a 2·D virtual address space on to a I·D physical space. The virtual space is 
partitioned into rectangular regions, called tiles, that map into same·sized regions 
of the linear physical memory space. The size and shape of these tiles are fixed 
just as page size in a linear virtual memory system is fixed. 

The transformation between the 2·D virtual space and the I·D physical memory 
array is done as part of the address translation. In this system a 2-D virtual address 
is sent to translation hardware where the mappin~ is done by a combination of a 
translation RAM and a unique method of hardwinng the address lines through the 
translation table into the physical memory array. A schematic view of the virtual 
2·D address field and its connection to physical memory is shown below as Fi~ure 
4. This translation hardware is analogous to the page translation hardware m a 
CPU with paged virtual memory. 
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Figure 4: A 2 Dimensional Virtual Address Translated for Physical Memory 
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From the virtual address field it can be seen that virtual space is treated as a 2-D 
space, where the X bit displacement, X word displacement, and X tile number 
form one axis and the virtual Y address forms the other. 

In order to go from virtual space to physical space, the virtual X tile number and 
virtual Y tile number are combined with the window ID to go through the 
translation table to form part of the physical address. The rest of the physical word 
address is formed by passing the X word displacement and Y word displacement 
directly to the memory array. (As is typical in graphics, the X bit displacement is 
used to build a mask that tells the graphics logic unit which bit to operate on 
within the word rather than to address a word.) 

Note, the field alignment is altered in the translation process. The X word and Y 
word displacement fields from the virtual address are combined to form the low 
order field of the physical address. This re-alignment does several things: 

• 	The tile is stored in a linear array of physical memory, but represents a 2-D 
region of virtual space. 

• Data from the same rendering locality (pixels near each other in X and Y) are 
mapped onto a contiguous sequence of physical memory words. This allows 
fast static column accesses in the DRAM chips to pixels adjacent in either the 
X or Y directions. 

• 	The width of a window is removed from the address calculation. In every 
previous method (direct, segmented, or paged), the data for adjacent scan lines 
IS offset in linear address space by the length of a scan line in that window. In 
this 2-D mapping, the word offset in physical memory is based simply on the 
virtual X and Y offset of the pixel from its window origin. 

An example of the mapping between the virtual space and the physical memory 
has been selected such that the 2-D virtual space will map to a Row Address 
Select (RAS) region in the linear DRAM address space. In other words the X 
word and Y word displacement fields will be combined to form the Column 
Address field going to the physical DRAM device. In Figure 5 a single tile from 
the 2-D graphics space is shown. Shaded in the figure are the pixels that would be 
stored in the same Row of a single DRAM device. Note that the bit position 
within the word is obtained from the X bit displacement field. 
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Figure 5: A 2-D Virtual THe Mapped on to a DRAM array 
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Figure 5 showed the mapping of the bits within a 2-D tile to a localized re~on of 
the address space of the physical devices that form the memory array. Figure 6 
expands on Figure 5 by showing how the example tile is held in the DRAM 
memory array. 
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Figure 6: A Tile Stored in the Physical Memory Array 

The term tile has been used in previous ~raphics memory system descriptions [51 to 
denote the array of pixels addressed Simultaneously in the DRAM array. the 
VIEWS system labels this same array of pixels a memory word. Data for this 
group of pixels may be accessed in parallel in a single DRAM access time. In 
VIEWS this word corresponds to a 1 x 32 horizontal row of pixels in order to 
match the horizontal scan of both the CRT refresh and the rendering processes. 

The VIEWS tile, in contrast, is a new concept analogous to a virtual memory page 
but with a 2-D organization. In Figure 5, the example 2-D Virtual Tile is the 
second level of the hierarchy of graphics locality and of DRAM access speed. 
This large tile will contain the typical small vector, triangle, raster character, or 
other graphics primitive. It can be accessed by a sequence of fast static column 
cycles without resorting to full DRAM RAS cycles. 

These VIEWS tiles are then organized into virtual 2-D spaces called canvas buffers 
indexed by window rD. A canvas buffer contains all the tiles of a virtual window, 
whether displayed or not. When a window is opened, a set of physical tiles are 
allocated for its canvas buffer according to the size of the window. Then the 
translation table entries are updated to establish the virtual-to-physical mapping. 

A schematic representation of a tiled memory array is shown in Figure 7. 
Window 2 (W2) has been shown filled with a crosshatched pattern on the CRT. 
The tiles that form the canvas buffer for window 2 are also shown with a 
crosshatched pattern. Note tbat the tiles forming the canvas buffer for window 2 
may be disjoint in physical memory, just as pages for a linear address space may 
be disjoint in a conventional CPU with a paged memory system. Also note that 
within each tile there is a 2-D locality, just as a page has linear locality in the 
conventional system. 
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Figure 7: A Tiled Graphics Memory 

Extending The Virtual Memory Mapping Concept 

The virtual memory organization presented solves the virtual to physical memory 
mapping problem for graphics display systems. The second problem encountered 
with adding virtual memory to the graphics system is the data assembly problem. 

The assembly problem has been previously addressed. The solutions include 
replacing the DRAMs used in the frame buffer with fast Static RAMs. Another is 
to use a separate physical memory to assemble the frame r1]. Also a system that 
avoids the assembly problem has been presented [12] with the frame store built 
out of full custom wafer scale memory circuits. 

The VIEWS CRT image is located in a contiguous rectangular virtual eanvas 
buffer like any other window. This special canvas buffer, the scan buffer. is the 
same size as the displayed image, with a direct mapping of the virtual pixel X,Y 
address to the CRT image X,Y location. The scan buffer's image is composed of 
sections of the various windows visible on the CRT, originating in their own 
canvas buffers. As any canvas buffer, the physical tiles comprising the scan buffer 
are scattered in available physical memory. 

The traditional frame buffer has a physical mapping to the CRT. In contrast the 
scan buffer exists in virtual space. However the physical organization of the scan 
buffer is still critical to CRT refresh. 

CRT refresh is accomplished by the sequential accessing of memory words across 
one row of a single physical tile using static column cycles, followed by a full RAS 
cycle to get to the next tile. Tile addresses are mapped from adjacent in virtual 
and CRT image space to disjoint in physical memory space. By requiring the use 
of DRAM rather than VRAM (dual-port video RAM), this approach necessitates 
a hardware cost saving. The large memory word and ability to use static column 
access mode result in adequate DRAM bandwidth for CRT refresh. 

The scan buffer must be modified whenever windows are moved or double buffer 
swaps occur. If the windows happen to be tile-aligned, the scan buffer is modified 
by simply updating the translation table entries to map different physical tiles to 
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the CRT image. In this case, the scan buffer requires no additional physical 
memory to be allocated for CRT refresh. 

Windows are not typically tile-aligned. Therefore, tiles of the scan buffer 
containing non-aligned windows must be allocated an additional physical tile into 
which the correct data is copied from the appropriate canvas buffer(s). When 
windows are moved or buffers swapped in double-buffering, the affected scan 
buffer tiles need to be redrawn by data copying from the original canvas buffers. 

When the contents of a window is updated but the window definition does not 
change, the contents of the updated canvas buffer can be used to update the scan 
buffer. The tile list that forms the scan buffer is left unchanged. SCan buffer tiles 
fully covered by an aligned window have already been updated in physical 
memory. In general, scan buffer tiles are recopied during CRT retrace from the 
canvas buffer being updated using a high-speed BITBLT capability. 

This paper is concerned with the organization of a virtual memory system for bit­
mapped graphics. As such, only a brief description of a system designed around 
the concept will be discussed. First, the functional model will be presented 
followed by a brief description of the hardware. 

VIEWS Functional Model 

The window system manager acts as a resource manager. This display sub-system 
is seen as rendering and display resources. These resources are: 

• 	The Scan Buffer - This serves the function of a traditional frame buffer. The 
scan buffer is an image of the CRT screen built in a virtual graphics space. 
The display system micro-processor builds the scan buffer from the VIsible 
windows, stored in other tiles, and state information that tells the processor the 
window priority and screen location. Note that the screen location information 
could be a list of scan line endpoints for support of irregular shaped windows. 

• 	The Canvas Buffers - These buffers store the entire rendered image for each 
window. The scan buffer is built by combining parts of several canvas buffers. 
The system design has two types of canvas buffers. These are the deep (24 bits 
of color and 4 bits for overlays) and shallow (2 bits deep) canvases. This is 
consistent with the X Windows scheme for bItmap allocation. The shallow 
bitmaps are seen as storing alpha-numeric windows and glyphs [fonts]. 

• Color Look Up Tables were supported. 

• 	The last resource that the window manger has access to in this system is the 
general purpose micro-coded engine. This processor will process high level 
commands that the window manger sends. These commands would include 
window manipulation tasks, and some rendering tasks. The rendering task that 
would be handled are alpha-numeric updates, some graphics updates and 
cursor updates. 

There will still be cases where the opened windows require more tiles than the 
system has available. When this happens, tiles can be taken from a window not 
being updated and used for the current window being rendered. It is important to 
note that once the visible part of a window is placed in the scan buffer, removing 
the canvas buffer will not affect the display. Also note, if the scan buffer is then 
changed and the window that had its canvas buffer removed is now more exposed, 
then an exposure event will be generated and sent back to the application 
following the standard X protocol. In this case, the system performance will 
degrade gracefully, and instantaneous window manipulation will no longer be 
possible. 
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VIEWS Hardware Model 


Shown in Figure 8 is the high level block diagram of the VIEWS system. 
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Figure 8: VIEWS Block Diagram 

The lines on the left side of Figure 8 show the pixel data and Z status bit entering 
the VIEWS systems from the supported rendering engine [3]. 

The VIEWS ~ate array is an ASIC device that serves as the focal point of data 
transfers withm the VIEWS system. The gate array caches the pixel data [5] from 
the rendering engine, and is used to store data durin~ high speed data transfers 
within the memory array (BITBLT). A display FIFO within the VIEWS gate array 
allows static column mode accesses to be used for reading the tiles that form the 
scan buffer during CRT updates. The contents of the display FIFO are 
sequentiality output to the high speed logic section. One VIEWS gate array is 
used (>er memory plane. The connection between the gate array and the memory 
array IS 32 bits per plane. This datapath can support a maximum burst transfer rate 
of 1.12 G bytes per second. There is more than enough bandwidth to allow a full 
screen (1536 X 1152 pixels) image to be moved within the memory array and the 
CRT to be updated within one frame time of 16.67 mS. 

The Z win mask FIFO caches the Z win bits. These bits are used to condition the 
control signals going to the VIEWS Gate Array. 

The control logic contains all the address generation circuitry, the CRT refresh 
control circuitry and the micro-coded processor. The micro-processor is 
responsible for controlling the VIEWS environment, including processing 
commands from the window manager, initiating and synchronizing VIEWS 
hardware operations, managing data structures, and performing some low level 
rendering tasks. 

The image build table is the table in the processor's RAM space that defines the 
way the scan buffer is built. 

A simple static ram is used for the tile address translation table. The translation 
table does not supply status information, such as a valid bit. Instead, the u­
processor that controls the sub-system has to keep track of the status of the 
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memory array. Part of the control process is to make sure that before the 
rendering en~ine starts to update a wmdow all the required tiles are present in 
memory. ThIS requirement assures that tile faults can not occur. 

The memory array design supports several physical memory array sizes. The 
maximum physical memory allowed by the design is 4K X 4K pixels in the deep 
canvas buffers and scan buffer combined. The shallow buffers can be expanded to 
8K X 4K pixels. Note that these limitations are due to the VIEWS implementation 
and are not architectural limits. 

The high speed logic includes ECL shift registers and a LUT/DAC used to drive a 
high resolution (1536 X 1152 pixels) CRT display. 

In VIEWS, the word size is 32 bits, so the bit displacement field is 5 bits long. 
The tile size is 256 X 256 pixels. The X word displacement field is 3 bits (8 words 
X 32 pixels/word = 256 pixels). The Y word displacement field is 8 bits. The 
virtual space is limited to 4096 X 4096 pixels so the X tile displacement and Y tile 
displacement fields are 4 bits each. The Window ID field is 8 bits long. 

The memory array is designed using DRAMs and not VRAMs. The DRAMs cost 
less and are more flexible on the output port than VRAMs. The control logic 
allows the refresh to be programmed to any resolution (up to 1536 X 1152 pixels 
at 60Hz). Some of the programmed resolutions excepted to be used are the very 
high resolution mode, a high resolution mode (1280 X 1024), and NTSC video. 
About 1/3 of the high speed BITBL T bandwidth is allocated for the display update 
task. 

Extensions and Limitations to Current System 

The system as presented is designed to replace current high end display sub­
systems. The architecture would not be cost effective in today's low end graphics 
systems. A low end implementation of this system would cost about the same as 
current high end double buffered display sub-systems. 

In a low end implementation about half the memory would be needed by the scan 
buffer, leaving one screen sized piece of physical memory for the deep canvas 
buffers. An area of several screen sizes, could also be included, for shallow canvas 
buffers, without addin~ much cost. Such a system configuration would offer the 
full functional capabilities of VIEWS, but may not deliver all the performance the 
architecture can provide, since exposure events would be sent back to the 
application programs often. One big advantage to using the VIEWS architecture 
over current designs is that as the next generation of DRAMs become available 
the memory chips could be changed, while all of the control hardware and 
software remain untouched. At that time, the physical memory would hold a scan 
buffer with tiles left over for 3 full screen sized deep canvas buffers. 

As new generations of memory chips become commodity items, the price per bit is 
reduced. The VIEWS memory oq~anization is well suited to take advantage of the 
evolving DRAM technology. WIth proper care, a design today would not only 
plan for the next generation of DRAMs, but allow for many future generations of 
memory devices. 

As larger memory arrays become economically feasible, the simple static ram 
translation table in VIEWS could be replaced by the more sophisticated translation 
means used in general purpose virtual memory CPU designs. 

Another interesting extension to investigate would be sharing a large memory 
array between the CPU and graphics memories. This has been done using a linear 
map{>ing for both memories t1]. However the extension to this architecture would 
reqUIre a process could request the physical memory map to a either a 2·D or 
linear virtual space on a process by process basis. In other words both tiles and 
pages would be held in the same phYSIcal memory array. 
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Conclusion 
A system has been presented, that meets ALL the stated design goals. The system 
allows high performance graphics in an environment that consists of a hierarchy of 
resizable wmdows. By providing instantaneous response to most window 
operations, the user can feel that he is interacting simultaneously with several 
applications. 
Industry standards and state-of-the-art performance are not mutually exclusive! 
VIEWS is the first system designed to synergistically combine the industry 
standard X Window system and state-of-the-art rendering technology for 
unparalleled interactive graphics. 
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