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Abstract

Stylized characters are highly used in movies and games. Furthermore, stylization
is mostly preferred over realism for the design of toys and social robots. How-
ever, the design process remains highly subjective because the influence of possible
design choices on character perception is not well understood. Investigating the
high-dimensional space of character stylization by means of perception experiments
is difficult because creating and animating compelling characters of different styliza-
tion levels remains a challenging task. In this context, computer graphics algorithms
enable the creation of highly controllable stimuli, simplifying examination of specific
features that can strongly influence the overall perception of a character.

This thesis is separated into two parts. First, a pipeline is presented for creating
virtual doubles of real people. In addition, algorithms are described suitable for the
transfer of surface properties and animation between faces of different stylization lev-
els. With ElastiFace, a simple and versatile method is introduced for establishing
dense correspondences between textured face models. The method extends non-rigid
registration techniques to allow for strongly varying input geometries. The techni-
cal part closes with an algorithm that addresses the problem of animation transfer
between faces. Such facial retargeting frameworks consist of a pre-processing step,
where blendshapes are transferred from one face to another. By exploring the sim-
ilarities between an expressive training sequence of an actor and the blendshapes
of a facial rig to be animated, the accuracy of transferring the blendshapes to ac-
tor’s proportions is highly improved. Consequently, this step overall enhances the
reliability and quality of facial retargeting.

The second part covers two different perception studies with stimuli created by
using the previously described pipeline and algorithms. Results of both studies
improve the understanding of the crucial factors for creating appealing characters
across different stylization levels. The first study analyzes the most influential factors
that define a character’s appearance by using rating scales in four different percep-
tual experiments. In particular, it focuses on shape and material but considers as
well shading, lighting and albedo. The study reveals that shape is the dominant
factor when rating expression intensity and realism, while material is crucial for ap-
peal. Furthermore, the results show that realism alone is a bad predictor for appeal,
eeriness, or attractiveness. The second study investigates how various degrees of
stylization are processed by the brain using event-related potentials (ERPs). Specif-
ically, it focuses on the N170, early posterior negativity (EPN), and late positive
potential (LPP) event-related components. The face-specific N170 shows a u-shaped
modulation, with stronger reactions towards both, most abstract and most realistic
compared to medium-stylized faces. In addition, LPP increases linearly with face
realism, reflecting activity increase in the visual and parietal cortex for more realistic



faces. Results reveal differential effects of face stylization on distinct face processing
stages and suggest a perceptual basis to the uncanny valley hypothesis.



List of Math Symbols

Symbol Description

B featureless, smooth version of mesh M
M triangle mesh, consisting of vertices vi

P point cloud, consisting of points pj

S shader attached to a mesh M
T 2D texture

vs variable belonging to the source mesh
vt variable belonging to the target mesh or point cloud
vbs variable belonging to the smoothed source mesh
vbt variable belonging to the smoothed target mesh
v̂ original, undeformed value of variable
v̄ average value of a variable

A Voronoi area of a vertex
a marker position of captured actor
b vertex position of personalized blendshape
C total amount of closest point correspondences
c position of the closest point correspondence
dk displacement of all vertices of a blendshape
d orthogonal displacement vectors of a PCA
D matrix containing all displacements d

f , F counting variable and total amount of frames
g vertex position of initial guess blendshapes
H mean curvature

i, j counting variables
k, K counting variable and total amount of blendshapes
l, L counting variable and total amount of faces

m, M counting variable and total amount of sparse points on mesh
(markers or reference points)

n, N counting variable and total amount of vertices
ni normal of a point pi

P total amount of points in a point cloud
p point position on a 3D surface or in a point cloud
r parameter controlling steepness of a function
r position of reference point
R rotation matrix of size 3 × 3
s vertex position withiin a sparse blendshape
tk trust value of a blendshape
t translation vector of size 3



Symbol Description

u 2D texture coordinates
v vertex position
V matrix containing all v for all blendshapes
w weight of a blendshape or a principal component dimension
w vector containing all weights w

x, y, z 3D coordinates

α, β, γ angles in triangle
δv, . . . delta formulation of a variable, e.g., δv = vk − v0

κ1, κ2 maximum and minimum curvature
ρ Pearson correlation between two variables

ρ+ positive Pearson correlation max(ρ, 0)
P correlation matrix between blendshapes
σ singular values of data matrix of PCA
τ trust value of specific blendshape

χ() boosting function for blendshape similarity
ψ soft mask encoding displacement strength for blendshapes

Table 1: Overview of math symbols and description for mesh editing and animation
context



Symbol Description

c power coefficient of the Phong BRDF
h normalized half-vector between l and n
hu unnormalized half-vector between l and n
i script for incoming light direction

kd, ks color constants for diffuse and specular shading
l normalized light direction

m surface roughness term
n normal of a point
p path of light within a scattering medium
r script for reflected light direction
s one out of two bitangent vectors of a curve
t tangent vector of a curve
u one out of two bitangent vectors of a curve
v normalized view direction
φ azimuthal angle between two vectors
θ longitudinal angle between two vectors

F0 surface’s characteristic specular color
fR(. . .) Bidirectional Reflectance Distribution Function
fS(. . .) Bidirectional Curve Scattering Distribution Function
D(. . .) Normal Distribution Function
F (. . .) Fresnel Reflectance Function
G(. . .) Geometry Function
L(. . .) Radiance
M(. . .) Longitudinal Scattering Function
N(. . .) Azimuthal Scattering Function

Table 2: Overview of math symbols and description in rendering context
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1 Introduction

Faces are one of the most powerful tools for social communication that reveal a
wide range of information about a person like gender, age, ethnicity or mood (Jack
& Schyns 2015, Tsao & Livingstone 2008). It is therefore not surprising that first
research on faces and facial expressions is dating back to Darwin. Some studies
had even a big impact beyond psychology. Ekman’s Facial Action Coding System
(FACS) (Ekman 1972) is a fundamental concept for facial animation in computer
graphics. Conversely, computer generated faces have started to replace photographs
of real people in perceptional experiments, due to better experimental stimulus
control (de Borst & de Gelder 2015) and recent advances in capturing and rendering
of human faces (Alexander et al. 2010, Jimenez et al. 2015). These two prominent
examples demonstrate well that advances in computer graphics lead to new types
of experiments in psychology and vice versa; insights in psychology induce new
algorithms in computer graphics (Wallraven et al. 2007, Klehm et al. 2015). So
far, most research in computer graphics as well as in facial perception is centered
on real or realistic humans. However, realistic characters represent only a fraction
of the characters used in computer games or animation movies, where characters
of different stylization levels are common. The aim of this thesis is to improve
the understanding of what makes characters more appealing. For the design of
perception studies it is recommended to change only one variable over time. But
creating characters of different stylization level with the same texture or animation
is technologically difficult. In order to overcome these issues, new algorithms are
developed for enabling new types of experiments that focus on the perception of
stylized characters. The benefit of algorithms is demonstrated by two extensive
studies that offer new insights on stylized face perception.

Although cartoon faces are often associated with simplicity, creation of stylized
characters is not necessarily easy. In the movie Maleficient expensive hardware,
custom software and months of work by skilled professionals and researchers were
required to create the flower pixies (Seymor 2014). The challenge of creating con-
vincing characters is the multidimensional design space in combination with various
psychological factors that influence facial perception. Influencing factors that have
been reported in the past are: familiarity (Dill et al. 2012, Tinwell & Grimshaw
2009), degree of realism (Mori et al. 2012), reasonable facial proportions (Seyama
& Nagayama 2007), rendering style (McDonnell et al. 2012) and 2D image filters
(Wallraven et al. 2007).

While it is generally accepted that stylized versions are often preferred over
realistic characters (Geller 2008), the reasons for this are still unclear. In fact, the
popular theory of the uncanny valley (Mori et al. 2012) has been criticized over the
last years (Kätsyri et al. 2015) due to lack of empirical evidence. The challenge is

1



1 Introduction

Figure 1.1: Different levels of stylization of a female character specifically created
for our perception experiments.

to identify reliable and well-understood factors and translate this knowledge into
feasible guidelines for generating appealing 3D virtual characters. In order to do so,
three main limitations have been identified in previous work: (i) the absence of a
continuous stylization for the same character, (ii) the requirement to transfer either
surface properties or facial animation across characters of different stylization levels
and (iii) the lack of perceptual experiments beyond rating scales. The first problem
is addressed by creating a high quality dataset containing several stylization levels of
two identities (Figure 1.1). For the transfer of surface properties like skin textures,
dense one-to-one correspondences are required. In this way, material properties
saved in textures can be transferred between faces. With ElastiFace we present
a simple and effective framework for establishing dense correspondences between a
given set of face models, both in terms of their geometries and textures. In addition,
a facial retargeting algorithm is presented that is well suitable for animation transfer
between realistic and stylized characters. Finally, perception of stylized characters is
investigated by using rating scale perception experiments in combination with Event-
Related Potentials (ERPs), which is a well-established approach in neuroscience
for the investigation of processes within the brain. In the following, we list the
contributions for dense correspondence matching, facial animation retargeting and
the main findings from our perceptual studies.

Geometry and Texture Matching Existing methods, that establish dense cor-
respondences between non-isometric models, require a transfer of the input meshes
into a simpler domain. In contrast to most previous work, our method can handle
input models of extremely different geometries without adjusting the mesh con-
nectivity or being limited to specific domains like a plane or a sphere. Our main
contributions are:

• We propose to apply aggressive simultaneous fairing, such that the simple
domain evolves naturally. After obtaining two very similar featureless meshes,
a simple variant of non-rigid registration is sufficient for establishing accurate
correspondences.

• The algorithmic core of our method is based on solving simple bi-Laplacian
linear systems and is therefore easy to implement.

2



• Based on the obtained dense correspondences, we show how textures can be
transferred between meshes with different connectivity and parametrization.

• For the use case of facial perceptual experiments, we demonstrate how fa-
cial parts, textures and several rendering styles can be blended at interactive
framerates.

Facial Retargeting with Range of Motion Alignment The transfer of facial
animation between different characters, better known as facial retargeting, consists
of a pre-processing step and the actual animation transfer. As a pre-processing step,
a transfer of blendshapes is required that aligns the blendshapes of the face rig to
be animated with the actor’s proportions, which is the source of the animation. We
improve existing retargeting algorithms as following:

• Based on the observation that facial motions are similar across different styl-
ization levels, as motivated by the Facial Action Coding System (FACS) (Ek-
man & Friesen 1978), a metric is suggested for measuring similarity of facial
expressions.

• Based on a new manifold alignment approach and the expression similarity
measure, a novel algorithm creates actor-specific blendshapes in an unsuper-
vised manner with the help of a training sequence of the actor’s facial motion.
Even if the facial rig and the actor differ strongly in their facial proportions,
we successfully align the ranges of motion of the actor and the character face
rig. This subsequently leads to accurate retargeting.

• A Cross-Expression Graph is introduced that maintains consistency between
blendshapes during the expression transfer.

• A prior energy, which is based on physically-inspired deformations, addresses
the few artifacts during facial retargeting that remain even in case of accurate
blendshape transfer.

• Our contributions are fully compatible with most previous methods suitable
for real-time applications, and produce results comparable or better than state-
of-the-art offline methods (Seol et al. 2012).

Rating Scales Experiments Based on a high quality stimuli set for a male and
a female character consisting of five stylization levels in addition to photographs,
we investigate two of the main aspects that primarily define the stylization of a 3D
character: shape and material (including texture, shading and lighting). Due to the
high dimensional nature of the problem, experiments were performed in two rounds.
We first analyze which of the many sub-dimensions of both shape and material
affect the appearance of the character the most, which measuring scales reveal most
information, and how our initial stimuli can be improved. Results and acquired
knowledge from these tests are then used to guide a second round of experiments,
where we deeply explore the design space with more samples along the core factors
of the previous studies. Our main contributions are:

• Shape is the key attribute for perceived realism. Stylized materials decrease
the perceived level of realism for realistic shapes; however, realistic materials
do not increase realism of stylized shapes.

3



1 Introduction

• Appeal, eeriness and attractiveness are highly affected by the stylization level
of material; realistic materials reduce appeal in general. Within the materials,
the albedo texture is the dominant factor.

• The degree of realism is a bad predictor for appeal or eeriness.

• The perceived intensity of expressions decreases with realism of shape, but is
nearly independent of material stylization.

• Our results are consistent across all tested expressions. Only the anger expres-
sion was constantly perceived as less appealing and more eerie.

• Our stimuli are accessible for further investigations1.

Event-Related Potential Experiment While previous experiments relied on
rating scales measuring subjective criteria, Event-Related Potentials (ERPs), which
are a systematic approach to measure electric signals of the brain, are an excellent
way to analyze face perception more objectively. Based on the high temporal res-
olution of ERPs, it is possible to distinguish between highly automatic and more
controlled stages of processing. Furthermore, the availability of rating scales for the
same stimuli allows a better interpretation of specific brain responses. Due to the
small amount of comparable work using ERP for stylized face perception, only the
most distinctive stimuli have been chosen for this experiment. Our main findings
are:

• The N1702 amplitude peaked most for highly stylized and real faces, creating
a U-shaped function across the stylization levels. However, the signal’s origin
seems to be caused by different regions of the brain.

• For the N170 and the Early Posterior Negativity (EPN)3 strong effects oc-
curred for different emotions, showing most intensive processing for angry ex-
pressions, followed by happy and finally neutral faces.

• A selectively increased N170 was found for abstract happy faces, while for
more realistic faces a bias towards angry faces was observed.

• The Late Positive Potential (LPP)4 component increased for more realistic
faces in combination with larger and broader activation in occipito-parietal
areas in source space.

• Our results indicate that realism and neotenic features, like big eyes or smooth
skin, cause a stronger brain response for the according stimuli.

To our knowledge, both studies are the first of its kind because: (i) The rat-
ing scales experiments focus on the combination of different levels of stylization in
shape and material. (ii) The ERP experiment contains several stylization levels for

1http://graphics.uni-bielefeld.de/publications/sigasia2015/
2The N170 is a face specific negative amplitude of an electric signal appearing about 170ms after

a stimuli is shown. Please see Section 7.1 for more details.
3Electric signal meassured within the time range of 250–400ms after showing the stimuli. Sec-

tion 7.1 provides more details.
4Electric signal meassured within the time range of 400–600ms after showing the stimuli. Sec-

tion 7.1 provides more details.
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the same identity. In addition, the combination of the two experiments leads to bet-
ter interpretation and understanding of the brain responses. Based on our results we
propose an alternative perspective on the uncanny valley hypothesis. Rather than
trying to predict appeal from perceived realism of a character, realism alone seems to
be a positive trait in character perception, as information processing involves more
brain regions. This is accompanied by positive reactions towards neotenic features
that dominate designs of highly stylized characters. Hence both characteristics are
rather exclusive features for specific stylization levels. This might explain the intu-
ition behind the uncanny valley hypothesis, but further investigation is required to
confirm this new hypothesis. Overall, the presented studies provide useful insights on
how to create appealing characters, and are another example how computer graphics
and perceptual experiments can benefit from each other.
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Part I

Algorithms for Realistic and
Stylized Stimuli
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This part of the thesis addresses technical challenges involved in creating vir-
tual faces for perceptual experiments. The first chapter describes our pipeline for
creating virtual doubles of real people. This involves various aspects, starting from
3D scanning over template fitting up to rendering and some artistic elements like
the reconstruction of hairstyles. Our pipeline addresses practical issues for creating
high-quality stimuli that we compare against the state-of-the-art in research.

The second chapter presents ElastiFace, a method for establishing dense cor-
respondences and transferring textures between faces. This method created a basis
for an independent investigation on the perception of shape and material stylization.
Besides material transfer, this algorithm can be also used for creating blendshapes
from different scans for both realistic and stylized characters.

The third chapter provides an algorithm for facial animation transfer, also known
as facial retargeting. In this case, we specifically address the problem of animation
transfer between realistic and stylized characters. While facial retargeting has a
wide range of applications, our intention within the perception context is to create
an animated stimuli set with consistent facial animation in the future.
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2 Creating Realistic
Facial Stimuli

(a) Scan (b) Fit (c) Model (d) Rendering

Figure 2.1: Intermediate and final results created with our pipeline for replicat-
ing realistic characters. After obtaining a high-resolution scan (a) a template is
fitted towards the model (b). By adding eyes, teeth, hair and clothes the model is
completed (c) and finally rendered (d).

In the introduction, we mentioned already that one shortcoming of many per-
ceptual experiments investigating the impact of facial stylization is the absence of
several stylization levels of the same identity. While there is still no automatic ap-
proach that reliably creates different stylization levels for a single character, various
algorithms have been suggested to replicate different facial parts of real people. Our
primary focus at this stage is to establish a pipeline to create realistic virtual dou-
bles for perception experiments (Figure 2.1). This includes the reconstruction of
skin, eyes, teeth or hair and advanced rendering algorithms for all these different
facial parts. The presented character creation pipeline was state-of-the-art when
the project started in 2013. In the following subsections, we provide an overview
of our pipeline and techniques involved to create realistic characters together with
recent developments in research and commercially available solutions. Whenever
new software was released that simplifies extending or re-creating realistic stimuli,
we name it as suitable alternatives. Although the presented pipeline focuses on the
replication of realistic characters, the main difference to stylized characters is the
acquisition process of 3D geometry and textures. Such data is typically obtained
from 3D scans for realistic characters but created by artists for stylized characters.

My contribution to this work was an evaluation of published work in academic
context together with existing (commercial) software solutions. Based on this analy-
sis, a pipeline was built such that the input and output of different software packages
were compatible with each other. In addition, software for fitting a template model
to a scan, named as non-rigid registration, was developed and integrated within
the pipeline. Analysis of the pipeline revealed that 3D model creation from a scan
required a significant amount of manual corrections, especially around the eyes,
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2 Creating Realistic Facial Stimuli

Figure 2.2: Our face scanning setup (right) and comparison between photographs
and virtual reconstructions of our actor (left).

and that common design decisions, e.g., computing closest point correspondences
from the template to the point cloud, do not lead to optimal results. Based on
these insights, further automatization and evaluation of non-rigid registration algo-
rithms (Achenbach et al. 2015) have been developed in a project under the lead of
Jascha Achenbach.

2.1 Data Acquisition

Face Scanning A 3D scan creates the best representation in 3D of a real char-
acter. For our use case, technology is of high interest that creates complete and
high-quality color scans at acquisition times lower than a second. Short acquisi-
tion times are required to scan facial expressions without motion blur artifacts,
which in turn disqualifies most laser scanners. The high-quality requirement ex-
cludes most depth camera approaches that rely on low-resolution devices1. Instead,
photogrammetry or multi-view stereo, where 3D objects are reconstructed from sev-
eral high-resolution photographs, combine high quality with short acquisition times
(e.g., (Ma et al. 2007, Beeler et al. 2010, Fyffe et al. 2016)). Any multi-view stereo
system requires an array of high-resolution cameras capable of taking pictures si-
multaneously. Using wireless remote triggers proved to be most reliable approaches
in practice. While some methods focus only on the reconstruction of accurate geom-
etry (Bradley et al. 2010, Valgaerts et al. 2012), or geometry in combination with
mesoscopic features (Beeler et al. 2010), other methods compute also texture maps
like albedo or specular normals (Ma et al. 2007, Ghosh et al. 2011, Fyffe et al. 2016).
However, the latter typically require controlled lighting and advanced hardware se-
tups like a light stage. Very recently, methods have been suggested that reconstruct
faces based on single view photographs or videos (Cao et al. 2015, Garrido et al.
2016, Thies et al. 2016) or low-resolution facial scans (Weise et al. 2011, Bouaziz
et al. 2013, Li et al. 2013, Thies et al. 2015). Although the results are impressive,
these methods rely highly on the quality and variety of facial databases. The models

1E.g., Kinect, RealSense, ZED or Orbbec Persee.
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2.1 Data Acquisition

in the database constrain the model to valid faces, but unfortunately bias as well
the result, such that the reconstruction is only close to the target face.

In order to generate the realistic models, we replicated the multi-view stereo
face scanner of Beeler et al. (2010), which is a good trade-off between quality and
hardware demands. It reconstructs high-resolution point clouds from photographs
(Figure 2.2) without any priors. Since all photographs are taken simultaneously, the
scanning process is instantaneous and therefore well suited for capturing different
facial expressions.

One serious issue of state-of-the-art face reconstruction methods is the complex-
ity of the methods paired with limited availability due to patents (e.g., (Beeler et al.
2012, Ghosh et al. 2011)) or closed source. Recently, this problem can be circum-
vented in practice by using custom hardware setups in combination with general
purpose photogrammetry software like AgiSoft or CaptureReality2, specialized sys-
tems (Medusa, 3dMD) or service providers (Ten24, Infinity Realities). While service
providers and software packages differ in quality, any of these three options is suit-
able for obtaining high-quality scans. The optimal solution is therefore primarily
dependent on the personal skill set, the budget and the time available.

Pores and Small Features By using high-resolution cameras, it is possible to
capture geometry up to a detail level of 1mm or less. Regarding size, fine-scale
features are between geometric features, represented by triangles and the surface
reflectance model, simulated via a Bidirectional Scattering Distribution Function
(BSDF) that is evaluated at render time (see also Section 2.4). Because even small
skin structures are essential for convincing realism in close-ups, facial microstructures
have been measured for static faces (Graham et al. 2013) or have been computed
procedurally (von der Pahlen et al. 2014). Later, Nagano et al. (2015) demonstrated
that facial microstructures change under skin deformation and influence the skin
appearance. A common approximation for computing microstructures is the “dark-
is-deep” heuristic (Beeler et al. 2010). While such heuristics create stunning results,
visual differences persist to correctly reconstructed pores (Fyffe et al. 2016).

For our characters we followed the procedural idea proposed by von der Pahlen
et al. (2014) and transferred fine-scale details to our characters from other high-
resolution bump maps. Considering the visual differences between every stylization
level of each character, we assumed that the perceived differences of this simplifica-
tion would be rather small. Indeed, the results of our perception experiments show
that participants did not even recognize more significant changes in a scene, e.g.,
changing from soft indirect illumination to a direct spot light with hard shadows
(see also Section 6.3.2).

Lighting and Camera Besides the facial properties itself, recent publications
also approximate external parameters, like camera matrix or illumination (Blanz
& Vetter 1999, Thies et al. 2015, Shahlaei & Blanz 2015, Conde et al. 2015). In
our experiments, we wanted to minimize possible side effects due to, e.g., a realistic
environment as much as possible. All characters have been rendered using a simple
three-point lighting setup that (i) does not change between the characters and (ii)
is a plausible environment for each stylization level. Thus measuring accurately
lighting and camera parameters was not required in our case.

2Other software packages are: 123D Catch, 3DF Zephyr, Acute3D, or Neitra 3D Pro.
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2.2 Template Fitting

Scanning provides accurate spatial information of data, but only visible parts may
be reconstructed, which was in our case just the frontal part of the face. To overcome
these limitations, a variety of methods reconstructs the face based on a template
model, that is continuously deformed towards a scan (Li et al. 2009, Weise et al. 2011)
or even a picture (Blanz & Vetter 1999, Thies et al. 2016). The advantage of template
fitting is that accuracy remains where data is present and missing information is
plausibly approximated. Robustness of template fitting is increased by using a
database of faces as a template instead of a single face (Blanz & Vetter 1999, Thies
et al. 2015, Ichim et al. 2015).

In our initial setup, we had no access to a parametric model and relied on a linear
non-rigid deformation method in to fit a template to the reconstructed point cloud.
Appearing inaccuracies during stimuli creation were compensated through manual
corrections, e.g., additional correspondences. Based on the observed limitations, the
non-rigid registration has been further analyzed and improved (Achenbach et al.
2015). We report primarily the outcome of our analysis of different template fitting
algorithms in this subsection and recommend readers interested in replicating our
pipeline the source code of the face reconstruction tutorial provided by Bouaziz et al.
(2014).

Given a facial template as a polygon mesh M, consisting of N vertices vi, and
let be P a point cloud, representing a scan of a person, with P points in total,
where pj represents the position of each point. For every point pj a unique normal
vector nj is associated. Our goal is to deform the template model M such that it
approximates the point cloud P as much as possible.

Rigid alignment Any template fitting starts with a rigid registration, where the
optimal global rotation R and translation t are computed between the template and
the scan. Unless a rough alignment can be assumed, the first optimal transformation
is calculated based on a few point correspondences. Such correspondences can be ei-
ther selected manually or computed automatically using computer vision algorithms
(Asthana et al. 2013). Given C corresponding pairs (cj ,pj)j with C ≤ P and pj as
a point of the target point cloud together with the correspondence point cj on the
template mesh, an optimal rigid fit is obtained by minimizing the following energy
(Besl & McKay 1992):

ERigid(R, t) =
C∑

j=1

‖pj − (Rcj + t)‖2 . (2.1)

The initial alignment is then refined using the Iterative Closest Point (ICP) algo-
rithm (Besl & McKay 1992, Chen & Medioni 1992, Rusinkiewicz & Levoy 2001).
First, correspondences are established by searching for each point pj of the scan the
closest neighbor cj on the template mesh. Second, based on these correspondences,
Equation (2.1) is solved for the optimal global rotation matrix R and the global
translation vector t. This procedure is repeated until convergence.

As closest point is a very basic heuristic for approximating correspondences,
additional heuristics (Rusinkiewicz & Levoy 2001, Chang et al. 2010) have been
introduced to increase reliability (Figure 2.3). First, the distance between two points
should be within a threshold. Second, the normals of the closest points should be
similar, and third, correspondence points should not be located on a mesh boundary.
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2.2 Template Fitting

(b) different normals (c) shape boundary(a) far off correspondences

Figure 2.3: Common heuristics for pruning wrong correspondences. Green arrows
encode valid closest point correspondences, while red arrows demonstrate three types
of invalid correspondences: (a) far distances, (b) different normal direction, (c)
matching towards a shape boundary.

Parametric model If the template model consists of L̂ � 1 faces with identical
topology, the scanned head can be approximated by interpolating between different
template faces. Fitting a morphable model to a scan or an image has been initially
suggested by Blanz & Vetter (1999) and has been adopted in subsequent works,
e.g., (Chen et al. 2014, Bouaziz et al. 2014, Thies et al. 2015). As faces are highly
similar, a dimensionally reduced Principal Component Analysis (PCA) model is
often preferred in such cases. The PCA model is constructed by first computing
the average face v̄ = (v̄x

1 , v̄
y
1 , v̄

z
1, . . . , v̄

x
N , v̄y

N , v̄z
N )T of all template faces, and saving

all faces of the dataset as displacements with regard to the average face in a data
matrix

[v1 − v̄, . . . ,vL̂ − v̄] . (2.2)

After performing the principal component analysis by singular value decomposition
of the data matrix, the facial variance is encoded by the orthogonal displacement
vectors dl = (dl

1, . . . ,d
l
3N )T. The amount L of principal components is L ≤ L̂ and

can be further reduced by considering only the first principal components.
Equivalently to the rigid ICP algorithm, corresponding points cj on the template

mesh are computed for every point pi on the scan. Because the correspondence
points cj are located on mesh triangles, but the PCA is formulated in terms of vertex
positions, every correspondence point is encoded using barycentric coordinates.

cj = αjvα + βjvβ + γjvγ . (2.3)

Vertex positions of objects created by a parametric model are computed as a linear
combination of the displacement vectors,

v(w) = v̄ +

L∑
l=1

wldl = v̄ +Dw , (2.4)

withw = (w1, . . . , wL)
T being the weighting coefficients and v = (vx

1 ,v
y
1 ,v

z
1, . . . ,v

x
N ,

vy
N ,vz

N )T containing all vertex positions. Furthermore, the sum
∑L

l=1wldl can be

15
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(a) Scan (b) Noise

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

Noise [mm]

R
M
S
er
ro
r
[m

m
]

Template-to-Scan
Scan-to-Template
Both

(c) Direction

0 0.5 1 1.5 2 2.5

0.1

0.15

Noise [mm]

R
M
S
er
ro
r
[m

m
]

point-to-point (μ = 1)
point-to-plane (μ = 0.1)

(d) Fitting

Figure 2.4: (a) A high-resolution face model from Beeler et al. (2011) and (b) a
noisy point cloud by adding varying amounts of noise (±2mm). (c) Comparison
of correspondence directions (templace-to-scan vs. scan-to-template, and (d) cor-
respondence distance (point-to-point vs. point-to-plane, on the high-resolution face
scan with synthetically added noise (uniformly distributed, zero mean). c©Scan: Beeler

et al. (2010)

written as a matrix-vector product Dw. By combining Equations (2.3) and (2.4),
we express the vector c = (cx1 , c

y
1, c

z
1, . . . , c

x
C , c

y
C , c

z
C)

T in terms of the weighting
coefficients:

c(w) = [αβγ](v̄ +Dw) . (2.5)

The matrix [αβγ] of size 3C × 3N is constructed from the barycentric coordinates
from Equation (2.3).

The best fit of the parametric model to the scan is obtained by minimizing the
combination of the two energies: E(w) = EModel(w) + μEPrior(w). The energy

EModel(w) =
1

C

C∑
j=1

‖pj − cj‖2 =
1

C
‖p− [αβγ](v̄ +Dw)‖2 , (2.6)

fits the model to the scan by minimizing the distance between all C points pj in
the scan and according correspondence points cj on the mesh. In the compact
representation, all points of the scan p = (px

1 ,p
y
1,p

z
1, . . . ,p

x
C ,p

y
C ,p

z
C , )

T are stacked
in one vector. In order to prevent overfitting, a regularization energy is added based
on the probability of the coefficients wl.

EPrior(w) =
1

2
wTΛw . (2.7)

Λ is defined as the diagonal matrix diag(1/σ2
1, 1/σ

2
2, . . . , 1/σ

2
L), and σ2

l are the eigen-
values of the covariance matrix

[v1 − v̄, . . . ,vL − v̄]T[v1 − v̄, . . . ,vL − v̄] , (2.8)

or equivalently: σl are the singular values of the data matrix. The combination of
Equations (2.6) and (2.7) is minimized using traditional linear least squares. This
involves solving a linear system of size L× L.

Non-rigid Registration Once the parametric model is fitted towards the target
point cloud, the remaining step is a non-rigid mesh registration based on closest
point constraints (Allen et al. 2003, Sumner & Popović 2004, Amberg et al. 2007,
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2.2 Template Fitting

Figure 2.5: Illustrative examples are demonstrating the results for different closest
point correspondences: (top) template-to-scan, (bottom) scan-to-template. Only for
the scan-to-template example, closest point constraints drag the template (black)
towards the bump feature of the target (blue).

Brown & Rusinkiewicz 2007, Li et al. 2008, Tam et al. 2013). At this stage, the
template mesh is continuously deformed towards the scan. The alignment error is
measured by EFit(v) with v = (vx

1 ,v
y
1 ,v

z
1, . . . ,v

x
N ,vy

N ,vz
N )T containing all unknown

vertex positions after the non-rigid registration. Adding a regularization term to
the total energy (E(v) = EFit(v) + λEReg(v)) penalizes strong deformations of the
template mesh. Similar to rigid ICP, correspondences between scan and template
mesh are computed using closest point search. The template mesh is deformed
towards the target by continuously reducing λ. In case of high-resolution meshes,
performance gains can be achieved using hierarchical approaches (Bonarrigo et al.
2014, Achenbach et al. 2015). Here, a low-resolution template is first deformed
towards a sub-sampled target. After sufficient alignment, the template is subdivided
and the process is repeated until the desired resolution level.

Two metrics exist for the fitting energy. The point-to-point energy minimizes
the quadratic distance between a correspondence pair. The point-to-plane energy
allows in addition sliding of the template along the point cloud, leading to faster
convergence. Following Li et al. (2008, 2009) and Bouaziz et al. (2014), the fitting
energy is defined as the linear combination of the two metrics with μ = 0.1.

EFit(v) =
1

N

N∑
i=1

μ ‖vi − ci‖2︸ ︷︷ ︸
point-to-point

+(1− μ) (nT
i (vi − ci))

2︸ ︷︷ ︸
point-to-plane

. (2.9)

In our experiments, the point-to-point distance requires indeed 30% more iterations
until convergence than the combined distance measure. Nevertheless, more iterations
until convergence do not necessarily lead to slower computation times. With the
point-to-point metric alone, the problem is separable in x/y/z, leading to threeN×N
linear systems. In contrast, the point-to-plane distance couples the coordinates,
leading to a 3N×3N linear system. Solving the larger linear system increased in our
experiments computation times by factor three. Because both energy formulations
converge to a comparable fit (Figure 2.4), we recommend to use the point-to-point
metric.
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template-to-scan scan-to-template

Figure 2.6: For high-resolution scanner data, scan-to-template correspondences
(right) yield towards a more accurate reconstruction than the typically employed
template-to-scan correspondences (left). The bottom row shows a color-coding of
the two-sided Hausdorff distance of scan and template.

Besides the fitting energy itself, closest point correspondences can be computed
in two directions – from template-to-scan and from scan-to-template (Figure 2.5).
The former identifies for each of the N template vertices vi the closest point in P,
while the latter finds for each of the P points pj its closest neighbor on the template
mesh M. In practice N � P , thus the computational complexity of the template-
to-scan correspondences is lower (O(N logP ) vs. O(P logN)). However, due to the
results obtained with scan-to-template correspondences are more accurate (Figures
2.4, 2.6) and should be chosen if accuracy is preferred over performance. Therefore,
we reformulate the point-to-point fitting energy from Equation (2.9) as following:

EFit(v) =
1

C

C∑
j=1

‖pj − cj(vαβγ)‖2 . (2.10)

In this case, the correspondences cj(vαβγ) on the template mesh are expressed by
barycentric coordinates of the vertices vi (see Equation 2.3).

The regularization energy EReg is responsible for smooth surface deformation
of the template model towards the target scan. A linear version, similar to Allen
et al. (2003) and Sumner & Popović (2004) and a non-linear as-rigid-as-possible
deformation model (Sorkine et al. 2004) are encountered most frequently. Both ener-
gies minimize bending and are thus discussed together. The linear model penalizes
deviations between the original Δv̂i and the new Δvi vertex Laplacian.

EBend(v) =
1∑N

i=1Ai

N∑
i=1

Ai ‖Δ(v̂i − vi)‖2 . (2.11)

In addition, the non-linear variant computes the optimal rotations Ri within the
one ring neighborhood of each vertex and thus preserves the shape better under
strong rotations.

EARAP (v,R1, . . . ,RN ) =
1∑N

i=1Ai

N∑
i=1

Ai ‖Δvi −RiΔv̂i‖2 . (2.12)

In both expressions, the Laplacian is discretized using the cotangent weights (Pinkall
& Polthier 1993, Meyer et al. 2003), and the area Ai is the local Voronoi area of a
vertex i. Both energies have the advantage that the resulting systems are separable
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Figure 2.7: A template model (a) is fitted towards a high-resolution face model
(Beeler et al. 2011) with added noise (±2mm) using a linear (b) and a non-linear (c)
regularization energy. Errors of more than 1mm are shown in red. (d) Comparison
of regularization energies (linear vs. non-linear) on the high-resolution face scan
with varying amount of noise (uniformly distributed, zero mean). c©Template: Chen

et al. (2014) c©Scan: Beeler et al. (2010)

in x/y/z and require only N ×N systems to solve. The final solution for the linear
bending model is obtained by solving once the resulting linear system. In contrast,
the non-linear as-rigid-as-possible variant requires alternating optimization for the
vertex positions vi and local rotation matrix Ri. In our experiments, convergence
was typically reached after 2–3 iterations. While the computation time for the non-
linear method is ten times higher, in our experiments the Root Mean Square (RMS)
error of the linear model is twice as large as that of the non-linear model (Figure 2.7).
Therefore, we recommend the non-linear as-rigid-as-possible regularization energy.

Another advantage of fitting a template model to a scan is that the template
provides a 2D parametrization of the model, which is required for texture mapping.
Textures can be generated automatically by sampling the color information of each
pixel from the point cloud. If the camera matrices are available, that are computed
during the point cloud reconstruction and that map the captured photographs on
the scan, the color information can be extracted directly from the photographs.
Both algorithms represent a variation of the texture transfer algorithm presented in
Section 3.3 and are available in software frameworks like PhotoScan by AgiSoft.

2.3 Eyes, Teeth and Hair

Most face reconstruction algorithms do not address the reconstruction of critical
facial parts like eyes, teeth or hair. To overcome this issue, methods exist that focus
on specific facial parts. François et al. (2009) focused on the acquisition of accurate
color textures and normal maps of the iris. High-quality scanning of eyes using a
multi-view setup in combination with active lighting for capturing the sclera, cornea
and iris was presented after the start of our project by Bérard et al. (2014). Very
recently, the same authors (Bérard et al. 2016) suggested a data-based approach to
create eyes from a low-quality input. Similarly, a morphable model is the core of the
teeth reconstruction method of Wu et al. (2016). In contrast, Bermano et al. (2015)
couple geometric deformation with image sequences to reconstruct moving eyelids.
Other work focused on facial hair creation. Herrera et al. (2010) detect reliably hairy
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Figure 2.8: Schematic illustration on the layering of hair when cutting real hair
and the importance of hair length for the overall hairstyle. Green lines represent
groups of hair and the purple line the cutting line. Left: Horizontal layering with
equal hair length and the resulting hairstyle. Right: Vertical layering with a cutting
line above the shoulder and the resulting hairstyle.

(a) Hair Layers (b) Hair Mesh (c) Hair Strands (d) Rendering

Figure 2.9: (a) Decomposition of the final hairstyle in different layers. The same
character is shown using internal representations of hair as (b) hair meshes or as (c)
hair strands (5% of total hair fibers) together with (d) the final rendering.

regions from images using a database. While his approach is limited to short hair,
the method of Beeler et al. (2012) is even capable to reconstruct complex beards
with long facial hairs in combination with the face.

Reconstruction of facial parts like teeth or eyes is in particular difficult because
of small size, occlusion or transparency. While the small size and occlusion make
reconstruction difficult, it also means that big parts of eyes or teeth remain hidden.
Therefore, we used the teeth, gums and tongue from a template model and manually
adjusted it to the facial proportions of our character using Free-Form Deformation
(FFD), which is available within all major 3D packages. For the eyes, our template
model consisted of two merged spheres for the sclera and cornea and a flat torus
for the iris. The according textures have been adjusted by globally shifting the hue,
brightness and saturation in order to match the color of the captured person’s iris.
Although simpler, this approach turned out to produce better results and be more
effective than extracting eye color from the scan, which is very noisy around the
eyes due to partial occlusion by eyelashes.

Digital hair in computer graphics is created by defining a few guide hairs and
interpolating the remaining hair between the guide strands. For an overview of stan-
dard hair creation techniques, we recommend the survey of Ward et al. (2007). An
interesting alternative, especially for more sophisticated hairstyles, are hair meshes
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(Yuksel et al. 2009), that we used to replicate the hairstyles. The technology is avail-
able as part of Hairfarm3, a plug-in of 3Ds Max4. In this case, the hull of hair strands
is created similar to polygon modeling techniques and later filled with hair fibers. In-
terestingly, most hair reconstruction methods follow a similar approach (Paris et al.
2004, Wei et al. 2005). First, edge detection filters are applied to identify the main
hair structures. Second, hair is created matching the flow of the detected edges and
the silhouette. More advanced methods reconstruct structures in combination with
shading using a light stage (Paris et al. 2008). Rather than just matching the overall
hairstyle, Jakob et al. (2009) focus on reconstructing hair on fiber level, by using
several images taken at shallow depth of field. Similar, Luo et al. (2013) reconstruct
fibers, group them to ribbons and optimize for connections. Their method is even
capable to reconstruct long curly hair. By using thermal imaging, Herrera et al.
(2011) overcome most difficulties of multi-view hair reconstruction like hair detec-
tion, depth approximation or fiber segmentation due to anisotropic shading paired
with multiple scattering effects. Recent developments focus on hair reconstruction
from single images with little (Chai et al. 2012, 2015, Hu et al. 2015) to no user
input (Chai et al. 2016), but rely in many cases on databases of hair styles. Due to
the amount of fibers of real hair and the resulting overlapping and self-occlusions, all
discussed methods approximate the visual appearance rather than fully reconstruct
a hair style.

We decided to model our hairstyles in Hairfarm following cutting and stylization
guidelines for real hair. The appearance and nature of hair are volumetric thanks
to the thousands of different hair strands. In order to control the vast amount of
different hair fibers, haircuts are divided into layers or groups (Figure 2.8, green
lines). In the simple, but very frequent case all hair within a group has identical
length, but for more advanced haircuts the length of hair within a layer might
change gradually. Defining well the length of hair has a big impact on the shape of
the haircut, especially in case of thick and curly hair (Figures 2.8 and 2.9). Once the
length and basic shape of the haircut are defined, the actual hairstyling begins. This
involves a finer partition of the layers and redefinition of the shapes of different hair
fibers. The very last polishing step includes the creation of separate hair strands
and loosely spread hair.

2.4 Rendering

The analysis and computation of realistic light-surface interaction have a long tradi-
tion in computer graphics. In general, material models in computer graphics can be
separated in appearance-based models and physically-based shading. While the for-
mer models specify visual properties using intuitive parameters for artists, the latter
obey different laws of physics, e.g., energy conservation. Although physically-based
shading (Hill et al. 2015, McAuley & Hill 2016) is preferred over phenomenological
models like the Phong shading model (Phong 1975) for realistic characters, we will
show in the next paragraphs that the difference between the two models is blurry,
and appearance-based material models can be converted to physically-based shading
models. This means that a specific set of parameters of the Phong shading model ac-
tually represents physically correct appearance. Our analysis of different rendering

3http://www.hair-farm.com
4http://www.autodesk.com
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solutions revealed that no single solution existed that combines all recent advance-
ments from the research community out of the box. Lacking an optimal solution,
we selected the combination of Mental Ray5 with Hairfarm as the best compromise
in terms of speed/quality. However, with the publication of the DigitalEmily 2.0
dataset6 the combination of Vray7 with Hairfarm should also be considered.

Skin Rendering Rendering skin is especially challenging because of its layered
consistency. In general, surface reflectance is modeled by separating the upper oily
layer (specular lighting) from the underlying fleshy skin (subsurface scattering). The
resulting material is thus a combination of a Bidirectional Reflectance Distribu-
tion Function (BRDF) for the specular part and a Bidirectional Surface Scattering
Distribution Function (BSSDF) for the diffuse/subsurface scattering part. In the
following, we review the common physically-based models for skin rendering and
their connection to appearance-based shading models like the Phong shading. The
intention behind this detailed description is to show that the boundary between
appearance-based and physically-based shading models is somewhat blurry.

For skin rendering, specular lighting is approximated using an analytic BRDF
based on the microfacet distribution model (Torrance & Sparrow 1967). The general
Cook-Torance BRDF is defined as:

fR(l,n,v) =
D(h)F (v,h)G(l,v,h)

4(n · l)(n · v) . (2.13)

Here, l is the light direction, v the view direction, n the surface normal, and h =
n + l/ ‖n+ l‖ the half-vector between l and n. All input vectors are used in their
normalized form. The function D(h) is the normal distribution function, F (v,h)
the Fresnel reflectance and G(l,v,h) the geometry function.

The Fresnel reflectance is best understood so far and describes the amount of
light that is reflected by specific incident angles. Even though an exact solution
exists for the Fresnel reflectance (Pharr & Humphreys 2010), computation time
can be saved using Schlick’s approximation (Schlick 1994) without losing too much
accuracy. In addition, Schlick’s expression has more intuitive input parameters and
became thus a common alternative for practical applications.

FSchlick(F0, l,h) = F0 + (1− F0)(1− (l · h))5 . (2.14)

F0 is the surface’s characteristic specular color, which is non-colored and rather
low max(Fr

0,F
g
0,F

b
0) < 0.2 for dielectric materials like skin, and colored and high

0.34 < Fr
0,F

g
0,F

b
0 < 1.02 for shiny materials like metals.

The Normal Distribution Function (NDF) describes the amount of light that
is reflected towards the direction of the half-vector. If the microfacets’ normals
are equally distributed in all directions, a perfectly rough surface is given. The
geometry shadowing function considers the fraction of light that is either blocked by
the microsurface structure or amplified due to inter-reflections. For the NDF and
the respective geometry shadowing, different analytic functions were proposed, but
only a fraction was applied to skin rendering. Weyrich et al. (2006) assumed that

5http://www.nvidia.com/mentalray
6http://gl.ict.usc.edu/Research/DigitalEmily2/
7https://www.chaosgroup.com/
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2.4 Rendering

the Torrance-Sparrow model (Torrance & Sparrow 1967) is most accurate.

GTS(l,v) = min

(
1,

2(n · h)(n · v)
v · h ,

2(n · h)(n · l)
l · h

)
. (2.15)

The Torrance-Sparrow model is based on the Beckmann distribution (Beckmann &
Spizzichino 1963) with m ∈ [0, 1] being the roughness parameter and m = 0 defining
a perfectly smooth surface.

DBeckmann(h,m) =
1

πm2(n · h)4 e
(n·h)2−1

m2(n·h)2 . (2.16)

Based on physical measurements, Weyrich et al. (2006) created a reference for the
roughness term for specific parts of the face. In their highly influential paper, d’Eon
et al. (2007) suggested to replace the Torrance-Sparrow geometry shadowing function
with the simplified version from Kelemen & Szirmay-Kalos (2001).

GKelemen(l,v)

4(n · l)(n · v) ≈ 1

hu · hu
=

1

4(l · h)2 . (2.17)

Here, hu = n + l is the unnormalized half-vector computed from normalized nor-
mal and light vectors. Interestingly, Kelemen also proposed to approximate the
Beckmann distribution by the Blinn-Phong model. Ngan et al. (2005) and Walter
et al. (2007) fitted various analytical models to empirical data and reported that the
Torrance-Sparrow model approximates the data best. Nevertheless, the Blinn-Phong
model approximates well the Beckmann distribution for low roughnesses, which is
the case for the skin. In addition, Ngan et al. (2005) demonstrated that combining
two specular lobes improves fitting quality significantly. In fact, an energy conserv-
ing form exists for the Blinn-Phong model (Blinn 1977), which addresses the main
shortcoming of the Blinn-Phong model.

DPhong(h, c) =
(c+ 2)

2π
(n · h)c . (2.18)

Considering the connection between the power coefficient c and the roughness
m in microfacet models, it is possible to express the Blinn-Phong distribution as a
variable of the roughnessm. This illustrates that the boundary between appearance-
based shading models and physically-based shading models is blurry.

m =

√
2

c+ 2
. (2.19)

DPhong(h,m) =
1

m2π
(n · h)

2
m2−2 . (2.20)

However, Walter et al. (2007) criticized even the physically-based Beckmann
distribution for having a too short lobe. Burley (2012) confirmed this observation
by re-evaluating different analytical models on the MERL dataset (Ngan et al. 2005).
Speaking visually, this means that the Phong or Beckmann distribution can either
approximate well the intensity of the specular highlight or the fading of the specular
highlight, but not both at the same time. It is therefore not surprising that the
combination of two lobes, one that approximates the highlight and one the falloff
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2 Creating Realistic Facial Stimuli

(Ngan et al. 2005), leads to more accurate results. In order to overcome these
limitations with a single lobe, Walter et al. (2007) suggested the GGX model.

DGGX(h,m) =
m2

π((n · h)2(m2 − 1) + 1)2
. (2.21)

GGGX(l,v,m) = G1(l,m)G1(v,m) ,

G1(v,m) =

⎧⎨
⎩

2(n·v)
(n·v)+

√
m2+(1−m2)(n·v)2 , if n·h

n·v > 0

0 , if n·h
n·v < 0

(2.22)

Another advantage of the GGX model is that the limited set of parameters makes
it very artist friendly. Variations of this model are used in the Unreal Engine (Karis
2013) and Disney’s internal production renderer (Burley 2012, 2015).

A considerable amount of research exists on rendering translucent or semi-translucent
materials using path tracing or photon mapping. Due to the number of publications,
we focus only on work that is closely related to skin rendering. Subsurface scattering
models the effect that incoming light is reflected at a different position. The relation-
ship of the incoming and outgoing lights is described by a BSSDF, which is a gener-
alization of the BRDF. While the BRDF was only dependent on the incoming and
outgoing light angles, the BSSDF also considers the incoming and outgoing positions
(Pharr & Humphreys 2010). One side-effect of subsurface scattering for skin and
most other materials is that the light distribution becomes isotropic, due to the high
amount of scattering. Nevertheless, many scattering events must be computed due
to low absorption rates within the media, e.g., for red light σa ∈ [0.013, 0.032]mm−1.

Jensen et al. (2001) suggested a dipole model for homogeneous materials as an
efficient way to compute subsurface scattering. The dipole model has later been
extended by Donner & Jensen (2005) for multi-layered translucent materials and
adapted for human skin rendering (Donner & Jensen 2006). d’Eon et al. (2007)
demonstrated that the dipole profile of skin can be closely approximated using a
combination of Gaussians.

Due to the separability of Gaussians, d’Eon et al. (2007) approximated subsurface
scattering using texture filtering in texture space. In order to increase performance,
the texture filtering approach has been extended to screen space (Jimenez et al.
2009) and a single separable 2D filter (Jimenez et al. 2015). In addition, research
focused on refining the reflectance model for skin (Weyrich et al. 2006, Donner et al.
2008, Jimenez et al. 2010, Iglesias-Guitian et al. 2015) or improve the diffusion theory
that the dipole model is based on (d’Eon et al. 2011, Habel et al. 2013b,a). Finally,
it should be noted that subsurface scattering is also used for rendering stylized
characters (Burley 2012, 2015).

For skin rendering, Mental Ray has a dedicated multi-layer skin shader with sub-
surface scattering. Comparing this shader with different surface reflectance models
is difficult, because it does not follow an algorithm published in academia, and the
algorithm is not well documented. Based on the description and practical exper-
iments, specular reflection is modeled using a two lobe approach, with every lobe
modeled by a variation of the Phong specular model, which should approximate well
the GGX model as we discussed previously.

We encoded different specularity of facial skin in specularity maps, following
Weyrich et al. (2006). The shader simulates subsurface scattering by blurring and
combining different albedo textures, which represent different skin layers. The top
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Figure 2.10: The anatomy of the human eye (Blausen 2014) with a cross-section
(right) of the iris, showing the ABL (Anterior Border Layer), the Stromal layer and
the IPE (Iris Pigment Epithelium). c©Eye: Blausen Medical

layer models the dermis and has a blueish albedo, while the lowest layer simulates the
light distribution of the epidermis and has a red-tinted albedo texture. Overall, the
skin shader can be considered similar to the method of d’Eon et al. (2007) without
guaranteeing physical properties like energy conservation.

Eye Rendering The human eye can be approximated by a sphere with a bulge
(the cornea) in front of the iris (Figure 2.10). Most rendering work on eye rendering
focuses actually on rendering the detailed structure of the iris. The iris is separated
into different layers, the Anterior Border Layer (ABL), the stromal layer and the Iris
Pigment Epithelium (IPE). Based on biological observations, the following assump-
tions are made for rendering the iris: The IPE absorbs any incoming light due to
strong pigmentation. Depending on the amount of melanin in the ABL and stromal
layer, the eye color ranges between brown (high melanin concentration) and grey or
blue (low melanin concentration). As the ABL is much thinner than the stromal
layer, scattering occurs only within the collagen fibrils of the stromal layer. The
scattering occurs in Rayleigh fashion (Wilkerson et al. 1996) – short wavelengths
(blue) are scattered more than long wavelengths (red). In consequence, white light
will be colored grey/blue in cases of low melanin concentration, and brown for high
melanin concentration.

By combining layers of different color textures, Lefohn et al. (2003) simulate the
layered consistency of the iris. The idea is based on ocularist’s approach to human
iris synthesis. Lam & Baranoski (2006) developed a physically accurate eye rendering
algorithm based on wavelength optics and the layered consistency of the iris. Due
to the stochastic approach for scattering, the algorithm is based on Monte Carlo
ray-tracing. By approximating the iris model of Lam & Baranoski (2006), François
et al. (2009) developed a real-time version. In addition, they suggest a method that
models the distortion of the iris due to refractions of the cornea. Jimenez et al. (2013)
address practical aspects beyond the rendering of the iris, like eye-water around the
eye, inter-reflections from eyelids, or the scattering on the sclera. Following Jimenez
et al. (2013), we applied a transparent material with according index of reflection to
the lens of the eye. For the iris, a subsurface scattering material was selected and
the eye interior had a non-reflective black material.
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Figure 2.11: Left: Illustration of angles and vectors, required for the Kajiya-Kay
and Marschner hair model. Right: Reflections (R) and transmittance (T) considered
by the extended Marschner model in d’Eon et al. (2011).

Hair Rendering In contrast to skin or eyes, hair is represented as curves in
computer graphics. Thus, the light interaction is not described via a BSSDF but via
a Bidirectional Curve Scattering Distribution Function (BCSDF) (Zinke & Weber
2007). The most simple BCSDF is the Kajiya-Kay shading model (Kajiya & Kay
1989), that is still common in real-time applications. Similar to the Phong BRDF
(Phong 1975), the Kajiya-Kay model consists of a specular and a diffuse component:

L(v, t, l) = kd sin(t, l)︸ ︷︷ ︸
diffuse

+ ks ((t · l)(t · v) + sin(t, l) sin(t,v))c︸ ︷︷ ︸
specular

, (2.23)

where kd and ks represent the diffuse and specular color tint and t is the tangent
direction of a curve. Note that the model computes radiance directly, similarly to
the Phong model. If one is only interested in the BCSDF, Equation (2.23) should
be normalized by θi, which is the angle between the incoming light and the normal
plane. The two main shortcomings of the model are that (i) translucency and (ii)
a second tinted highlight cannot be modeled for hair. Variations of the Kajiya-Kay
model exist (Scheuermann 2004, Goldman 1997) which address these limitations.

Based on physical principles, a more accurate BCSDF has been proposed by
Marschner et al. (2003), and energy conservation has been improved by d’Eon et al.
(2011). The model is based on two assumptions. First, most of the visible variation
can be described by combining the first three to four modes of reflection R, TT, TRT
and TRRT, where R and T stand for reflection and transmission at the hair fiber
(Figure 2.11). The second assumption is that longitudinal and azimuthal scattering
can be separately computed by the functions M(θi, θr) and N(θi, θr, φ), with θi
and θr being the longitudinal angles for the incoming and outgoing light and φ
the azimuthal angle between the incoming and outgoing light. The separation in
longitudinal and azimuthal scattering allows to summarize the BCSDF in a more
generalized form (d’Eon et al. 2011), where p ∈ {R = 0, TT = 1, TRT = 2, . . . }
describes the light path within the fiber:

fS(θi, θr, φ) =
∞∑
p=0

Mp(θi, θr), Np(θi, θr, φ) . (2.24)

We omit further details on the computation of the longitudinal and azimuthal
scattering functions and refer the interested reader to the original publications for
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2.4 Rendering

Figure 2.12: Final results obtained using our character creation pipeline and the
improvements proposed by Achenbach et al. (2015).

full description and derivation. Although the evaluation of the Marschner model
is computationally intensive, a real-time approximation is provided in Nguyen &
Donnelly (2006) by saving precomputed results in texture look-up-tables or by sim-
plifying some terms (Karis 2016).

On the one hand, the Marschner model simulates well most of the discriminative
features of hair, on the other hand, input parameters like the index of refraction or
absorption coefficients are not very artist friendly. Unintuitive input parameters in
combination with the energy conservation of the Marschner model, where specular
highlights are tightly coupled with translucency, make it very difficult to achieve a
stylized look that typically goes beyond laws of physics. Therefore, Sadeghi et al.
(2010) presented a method that combines the accuracy of the Marschner model
paired with artist-friendly controls. Probably the best application case for their
method is the hair in the movie Tangled.

Besides the complexity of the Marschner model itself, the approximation of the
light scattering between different fibers is another challenge with a substantial im-
pact on the visual results and performance. While Marschner et al. (2003) used path
tracing, significant speed-up has been obtained by approximating global scattering
with photon mapping (Moon & Marschner 2006) or spherical harmonics (Moon et al.
2008). Zinke et al. (2008) derive a formulation that saves forward and backscattering
in spatial structures and is thus capable of rendering hair at up to interactive fram-
erates on graphics hardware for directional light sources. In case of environmental
lighting, performance can be increased by approximating the light with surface ra-
dial basis functions (Ren et al. 2010, Xu et al. 2011). For the creation of our stimuli,
we used the previously mentioned plug-in Hairfarm that renders hair utilizing the
method of Zinke et al. (2008). Figure 2.12 shows the final results obtained using
our character creation pipeline with additional improvements for template fitting
(Achenbach et al. 2015).
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3 ElastiFace – Geometry and
Texture Matching

Shape

Material

50% Eyes

100% NoseBase
Character

Figure 3.1: Our ElastiFace framework matches faces with strongly different
shapes and textures. It facilitates combining shape and material of different char-
acters (left) or morphing between facial parts (right). Examples are based on real
perception studies (see Chapter 6, and Seyama & Nagayama (2007)).

Developing a method that establishes dense correspondences between two faces
is driven by the idea to investigate the perceptual influence of static facial properties
like shape or material independently. In computer graphics, most data varying over
a polygonal surface is either saved per vertex or in a texture that is mapped to
the surface. To exchange such information between various faces, dense one-to-
one correspondences are required. The ideal method should be applicable across
multiple face stylizations and not require topological changes in order to be suitable
for building databases of face models incrementally. With ElastiFace we present
a simple and effective framework for establishing correspondences between a given
set of face models, using a combination of joint-fairing and non-rigid registration.
In contrast to most previous work, our method handles input models of extremely
different geometries (Figure 3.1). Nevertheless, its algorithmic core is based on
solving simple bi-Laplacian linear systems and is therefore easy to implement.

Although there exists a wide variety of approaches for mapping one mesh onto
another, most of them disqualify for our face morphing application due to their
inherent limitations. Methods based on mapping the input models to a common
simple parameter domain typically require the input models to be homeomorphic to
a plane or a sphere. More general, cross-parametrization techniques have to adjust
the mesh connectivity, thereby breaking the (required) one-to-one correspondence
when matching to several target models. Non-rigid registration approaches avoid
these topological limitations by deforming a given template model to different target
shapes, but most of them are restricted to near-isometric input models. For the
strongly varying face models we are interested in, their closest point correspondences
fail to give valid results.

By combining the concepts of (i) deformation-based registration and (ii) trans-
formation of models into a simpler domain, we overcome the individual limitations
of these approaches. A novel simultaneous fairing technique transforms source and
target meshes into a simple, featureless, and geometrically very similar state, from
which accurate correspondences for a non-rigid registration of the original meshes
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can be robustly determined. This extension to closest point correspondences is the
key contribution of our work. Our fairing and fitting techniques are both simple to
implement and computationally efficient since both are based on the minimization
of a geometrically intuitive quadratic energy. In addition to matching the shape of
the given input models, we further extend our framework by blending between facial
parts, input textures and several rendering styles, as shown in Figure 3.1. Besides
our specific use-case, blendshape based facial rig creation can highly benefit from
our method as we demonstrate on the clay-figure example (Figure 3.10).

3.1 Overview of Dense Correspondence Estimation
Methods

Establishing a mapping from one model to another has been investigated in several
fields and under different names, and is therefore referred to as mesh morphing,
cross-parametrization, non-rigid registration, or correspondence estimation. We only
discuss the most relevant methods here and refer the reader to the book of Bronstein
et al. (2008), the survey of van Kaick et al. (2011), or the courses of Chang et al.
(2010) and Bouaziz et al. (2014) for more details.

An overview of early mesh morphing methods is reported by Alexa (2002). The
described methods typically parametrize the input models into a simple domain,
such as a disk or a sphere. In case of the former, a constrained planar parametriza-
tion (Lévy 2001, Kraevoy et al. 2003) can then be used to establish correspondences.
However, in both cases, the input models are restricted to topological planes or
spheres. Similar topological restrictions apply to the approaches of Blanz & Vetter
(1999) or of Wang et al. (2008), who fit a model to a scan via cylindrical or disk
parametrization.

In contrast, inter-surface mapping approaches (Kraevoy & Sheffer 2004, Schreiner
et al. 2004) avoid the common parametrization domain by constructing a direct
mapping between the two 3D models. Although these methods can match arbitrary
non-isometric objects, they have to insert additional vertices to the resulting mesh,
which breaks the requirements of our application of incrementally building a face
database. Bronstein et al. (2006, 2008) also compute a direct mapping between two
surfaces. They minimize parametric distortion through Generalized Multidimen-
sional Scaling (GMDS). While their method does not introduce new vertices, it is
designed particularly for isometric or close-to-isometric models — a prerequisite not
met by our strongly varying face models.

Other approaches embed the input models into spaces where correspondences
are easier to detect. For instance, Ovsjanikov et al. (2010) match objects based
on a single correspondence by embedding the models using the Heat Kernel Map.
Lipman & Funkhouser (2009) map models to the complex plane using Möbius trans-
formations and find correspondences by a voting scheme that evaluates groups of
three-point candidates. Again, both methods are designed for near-isometric input
models. Kim et al. (2011) overcome this restriction by blending several intrinsic
maps. However, their method yields to non-plausible mappings for our examples
(see Section 3.5).

Non-rigid registration approaches overcome the limitation of certain topological
types by deforming a template model until it matches the given target model. The
approach of Lee & Magnenat-Thalmann (2000) employs free-form deformation with
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3.1 Overview of Dense Correspondence Estimation Methods

Figure 3.2: Difficult case for ICP-based non-rigid registration. Left: The lower
surface mainly aligns to the black part of the surface and discards the details marked
blue. Right: The blue correspondences cause self-intersections when aligning the
upper surface to the lower one.

manually specified curve constraints to fit a generic head model to photographs.
Similarly, Bui et al. (2003) use a Radial Basis Function (RBF) space warp with fea-
ture points determined by a genetic algorithm. Both approaches have the drawback
that their low degree of freedom space warps are not capable of mapping strongly
differing geometries, e.g., to unfold a “source ear” to a “target non-ear” (see Fig-
ure 3.3). Similar restrictions apply to the correspondence estimation of Noh &
Neumann (2001), which employs an RBF warp followed by a cylindrical projection.

More recent non-rigid registration approaches fit several scans of deforming ob-
jects (Li et al. 2008, Huang et al. 2008, Tevs et al. 2009) or fit a template model to
3D scans (Allen et al. 2003, Amberg et al. 2007, Weise et al. 2009, 2011). Rather
than registering a surface to another, Sahillioğlu & Kavan (2016) suggest unfolding
3D shapes into poses that are invariant to nonrigid transformations. But most of
these methods assume near-isometric deformations. For models of very different
shape, e.g., one model has ears while the other one does not, these methods fail
to find valid correspondences (Figure 3.2), which in turn leads to fold-overs and
inter-penetrations in the mapped model, as we demonstrate in Section 3.5.

Our method can be considered as a combination of the ideas presented above:
Similar to non-rigid registration, it deforms a source/template model into given
target shapes. But it avoids the problem of invalid closest point correspondences
by first mapping source and target models into a simpler space and computing
correspondences there. The simpler space, however, is not a planar or spherical
parametrization, but a smoothed, feature-less version of the input models, computed
by the joint-fairing technique proposed in the next section.

Generalized barycentric coordinates on a surface (Rustamov 2010) are as well
suitable for establishing dense correspondences between meshes. However, relying
on geodesics, the computation time quickly increases with the number of vertices.
Panozzo et al. (2013) overcome this limitation by replacing geodesics with Phong
projections in a higher dimensional space. The method is also suitable for establish-
ing dense correspondences between entire meshes. While a single correspondence
for a vertex is computed in a few microseconds, pre-computation times of several
minutes are required in advance. Similar to our approach, their method involves
least-square meshes and is thus also suffering of thinning artifacts.

Conceptually similar to our joint-fairing is the joint-flattening in lifted bijections
(Aigerman et al. 2014), published after our work. First, points are connected using
minimal geodesic distances. Afterwards the meshes are cut along the graph and

31



3 ElastiFace – Geometry and Texture Matching

jointly parametrized in 2D. Possible ambiguities at overlapping areas are resolved
by constructing paths to the bijective mappings at the cut. However, inconsisten-
cies may appear at the cuts which is addressed in follow-up work (Aigerman et al.
2015). In contrast to Panozzo et al. (2013) and our approach, Aigerman et al. (2015)
overcome the thinning artifacts, at the cost of high computation times (20–30 min-
utes) and numerical instability for meshes of over 80K vertices. In order to maintain
mesh connectivity Aigerman et al. (2015) cut meshes only along existing edges, im-
plying that reference points must be placed at vertices. It remains open whether the
method allows only a limited amount of references points as otherwise cuts along
existing vertices cannot be constructed. Both limitations might be a serious issue
in practice for low resolution, textured meshes. For the stylized characters from
Chapter 5 more than 40 reference points were required for establishing dense cor-
respondences that were also semantically correct. As some facial parts grow (eyes)
while other parts shrink (nose) such properties cannot be considered by optimizing
only conformal distortions.

3.2 Geometry Matching

The first step of our face matching is to geometrically map the source face mesh Ms

onto the target face model Mt. To this end we adjust the source model’s vertex
positions only, and keep its connectivity fixed. After the user has manually marked a
few correspondences (Section 3.2.1), we first transform both the source and the target
model Ms and Mt into smoothed base meshes Bs and Bt (Section 3.2.2), which
afterwards are brought into correspondence by a non-rigid registration approach
(Section 3.2.3). The correspondences derived from the smoothed models Bs and Bt

are then used as initial guess for the registration of the original models Ms and
Mt. This process is depicted in Figure 3.3 and explained below. In the following,
we denote the vertices of the source and target mesh by vs

i , i = 1, . . . , N s, and vt
j ,

j = 1, . . . , N t, respectively. If we particularly emphasize properties of the original
undeformed meshes we denote this by a hat (ˆ). Vertex positions of the smoothed
base meshes Bs and Bt are denoted as vbs

i and vbt
j respectively.

3.2.1 Manual Correspondence Specification

As in most morphing or cross-parametrization approaches, the user initially specifies
a few correspondences by selecting the respective feature points on both the source
model Ms and the target model Mt. In our application, the user typically marks
about 15–20 correspondences for nose, eyes, mouth, and ears, as shown in Figure 3.3,
left column. In contrast to most other approaches, however, a simple vertex-to-
vertex correspondence (vs

i 	→ vt
j) is often not accurate enough in our context, since

our face models are equipped with high-resolution textures. For instance, accurately
selecting correspondences for the eyebrows in Figure 3.4 requires to specify reference
points within triangles. Each of these reference points is represented by a barycentric
combination of its triangle vertices. Our set of correspondence constraints therefore
consists of tuples of reference points (rsm, rtm), m = 1, . . . ,M , represented as:

αs
mvs

α + βs
mvs

β + γsmvs
γ and αt

mvt
α + βt

mvt
β + γtmvt

γ . (3.1)

In the above equation, αm, βm, γm denote the barycentric coordinates of rm with
respect to the containing triangles on Ms and Mt.
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Figure 3.3: Overview of the geometric matching: After selecting correspondence
constraints (blue and pink dots), the source mesh Ms and target mesh Mt are
smoothed into base meshes Bs and Bt. Then Bs is fitted to Bt (bottom center), and
– based on the resulting correspondences – Ms is fitted to Mt (top center).
c©Loki: Mark Pauly

Figure 3.4: In order to accurately specify corresponding points at the eyebrow,
we have to use interior triangle points instead of simple vertex-to-vertex correspon-
dences. c©Viktor: Faceware Technologies
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Figure 3.5: Starting from one or more correspondence constraints on a boundary
loop (purple) we automatically assign correspondences for all other boundary loop
vertices (blue) based on relative distance along the boundary loop.

In order to accurately map boundaries (e.g., eyes, mouth, neck), the user can
manually specify one or more points on corresponding boundary loops. The system
then automatically determines target positions for all other vertices on the source
boundary loop by preserving the relative edge lengths on the target boundary loop
(see Figure 3.5). Note that the target positions will lie on boundary edges, and can
therefore also be represented as a barycentric combination of boundary vertices in
the form of Equation (3.1).

Based on these correspondences we initialize the registration by aligning the
two models using the best-matching similarity transform between source and target.
This amounts to minimizing the squared distances of transformed source points to
their corresponding target points:

min
R, t, s

M∑
m=1

∥∥sRrsm + t − rtm
∥∥2 .

The optimal rotation R, translation t, and uniform scaling s can be computed in
closed form (Horn 1987, Umeyama 1991).

3.2.2 Joint-Fairing

By obtaining the reference points (rsm, rtm) for models with similar proportions and a
similar level of geometric detail, it would be possible to establish a mapping between
Ms and Mt using a deformation-based registration with ICP-like closest point con-
straints, such as the method of Weise et al. (2009). However, if the models differ
significantly, e.g., one model has ears while the other one does not, the closest point
constraints fail to give reasonable results (see Figure 3.2). This typically leads to
fold-overs and self-intersections in the deformed source mesh. To overcome the limi-
tations of closest point correspondences in 3D, other approaches first transform both
models into a simpler space and find correspondences there. For instance, Lipman
& Funkhouser (2009) map models into the complex plane using a Möbius transform,
which relaxes isometry to conformal equivalence. However, these methods typically
require both models to differ only by a near-isometry, which is not the case for our
application.
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In contrast, we propose to transform both models into a simple, similar, and
feature-less shape, on which we then compute robust correspondences. This is con-
ceptually similar to Kraevoy & Sheffer (2004) and Schreiner et al. (2004), but avoids
intermediate steps like path constructions between feature points. The final shapes
will be non-isometric such that the initial source and target models can differ signif-
icantly. The main idea is to (i) apply aggressive fairing to remove geometric details,
(ii) force corresponding points to coincide to achieve a sufficient geometric similar-
ity, and (iii) allow correspondences to move to a certain degree in order to unfold
geometrically complex regions like mouth and nose (see Figure 3.3, bottom).

A fair surface is a smooth surface of minimal area spanned across a fix bound-
ary. For our application, we are interested in minimizing the mean curvature
H = (κ1 + κ2)/2 over the entire mesh, with κ1 being the maximum curvature and
κ2 the minimum curvature. For a continuous surface a fair surface is obtained by
minimizing the following energy:

EFair =

∫
H2dA . (3.2)

In case of discrete triangle meshes, the mean curvature vector is directly related
to the Laplace-Beltrami operator, which in turn is defined through the well known
cotangent formula (Pinkall & Polthier 1993, Desbrun et al. 1999, Meyer et al. 2003).

H2(vi) =
1

2
‖Δvi‖2 , (3.3)

Δvi =
1

2Ai

∑
vj∈Ni

(cot αi,j + cot βi,j)(vj − vi) . (3.4)

ni and Ai indicate the normal and the Voronoi area of vertex vi. α and β are the
angles opposite to the edge vivj and Ni denotes the one-ring neighborhood of vertex
vi. Thus instead of minimizing the squared mean curvature over the entire surface,
we can also minimize the squared norm of the Laplacian.

min
vi

N∑
i=1

1

2
Ai ‖Δvi‖2 . (3.5)

The solution is found by solving the linear system.

L2

⎡
⎢⎣
vT
1
...

vT
N

⎤
⎥⎦ = 0 . (3.6)

The linear system is separable in the x/y/z coordinates of vi leading to a N × N
Laplace matrix L and a N × 3 zero matrix 0. However, solving this linear system
without boundary constraints leads to the trivial solution [v1, . . . , vN ]T = 0. We
thus extend our fairing energy by adding reference constraints. In addition, we fair
both input meshes Ms and Mt simultaneously, obtaining our final energy function:
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EFair

(
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1, . . . ,v
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= (3.7)
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i ‖Δvs
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Nt∑
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j

∥∥Δvt
j

∥∥2
⎞
⎠ (3.8)

+
λ2

M

M∑
m=1

∥∥rsm − rtm
∥∥2 (3.9)

+
λ3

M

M∑
m=1

∥∥∥∥12(rsm + rtm)− 1

2
(r̂sm + r̂tm)

∥∥∥∥
2

. (3.10)

The first term (3.8) penalizes the squared norms of per-vertex Laplacians Δvi

and leads to as smooth as possible surfaces. The second term (3.9) penalizes the
deviation of corresponding reference points, hence is responsible for making them
coincident. Note that rsm and rtm are barycentric combinations of vertices vs

i and
vt
j (3.1), such that this objective can be formulated in terms of the latter. The last

term (3.10) is required to avoid the trivial solution. It basically prescribes a target
position for the two corresponding points rsm and rtm, which can be considered to be
coincident due to the second term. The target position is chosen as the point where
rsm and rtm can meet with least movement, which is the average 1

2(r̂
s
m + r̂tm) of their

original positions (before the optimization).
Note that we do not combine the terms (3.9) and (3.10) since we want to enforce

strongly that corresponding points become coincident, while we only enforce weakly
a specific target position. This allows the reference points to move to a certain
degree in order to further decrease the curvature term, which effectively leads to an
unfolding of geometrically difficult parts, such as nose, mouth, and ears (Figure 3.3).
If we strictly enforce rsm = rtm = 1

2(r̂
s
m+r̂tm) the surface would not be able to unfold to

a state without self-intersections. This behavior was achieved by λ1 = 0.1, λ2 = 100,
λ3 = 1 in almost all examples; only the Slimer model (Figure 3.12) and the clay
faces (Figure 3.10) require a higher smoothing weight (λ1 = 10) to fully unfold.

If we keep the cotangent weights and Voronoi areas fixed, then minimizing the
quadratic objective function (3.7) amounts to solving three (N s +N t)× (N s +N t)
linear systems of normal equations for the x, y, and z coordinates of the vertex
positions of Ms and Mt. This system is highly sparse, symmetric, and positive
definite and we solve it using a sparse Cholesky factorization (Chen et al. 2008).

The results of this energy minimization noticeably depend on the underlying
triangulation, since the cotangent weights and Voronoi areas, in fact, depend non-
linearly on the vertex positions. Hence, the simple linear solve might not be a
sufficiently accurate approximation to the true nonlinear solution. To take this
mesh-dependence into account, we iteratively update the weights and re-solve the
linear system. To avoid numerical problems due to degenerated cotangent weights,
we follow Kazhdan et al. (2012) and update the Voronoi areas only, while keeping the
cotangent weights fixed. Although this process might not converge in a theoretical
sense, in practice, there are no noticeable changes after five to ten iterations. The
joint-fairing approach turned out to be numerically very robust, and it yields two
highly smooth and geometrically very similar base meshes Bs and Bt. This is even
the case for highly different geometries and tessellations, as shown in the second
column of Figure 3.3.
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3.2.3 Non-Rigid Registration

The two base meshes resulting from the joint-fairing process are void of any geomet-
ric details due to smoothing and are geometrically very similar since they correspond
to discrete curvature-minimizing thin plate surfaces with identical Dirichlet bound-
ary constraints. As such, they are an easy task for a deformation-based non-rigid
registration approach. We therefore first deform the smooth source mesh Bs onto
the smoothed target model Bt, and then use their resulting vertex correspondences
as an initial guess for the registration of the original models Ms and Mt.

For matching Bs to Bt, we adjust the vertex positions of the former. To this
end, we iteratively minimize an energy consisting of a fitting term and a smoothness
term, as it is done by most non-rigid registration approaches. The smoothness term
(3.11) penalizes bending (i.e., change of curvature) of the source model, measured
by the Laplacians of vertex displacements Δ(vbs

i − v̂bs
i ), where v̂bs

i and vbs
i denotes

the vertex position on mesh Bs before and after the deformation. The fitting term
(3.12) tries to minimize the distance of each source vertex vbs

j to its closest point

cbtj on the smoothed target model Bt, unless pruning heuristics apply (Section 2.2).

The third term (3.13) ensures that the coincident reference points rbm remain at their
position:

ERegist

(
vbs
1 , . . . , v

bs
Ns

)
=

μ1∑
iA

bs
i

Ns∑
i=1

Abs
i

∥∥∥Δ(
vbs
i − v̂bs

i

)∥∥∥2 (3.11)

+
μ2

C

C∑
j=1

∥∥∥vbs
j − cbtj

∥∥∥2 (3.12)

+
μ3

M

M∑
m=1

∥∥∥rbsm − r̂btm

∥∥∥2 . (3.13)

While we use the Voronoi area Abs
i of the smoothed base mesh Bs, we keep the

cotangent weights that have been computed on the initial mesh Ms. Note that
in contrast to most other non-rigid registration approaches we can use a simple
quadratic energy, since both meshes are already very similar, such that the closest
point constraints (vbs

j , c
bt
j ) are meaningful, equal by amount (C ≈ N) and a linear

deformation model is sufficient. The energy is again minimized by solving a sparse
linear system, similar to the one of Section 3.2.2.

In an ICP-like manner (Besl & McKay 1992) we iteratively update closest point
correspondences (vbs

j , c
bt
j ) and re-solve the linear system, which typically converges

after three to four iterations. Similar to other methods, we start with a rather stiff
surface (μ1 = 10), which is then made softer (μ1 = 1 and μ1 = 0.1) in order to allow
for a more precise fit. The other weights are set to μ2 = 1 and μ3 = 10. In total,
the registration takes about ten iterations and accurately maps the smoothed source
model Bs onto the smoothed target model Bt (see Figure 3.3, bottom center).

As the last step of our registration pipeline, we take the final closest point cor-
respondences (vbs

j , c
bt
j ) computed on the smooth meshes, and use them for matching

the original source model Ms to the original target model Mt. To this end, we sim-
ply replace cbtj , which is represented by triangle index and barycentric coordinates
on Bt, by the equivalent point ctj on the original target model Mt in the registra-
tion energy (3.12). Similarly, we also replace all reference points and weights of the
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Figure 3.6: Overview of the texture transfer algorithm. From left to right: Origi-
nal, textured meshes as input models, morphed and target geometry, morphed and
target texture, and the final morphed model. c©Dave: TurboSquid

smoothed meshes (Abs
i , v

bs
i , r

bt
m) by their counterparts of the original meshes and

set the fitting weight very high (typically 300), while keeping the other weights at
0.1. Since the correspondences computed on the smoothed meshes are very good, we
only need one or two iterations on the original models to achieve all shown results
(Section 3.5).

3.3 Texture Matching

Once the source mesh Ms has been deformed to match the target mesh Mt geomet-
rically, the source texture has to be adjusted, such that the textured versions of both
meshes look identical as well. In the following, we denote by T s and T t the texture
images of the source and target mesh, and by us

i and ut
j their texture coordinates

or uv-coordinates. The planar triangle mesh with uv-coordinates assigned as vertex
positions is referred to as the uv-layout. Moreover, we now denote by source mesh
Ms the deformed source mesh after the geometric matching unless stated otherwise.

Note that there are two options for mapping the target texture onto the source
mesh. We can either adjust the texture coordinates of the source mesh to properly
access the target texture, or we can transform the target texture to match the uv-
layout of the source mesh. However, since we later want to morph the geometry and
appearance of several models by blending either their vertex positions or texture
images, all meshes must have the same mesh connectivity and uv-layout. Conse-
quently, we cannot adjust the texture coordinates us

i , but instead have to replace
the source texture T s by a transformed version of the target texture T t.

Another issue is that the uv-layouts of source and target might have incompatible
seams or even consist of a different number of connected components. As a conse-
quence, a smooth (or even continuous) 2D warp f : T t → T s between the source and
the target uv-layouts does not exist in general. Therefore, we perform the inverse
transformation f−1 in a pixel-by-pixel manner: For each pixel us ∈ T s we find its
pre-image ut = f−1(us) ∈ T t and copy its color value to the source texture.

As illustrated in Figure 3.6, this per-pixel mapping is computed through 3D
closest point correspondence of Ms and Mt. For each pixel us ∈ T s we first find
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the 2D triangle covering it in the texture layout. Using barycentric coordinates with
respect to this triangle, the pixel us can be mapped to its corresponding 3D point
ps on the source mesh. A closest point query using binary space partitioning trees
reveals the corresponding point pt on the target mesh, which is finally mapped to
ut using its (interpolated) texture coordinates. Because ut is a non-integer texture
coordinate in general, its color value is obtained using bilinear texture interpolation
and assigned to the pixel us. Although this interpolation inevitably leads to a slight
texture blurring, it did not create noticeable artifacts in our examples.

This algorithm successfully transfers colors of the target texture to all pixels
covered by a uv-triangle in the source texture, and it leaves blank all pixels not
covered by a uv-triangle. However, round-off errors during the mapping might cause
artifacts at texture boundaries, where a few pixels might be missing. We address this
issue by performing a simple one-pixel dilation, i.e., by filling all transparent pixels
with the average of their opaque neighbors’ colors, which effectively eliminates this
problem. Chapter 6 and Section A.2 show over 200 stimuli with textures transferred
between characters of different stylization level.

3.4 Face Morphing

The geometry and texture matching introduced in the previous sections allows us to
map a source model to one or more target models. This precomputation results in
a set of meshes with identical mesh connectivity and uv-layout (that of the source
model), but with different shapes and texture images (that of the target models).
Due to their identical connectivity and texture layout, these models are all in one-
to-one vertex and pixel correspondence, which enables us to easily morph their
geometries and appearances by blending their vertex positions and texture images
(Figure 3.7, left). In the following, we describe a prototype for morphing faces in
real-time. Such a system can be the foundation for interactive facial perception
experiments that adopt stimuli during a trial.

For the blending between entire faces, we employ simple linear interpolation of
vertex positions, which we prefer over more sophisticated techniques due to its sim-
plicity, efficiency, and the fact that for faces there are almost no visible differences
between linear and nonlinear geometry interpolation. In order to blend only parts of
the input models (as shown in Figure 3.1) we closely follow Alexa (2003): Instead of
vertex positions, we interpolate per-vertex Laplacians using Spherical linear inter-
polations (Slerp)(Shoemake 1985) and solve a Poisson system for the desired vertex
positions. The only difference is that instead of the uniform graph Laplacian used
by Alexa, we employ the cotangent discretization (Pinkall & Polthier 1993, Meyer
et al. 2003), which avoids distortion in the case of irregular meshes.

For full texture blending we use simple linear interpolation, but for local blending,
a gradient-based technique should be employed (Pérez et al. 2003). Additionally,
we incorporate several real-time rendering styles into our face morphing applica-
tion, which model a wide range of effects, ranging from realistic skin (d’Eon et al.
2007), over illustrative game characters (Mitchell et al. 2007), to non-photorealistic
shading (Barla et al. 2006), as shown in Figure 3.8.

In our face morphing application, the user can interactively adjust the blending
weights, and the face rendering is adjusted in real time. Our pipeline for blending
geometry, texture, and rendering style is illustrated in Figure 3.7. After interpolating
vertex positions, normal vectors, and texture images, the resulting morphed model
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Figure 3.7: Overview of the face morphing algorithm: In a first step, the face
meshes (M1, . . . ,ML) and textures (T1, . . . , TL) are interpolated. The resulting
interpolated mesh is rendered with the interpolated texture into several off-screen
buffers using different rendering styles (S1, . . . ,SE). At the end, the final rendering
is obtained by blending between the off-screen buffers.
c©Dave: TurboSquid, c©Viktor: Faceware Technologies

Figure 3.8: Different models and rendering styles (odd columns) and 50%-blends
between them (even columns). c©Dave: TurboSquid, c©Loki: Mark Pauly, c©Viktor: Faceware

Technologies

is rendered into a set of off-screen buffers using all active rendering styles, and the
final image is a simple linear interpolation of these off-screen buffers. Since most
computations are performed on the GPU using a combination of OpenCL and GLSL,
the morphing can be performed in real-time even for complex models.

3.5 Evaluation of ElastiFace

For evaluating the capabilities of our face matching framework, we first present
qualitative registration and morphing results for several characters, then provide a
quantitative analysis of fitting accuracy and computational time, and finally discuss
and compare to related work.

Figure 3.9 demonstrates that our system is capable of robustly mapping a source
face model to a set of target meshes ranging from realistic to highly abstract char-
acters. These results have been obtained by five iterations of joint-fairing and five
iterations of the geometric registration. Besides accurately mapping the face geome-
tries, it also successfully transfers the textures from target to source. After mapping
the source model to these four target models, we can blend between the shapes and

40



3.5 Evaluation of ElastiFace

Figure 3.9: Mapping geometry and texture of the source model Viktor (top) to four
other faces, ranging from realistic to highly abstract (from left to right: Loki, Dave,
Girl, Kissmouth). The target models are shown in the bottom row, the morphed
source models in the middle row.
c©Dave: TurboSquid, c©Loki: Mark Pauly

Fitting N s N t Time Error

Viktor to Dave 19k 10k 7s 0.5%
Viktor to Loki 19k 6.7k 5s 0.4%
Viktor to Girl 19k 2.8k 5s 0.3%
Viktor to Kissmouth 19k 7.8k 7s 0.3%

Table 3.1: Statistics for different mapping examples, listing number of source and
target vertices N s and N t, total time for fitting, and relative Hausdorff distance.

appearances of the deformed source models, which now have identical mesh con-
nectivity and texture layouts. Figure 3.8 shows the results of 50%-morphs between
these four characters.

In order to push our system to its limits, we sculpted several faces in clay,
with strong deformation as they might appear in cartoon animation. These clay-
figures have been 3D-scanned and converted to a blend-shape model by matching the
neutral model (source) to the other expressions (targets). Photographs of the clay-
figures and rendering of the blend shapes are shown in Figure 3.10. As mentioned in
Section 3.2.2, for these extreme examples the joint-fairing did not unfold sufficiently
with the default weights. However, increasing the smoothing weight allowed for the
successful matching shown in Figure 3.10. Although our method has been developed
primarily for faces, which typically are genus 0 objects with holes and boundaries,
Figure 3.11 demonstrates on a teapot-to-cup morph that our method also works for
higher genus models and for objects of disk-topology, such as the face scans shown
in Figure 3.11.

In order to quantitatively evaluate our method, we give performance numbers
and fitting accuracies in Table 3.1. The timings of our non-optimized single-threaded
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Figure 3.10: An application example to demonstrate the possibilities of our face
matching technique. Clay-figures with extreme deformations have been sculpted,
scanned, and transformed into a blend-shape model by matching the neutral model
(red frame) to the other expressions. The top row shows photographs of the clay-
figures, the bottom row shows the resulting blend shapes.

Figure 3.11: Fitting results for an object of genus one, teapot towards a cappuccino
mug (top), and for face scans with disk topology (bottom). From left to right: source
model, fitting result, target model. c©Left Scan: Infinite Realities
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implementation were measured on a MacPro with Intel Xeon 2.67GHz. For all syn-
thetic face models the fitting took just a few seconds, and even for the high resolution
scanned models (Figures 3.10, 3.11) it only took about 30 seconds. The computa-
tional cost is dominated by the computation of closest point correspondences, which
is O(N s logN t) due to the hierarchical kD-tree. Solving the linear systems using
sparse Cholesky factorization is close to O(N s). Note that our simple and effi-
cient method allows optimizing the position of each source vertex, which leads to
highly accurate fits with errors (in terms of Hausdorff distance) well below 1% of
the bounding box diagonal.

As mentioned in Section 3.1, there are many approaches for mapping one model
to another. In Figure 3.12 we compare our method to the non-rigid registration
of Weise et al. (2011) and blended intrinsic maps (Kim et al. 2011). Blended in-
trinsic maps compute correspondences in a fully automatic manner, but fail for all
our examples, presumably because face models are highly symmetric and the geo-
metric features are less prominent than the protruding arms and legs shown in the
original paper (Kim et al. 2011). To allow for a fair comparison to Weise et al.
(2011), we manually specified more feature correspondences at the boundaries for
Weise’s method in order to compensate for our automatic boundary correspondences
(cf. Figure 3.5). While their results are similar to ours for near-isometric models
(Figure 3.12, bottom row), self-intersections in the nose or mouth area can be ob-
served for the first and second row. For the Slimer example (third row) their method
yields wrong alignments near the self-intersecting regions of the chin and neck of the
target model.

We would have also liked to compare to Kraevoy & Sheffer (2004), but even with
the strong involvement of the authors we could not restore a completely working
version of their software from original code fragments. Our final implementation is
able to produce the initial cross-parametrization, but cannot perform the subsequent
smoothing of the parametrization. As a consequence, we cannot produce full cross-
parametrizations similar to the examples shown in Figure 3.12. However, we can
evaluate how many additional vertices have to be inserted during their initial path
creation step. When testing the top row example of Figure 3.12, the numbers of
vertices for the source and target meshes increase from 7224 and 2911 to 8611 and
4071, respectively. This massive change in connectivity strongly contradicts our
goals described at the beginning.

Hence, compared to other approaches for establishing correspondences, our method
has a few important advantages. First, in contrast to cross-parametrization tech-
niques (Kraevoy & Sheffer 2004, Schreiner et al. 2004), it does not require inserting
new vertices or edges, which would prevent the compatible fitting to multiple target
models (Figure 3.9). Second, in contrast to parametrization-based methods (Blanz
& Vetter 1999, Lipman & Funkhouser 2009), it can handle models of higher genus
(Figure 3.11). Third, in contrast to most non-rigid registration techniques (Huang
et al. 2008, Weise et al. 2011) it can handle highly non-isometric input models, where
existing methods often produce self-intersections (Figure 3.12). Finally, our method
is easier to implement, very robust, and more efficient than most other approaches.

A limitation of our technique is that the aggressive fairing might collapse pro-
truding extremities, such as arms, or legs. Because of this, the subsequent registra-
tion is not capable of determining correct correspondences, which results in strongly
distorted triangles (see Figure 3.13). This collapsing can be avoided by manually
specifying additional reference points but requires considerably more work.
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a) b) c) d) e)

Figure 3.12: Comparison of fitting source models (column a) to target models
(column b). While our method (column c) handles all examples without problems,
the method of Weise et al. [2011] (column d) causes self-intersections around the
nose for the upper two examples and around the mouth for the third example.
The blended intrinsic maps [Kim et al. 2011] (column e) are not suitable for face
matching. c©Dave: TurboSquid, c©Loki: Mark Pauly, c©Slimer: Thibaut Weise, c©Viktor: Faceware

Technologies
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Figure 3.13: When fitting the source character (top left) to the target character
(bottom left), our method fails at extremities. These tend to collapse during the
joint-fairing (top right), thus causing wrong correspondences for the subsequent
fitting and leading to distorted triangles in the fitting result (bottom right).
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4 Facial Retargeting with Range
of Motion Alignment

Figure 4.1: Captured facial expression of two actors (left and right) with retar-
geting results for realistic and stylized characters. Our method automatically aligns
the ranges of motion of the captured actor and the target blendshape rig, such that
expressions are restored faithfully even for stylized characters.
c©Motion capture: Feel Ghood Music, Face rigs: Mark Pauly, meryproject.com, Jana Bergevin

The previous chapter addressed the problem of transferring properties between
static faces. Although static faces provide significant information for judging the
appearance of a person (McDonnell et al. 2012) and are for practical reasons the
primary type of stimuli in perceptual studies, e.g., Chapters 6 and 7, it is more
common to encounter moving or animated faces in real-life and in applications like
movies or games. When testing the perception of animated faces, having a seman-
tically equivalent sequence of different characters is desirable, because otherwise,
variance in perception might originate from different animations. Transferring facial
animations across faces of different proportions is a well-known problem in computer
graphics.

Facial animation retargeting (Figure 4.1) addresses the general problem of ani-
mation transfer between virtual characters, with the transfer of performance capture
to virtual characters being the primary application within the industry. Recent de-
velopments in vision- and depth-sensor-based facial motion capture (Weise et al.
2011, Li et al. 2013, Ichim et al. 2015, Cao et al. 2014, Thies et al. 2016) made
accurate captures of an actor, traditionally limited to big film or game studios,
affordable to a much broader audience. Current real-time capture systems typi-
cally adopt a realistic generic blendshape model to the actor. Since the modified
and the original character have semantically equivalent blendshapes, the captured
actor performance is then transferred between the characters by directly mapping
the blendshape weights. The special case of equivalent blendshapes between two
characters is often named as parallel parametrization in retargeting context.

In practice, it is uncommon to encounter facial rigs with a complete set of seman-
tically equivalent blendshapes. Creating facial rigs for animation is time-consuming
and requires highly skilled artists. Therefore, a rig is carefully designed to fit the
animation needs, only modeling the necessary expressions. In addition, expressive
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digital characters are often stylized and exaggerate facial proportions of humans.
An effective retargeting method must either transfer animation from facial markers
to a blendshape rig or between faces with different blendshape sets. Several retar-
geting approaches generate their own parallel parametrization, by transferring the
blendshapes of the character face rig to align with the actor’s proportions. However,
especially for stylized characters this step often fails, due to differences in ranges of
motion or shortcomings of current methods. The subsequent blendshape estimation
becomes erroneous, which has been addressed so far by incorporating additional
priors.

In this chapter, we propose a novel algorithm for creating actor-specific blend-
shapes with the help of a training sequence consisting of an actor’s facial motions
that semantically correspond to the blendshapes of the character face rig. We show
that given a training sequence that sufficiently covers the actor’s range of motion, it
is possible to create, in an unsupervised manner, an accurate parallel parametriza-
tion – even if the facial rig and the actor differ strongly in their facial proportions.
The key observation is that facial motions are similar across different stylization
levels, as motivated by the Facial Action Coding System (FACS) (Ekman & Friesen
1978). The FACS describes facial expressions on the basis of muscle activations and
is a frequent reference for blendshape creation for stylized and realistic human char-
acters. Based on a new manifold alignment approach and a novel energy measuring
similarity of facial expressions, we successfully align the ranges of motion of the
actor and the character face rig. This subsequently leads to accurate retargeting.

Our second contribution is a prior energy based on physically-inspired defor-
mations, which can be computed efficiently even in real-time applications. Our
geometric prior addresses the few artifacts that remain even in case of accurate
parallel parametrizations. Both contributions are fully compatible with most previ-
ous methods, suitable for real-time applications, and produce results comparable or
better than state-of-the-art offline methods (Seol et al. 2012) (Figure 4.15).

Contribution This project is the result of a collaboration with the KAIST Visual
Media Lab (Daejeon, South Korea). On the basis of an earlier developed blend-
shape visualization software (comparable to Figure 4.6), I developed first proto-
types for blendshape transfer based on spherical harmonics or k-means clustering.
The last prototype served as a proof-of-concept with reasonable retargeting results
for many characters. Roger Ribera i Blanco implemented the final version in close
collaboration with me, including the geometric prior. Out of all ideas that are
described in the paper, Roger Ribera i Blanco contributed most to the manifold
alignment (Section 4.3.3), key expression extraction (Section 4.3.2) and geometric
constraint sections (Section 4.3.4), while I proposed most of the ideas related to
the original prototype, measuring expression similarity and contrast enhancement
(Section 4.3.1). Ideas on the Cross-Expression Graph (Section 4.3.5) and geometric
prior (Section 4.4) can be attributed equally to both first authors.

4.1 Overview of Retargeting Methods

As a key element of human-centered applications, research on virtual faces and face
animation has been an active field of research for decades, resulting in a wide range
of publications on this topic. For a general overview, we recommend the book of
Parke & Waters (2008) and the more recent surveys focusing on rigging (Orvalho
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et al. 2012) and blendshape animation (Lewis et al. 2014). In the following, we focus
mainly on facial retargeting and assume a certain familiarity with blendshape-based
facial animation (Section 4.2).

Cross-Mapping To overcome problems at the transfer stage, cross-mapping meth-
ods learn directly from semantically corresponding facial expressions of the captured
actor and a target face rig and synthesize new poses based on these training exam-
ples. Different learning techniques were proposed, starting with piece-wise linear
mapping (Buck et al. 2000) and locally linear embedding (Wang et al. 2004), fol-
lowed by more advanced machine learning algorithms like RBFs (Deng et al. 2006),
kCCA (Song et al. 2011), simplicial basis (Kholgade et al. 2011), or shared Gaus-
sian Process Latent Variable Models (sGPLVM) (Bouaziz & Pauly 2014). A key
advantage of all cross-mapping approaches is that they are applicable to any type
of character (e.g., even having a different number of eyes) or any facial rig (blend-
shapes, muscles, etc.). Unfortunately, the performance of these methods is strongly
tied to the quality and number of given training examples. Often, at least 15–20
corresponding example pairs are required for sufficient results. For a moderate facial
rig with 40 blendshapes, this leads to 600–800 parameters which must be defined
consistently by hand. However, even in case of consistent training examples, the
resulting expressions still remain (sophisticated) interpolations of the training ex-
amples. This often leads to inaccurate results for expressions that are too different
from the training examples.

Parallel Parametrization The simplest way to transfer an animation from one
character to another is by creating two semantically equivalent facial rigs. In this
case, the animation can simply be transferred by copying the control parameters
from one rig to another. For blendshape-based facial rigs, manually creating seman-
tically corresponding sets of blendshapes is a labor-intensive task, requiring not only
excellent modeling skills and anatomical knowledge of the face but also a consider-
able amount of time. To automate this process, several approaches for transferring
blendshapes from a generic face model to a neutral target have been suggested.

Given a source blendshape rig and the neutral face of a target character, Noh
& Neumann (2001) suggested first to establish dense correspondences and then to
transfer per-vertex displacements for each expression. This was later improved using
deformation gradients (Sumner & Popović 2004) or Radial Basis Functions (Orvalho
et al. 2008, Seol et al. 2011, 2012). Several improvements have been suggested since
then, ranging from incorporating examples (Li et al. 2010), adding contact con-
straints (Saito 2013), interactive editing (Xu et al. 2014), to iterative refinement
schemes for real humans (Bouaziz et al. 2013, Ichim et al. 2015, Seol et al. 2016).
However, if the assumption that source and target models are of similar shape is
violated, deformation transfer and similar methods often fail to preserve the seman-
tics of the facial expressions (see Figure 4.2). The resulting proportional mismatch
then leads to artifacts at the retargeting stage: exaggerated actor blendshapes cause
dampened animations because smaller weights are sufficient to reach a target pose;
conversely, dampened blendshapes cause larger weights and exaggerated animations
– up to the point of unnatural face deformations (Figure 4.3).

Seol et al. (2012) address artifacts resulting from erroneous expression transfer
by integrating velocities over a sequence of captured frames. In contrast, we improve
the transfer process, such that the transferred blendshapes automatically adapt
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4 Facial Retargeting with Range of Motion Alignment

Figure 4.2: Transferring blendshapes using deformation transfer leads to unnatural
deformations (center) or broken expressions (right) if facial proportions are too
different. Neutral expressions are shown on the left.
c©Face rig: meryproject.com

Figure 4.3: Retargeting a smile (left) to differently personalized blendshapes (top).
Close-ups show the positions of the captured markers (blue) and the correspond-
ing vertices (green). Only well-matching blendshapes result in accurate retargeting
(center). Dampened personalized blendshapes (top left) cause over-exaggerated re-
targeting results (bottom left), since large weights are necessary to fit the captured
markers. Inversely, exaggerated blendshapes (top right) cause damped retargeting
results (bottom right).
c©Motion capture: Feel Ghood Music, c©Face rig: meryproject.com
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4.1 Overview of Retargeting Methods

Figure 4.4: Complex interaction of blendshape weights. Left: Weight cancellation
effects lead to a valid neutral face. Right: Constraining all weights to the interval
[0, 1] does still not guarantee valid face expressions.
c©Face rig: meryproject.com

to the actor’s range of motion. Given a motion sequence of an actor and sparse
correspondences between the actor and the character model (e.g., in form of optical
markers), our method automatically transfers the blendshapes of the face rig to the
actor space.

Manifold-based Techniques Aligning the ranges of motion between the actor’s
motion sequence and the character’s blendshape rig significantly improves our ex-
pression transfer and is inspired by the success of manifold alignment methods (Pan
& Yang 2010). These approaches aim at registering two different high-dimensional
data sets in a lower-dimensional embedding space. The mapping into the lower-
dimensional space has to minimize the distance between the individual manifolds
as well as to keep the original relationship between the data elements by preserving
the geometric structure of the manifolds. Several unsupervised methods (Wang &
Mahadevan 2009, Fan et al. 2016) have been proposed for various applications, in-
cluding transfer learning (Pan & Yang 2010), data mining, automatic translation or
image set matching (Pei et al. 2012, Cui et al. 2012). An important aspect is the
dimensionality reduction, where additional constraints ensure optimal embedding
spaces. Often, transformations between embedding spaces are then solved by eigen-
decomposition of the graph Laplacian (Fan et al. 2016, Wang & Mahadevan 2011,
2013). In some sense, manifold alignment techniques aim to find a low-dimensional
space where Euclidean distances better represent the similarity between the different
data instances. In contrast, we want to identify character blendshapes that match
the proportions and ranges of motion of the actor in the high-dimensional space.
This requires the transfer of the original blendshapes to the actor space, instead of
projecting into a low-dimensional space.

Expression Regularization Common approaches reduce artifacts in blendshape
animation by restricting the blendshape weights to a fixed interval (Bregler et al.
2002, Chuang & Bregler 2002) or by penalizing large weights (Seo et al. 2011).
However, such heuristics do not always succeed because combinations of blendshape
weights outside the specified range can still produce valid faces (Seol et al. 2011),
and restricting blendshape weights to [0, 1] will not necessarily result in plausible
expressions (Figure 4.4). This phenomenon is commonly known as blendshape in-
terference (Lewis et al. 2005). Alternatively, PCA-based priors have been proposed
for direct blendshape manipulation (Lau et al. 2009, Anjyo et al. 2012) and retar-
geting (Seol et al. 2012). But these approaches strongly depend on the quality and
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4 Facial Retargeting with Range of Motion Alignment

Figure 4.5: Overview of facial animation retargeting pipeline, described for illus-
tration purpose on the use case of retargeting marker-based animation. Our method
addresses the problem of obtaining personalized blendshapes by aligning the range
of motion of the blendshape model with the range of motion of the actor. In addi-
tion, we present a new prior for the retargeting step. c©Motion capture: Feel Ghood Music

c©Face rig: meryproject.com

amount of training examples, where an insufficient set of example poses biases the
solution towards the closest training data (Anjyo et al. 2012). In contrast, we con-
sider smooth skin deformation as a key factor and propose a prior that penalizes
surface deformation similar to many physically-inspired facial animation methods
(Bickel et al. 2007, Ichim et al. 2016, Barrielle et al. 2016). While all these methods
outperform linear blendshapes in physical accuracy, the visual improvements often
do not justify the additional computation costs for many applications. Therefore,
we reformulate the large-scale deformation energy of Bickel et al. (2007) to a suit-
able geometric prior for blendshape weights. Furthermore, in order to additionally
achieve sparse weight activation, one can either regularize using the L1 norm of
blendshape weights (Bouaziz et al. 2013) or transfer common practices in manual
key-framing (Seol et al. 2011).

4.2 Blendshape Animation and Retargeting

In this section, we briefly review blendshape facial animation and blendshape-based
facial retargeting and set up our notation. Section 4.3 then introduces our improved
blendshape transfer, which is a pre-processing step before the actual retargeting.
The retargeting itself can be further regularized using our geometric prior (Sec-
tion 4.4). Finally, we compare our proposed approach to state-of-the-art methods
in Section 4.5.

Let the facial rig be given as a polygon mesh M, consisting of N vertices, posed
in a neutral expression, and being equipped with K expression blendshapes that
all share the connectivity of M. We denote the vector of stacked vertex positions
of the neutral face by v0 = (v1

0, . . . ,v
N
0 )T, and of the k-th blendshape by vk =

(v1
k, . . . ,v

N
k )T. Due to the coupling of the x/y/z-coordinates, the blendshapes vk

denote 3N -dimensional vectors.

For blendshape face animation, we employ the delta-blendshape formulation (Lewis
et al. 2014), where the neutral expression v0 is subtracted from the blendshape ex-
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4.2 Blendshape Animation and Retargeting

pressions vk to yield a displacement field for activating a particular expression:
δvk = vk − v0. New facial poses v(w) are computed by displacing the neutral
face by a weighted sum of delta-blendshapes, with weights w = (w1, . . . , wK)T,
which can also be written in matrix form using the delta-blendshape matrix δV =
[δv1, . . . , δvK ]:

v(w) = v0 +

K∑
k=1

wkδvk = v0 + δVw . (4.1)

The main application for facial retargeting is the transfer of an actor’s perfor-
mance capture to a virtual character, mostly using marker-based optical motion
capture. We will therefore formulate our approach for this problem setting, but
note that our method is not limited to marker-based retargeting, since any given
facial animation or marker-less performance capture can be easily converted to a
marker-based performance capture by tracing a subset of “marker vertices” through
time.

The actor’s performance is given as a 3M -dimensional vector of M stacked
marker positions (a1, . . . ,aM )T that vary over time. For a particular motion capture
frame f , this data is denoted as af = (a1f , . . . ,a

M
f )T, and a0 represents a calibra-

tion frame of the actor in neutral expression. Like all retargeting methods based on
parallel parametrization, we require sparse correspondences between the actor’s face
animation and the character’s face rig. These correspondences are specified as pairs
of points {am0 , sm0 }, m = 1, . . . ,M on the neutral expressions of the actor and the
character rig. The same set of vertices on the expression blendshape vk is denoted
by sk = (s1k, . . . , s

M
k )T. Since the number M of markers and corresponding vertices

is much lower than the number of mesh vertices (M � N), the sk are called the
sparse representation of the blendshape vk. We employ the same delta-formulation
as above for sparse blendshapes (δsk = sk−s0) and animation data (δaf = af −a0).

The goal of any blendshape retargeting system is to compute the time-varying
weights w that reproduce the facial expressions on the target face rig for a given
actor’s performance capture. This requires a set of personalized sparse actor blend-
shapes bk = (b1

k, . . . ,b
M
k )T that are semantically equivalent to the sparse blend-

shapes sk of the character rig. For each captured frame f , the blendshape weights
wf can be computed by minimizing the squared distance between the marker dis-
placements δaf and a weighted combination of the actor’s sparse delta-blendshapes
δbk = bk − b0:

EFit(w) =
1

M

∥∥∥∥∥δaf −
K∑
k=1

wk δbk

∥∥∥∥∥
2

. (4.2)

The required personalized actor blendshapes bk are either manually created or trans-
ferred from the face rig to actor space (Sumner & Popović 2004, Orvalho et al. 2008,
Seol et al. 2012). But as discussed above and shown in Figures 4.2 and 4.3, this
blendshape transfer often fails for highly different facial proportions, such as stylized
characters. Therefore, we propose an improved approach for automatic blendshape
transfer with a range of motion adjustment in Section 4.3.

In order to resolve ambiguities, prevent over-fitting, or penalize artifacts, the
above blendshape fitting process is typically regularized through additional energy
terms:

ERetarget(w) = EFit(w) + EReg(w) . (4.3)
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4 Facial Retargeting with Range of Motion Alignment

Typical choices for the energy EReg(w) are (weighted combinations of) L2 regular-
ization ‖w‖2 to penalize large weights (Lewis et al. 2014), L1 regularization ‖w‖1
for inducing sparsity (Bouaziz et al. 2013), and penalization of temporal changes
‖wf−1 −wf‖2 to remove jitter (Lewis et al. 2014). However, as we will show in
Section 4.4, our novel geometric prior, which operates on differential mesh proper-
ties instead of on blendshape weights, prevents geometric artifacts while at the same
time allowing for more expressive animation.

4.3 Automatic Blendshape Transfer

A correct set of actor-specific blendshapes b1, . . . ,bK , used in the fitting term (4.2),
is a crucial component of any retargeting method. Existing approaches for trans-
ferring the character’s blendshapes to the actor space compensate for proportional
mismatches between character rig and actor to a certain degree. Unfortunately, they
often fail to properly align the respective ranges of motion, in particular for stylized
characters (see Figures 4.2, 4.3). Our approach addresses these shortcomings and is
motivated by two main observations:

• Blendshapes typically define the strongest deformation caused by activating
isolated facial muscles.

• Semantically equivalent expressions are highly similar for different characters
because facial muscles are consistent across humans and remain consistent
even for highly stylized characters for the sake of easy expression recognition.
Although semantically equivalent expressions are similar across identities, they
are not equal and differ with respect to direction and magnitude.

We improve the blendshape transfer from the facial rig to the actor’s proportions
by aligning their facial expression manifolds. We learn the actor’s expression man-
ifold from a short, captured training sequence, consisting of F animation frames
a1, . . . ,aF . The actor’s training sequence should contain semantically equivalent
expressions to the blendshapes of the facial rig; it should cover the actor’s range
of motion since blendshapes often correspond to extreme expressions. However,
the training expressions might combine several blendshapes in arbitrary order. As
introduced above, the animation data af consist of M markers with point corre-
spondences on the facial rig. The character’s sparse blendshapes s1, . . . , sK define
well the expression manifold of the character rig.

Given the blendshape rig and a set of training expressions, our method com-
putes personalized actor blendshapes based on concepts from manifold alignment
(EMatch, Section 4.3.3). To this end, we measure the similarity between the char-
acter’s blendshapes and actor’s captured performance (Section 4.3.1) and extract
the most essential frames from the training data (Section 4.3.2). Two conditions
regularize the alignment process: The actor-specific blendshapes should not deviate
too much from an initial guess derived by RBF deformation (EMesh, Section 4.3.4),
and relations between individual blendshapes should be preserved by constructing a
Cross-Expression Graph (ECEG, Section 4.3.5). Figure 4.5 illustrates our blendshape
transfer schematically in the context of facial retargeting.

Our blendshape transfer process is formulated as the minimization of the fol-
lowing energy (with α = 0.01 and β = 0.1 in all shown examples) and optimizes
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4.3.1 Facial Motion Similarity

Figure 4.6: Motion space comparison between an actor (right) and a blendshape
model (left). Center : Overlayed motion space in delta representation for selected
markers of the actor (blue) and corresponding vertices in the blendshape model
(green). Each line corresponds to a different frame/blendshape.
Face rig courtesy of Jason Osipa. c©Motion capture: Feel Ghood Music

all personalized delta-blendshapes at the same time, where the 3MK-dimensional
vector δb = (δb1, . . . , δbK)T contains the stacked blendshapes:

EAlign(δb) = EMatch(δb) + αEMesh(δb) + βECEG(δb) . (4.4)

4.3.1 Facial Motion Similarity

The similarity of the ranges of motion is best visualized by considering the displace-
ments of a single marker (δamf = amf − am0 ) over the entire training sequence and
the delta-blendshapes of the corresponding vertex on the facial rig (δsmk = smk −sm0 ),
as shown in Figure 4.6. In some cases clear clusters of marker displacements can
be identified, indicating that different motions on that particular area occur mainly
independently. For example, on the right brow (Figure 4.6, eyebrow) three clearly
distinctive motions can be identified, corresponding to raising and lowering the brow
and frowning. Considering that the captured training sequence consists of over 2000
frames, the clear separation into these motion clusters is surprising. This observa-
tion fuels our motivation to consider an expressive training sequence to generate an
actor-specific parallel parametrization. Still, a clear solution may not always exist
(Figure 4.6, lips). Even though there might be a lot of data available, it is possi-
ble that no clear one-to-one correspondence between the performance and specific
blendshapes can be established. When a clear correspondence can be identified,
it is best to exactly match the specific expression. However, aligning blendshapes
with unrelated expressions will result in a complete loss of the semantic equivalence
between the actor’s performance and the retargeted animation.

In order to quantify the similarities between a blendshape k and the actor’s
expression at frame f , we compute the Pearson Correlation Coefficient between af
and sk. In our case the mean of a sampling set is replaced by the more meaningful
neutral facial expression. The computation of the correlation coefficient ρk,f between
an actor’s expression af and a sparse blendshape sk then simplifies to the following
equation in delta-representation:

ρk,f =
δaf · δsk

‖δaf‖ ‖δsk‖
. (4.5)
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4 Facial Retargeting with Range of Motion Alignment

Figure 4.7: Motion space similarity between selected blendshapes (rows) and ac-
tor’s performance (columns) consisting of 2150 frames. Please notice the blocking
structure, indicating redundancy of information.
c©Motion capture: Feel Ghood Music c©Face rig: meryproject.com

Figure 4.7 shows the resulting similarity measures between selected blendshapes
and a training sequence. This simple dot-product formulation of Equation (4.5) is
effective, because:

• Displacements of blendshapes and actor’s expressions in similar directions have
a high correlation,

• The locality of blendshapes is considered, because vertices that do not move
in blendshape δsk cancel out the contributions of the corresponding expression
δaf .

Contrast Enhancement Two heuristics can further improve the similarity mea-
sure: Identifying important blendshapes for a frame in the training sequence (i)
is easier for more unique blendshapes and (ii) is easier for blendshapes with the
strongest displacement. Both properties are considered by computing a trust value
for each sparse blendshape. We first compute the total displacement dk = ‖δsk‖
of blendshape δsk. In a second step, the sparse blendshapes are re-ordered ac-
cording to their displacements dk, such that δs1 is the blendshape with the largest
displacement and δsK the one with the smallest displacement. We then build a
between-blendshape correlation matrix P(k, i) := ρk,i (see Figure 4.11). Finally, the
trust value tk is computed as
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4.3.2 Key Expression Extraction

tk = 1−
∑k−1

i=1 ρ+k,i

max1≤k≤K

(∑k−1
i=1 ρ+k,i

) , (4.6)

where the similarity between sparse blendshapes is measured using the positive Pear-
son Correlation Coefficient ρ+k,i = max(0, ck,i). The sum

∑k−1
i=1 ρ+k,i adds all ρ+k,i

within row k of the strictly lower triangle matrix, and the dominator is the maxi-
mum of all row sums. The sparse blendshape with the largest displacement has no
entries in the strictly lower triangle matrix, such that t1 = 1. All remaining sparse
blendshapes will only have tk ≈ 1 if they are uncorrelated to sparse blendshapes
with larger displacements. Hence, a blendshape modeling a subtle lip motion will
likely get a very low trust value due to high correlations with other, more expressive
mouth blendshapes, while a brow-raising blendshape will have a high trust value as
it is mostly uncorrelated to other blendshapes.

In practice, most computed similarity values, except the blendshape with maxi-
mum displacement, will never reach a trust value of one, because even semantically
equal expressions differ for different faces. Therefore, we propose to amplify high
correlation values and reduce low correlation values using the following transforma-
tion:

χ(ρk,f ) =
erρ

+
k,f

er/2 + erρ
+
k,f

. (4.7)

The steepness r of the function is set to 15 in all our examples. Finally, we linearly
interpolate between the original and the modified correlation values, depending on
the trust value. The computed similarity ρ̃k,f replaces then the original correlation
from Equation (4.5):

ρ̃k,f = (1− tk) ρ
+
k,f + tk χ

(
ρ+k,f

)
. (4.8)

4.3.2 Key Expression Extraction

Blendshapes represent peak expressions that we want to match to the actor’s most
similar expressions. After computing the similarities ρ̃k,l between blendshapes and
the training sequence, we remove the temporal redundancy between consecutive
frames following Coleman et al. (2008). The correlations of each blendshape over
the whole training sequence (corresponding to a row in Figure 4.7) are first low-pass
filtered to remove some superfluous noise. The employed Gaussian kernel is kept
small (three frames wide) to avoid over-smoothing fast and peak motions. Finally,
all filtered rows are added together by summing over columns. In this cumulative
representation of the data, we extract all local peaks in order to obtain a set of most
similar facial expressions. Figure 4.8 shows the resulting cumulative function and
the extracted peaks.

4.3.3 Manifold Alignment

Given a similarity measure ρ̃k,f between a sparse blendshape and an actors’ expres-
sion, our goal is to fit the personalized blendshapes δbk to the actor’s expressions
δaf . This means that a closed-eye blendshape should be fitted to an actor’s ex-
pression with closed eye(s) in the training sequence, without being influenced by
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4 Facial Retargeting with Range of Motion Alignment

Figure 4.8: Cumulative correlation function (not displacements) for identifying
peak expressions within a training sequence. 82 expressions have been identified
from the similarities shown in Figure 4.7.

the negatively correlated eye-opening movements. Inspired by manifold alignment
techniques we first consider the problem as the minimization of the following energy:

EMatch(δb) =
1

F

F∑
f=1

K∑
k=1

ρ̃k,f ‖δbk − δaf‖2 . (4.9)

However, this energy formulation would break the local support of blendshapes. Fig-
ure 4.9 shows an example of closing the eyes. In general, eyes blink simultaneously,
leading to high correlations of both eye-closing blendshapes (left and right). With-
out special consideration of the local support of each blendshape, the alignment is
distributed between both blendshapes. Including a mask of the blendshape displace-
ments effectively disambiguates the displacement distribution (Figure 4.10). Similar
to Seol et al. (2016) we encode local support with a soft mask vector ψk for blend-
shape k. The mask entries corresponding to the x/y/z coordinates of marker m of
blendshape k are computed as ‖δsmk ‖ /max1≤m≤M ‖δsmk ‖, with max1≤m≤M ‖δsmk ‖
denoting the largest marker displacement within the blendshape δsk. Our final
matching function is then

EMatch(δb) =
1

F

F∑
f=1

K∑
k=1

ρ̃k,f ‖δbk − diag(ψk) · δaf‖2 . (4.10)

4.3.4 Geometric Constraint

Deformation transfer and similar automatic approaches in general, do not create
accurate parallel parametrizations. However, such methods preserve the original
semantics and local properties of the transferred expression quite well. A transferred
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4.3.4 Geometric Constraint

Figure 4.9: Blendshapes local support. From left to right: A closed-eye frame and
corresponding marker positions (blue), fitting results of the eye-closed blendshape
using EMatch without local support (red) and with local support considered (green),
and the original blendshape for reference.
c©Motion capture: Feel Ghood Music c©Face rig: meryproject.com

Figure 4.10: Local deformations of blendshapes. Red encodes the strongest dis-
placement within a blendshape. From left to right:: Left eye closed, kiss, open smile,
right smile, and jaw drop. c©Face rig: meryproject.com

smile will remain a recognizable smile, although it might be too dampened or too
exaggerated. Preserving the local features of an expression, e.g., the o-shape of the
lips for the kiss expression is the intention of the geometric constraint.

Based on the sparse correspondences between the neutral expressions s0 (of the
character rig) and a0 (of the actor), we create an initial guess gk for each personalized
blendshape bk using RBF-deformations (Orvalho et al. 2008, Seol et al. 2012). To
this end, we first compute an RBF thin-plate spline that transforms the neutral
expression s0 to a0, by placing an RBF center at every marker sm0 and solving for
the RBF weights. The resulting RBF function is then used to convert all delta-
blendshapes δsk to the initial guesses δgk of the actor blendshapes. We also tried
deformation transfer (Sumner & Popović 2004) for this process and can confirm
the similarity of the results (Seol et al. 2012). We preferred the RBF deformation
method due to higher stability in case of degenerate meshes.

The goal of the geometric prior is to preserve the local shape properties of the
initial guesses gk while computing the personalized blendshapes bk. Local shape
properties can be encoded well using per-vertex Laplacians (Botsch & Sorkine 2008),
but this requires a triangle mesh, and so far the sparse blendshapes have been defined
as sets of M marker points only. We, therefore, triangulate the marker points (in
the uv-domain given by the parametrization) and add edges connecting upper/lower
eyelids and lip markers to benefit from contact relationships (Saito 2013).

We formulate our geometric constraint as an energy that penalizes the change
of the Laplacians between the unknown vertices of the personalized blendshape δbk

and the initial guesses δgk. This formulation is equivalent to a physically-inspired
energy that minimizes bending (Bickel et al. 2007, Saito 2013):
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Figure 4.11: Computed Pearson Correlation Coefficient between an exemplary
blendshape set of the Mery character. Signed correlations are used in Section 4.3.5
to preserve both similarities and dissimilarities between blendshapes. Only posi-
tive correlations between animation frames and blendshapes are required for Sec-
tion 4.3.3. c©Face rig: meryproject.com

EMesh(δb) =
1

M

K∑
k=1

M∑
m=1

‖Δ(δbm
k − δgm

k )‖2 . (4.11)

As a discretization of the Laplace operator we employ the standard cotangent weights
(Pinkall & Polthier 1993).

4.3.5 Cross-Expression Constraint

The last energy term is responsible for maintaining the relationship between different
blendshapes. If, for example, the mouth-open expression is corrected, this correction
should also partly apply to the o-viseme. Inspired by application and relationship of
graph and mesh Laplacians (Belkin & Niyogi 2005), we construct a Cross-Expression
Graph that connects all blendshapes with each other. In this graph, each sparse
blendshape becomes a node with edges to all other sparse blendshapes and edge
weights are encoded using the signed similarity measure from Equation (4.5). We
use signed correlations as edge weights (Figure 4.11) to preserve both similarities and
dissimilarities between blendshapes. The weighted signed graph Laplacian (Kolluri
et al. 2004, Kunegis et al. 2010) of one node is then defined as the weighted sum
over its neighborhood:
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Loki Osipa Mery Billy

blendshapes 46 33 54 39

key expressions 73 71 82 76
sequence 1 (2150 frames)

key expressions 46 43 49 48
sequence 2 (740 frames)

time (s) 18.71 5.37 23.25 7.57

Table 4.1: Details about the sequences, extracted key expressions, and the blend-
shape rigs, together with timings for automatic blendshape transfer. Both sequences
were captured with 99 optical markers.
c©Face rigs: Mark Pauly, Jason Osipa, meryproject.com, Jana Bergevin

Δ(δsk) =
1∑

i �=k |ρk,i|
∑
i �=k

ρk,i (δsi − δsk) . (4.12)

The graph Laplacian Δ(δbk) for the personalized blendshapes is defined equiva-
lently. Similar to Equation (4.11), the resulting energy term penalizes dissimilarity
of correlated blendshape displacements:

ECEG(δb) =
1

M

K∑
k=1

‖Δ(δbk − δsk)‖2 . (4.13)

4.3.6 Numerical Optimization

Optimizing for the personalized blendshapes δbk requires minimizing EAlign from
Equation (4.9) consisting of the three quadratic energies EMatch, EMesh, and ECEG.
The energies are all separable in the x/y/z coordinates of δbk, but are coupled
between all blendshapes through ECEG. This leads to three linear systems of size
(MK × MK), which is more efficient to solve than one big linear system of size
(3MK × 3MK). The entire framework was implemented within Maya1 using the
Maya Python API, and all tests were performed on a computer with an Intel I7
3.4GHz processor and 8GB of memory. The linear systems were solved with the
SciPy sparse solver (Jones et al. 2001). Details and timings are listed in Table 4.1.

4.4 Geometric Prior

After computing the personalized blendshapes δbk, the blendshape weights wf can
be estimated for each frame δaf of the actor’s performance. Despite accurately
personalized blendshapes, the flexibility provided by the facial rig might not be
sufficient to faithfully reproduce the actor’s expressions, leading to artifacts in the
retargeted face v(wf ). We observe that one essential property of a valid expression
is a surface free of fold-overs, i.e., without strong local bending. Thus, instead

1www.autodesk.com/maya
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of formulating an arbitrary criterion for the values of the blendshape weights (see
Section 4.2), we derive a physically-inspired prior similar to Equation (4.11) that
penalizes surface bending and thereby eliminates fold-overs (Bickel et al. 2007, Saito
2013). We formulate the prior energy in terms of blendshapes and their weights,
instead of in terms of vertex positions, so that our prior can be incorporated into
any blendshape-based retargeting framework.

For faces, it seems natural to select the neutral pose v0 as the original, unde-
formed state. Thus our geometric prior penalizes bending between an expression v
and the neutral face v0:

EPrior(v) =
1

N

N∑
n=1

‖Δ(vn − vn
0 )‖2 . (4.14)

Based on Equation (4.1) the deformed face v = v(w) can be written in terms of
the blendshape weights w. Analogously, the displacement v − v0 can be written
as δVw. Plugging this into the above prior energy and writing the Laplacian as a
(3N × 3N) matrix L, again using the cotangent weights (Pinkall & Polthier 1993),
leads to the formulation of the prior energy in terms of w:

EPrior(w) =
1

N
‖L δVw‖2 . (4.15)

The combination of the fitting energy (4.2), the geometric prior energy (4.15),
and a sparsity regularization ESparse(w) = 1

K ‖w‖1, leads to our objective function
for facial retargeting:

ERetarget(w) = EFit(w)︸ ︷︷ ︸
ActorSpace

+μEPrior(w)︸ ︷︷ ︸
RigSpace

+ ν ESparse(w)︸ ︷︷ ︸
WeightSpace

. (4.16)

Unlike previous approaches, our energies operate in the spaces where modifications of
the input data are minimal. First, EFit is computed in the actor space, such that the
incoming animation is not modified. In contrast, EPrior is computed in the rig space
based on the original blendshapes. Finally, in accordance with common practices in
manual key-framing (Seol et al. 2011), weight activation sparsity is directly enforced
on the blendshape parameter space, which simplifies any subsequent manual editing
of the animation. Under the assumption that the actor’s markers are saved in cm
and the face rig has been uniformly scaled to roughly match the actor’s head, we
recommend setting μ = 0.3 and ν = 0.6.

The retargeting was implemented as a Maya command plugin using the Maya
C++ API. We pre-compute the matrix product LδV as it remains constant over
time. Due to the L1 sparsity term, the retargeting solves an Iteratively Re-Weighted
Least Squares problem of size (K ×K) using the Eigen library (Guennebaud et al.
2016). On average we achieve 105 fps, which confirms that the proposed prior is
very suitable for real-time applications.
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4.5 Comparison to Existing Facial Retargeting

In order to evaluate our blendshape transfer algorithm and our geometric prior,
we first compare each part to common alternative formulations in a realistic but
simple scenario. Doing so has the advantage that contributions can be evaluated
individually and limitations of each method become clearly visible.

4.5.1 Automatic Blendshape Transfer

As described previously, RBF-deformation and deformation transfer are the most
common techniques for personalizing blendshapes. We compare our algorithm to
the RBF-proportion matching (Seol et al. 2012) and example-based facial rigging
(Li et al. 2010). For the example-based facial rigging we select 15 distinctive facial ex-
pressions from our captured sequence as training examples. Distinctiveness is guar-
anteed by clustering all expressions of the training animation using k-means. The
expressions closest to the cluster centers are then chosen as examples. We initialize
the corresponding blendshape weights as the result of our retargeting algorithm for
these specific frames. Since this method alternatingly optimizes for blendshape ge-
ometries and blendshape weights, it requires only approximated blendshapes weights
at the beginning. No peak expressions are required as examples.

We retarget the input animation to both, realistic and stylized characters. For
this comparison, we only use ESparse for regularization and exclude any other prior.
As shown in Figure 4.12, our blendshape transfer outperforms existing approaches,
in particular, if facial proportions differ significantly. In all cases, plausible re-
sults are obtained, and in nearly all cases expression intensity is restored faithfully.
In contrast, the quality of the RBF-proportion matching (Seol et al. 2012) and
example-based facial rigging (Li et al. 2010) degrades with a higher degree of styl-
ization. Figure 4.13 demonstrates that other retargeting algorithms, like space-time
facial cloning (Seol et al. 2012), also benefit from our more accurate personalized
blendshapes.

4.5.2 Geometric Prior

Next, we compare the effectiveness of the proposed geometric prior to different
well-established facial priors. To illustrate the effect of the different priors on the
retargeting results, we generate personalized blendshapes using the RBF proportion
matching (Seol et al. 2012), since this method yielded the most artifacts in the
evaluation of Section 4.5.1. The actual retargeting is then computed as described in
Section 4.4, where we replace the prior energy EPrior of Equation (4.16) by several
options. Note that we employ the sparsity energy ESparse for all examples.

As a simple prior we incorporate an L2 weight regularization EPrior(w) = ‖w‖2.
The combination of L2 regularization and L1 regularization (ESparse), also known as
Elastic Net (Zou & Hastie 2005), enforces small weights but is less restrictive than
non-negativity constraints. This is beneficial since there exist valid facial expressions
with negative weights. In addition, we compare our geometric prior to the model-
specific PCA prior (Seol et al. 2012). The PCA is constructed from the given
blendshapes only, in order to have equal input conditions.

For the comparison, we identify the frames with strongest artifacts and step-wise
increase μ until the geometric artifacts are removed. Figure 4.14 shows the effect
of each prior for one representative example. Our prior converges the fastest to an

63
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Figure 4.12: Retargeting using personalized blendshapes created by our algorithm
(Our), RBF proportion matching (RBF ), and example-based facial rigging (EBFR).
In all cases, facial semantics are restored faithfully, and in particular, for stylized
characters, our algorithm outperforms the other approaches.
c©Motion capture: Feel Ghood Music c©Face rigs: Mark Pauly, meryproject.com, Jana Bergevin
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Figure 4.13: Retargeting using space-time facial cloning with our personalized
blendshapes (Our+SFC ) and with the RBF proportion matching (RBF+SFC ).
Please notice the improved expressivity and fewer artifacts for our method. c©Motion

capture: Feel Ghood Music c©Face rigs: Jason Osipa, Jana Bergevin

artifact-free expression because it minimizes bending at the vertex level, without
being limited to the given examples as in the PCA case. In addition, Figure 4.15
compares our real-time capable retargeting with the offline method of Seol et al.
(2012).

4.5.3 Discussion and Limitations

In rare cases, we observed inaccuracies during retargeting for our algorithm, RBF-
proportion matching, and example based facial rigging. While different methods
might work better for specific frames, our method performs better when considering
the overall sequence. A particular strength of our method is that it also works for
highly stylized characters, as long as the blendshapes approximately reflect natural
facial movements.

Like any data-driven approach, the performance of our method depends on the
availability of good training data, which in our case is an expressive facial sequence.
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4 Facial Retargeting with Range of Motion Alignment

Figure 4.14: Comparison of our geometric prior (top), the model-specific PCA
prior (middle) and the L2 regularization (bottom). From left to right: Starting with
a retargeting without regularization, we successively increase prior activation until
a solution without self-intersections is obtained. c©Face rig: Jason Osipa
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Figure 4.15: Retargeting using our personalized blendshapes in combination with
the geometry prior (Our) and space-time facial cloning (SFC ) for offline retargeting.
Semantics are restored faithfully and the high expressivity of the original actor is
maintained. Especially for stylized characters, our real-time algorithm outperforms
even offline state of the art approaches.
c©Motion capture: Feel Ghood Music c©Face rig: meryproject.com

66



4.5.3 Discussion and Limitations

However, because we do not enforce to capture isolated FACS expressions, we con-
sider this requirement as minor: In an offline scenario, the entire animation sequence
can be used for training, while for real-time applications it takes only a few seconds
to create such a sequence. Our results were computed using the full animation se-
quence as the training sequence for a fair comparison with the offline retargeting
of Seol et al. (2011). In the absence of expressive data for certain expressions, mesh
constraints (Section 4.3.4) ensure plausible blendshapes that are similar to the well-
established expression transfer methods, while blendshape constraints (Section 4.3.5)
balance the changes occurring to similar blendshapes.

We observed that mouth expressions are highly similar (e.g., o-viseme, kiss,
mouth-open), making it very difficult to identify equivalent blendshapes across dif-
ferent identities in the training sequence (Figure 4.16). In such cases, EMatch tends to
under-estimate the transferred blendshapes. Although this is addressed by enhanc-
ing the contrast of the similarities to obtain a better fit to the actor’s expressions
(Equations (4.7), (4.8)), the adjusted blendshapes might be more subtle than the
actor’s expressions, resulting in slightly exaggerated expressions (Figure 4.16, bot-
tom) at the retargeting step. However, the user can always return to the default
RBF-based deformation transfer using only EMesh and ECEG (Figure 4.17).

While our approach shows convincing results on the tested blendshape rigs and
animations, our alignment might not reproduce the desired result if blendshapes
model a very cartoony behavior (e.g., popping eyes) or vary in the number of facial
features (e.g., different number of eyes). Cross-mapping approaches to facial ani-
mation retargeting are better suited for this type of animation. Our method does
not address the transfer of fine-scale details. In practice, it is not often desired, as
fine-scale details are already encoded in the facial rig and should remain consistent
when the animation is transferred from different actors.

By replacing the automatically computed correlations with manually selected
weights for specific examples, our method can easily be extended to a semi-supervised
method. Because our similarity measure is limited to the range [0, 1], which is
equivalent to the recommended weight space for blendshapes, such an extension
would be straightforward.
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Reference Our RBF EBFR

Figure 4.16: Semantic changes for subtle expressions appear for all approaches.
Our method allows the user to seamlessly blend between our and RBF blendshape
transfer by increasing the weights of EMesh and ECEG.
c©Motion capture: Feel Ghood Music c©Face rigs: meryproject.com, Mark Pauly.

Figure 4.17: Sparse blendshape comparison of the initial guess (RBF transfer) and
our blendshape transfer method. Sparse blendshapes of the character rig (right) are
adjusted to match the actor’s proportions (left).
c©Motion capture: Feel Ghood Music c©Face rigs: meryproject.com
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Part II

Perception of Realistic and
Stylized Faces
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Over the last years, we are facing an increasing presence of robots and computer
animated characters in daily life. However, the impact of many design decisions
is still not fully understood. We, therefore, investigate the impact of aspects like
shape, material, shading and lighting on the perceived appeal and realism of stylized
faces. In addition, we conduct an experiment using event-related potentials (ERPs)
to explore the processing of stylized stimuli by the brain. To this end, we create
stimuli consisting of several stylization levels of two real people (Chapter 5).

In total, we conduct four experiments using two different experimental designs.
In Experiments 1a–1c (Section 6.3) we investigate step-by-step the influence of shape
and material on the overall appearance of a virtual character using rating scales. For
validation of the obtained results, we significantly extend the number of stimuli for
Experiment 2 (Section 6.4) and focus in Experiment 3 (Section 6.5) on the influence
of different expressions across all tested stylization levels. The experiment design
is motivated by differing design choices of recent animation films, ranging from
cartoon shapes with cartoon materials (e.g., Despicable Me), over stylized shapes
with realistic material (e.g., The Adventures of Tintin), up to very realistic shapes
and material (e.g., Beowulf ).

As rating scale experiments reflect conscious decisions of participants, we con-
sider in Experiment 4 (Chapter 7) an alternative procedure using ERPs, which un-
veils the brain processes involved when looking at stylized characters. In addition,
this experiment will also provide information whether computer-generated charac-
ters are suitable for replacing photographs of real people in face perception research
in psychology (de Borst & de Gelder 2015). So far, little is known about how stylized
faces are processed by the brain and which facial details are important in particular.
Even less is known about how a presented emotional expression interacts with the
stylization of a face. Due to the small amount of comparable work using ERP, only
the most distinctive stimuli were chosen for this experiment. The stimuli consist
of two characters, five stylization levels in addition to photographs and three facial
expressions: anger, happy, neutral.
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5 Stimuli Creation

Figure 5.1: Our initial stimuli set consists of two identities, five stylization levels
and five basic expressions – from the most abstract (left) to the most realistic versions
(right).

Our experiment setup requires virtual doubles of real people together with styl-
ized versions of the same characters. The initial Experiments 1a–1c (Section 6.3)
required the design of three levels of stylization of the same character. This has been
later extended to five stylization levels (Figure 5.1) for Experiments 2 and 3 (Sec-
tions 6.4 and 6.5) and the ERP Experiment (Chapter 7). The realistic characters
are based on real people without ethnic bias to the group of participants. For the
acquisition and creation of the virtual doubles, we relied on the character replication
pipeline as described in detail in Chapter 2. In addition to the neutral expression,
we captured for each character four of the universal facial emotions: anger, hap-
piness, sadness, and surprise (Ekman 1972). Each pose representing one emotion
was captured several times, and the most convincing one was selected by a group
of about twenty people of different cultural backgrounds while referring back to the
original description of the basic emotions (Ekman 1972). We discarded disgust and
fear because their status as basic expressions was questioned recently (Jack et al.
2014) and they are harder to identify by observers.

While a realistic character can be obtained from 3D scans of a real person, no
automatic solution exists to generate increasingly stylized versions. Present styliza-
tion algorithms are limited in most cases to 2D images as inputs, where stylization
is achieved using image processing techniques (for an overview see, e.g., Kyprianidis
et al. (2013)) or by creating corresponding pairs of matching facial parts (Zhang
et al. 2014). An exception for the stylization of 3D models is the work of Jachnik
et al. (2015). However, in all cases, the stylization capabilities remain too limited
for our purpose.

We, therefore, asked different professional 3D artists to produce the required
stylized shapes and materials based on our realistic characters, taking inspiration
from commercial animation films (see examples in Figure 5.2). For our first set of
experiments (Section 6.3), we used three stylization levels for shape and material.
For the later experiments (Section 6.4) two additional stylization levels have been
created, such that the realism scale is sampled accordingly. For all stylized char-
acters, we did not intend for the artist to precisely match the emotional intensity
across the shapes, but rather to create expressions that resembled the expressions of
our scanned actors to the best of their ability (e.g., teeth showing slightly in a happy
smile) given the available facial features. As the instructed artists worked indepen-
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5 Stimuli Creation

Figure 5.2: Two of the stylizations created for the study, showing the original
sketches on the left and their resulting stylized 3D models on the right. The designs
are inspired by the films Cloudy with a Chance of Meatballs (top) and Toy Story
(bottom).

dently of each other, some of the stylized characters required further adjustments to
match better our requirements: (i) similarity with the original people, (ii) roughly
linear sampling of the realism scale and (iii) consistent expressions. Furthermore,
we created the hairstyles and clothing for the different stylization levels.

All stimuli for the following perception experiments have been created based on
the initial set of two characters, five stylization levels in addition to photographs
and five basic expressions (Figure 5.1). Overall, 406 distinct images were rendered.
While in some cases the required changes were small, e.g., changing the camera
perspective, other changes have been very comprehensive. Transferring, e.g., the
material of the realistic characters to the stylized version, involved not only the
transfer of the albedo, specular and bump textures but also of textures for the
eyes, teeth and clothes. In other cases, apparently simple modifications revealed
problematic setups and required re-adjustments of specific parameters for all affected
stimuli, e.g., changing from global illumination lighting to simple, direct illumination
caused rendering artifacts due to the selected material parameters. For rendering
all our realistic and stylized stimuli, we used the same rendering pipeline and very
similar setups as described in Chapter 2. The entire dataset is available online1 for
research purposes.

1http://graphics.uni-bielefeld.de/publications/sigasia2015/
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Figure 6.1: We test the influence of expression (left), shape and material stylization
(center) and shading and lighting (right) on facial perception.

In our work, we focus on two of the main aspects that primarily define the
stylization of a 3D character: shape and material (including texture and optical
properties). Due to the high dimensional nature of the problem, experiments were
performed in two rounds. We first analyze which of the many sub-dimensions of
both shape and material affect the appearance of the character the most. To this
end, we define three different levels of stylization along shape and material for a
single male character: a realistic head obtained by state-of-the-art 3D-scanning and
two stylized versions designed by artists. Moreover, each level includes five facial
expressions: anger, happiness, sadness, surprise, and neutral. We then create all
combinations along these dimensions (shape, material, expression, Figure 6.1) and
analyze the perceived realism, appeal, eeriness, and familiarity of each character by
means of perceptual studies.

We also analyze the effect of decoupling the material dimension into its main
components, testing two different shaders, three illumination methods, and three
progressively blurred albedo textures. Results and acquired knowledge from these
tests are then used to guide a second round of experiments, where we deeply explore
the space with more samples along the factors found as most important in the
previous studies. For this, we substantially increase the stimuli to two characters
(male and female), five stylization levels (of both shape and material), and five
expressions. We then analyze the most significant scales of the previous experiments
(realism, appeal), and also evaluate how the combination of each of these dimensions
affects the expressivity of the characters.

The design of our rating scales experiments is inspired and justified by the current
trends in feature animation, which have recently used different combinations of
stylized shapes and materials to depict 3D characters. Examples include highly
stylized shapes and textures in Pixar’s Toy Story movies, or the somewhat less
stylized shapes but photo-realistic materials in The Adventures of Tintin. We use
static pictures as stimuli, as it has been found that much of the information that
people use to evaluate virtual characters are available in a still image (McDonnell
et al. 2012).
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Contribution This work was created under the supervision of Mario Botsch (Biele-
feld University), Diego Gutierrez (Universidad de Zaragoza) and Rachel McDonnell
(Trinity College Dublin). In this project I was the primary investigator and con-
tributed to various aspects of the project, starting from the initial idea up to writing
up the final paper. My biggest work packages were carrying out and analyzing the
perceptual experiments and the creation of the stimuli. The latter included scanning
the actors and post-processing the data, creating hairstyles, adjusting the stylized
characters, and setting up and rendering all variations of the stimuli. I received
support from Katja Zibrek with analyzing the experiments, and Carlos Aliaga with
adjusting and setting up the initial character set. Carlos Aliaga also created the
most abstract stylization level.

6.1 Overview of Facial Perception Experiments
Using Rating Scales

Stylization Some of the first attempts to measure the likability of stylized and
realistic characters were performed by morphing pictures (Hanson 2005, MacDor-
man 2006, Schneider et al. 2007, Dill et al. 2012). Schneider et al. (2007) studied
the effect of stylization on characters in Japanese video games, and found that it in-
creased perceived attractiveness. All these studies used different characters, includ-
ing confounding factors such as changing lighting and background. In contrast, we
investigate the effects of stylization on the same character under identical conditions.
Other works have focused on changing certain features and modifying proportions
in the shape of digital faces. It has been shown that uncanniness emerges when ab-
normal features of the face become apparent for highly realistic characters (Seyama
& Nagayama 2007, Burleigh et al. 2013). Green et al. (2008) concluded that there
is less tolerance to deviations from original proportions in cases where faces are
more attractive and human-like. Others focused on the boundary when characters
are perceived as real, by morphing between photographs and puppet faces (Looser
& Wheatley 2010) or virtual faces (Cheetham et al. 2011). Different from these
works, we investigate the effects of global stylizations as commonly adopted by the
animation industry.

Wallraven et al. (2007) studied the perceived realism, recognition, sincerity, and
aesthetics of real and computer-generated facial expressions using 2D filters to pro-
vide brush, cartoon, and illustration styles. They concluded that realistic depictions
improve subjective certainty about the conveyed expression. Later, they evaluated
the perceptual realism of computer-generated faces under progressively blurred nor-
mal vectors and textures, finding no effect with their setup (Wallraven et al. 2008).
In contrast to them, we do not employ Gaussian blurring for producing abstract
stimuli, but instead use stylized models produced by artists, in order to better
match the character styles used in industry.

MacDorman et al. (2009) showed participants several images of virtual faces,
combining different textures (from realistic to simple lines) with geometric levels
of detail (i.e., decreasing polygon counts). Results suggested that reducing photo-
realism can make the face look less eerie and more attractive. In our work, shape
refers to the global, high-level features of the face, not to technical aspects such
as polygon count. Closer to our goal, the recent study by McDonnell et al. (2012)
found that rendering style affects the appeal and trustworthiness of the characters.

76



6.1 Overview of Facial Perception Experiments Using Rating Scales

(a) Rough (b) Environment (c) Chrome (d) Environment

Figure 6.2: A special case demonstrating the ambiguity of light and material. Left:
A sphere with a rough surface lit by a star environment map. Right: A chromatic
sphere lit by a blurred environment map. Despite different materials and lighting,
the appearance of both spheres is nearly identical.

Additionally, a character rendered in an appealing style can be perceived to have
more positive personality traits (Zibrek & McDonnell 2014). Recent studies focusing
on neurocognitive mechanisms attribute negative appeal ratings to the difficulty of
categorizing images in a particular category, resulting in competing visual-category
representations during recognition (Ferrey et al. 2015). Negative effects for such
images occur to the extent that selecting one interpretation over the other requires
inhibition of the visual-category information associated with the non-selected inter-
pretation. Following the conclusions from these studies, stylization affects pleasant-
ness ratings, and furthermore, some combinations of visual elements might result in
negative effects. Therefore, we study the effects of combining different levels of styl-
ization for shape and material, which are the two key parameters governing visual
appearance.

Skin Appearance Taking into account previous work related to the perception of
human skin appearance helps understanding effects of material stylizations. Many
studies concerning attractiveness of human faces merged different photographs to
achieve average appearance. There was speculation that this technique impacts
ratings of attractiveness not just because it averages the shape, but also because it
removes blemishes and other skin irregularities (Alley & Cunningham 1991). Several
studies confirmed that texture changes do result in a significantly more attractive
face (Benson & Perrett 1992, Little & Hancock 2002). Publications in the cosmetics
domain also help explain the observed effects on appeal: Fink et al. (2006) created
textures from photographs of women of different age and evaluated these textures
on a single female virtual character. Renderings with pure skin have been rated as
younger and more attractive than renderings with strong variations in skin pigmen-
tation. This observation was confirmed in a follow-up study (Fink & Matts 2008),
which showed that blurring the skin texture can increase attractiveness. Similar
suggestions can be found in many photograph retouching books (e.g., (Nitzsche &
Rose 2011)).

Lighting and Shading Several researchers have studied material perception be-
yond the skin. We focus at this point on glossy, diffuse and translucent surfaces
and omit transparent materials. Studying the perception of materials is challenging
due to the strong interaction with lighting condition, making the reasons for the vi-
sual appearance ambiguous (Figure 6.2). Consider e.g. a perfectly polished chrome
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ball within a closed box covered with velvet. In the presence of indirect light, the
ball would mirror the velvet surface, making it impossible to distinguish it from the
velvet material of the box. It is therefore not surprising that participants inconsis-
tently approximate parameters for glossy surfaces, especially in case of unnatural
lighting (Fleming et al. 2003). Also, accuracy on identifying equal materials (Pont
& te Pas 2006) or determination of roughness (Ho et al. 2006) vary for different
lighting setups. Besides light even the shape of an object influences the perception
of glossiness (Vangorp et al. 2007, Vangorp 2009, Olkkonen & Brainard 2010, 2011).
In case of translucent materials, the lighting direction has a fundamental impact
on perceived translucency. While frontally lit translucent objects lack many visual
cues (e.g., blurred features, soft shadows, low contrast), these features are enhanced
when illuminated from the back (Fleming & Bülthoff 2005).

Rather than focusing on accuracy in material perception, the question remains
what makes surfaces and light look realistic. Based on real photographs, Rademacher
et al. (2001) identified that surface smoothness and shadow softness affect realism,
but not the number of objects and lights. However, the effect size was bigger for sur-
face smoothness than for light (Rademacher 2002). The fact that the human visual
system is tolerant to inaccuracies in lighting or shading was considered to speed-up
rendering, e.g., approximating indirect light between frames through spherical har-
monics (Jarabo et al. 2012). Another well-established example is the replacement
of the computationally intensive inter-reflections between surfaces through several
simpler light sources (Keller 1997). Respective perception parameters have been
systematically studied in Křivánek et al. (2010). Finally, Wisessing et al. (2016)
measured the impact of render style and lighting on the intensity and appeal of
expressions in short animation sequences. Lighting had no or very little influence
on perceived intensity, but soft shadows have been rated as more appealing, even
though the effect size was small.

Expression In our experiments, we are also taking into account the influence of
the particular expression. Brain studies show that some areas in the brain respond
differently to certain expressions of emotion, specifically the amygdala, which tends
to activate while looking at fearful and angry faces, as opposed to happy, surprised,
and sad faces (Calder 1996). Since the amygdala region is activated in response to
danger, it is believed that negative emotional expressions, such as anger and fear,
trigger a defense response in the perceiver. Another example comes from studying
the “uncanny valley” effect on CG characters, where modified expressions of emotion
with negative valence (e.g., anger, sadness) increased the perceived uncanniness of
the character (Tinwell, Grimshaw, Nabi & Williams 2011). Additionally, given dif-
ferent hypotheses that iconic representation of faces increases the expressibility and
the recognizability of expressions (McCloud 1993), we further analyze our stylization
domain by evaluating whether different levels of stylization in shape and material,
including mismatches between them, affect these scales.

6.2 General Experiment Design

Since both the design and the analysis of our experiments in this section as well as
in Sections 6.4 and 6.5 share many similarities, we describe the general setup now
and later only mention deviations. Following previous work (e.g., (McDonnell et al.
2012, Ho & MacDorman 2010)), we employ (subsets of) the following scales for our

78



6.2 General Experiment Design

experiments. The descriptions below are the ones given to the participants of the
perception studies:

• Extremely unappealing—Extremely appealing : High appeal means that the
character is one that is pleasant and you would like to watch more of. Unap-
pealing means that you dislike to watch the character.

• Extremely eerie—Extremely re-assuring : Indicate if you find the character
eerie, which means that it is gloomy and leaves you with a sense of fear. Re-
assuring means that the character restores a sense of security, confidence, calm
in you.

• Extremely abstract—Extremely realistic: Indicate if you find the character’s
appearance to be highly stylized like in cartoons, or close to photo-realistic as
in real pictures.

• Extremely unfamiliar—Extremely familiar : Indicate if you find the character’s
appearance familiar to you, in that you have seen something similar to it
before, or if you find the character unfamiliar with an appearance that you
have not seen anything like before.

• Extremely unattractive—Extremely attractive: Indicate if you find the charac-
ter unattractive and ugly or beautiful and attractive.

We modeled these properties as Likert scales, which are popular in psychology as
they allow subjective conditions such as the attitudes of participants to be measured.
We have chosen a seven-point scale in order to give participants more response
options and to allow for comparison to previous studies. The Likert scales were
numbered 1–7, with a description provided on both ends of the scale.

The user’s task and the rating scales were explained in a written document to
the participants before the experiment. Afterwards, all stimuli were presented in a
random order and shown for 3 s each. The display was calibrated, 20 ” wide and
at about 50 cm distance from the participants. The renderings have a resolution
of 1024 × 768, corresponding to approximately 26.5 cm × 20.0 cm on screen. After
each stimulus presentation, participants were asked to rate it according to the above
scales. In all experiments, the participants had normal or corrected-to-normal vision
and were unaware of the final goal of the experiment. They were asked to report
their 3D experience (how often they played video games, watched movies with visual
effects, and how they would consider their knowledge of 3D graphics). We did not
find any correlation between the reported 3D experience and the results of our tests
and thus omit this information for the rest of the chapter.

For statistical analysis of each rating scale, we conducted an n-way repeated
measures Analysis Of Variance (rm-ANOVA). We run Mauchly’s test for validat-
ing sphericity of the data, and whenever it is significant we report results with
Greenhouse-Geisser correction applied and marked with an asterisk “*”. When-
ever main interaction effects were found, we conducted a Tukey Honestly Significant
Difference (HSD) test for the comparison of means to explore the results further
(Cunningham & Wallraven 2011).
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6.3 Experiment 1: Importance of Shape, Material and
Lighting

The appearance of virtual humans is a function defined over a huge multi-dimensional
space. While it is generally recognized that shape and material are the main contrib-
utors to the overall appearance of virtual characters, these two might be affected
by several sub-dimensions. For example, material is the combination of shader,
shader parameters, and textures, each having a potentially different influence on
appearance. This makes the experiment design an extremely challenging task, given
the large number of variables to explore. Similar to previous work on rendering
style (McDonnell et al. 2012), we want to analyze how different levels of stylization
(e.g., shape and material) change the perception of a virtual character. From a
detailed analysis of character designs in commercial animation, we identified three
different recurrent stylization levels, which we denote by cartoon, middle, and real-
istic, where Cloudy with a Chance of Meatballs and Toy Story act as references for
the two stylized versions, respectively.

We are interested in analyzing the effect and interaction of shape, material, and
textures. Therefore, we transferred all material properties of the baseline characters
to the other character shapes (Figure 6.3). The inter-surface mapping for the texture
transfer was computed based on a dense correspondence map established using the
non-rigid registration technique from Chapter 3.

6.3.1 Experiment 1a: Shape and Material

We first investigate the influence of shape and material, where we denote by material
the combination of shader, shader parameters, and textures. The combination of
each material with each shape style leads to a total of nine different versions of the
character, times five different expressions, resulting in a set of 45 stimuli (Figure 6.3).
We analyze the interaction between shape and material for the scales most frequently
used in previous work: realism, appeal, reassurance, and familiarity. Twenty-two
volunteers participated in this first experiment: 14 female, 8 male, with age from 19
to 30 years (avg. 24.5).

In this section, we analyze the effects of shape and material only. Figures 6.4
and 6.5 compare the ratings of the neutral expression with averaged ratings over all
expressions. Despite a smaller offset and some noise, ratings for different expressions
have been very consistent, which justifies averaging over all expressions. For sta-
tistical analysis, a rm-ANOVA with three factors (shape, material, and expression)
was used.

Realism A main effect was found for shape (F (2, 42) = 113.18, p < 0.0001)
and material (F ∗(1.47, 30.82) = 23.15, p < 0.0001, ε = 0.734), as well as for the
interaction between shape and material (F (4, 84) = 11.14, p < 0.0001). Post-hoc
tests show that the cartoon shape was perceived as least realistic, no matter which
material was used. Similarly, cartoon and middle materials did not make a difference
for the middle shape (Figure 6.4b), while the realistic material caused a more realistic
perception for this shape (p < 0.002 for both comparisons). In contrast, all material
levels differ significantly for the realistic shape (p < 0.0002). Interestingly, the most
stylized shape does not reach the bottom of the realism scale, revealing that there
is more potential for abstraction.
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Figure 6.3: Stimuli used in Experiment 1a: three levels of shape and material styl-
ization (y-axis) and five expressions (x-axis). Textures of characters with matching
material and shape stylization level have been transferred to the other shapes for
testing stylization levels of shape and material independently.
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Figure 6.4: Results of Experiment 1a: Ratings for perceived realism and famil-
iarity, for different shape and material stylizations. (a) and (c) show results for
the neutral expression only, (b) and (d) are averages over all expressions. Error-
bars denote 95% confidence levels. Individual per-expression results are discussed
in Section 6.5.
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6.3.2 Experiment 1b: Shading and Lighting

Familiarity Again, a main effect has been found for material (F (2, 42) = 12.58,
p < 0.0001), but not for shape. Furthermore, there is also a significant interaction
between shape and material (F (4, 84) = 17.99, p < 0.0001). The results of the
post-hoc test for familiarity are less similar than between the appeal and eeriness
ratings. Even though the combination of realistic material and realistic shape is
unappealing and eerie, it was not rated significantly less familiar than other combi-
nations. Realistic materials on cartoon and middle shapes result in the least familiar
combinations (p < 0.02 in all cases)(see Figure 6.4d).

Appeal We found a main effect of material for appeal (F ∗(1.41, 29.67) = 42.69,
p < 0.0001, ε = 0.706), but no main effect of shape was found. An interaction
between shape and material (F (4, 84) = 13.97, p < 0.0001) shows that a realistic
material on a cartoon shape yields the least appealing combination, since a post-
hoc analysis showed significantly lower ratings for this combination compared to all
others (p < 0.02 in all cases). The realistic material is less favored on the middle
shape as well, and the cartoon material on the realistic shape is similarly unappealing
(p < 0.02 in all cases except the combinations mentioned above). These results (see
Figure 6.5b) suggest that material contributes most to the perceived appeal of a
CG character, and that strong mismatches in the level of stylization of shape and
material can result in very unappealing characters. Furthermore, the middle shape
was rated as equally appealing regardless of material, which could be due to the fact
that it was never strongly mismatched with material. Our appeal ratings ranged
from 2.5 to 4.2, which is similar to the appeal ratings reported by McDonnell et al.
(2012) for their static images.

Reassurance Similar to the appeal ratings, we found a main effect of material
on the ratings of reassurance (F ∗(1.51, 31.70) = 49.07, p < 0.0001, ε = 0.755), but
no main effect was found for shape. An interaction between shape and material is
present (F (4, 84) = 12.02, p < 0.0001) and post-hoc analysis showed significantly
lower ratings of reassurance in shape-material combinations that reduce appeal as
well, which have been realistic materials on all shape levels and cartoon materials
on the realistic shape (p < 0.02). The realistic material on the cartoon and middle
shape was perceived most eerie. A Cronbach’s alpha value of α = 0.88 confirms high
similarity between the appeal and the reassurance scale (see Figure 6.5b, d).

6.3.2 Experiment 1b: Shading and Lighting

The above experiment reveals a strong influence of material, in particular on the
appeal and reassurance ratings. The realistic material was rated as the least ap-
pealing for all character shapes, while the middle material was the most appealing
for the realistic shape. A large number of shader parameters controls materials,
and testing each of them is infeasible. In addition, only certain parameter combina-
tions are meaningful and would be used in a real-world scenario. We note that all
shader parameters are mainly responsible for light-material interaction, while albedo
textures control the color primarily. Instead of varying shader parameters within
certain ranges, we modify the light transport more drastically by altering shading
and lighting techniques.

In an experiment similar to the previous one, we tested the initial baseline charac-
ters (three matching shape/material stylization, five expressions) with two different
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Figure 6.5: Results of Experiment 1a: Ratings for perceived appeal and reassur-
ance/eeriness for different shape and material stylizations. (a) and (c) show results
for the neutral expression only, (b) and (d) are averages over all expressions. Error-
bars denote 95% confidence levels. Individual per-expression results are discussed
in Section 6.5.
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Figure 6.6: Stimuli for Experiment 1b: Three stylization levels of the same identity
showing the surprised expression. Each character was rendered with the simple
Phong material (upper row) and original sophisticated shaders for skin, clothes, etc.
(lower row) under three lighting setups: Direct light with hard shadows, direct light
with soft shadows and global illumination with soft shadows (from left to right).
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Figure 6.7: Results for Experiment 1b: Comparison of ratings for perceived re-
alism, appeal, reassurance and familiarity for different shading and lighting setups.
Error-bars denote 95% confidence levels. Meaning of the acronyms: DI–Direct Illu-
mination, GI–Global Illumination, HS–Hard Shadows and SS–Soft Shadows
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6.3.3 Experiment 1c: Texture

shaders and three illumination methods. For shading, we tested a simple Phong
shader in addition to the original sophisticated shaders for skin, cloth, etc. The
lighting categories were (i) global illumination and soft shadows, (ii) direct light and
soft shadows, (iii) direct light and hard shadows. One key light together with a
rim light illuminated the scene. Instead of using a fill light, a concave background
reflected light in case of the global illumination setting and a low amount of constant
ambient light was added for the direct light setups. All questions and scales were
the same as for the previous experiment.

Twenty new volunteers participated in this second experiment (15 female, 5
male, ages from 19 to 30 years). A rm-ANOVA with three factors (shading, lighting,
expression) was used for statistical analysis. While there was a main effect of lighting
on realism (F (2, 38) = 6.66, p = 0.003), with global illumination with soft shadows
being rated more realistic than ambient light with soft shadows (p = 0.020) and hard
shadows (p = 0.004), the difference was minimal (means are 3.95±0.1). Besides the
effect of lighting on realism, we did not find any other significant effects, neither for
the other scales nor for the different shaders (Figure 6.7). These results suggest that
textures have more influence than shader parameters on appearance, and therefore
we explore them more in depth in the following.

6.3.3 Experiment 1c: Texture

One possible explanation of why the middle material was rated the most appealing
for the realistic shape could be the reduced pigmentation variation as reported by
Fink & Matts (2008). In order to analyze whether their findings on attractiveness
can also explain our effects on appeal and reassurance, we designed a variation of
Experiment 1a from Section 6.3.1. Our remaining evaluation experiment should
then:

• test whether it is possible to influence appeal or realism by changing only the
albedo texture,

• show a possible correlation between appeal, reassurance and attractiveness,

• reveal whether appeal can be increased without sacrificing realism too much,
simply by filtering a photo-realistic texture.

To this end, we created two additional textures with reduced skin details by
applying uniform Gaussian blur of kernel sizes 25 and 50 pixels (for 4k textures),
respectively. The 50px kernel covers barely 1 cm of the face, which translates into
around four pixels in image-space. Lips and skin were filtered independently in
order not to blur the boundary inbetween; eyebrows were not filtered. These three
textures (realistic, blurred 25px, blurred 50px) were used in combination with the
realistic material. To enable a comparison with Experiment 1, we also included the
cartoon and middle materials (with their original textures only). This results in a
set of five materials, which were also transferred to the middle and cartoon shapes,
as shown in Figure 6.8.

For this experiment we tested these five materials on the three shape stylizations,
but used the neutral expression only, leading to 15 stimuli in total. Note that the
three realistic materials differ in their (blurred) texture only. The presentation of
the stimuli was repeated three times with different random orderings. After each
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Figure 6.8: Stimuli for Experiment 1c: Realistic material with a realistic texture
and two variants with blurred textures (Gaussian kernels of 25 and 50 pixels), for
the three shape stylizations.

stimulus, participants were asked to rate it according to the previously described
scales for appeal, reassurance, and realism, plus a new scale attractiveness. Twenty-
one new volunteers (13 female, 8 male), average age 24.6 years, participated in
the experiment. For statistical analysis, a rm-ANOVA with three factors (shape,
material, and expression) was used. All results from Section 6.3.1 were confirmed,
and thus we only describe the main effects related to the added material levels.

Realism Although a main effect was found for shape (F ∗(1.29, 25.78) = 124.98,
p < 0.0001, ε = 0.645), material (F (4, 80) = 17.52, p < 0.0001) and an interaction
between shape and material (F (12, 240) = 6.42, p < 0.0001), the post-hoc shows
that this is not related to the added textures. The ratings for the two blurred
textures are between the realistic and the middle texture but are not significantly
different for any shape. This confirms our initial assumption that blurring a realistic
texture only slightly reduces the perceived realism of a character.

Appeal and Attractiveness Due to the high similarity between appeal and at-
tractiveness (Cronbach’s α = 0.87), we report these results together. A main effect
was found for shape, for attractiveness (F ∗(1.33, 25.54) = 5.36, p = 0.021, ε = 0.665)
but not for appeal. Material was significant in both cases (Appeal: F ∗(1.68, 33.60) =
27.17, p < 0.0001, ε = 0.421; Attractiveness: F ∗(1.56, 31.26) = 16.72, p < 0.0001,
ε = 0.391). The interaction between shape and material is significant (Appeal:
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F ∗(7.05, 94.03) = 4.99, p < 0.0001, ε = 0.588; Attractiveness: F (12, 240) = 2.88,
p = 0.005). As we hypothesized, the blurred textures were rated higher than the
realistic texture. This effect is stronger for the cartoon and middle shapes, and
a significant difference between the realistic and 50px blurred version was found
(p < 0.003 in all cases). For other comparisons between the blurred and realistic
textures, no significant difference was found. However, the graphs in Figure 6.9 show
that the two blurred textures were rated equally appealing for the realistic shape. In
contrast, a stronger blur is preferred for cartoon and middle shapes. We, therefore,
conclude that blurring realistic skin textures is a reasonable approach for increasing
appeal or attractiveness, without losing too much realism. Although the results of
our tests are not significant in some cases, these findings are in line with research of
Fink & Matts (2008): We generalize their findings to character shapes of different
stylization levels.

Reassurance Although the graphs of reassurance and appeal are similar (Fig-
ure 6.9; α = 0.89), a main effect was found for material only (F ∗(1.44, 28.72) =
24.55, p < 0.0001, ε = 0.359), but not for shape. In addition, there is an interaction
between shape and material (F ∗(7.128, 142.46) = 2.66, p = 0.029, ε = 0.594). The
two blurred textures have been rated less eerie than the realistic version. Significant
differences have been found between the realistic texture and the 50px blurred ver-
sion for cartoon and middle shapes (p < 0.0001). Thus, blurring a texture does not
only increase appeal, but also reduce eeriness.

6.3.4 First Conclusions on the Importance of Shape, Material and
Lighting

The three experiments described above allow us to draw the following main conclu-
sions on the tested dimensions:

• Shape is the main descriptor for realism, while material is more important
for perceived appeal, reassurance, and attractiveness. Strong mismatches in
stylization between material and shape negatively affect the appeal and at-
tractiveness of the characters and make them eerier.

• Texture has a stronger influence on appeal and attractiveness than shading or
illumination models. Blurring a realistic texture does not significantly reduce
realism but increases appeal and attractiveness.

• Ratings for appeal, reassurance, and attractiveness measure similar concepts
(α > 0.87 in all experiments), but do not correlate with the realism scale
(α < 0.5 in all experiments).
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Figure 6.9: Results of Experiment 1c: While there is nearly no difference between
the realistic and blurred textures for the realism scale, the blurred textures increase
appeal and attractiveness and reduce eeriness.
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6.4 Experiment 2: Further Investigation of Shape and
Material

The experiments in Section 6.3 indicate that different stylization levels of material
and shape have a big impact on perceived appeal or realism. However, our set of
stimuli contained only a single character, and the realism scale was not densely sam-
pled. A more stylized character might reveal that big mismatches between material
and shape cause unappealing results, or a stylization level between middle and re-
alistic might cause uncanny reactions. To allow for a more generalized conclusion
about different stylization levels, further investigation is required.

In the following experiment, we analyze the effect of varying stylizations on
shape and material, including matching and mismatching levels of stylization, on a
significantly extended set of stimuli. In particular, we seek answers to the following
questions:

• Can our findings be observed on other characters as well?

• Does a strong mismatch between material and shape create unappealing results
only for realistic shapes or for all shapes?

Stimuli We extended our initial stimuli with another character of different gen-
der because this adds by design a clearly distinctive person. For each character,
two additional stylizations were created, yielding five stylization levels from level 0
(most stylized) to level 4 (highly realistic). We distinguish between stylizations in
material and shape by using the prefix m and s respectively. The new stylizations
(level 0 and level 3 ) have been particularly designed by the artists to fill the gaps
for perceived realism in the stylization scale. For these levels, our character designs
are inspired by Pocoyo and Tangled. We also changed the hairstyle of the virtual
male character to allow a better comparison with a photograph of the actor. This
provides us with baseline ratings on appeal and realism for the real person. The new
set of stimuli is composed of two characters times five shape stylizations times five
material levels times five expressions, leading to a total of 250 images. Figure 6.10
shows five expressions and matching shape/material levels of the male character,
while Figure 6.11 shows the 25 combinations of material and shape for the female
character. Both figures visualize a representative subset of the stimuli.

Procedure The largely extended stimuli require a reduction of the scales to keep
the experiment tractable. Given that the appeal, reassurance, and attractiveness
scales measure similar concepts, and that the familiarity scale did not provide much
information, we decided to keep only the realism and appeal scales for this experi-
ment. Furthermore, we increased the display time of the stimuli to 4 s, and showed
the neutral male and female baseline characters before the experiment, such that
participants could better estimate the range of characters from the beginning on. At
the end of the actual experiment, participants rated a photograph of the real char-
acters in a neutral expression. The rest of the experiment remains similar to the
previous one. With all these changes, participants finished the experiment within 50
minutes or less. Twenty-one new volunteers (17 female, 4 male) took part, average
age 23.4 years.
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Figure 6.10: Stimuli for Experiment 2: Renderings of the male character for
different stylizations (rows) and basic emotions (columns).
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Figure 6.11: Stimuli for Experiment 2: Combinations of shape and material styl-
ization for the female character (surprise expression), with baseline stimuli on the
diagonal.
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Our results are summarized in Figures 6.12 and 6.13 and are mostly consistent
across male and female. Repeated measures ANOVA with four factors (character,
shape, material, and expression) was used for statistical analysis. Differences be-
tween the two characters were significant, but since they were rather small and/or
inconsistent, we exclude them from further analysis. In the following, we present
an in-depth discussion of the realism and appeal ratings, and report the impact of
expression in Section 6.5.

Realism A main effect of shape (F ∗(1.98, 39.6) = 178.67, p < 0.0001, ε = 0.495)
and material (F ∗(1.33, 26.4) = 73.92, p < 0.0001, ε = 0.333) was found as well as
an interaction between shape and material (F ∗(6.71, 134.1) = 11.59, p < 0.0001,
ε = 0.419). Post-hoc analysis shows that all shapes (p < 0.004) and most of the
materials (p < 0.003 except for level m0 and m1) differ significantly from each other.
The 25 groups resulting from the combinations of shape and material also differ
significantly in more than 80% of the cases. Most non-significant comparisons can be
found for the shape level s0 (see Figure 6.12). For example, increasing the material
from level m1 to m2 or from level m2 to m3 does not cause a significant difference.
This contrasts with the case of the realistic shape levels s3 and s4 (p < 0.002). This
is in line with the results from Section 6.3.1, and confirms that as the shape becomes
more realistic, the material stylization becomes more dominant for perceived realism.

Appeal The main effects of shape (F ∗(2.58, 51.6) = 20.97, p < 0.0001, ε = 0.645)
and material (F ∗(1.88, 37.6) = 20.39, p < 0.0001, ε = 0.470) are comparable. There
is a slightly weaker interaction between shape and material (F ∗(6.06, 121.3) = 14.29,
p < 0.0001, ε = 0.379). Post-hoc analysis reveals that shape levels s2 and s3 were
perceived more appealing than the other shape levels (p < 0.0002 in all cases between
the two groups).

For the materials, only the most realistic version (level m4) was significantly less
appealing than all other materials (p < 0.0002). This supports our assumptions from
Section 6.3.3 that smooth(ed) skin pigmentations are perceived more appealing. For
the abstract shape s0, material levels m0, m1, and m2 form a cluster without any
significant difference; this cluster is found significantly more appealing than material
levelsm3 andm4 (p < 0.03). On the other hand, shape level s3 is rated substantially
higher with matching material levels (m2 and m3), with both more stylized (m0 and
m1) and more realistic (m4) materials being rated significantly lower. These results
support that in all cases a strong mismatch between shape and material is perceived
as unappealing.

Photograph At the end of the experiment, participants rated a photograph of the
real actors in a neutral pose. As expected, the average realism rating is very high
(6.98, SD = 0.15). The average appeal rating of both actors was 4.5 (SD = 1.40),
which is higher than the average ratings for the realistic s4/m4 characters (3.26,
SD = 1.33). This dip in appeal rating for the s4/m4 character is in agreement with
the uncanny valley theory (Mori et al. 2012). However, appeal for stylizations s2/m2
and s3/m3 (4.71, SD = 1.25 and 4.95, SD = 1.25) were rated highest. In addition,
Figure 6.16 depicts that realism alone is a bad predictor for appeal; instead, our
results show that the compatibility of shape and material stylizations, i.e., their
matching degrees of realism, has a stronger (and predictable) influence on appeal.
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Figure 6.12: Results of Experiment 2: Ratings for perceived realism for different
shape and material stylizations. Upper row : neutral expression averaged over male
and female characters. Bottom row : averaged over all expressions and characters.

95



6 Rating Scales Experiments

●

●

●
●

●

2

4

6

level s0 level s1 level s2 level s3 level s4
Shape (Neutral)

Ap
pe

al

(a) Appeal - neutral

●
●

● ●

●

2

4

6

level s0 level s1 level s2 level s3 level s4
Shape

Ap
pe

al

(b) Appeal - all

Figure 6.13: Results of Experiment 2: Ratings for perceived appeal for different
shape and material stylizations. Upper row : neutral expression averaged over male
and female characters. Bottom row : averaged over all expressions and characters.
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6.5 Experiment 3: Effect of Expressions

In the previous experiments, we have analyzed the overall effect that shape and ma-
terial have on the perception of faces. Here, we first analyze whether different levels
of stylization in shape and material, including mismatches between them, affect the
recognition and intensity of expressions (anger, happy, neutral, sad and surprise).
We then discuss how ratings are affected by particular expressions (Figure 6.11).
This is interesting since previous findings suggest that valence of emotion affects
character perception (Calder 1996, Tinwell, Grimshaw, Nabi & Williams 2011),
making negative expressions to be rated less appealing than positive expressions.
In particular, we seek answers to the following questions:

• Does the level of stylization affect the intensity of expressions? Are they easier
or more difficult to recognize?

• Do negative expressions affect the perceived appeal of characters? Is this
influenced by stylization of shape or material?

6.5.1 Intensity and Recognition of Expressions

As discussed previously, stylization is a well-known tool for artists to enhance the
expressivity of 3D characters, removing unnecessary details and enhancing specific
features. In this experiment, we explore how the different stylizations of shape
and material affect recognition and the perceived intensity of the expressions, and
which of the two dimensions is dominant for expression recognition. The extended
250-stimuli set from Experiment 2 is used again.

Each stimulus was presented for 4 seconds in random order; participants were
first asked to classify the expression according to the following options: anger, happy,
neutral, sad, surprised. After each answer (except for neutral), a follow-up question
asked to rate the expression intensity with respect to a seven-point Likert scale
bounded by extremely low intensity and extremely high intensity. When participants
rated an expression as neutral, its intensity was set to the lowest value. Twenty-
four new volunteers (16 female, 8 male, 23.6 years old on average) took part in this
experiment. Results are shown in Figure 6.14 and again a rm-ANOVA with four
scales (character, shape, material, and expression) was used for statistical analysis.

Recognition We found a main effect of expression (F ∗(1.22, 28.04) = 74.00, p <
0.0001, ε = 0.305), as well as several interaction effects between expression and
shape (F ∗(4.56, 104.9) = 41.3, p < 0.0001, ε = 0.285), material (F (16, 368) = 4.97,
p < 0.0001) and character (F ∗(2.3, 51.26) = 4.23, p = 0.016, ε = 0.557). The neutral
expression is mainly responsible for all these effects; its recognition rate was lower
(p < 0.002) than the other expressions, varying strongly across different shape levels.
This neutral expression was in general poorly recognized for the more stylized shapes
(s0 and s1): For instance, some participants reported that the big round eyes made
them look surprised. This might be explained by the fact that cartoons are usually
designed to enhance expressivity, not to be posed displaying a neutral expression.
We also found a main effect for shape (F (4, 92) = 44.23, p < 0.0001), which is
mainly determined by the neutral expression, as discussed above, and a main effect
for material (F (4, 92) = 10.09, p < 0.0001). The material level m4 reduced the
recognition rate significantly (p < 0.015), but only by 2%.
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Figure 6.14: Results of Experiment 3: Effect of shape on the recognition and
intensity of the expression. All expressions, except neutral, have been recognized
well or outstandingly well independent of the shape. However, the intensity reduced
continuously with higher shape stylization levels.
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Intensity Main effects of shape (F ∗(2.11, 48.61) = 91.40, p < 0.0001, ε = 0.528)
and material (F ∗(2.47, 56.90) = 30.46, p < 0.0001, ε = 0.618) were found. Apart
from the angry expression, the perceived intensity of expressions is continuously
reduced with increasing realism of shape (p < 0.0002). Only for shape levels s2 and
s3 the intensity remains constant. In the case of material, the absolute difference was
very small (0.5 between the lowest and highest mean), and only the material level
m4 had a higher intensity (p < 0.0002). This matches previous research (Wallraven
et al. 2007, 2008), which found that details such as wrinkles increase the expressivity
of realistic characters, although in our case the effect is weaker.

In addition, a main effect of expression (F ∗(2.57, 59.10) = 204.6, p < 0.0001,
ε = 0.642) and interactions between shape and expression (F ∗(5.78, 132.94) = 19.00,
p < 0.0001, ε = 0.361), material and expression (F (16, 368) = 5.04, p < 0.0001), and
expression and character (F (4, 92) = 19.55, p < 0.0001) were found. In particular,
the happy, sad, and surprise expressions are perceived with lower intensity as the
realism of shape increases. This difference is significant in the majority of cases for
shape levels s3 and s4 (p < 0.01), but is less frequent for lower shape levels. The
perception of the angry expression, on the other hand, remains constant along shape
abstractions.

Overall, we found that expressions of cartoon shapes are perceived as more in-
tense, which confirms that adequately stylizing features helps increase expressivity.
The neutral expression is hard to read for very stylized character shapes, suggest-
ing that low-intensity subtle expressions are harder to convey in abstract characters
designed to enhance expressivity. We found no or small impact of material on the
intensity or expression recognition, which indicates that shape is the dominant di-
mension when designing expressive characters.

6.5.2 Effect of Expressions on Realism and Appeal

In our previous experiments on material and shape with the five basic expressions
(Section 6.3), we found that appeal and eeriness measure similar concepts, while
effects for familiarity were generally small. We focus here on the effect of expressions
on realism and appeal with the extended stimuli set. We omit details on the effects
of expressions for Experiments 1a and 1b (Appendix A.1.1) as they do not provide
additional insights. Figure 6.15 shows the results, which we analyze below.

Realism A main effect of expression (F (4, 80) = 10.38, p < 0.0001) was found,
which could be mainly attributed to the neutral and sad expressions, which have
been perceived as more realistic (p < 0.006). As the means are located within a
small range (±0.16), we classify this effect as noise and omit similar examples for
the rest of this section. Nevertheless, equal realism ratings confirm that expressions
were well designed by the artists.

Appeal A main effect was found for appeal (F ∗(1.56, 31.36) = 19.34, p < 0.0001,
ε = 0.392), which is primarily caused by the anger expression (p < 0.001). Overall,
anger is rated much lower with respect to appeal. Previous studies reported that
negative emotions trigger unpleasant responses from the observers (Calder 1996); our
results confirm these studies. Moreover, this effect is maintained even in the presence
of highly stylized and appealing characters, suggesting that negative expressions are
perceived as unappealing independent of stylization level.
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Figure 6.15: Results of Experiment 2: While emotions do not differ in realism,
the anger expression was perceived as more eerie and unappealing for all stylization
levels.
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Figure 6.16: Participant ratings for our male stimuli plotted on a realism-vs-appeal
diagram, similar to Tinwell, Grimshaw &Williams (2011), MacDorman et al. (2009).
Each graph corresponds to one shape stylization, while graph nodes correspond to
material levels. The icons are placed above the nodes of matching shape/material
levels. The diagram reveals that realism is a bad predictor for appeal. Instead, it is
the compatible degree of realism of both shape and material that matters. Results
of the female character are similar.

Additionally, we observe that ratings are unsteady across different stylization
levels for the rest of the expressions. In many cases, interaction effects between
expression and shape or material are found with p < 0.0001. Zhu et al. (2014)
showed with photographs that different instances of the same expression do indeed
vary in perceived appeal. This might also be the primary reason for the variations
in our ratings. We rule out recognition as an error source since all the expressions
were recognized outstandingly well.

6.6 Discussion

Shape and material are two of the main aspects that define the appearance of virtual
characters, which in turn are crucial when defining the visual look of animated
feature films. We have analyzed the perceptual effects of different stylizations along
these dimensions on computer-generated faces. In particular, we have studied five
different stylizations of two virtual characters (male and female), ranging from very
realistic to highly stylized, varying both the shape and the material.

Our results show that the main contributor to perceived realism is shape, and the
effect of material stylizations grows when shape realism is increased. This implies
that mismatches in material and shape are less prominent on abstract characters.
The resulting asymmetry is shown in Figure 6.12, where the curves spread out as
the level of realism increases. On the other hand, we have found that material
is the main factor for perceived appeal, specifically the albedo texture. In general,
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appeal, attractiveness, and eeriness are highly dependent on the material stylization.
Matching levels of stylization of geometry and material cause the highest ratings of
appeal, while strong mismatches (e.g., very realistic material on a stylized shape)
result in unappealing and eerie characters.

Interestingly, as shown in Experiment 1c and later backed-up in Experiment 2,
subtle stylization of a realistic material (edge-preserving blur on the albedo texture)
increases appeal without sacrificing realism. These stylizations de-emphasize un-
wanted skin impurities, pores, and wrinkles, and our results are in accordance with
empirical knowledge regarding the effect of make-up. Moreover, our results relate
with previous findings on face perception showing that smooth, homogeneous skin
is generally rated more attractive since it is a good estimate of a young and healthy
subject (Fink et al. 2012). However, this trend is only observed for mild stylizations,
and stronger ones quickly reduce realism.

Variations in lighting and shading in Experiment 1b remained unnoticed by our
participants. Given the amount of research that is dedicated to realistic rendering,
this result is surprising. The combination of three aspects might have contributed
to this result. First, texture and shape have been the most relevant features for
the task. Second, all tested lighting setups, ranging from direct illumination with
hard shadows to global illumination with soft shadows, can be achieved with real
light setups (Rademacher 2002) and remained plausible to the participants. Third,
we discussed in Chapter 2 that the Phong BRDF can approximate more advanced
BRDFs up to a certain level. This fact, paired with perception inaccuracies of the
human visual system for frontally illuminated objects with translucent materials
(Fleming & Bülthoff 2005), might have sufficiently masked the shortcomings of the
simpler material and lighting setups.

Our results are consistent across all tested expressions, except for anger, which
was consistently rated less appealing and eerier. This can be explained by negative
or aggressive expressions triggering a defense response and a negative reaction of
the viewer (Calder 1996). Our results are also consistent across different characters.
Although small differences between the characters exist, all reported trends are
consistent and well visible.

Realism alone was shown to be a bad predictor for appeal (Figure 6.16), which
is not well aligned with the theory of the uncanny valley, although a similar finding
was reported for rendering style (McDonnell et al. 2012). One possible explanation
is that some of our characters were difficult to categorize by the participants, due
to their mismatched appearance parameters (Saygin et al. 2012, McDonnell et al.
2012).

Finally, our experiments show how stylization affects the intensity of expressions,
and that shape is the main factor in this case, whereas material has no significant
influence on stylized shapes. This confirms previous knowledge on modeling or
drawing expressive, stylized characters, where the global shape of the character
mainly determines expressivity. However, for realistic shapes, we have observed
that material stylization slightly, but significantly reduces the perceived intensity of
expressions. Another possible explanation, which also merits further investigation,
is that realistic characters make suspension of disbelief 1 harder to maintain, and
therefore observers find it more challenging to connect emotionally with the virtual
character. These results are consistent with previous work (Wallraven et al. 2007,

1In fiction, the suspension of disbelief is a semi-conscious decision by the viewer to accept as real
what clearly is not. This allows the viewer to connect with the story.
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2008) and may explain the conscious disturbing effect of stylizing hyper-realistic
characters in some movies (e.g., A Scanner Darkly or Renaissance).

Interestingly, Fleming et al. (2016) investigated on the perceived appeal and
realism of body stylization and parallels exist between their and our work. They
found no difference between natural lighting embedded in the texture and CG light-
ing. Furthermore, appeal increased and realism remained constant for moderate
shape stylization. One explanation could be that moderate body stylization leads to
shapes similar to idealized body shapes in western societies. In our case, moderate
stylization of albedo textures had a similar effect as (digital) make-up, that removes
skin impurities in order to align better with existing beauty standards. Both ob-
servations show that moderate stylization can enhance appeal and can plausibly be
explained by traits that increase attractiveness of real people.

As a limitation of the present work, it has to be noted that only two different
identities were used. Therefore, our results might not generalize across all conceiv-
able characters. In order to increase validity of the obtained results, our characters
have been stylized based on popular 3D characters. Furthermore, the stimuli have
been designed to match the quality of current animation movies as much as possible.
To our best knowledge, our results are unique in that they provide many different
stylization levels for the same characters.

As in all user studies, our results are only strictly valid for our particular set of
stimuli. We have focused on a specific set of stylizations for two realistic characters,
varying shape and material following typical designs used in feature animation. This,
of course, limits the universality of the conclusions, which may not generalize if the
character styles differ greatly from ours. However, since our design space was densely
sampled and the observed trends are consistent between the different characters, we
believe that our observations can be used as valid guidelines for creating digital
characters within a reasonable range of styles.

In our statistical analysis, we employed a common significance threshold of p <
0.05. With the amount of results we report, it might be that some significant results
are false positives. As we only focus on clear, reoccurring trends, and since many
significances have p < 0.001, it is unlikely that one of our main conclusions is a
false positive. Finally, note that we analyzed clear peak expressions, avoiding the
less attractive transitions between expressions common in the real world (Zhu et al.
2014). Evaluating the impact of these transitions for different stylizations could be
also an interesting avenue of future work.
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7 Event-Related Potential
Experiment

Figure 7.1: For our stimuli (left), we measure brain processing in the temporal
domain (center) and reconstruct the source of the electrical signal (right).

We mentioned already that Event-Related Potential (ERP) experiments are an
excellent way to identify brain processes and active brain regions during the percep-
tion of visual stimuli (Figure 7.1). Furthermore, facial perception of real people has
a long history in neuroscience (Section 7.2), which helped to identify face-specific
brain regions. In this context, it is especially interesting to investigate whether the
brain similarly processes stylized characters. Our stylized characters (Chapter 5) are
unique as they stylize the same identity and keep variations small between differ-
ent stylization levels, e.g., color, view direction, background or lighting. While the
electrical activity of the brain can be measured accurately in ERP experiments, it
is difficult to connect the measured signal with a meaningful interpretation. Having
obtained detailed information in the previous experiments (Chapters 6.3, 6.4 and
6.5) of what participants thought and felt after watching the stimuli allowed us to
draw more precise conclusions from the measured data. In the following, we first
give a short introduction on understanding ERP experiments and then report our
results.

Contribution This project was part of an interdisciplinary collaboration with the
Affective Neuropsychology research group at Bielefeld University. For this study, I
created the stylized stimuli, which make the study unique in comparison to previous
work. Furthermore, I contributed to the study design and played an essential role in
connecting the measured brain responses with results of the rating scale experiments
and other ERP studies.
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Name Ordinal Latency Scalp distribution

N170 N1 150–190 occipito temporal
EPN between P2 and N2 250–400 temporo parieto occipital
LPP after N3 400–600 front parieto central

Figure 7.2: An idealized waveform illustrating the most basic naming convention
for amplitudes and an overview of the main components used in the following study.

7.1 Understanding Event-Related Potential
Experiments

Empirical studies in the form of perceptual experiments or usability tests are widespread
in computer graphics. However, this is not the case for studies that directly mea-
sure brain response. Thus before describing the following experiment, a very brief
overview of ERP experiments will be given, such that unfamiliar readers can un-
derstand the core of this chapter. For a more complete description, we recommend
publications dedicated to introduce this topic (Luck 2005, Woodman 2010).

Hans Berger (1929) discovered the possibility of measuring the electrical activity
of the brain by placing electrodes on the sculpt. However, the bare electrical signal,
called the electroencephalogram (EEG), is rarely of interest for perceptional experi-
ments. Instead, some post-processing of the obtained EEG measurement is required.
The beginning of every trial is well defined by displaying the stimulus, and all elec-
trical activity measurements can be aligned according to this starting point. By
averaging all EEG signals across participants, equal trials and a set of electrodes for
condition A a grand average waveform is obtained (Figure 7.2). This grand average
waveform is then compared to the grand average waveform for condition B within
specific time intervals (Table Figure 7.2, table). It is important to note that dif-
ferences are only reported between grand average waveforms. Individual waveforms
might vary due to many of reasons like time since the last meal or body temperature
(Polich & Kok 1995) and the influence of such side-effects vanishes when data of the
entire group is considered.

Every grand average waveform consists of specific peaks that are named either
according to the order of appearance (e.g., P1, P2, etc.) or the latency (e.g., N170)
after the initial event. The letters P and N indicate positive or negative voltage. In
addition to this general nomenclature, specific names for components exist that are
defined according to timing, scalp distribution or specific tasks. The N170, EPN
(early posterior negativity) and LPP (late positive potential) components are three
such examples that are often analyzed in face-related literature (Figure 7.2, table).
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Figure 7.3: Left : The division of the cerebral cortex into four different lobes
(Blausen 2014). Right : Further division of the cerebral cortex into gyri (Hagmann
et al. 2008).

At this point the advantage of using ERP experiments becomes obvious. Due to
the long research history, it is not only possible to identify a specific reaction of the
brain to the stimuli, but also to relate it to previous studies.

Compared to direct feedback techniques like questionnaires or Likert scales, ERP
experiments have the advantage of providing an unbiased response to stimuli. How-
ever, this comes at the cost that the measured electrical activity does not allow a
definite conclusion. Instead, one must rely on a combination of interpretations of
previous research for different components in conjunction with rating scale exper-
iments. Unfortunately, as we will see later for the LPP component, there might
be several reasons for a stronger activation of a specific component. Besides EEG,
brain response can be measured using other techniques like functional Magnetic
Resonance Imaging (fMRI). While fMRI is excellent in the spatial resolution and
accurately locates brain activation, ERP outperforms fMRI in the temporal domain,
allowing a differentiation between sensory and cognitive processing. Nevertheless, it
is possible to compute the localization of ERP signals. However, it should be noted
that the localization is an ill-posed problem that is only solvable by using additional
constraints. Thus source reconstructions of ERP signals are much less reliable than
the localization through fMRI.

For completeness, we shortly review the location and functionality of relevant
brain structures for our experiment and refer the reader to e.g., Vanderah & Gould
(2016) for a more detailed overview. The biggest part of the human brain is the
cerebrum, consisting of two symmetrical hemispheres. Each hemisphere consists of
the white matter (inside) and the cortex that covers the surface of the cerebrum.
The cortex is folded, consisting of gyri1 and sulci which specify the ridges and the
grooves respectively. The cerebrum is divided into four areas, the frontal, temporal,
parietal and occipital lobes (Figure 7.3). Part of the occipital lobe is the visual
cortex, responsible for the initial processing of visual signals. Different stimuli can
also activate nearby areas of the visual cortex, like the cuneus, lingual gyrus or
the fusiform cortex. For face processing especially, two dedicated regions exist: the
occipital face area (Pitcher et al. 2011) located in the occipital lobe and the fusiform
face area (Kanwisher et al. 1997), which is part of the fusiform cortex.

1singular: gyrus
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7.2 Review of Facial Perception in Neuroscience

So far, little is known about how stylized faces are processed by the brain and which
facial details are essential in particular. Even less is known about how a presented
emotional expression interacts with the stylization of a face. Event-related potentials
(ERPs) are an excellent way to analyze face perception, as the measured brain
responses can distinguish between highly automatic and more controlled stages of
processing and do not require overt responses that may be distorted by experimental
demand characteristics. Neuroscientific research has shown that face processing
strongly activates dedicated areas in the visual cortex, in particular, the occipital face
area (Pitcher et al. 2007, Steevesa et al. 2006) and the fusiform face area (Kanwisher
et al. 1997). The fusiform face area is also involved in generating the face-specific
N170 component in ERP studies (Deffke et al. 2007). Previous work showed that
the N170 component peaks selectively for faces (Bentin et al. 1996). Real faces
elicit a stronger N170 compared to abstract sketches of faces, but the difference
is not statistically significant compared to schematic faces (Sagiv & Bentin 2001),
suggesting a gradual increase. Larger N170 amplitudes are found for human faces
compared to those of other species (Gajewski & Stoerig 2011). Further, a recent
meta-analysis indicated that larger N170 amplitudes are observed for angry, fearful,
and happy than for neutral facial expressions (Hinojosa et al. 2015). It has been
hypothesized that the N170 amplitude peak reflects sufficient visual information
processing for classifying an emotional expression (Schyns et al. 2007). Moreover,
emotion effects at the N170 can be found for faces of medium stylization (Mühlberger
et al. 2009) and even for robots with rather schematic faces (Dubal et al. 2011).
Attractiveness also seems to induce small modulations in the N170 for characters
of the same stylization level (Lu et al. 2014, Marzi & Viggiano 2010). Finally, it
has been found that baby faces cause a stronger N170 amplitude than adult faces,
most likely due to neotenic features, like proportionally larger eyes (Proverbio et al.
2010).

Enhanced processing of emotional faces is also reflected in an enhanced Early
Posterior Negativity (EPN), as well as a larger Late Positive Potential (LPP) (e.g.
(Schupp, Öhman, Junghöfer, Weike, Stockburger & Hamm 2004)). The EPN indi-
cates early attention mechanisms, whereas LPP is viewed as reflecting higher-order
evaluation and episodic memory encoding (for an overview see (Schupp et al. 2006)).
Both EPN and LPP amplitudes are sensitive to voluntary attention deployment to
a stimulus and can be increased by explicit attention instructions (Codispoti et al.
2006, Eimer et al. 2003, Schindler & Kissler 2016b, Schupp et al. 2007). Both ERP
components are also sensitive to the emotional content of various stimuli types, in-
cluding faces (e.g., (Flaisch et al. 2011, Schindler & Kissler 2016a, Schupp, Öhman,
Junghöfer, Weike, Stockburger & Hamm 2004, Steppacher et al. 2015, Wieser &
Keil 2013)). This emotion sensitivity is thought to reflect intrinsically motivated
attention to emotional stimuli and often co-varies with stimulus intensity or arousal
(Cuthbert et al. 2000, González-Roldan et al. 2011, Olofsson et al. 2008, Schupp,
Junghöfer, Weike & Hamm 2004). As, in the absence of relevant social context,
participants typically report less subjective arousal for emotional faces than for emo-
tional pictures, differences in arousal-level might account for generally smaller ERP
emotion effects in response to faces compared to pictures (Thom et al. 2013). Apart
from emotional expressions, larger EPN (Werheid et al. 2007) and LPP amplitudes
(Johnston & Oliver-Rodriguez 1997, Marzi & Viggiano 2010, Werheid et al. 2007)
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are reported for attractive faces compared to unattractive faces, also applying to
moderate stylizations (Lu et al. 2014). Other than larger LPP amplitudes, a better
recognition performance has been observed for attractive faces (Marzi & Viggiano
2010). However, enhanced memory performance for attractive faces has been ques-
tioned. The effect may reflect a response bias and higher subjective familiarity of
attractive faces (Potter et al. 2007).

Interestingly, in a recent study contrasting real neutral faces with neutral faces of
puppets, no differences at the N170 level were observed, while from 400ms onwards
a larger LPP was found for real faces (Wheatley et al. 2011). This was attributed
to the salience and unique identity of a real face and subsequent mentalizing about
the depicted individual (Wheatley et al. 2011). In this regard, perceived uniqueness
or distinctiveness by shape or reflectance manipulations of initially non-distinctive
real faces have been found to result in a larger late positivity as well as in better
memory performance (Itz et al. 2014, Schulz et al. 2012). Further, biographical
information also has been found to increase the processing of real faces at early
and late ERP components (Abdel Rahman 2011, Abdel Rahman & Sommer 2012).
Recently, larger LPP amplitudes have been reported for realistic computer-generated
faces when biographical information was added (Taylor et al. 2016). The combined
evidence suggests that a unique identity, either pre-existing or ascribed, enhances
processing, particularly at late stages.

Against the above background, the present research systematically addresses how
brain responses, known to reflect distinct stages of face processing, vary across dif-
ferent levels of character stylization and for different emotional expressions. Based
on previous research, we expected to find strongest responses for real faces at the
N170, EPN and LPP (Bentin et al. 1996). For very abstract faces, the proportionally
larger eyes and uniformly coloured textures might also cause a strong N170 (Prover-
bio et al. 2010). For angry and happy faces, we expected to find larger N170, EPN
and LPP amplitudes. Interactions between the level of stylization and emotional ex-
pression were explored on all components. Moreover, source analyses were employed
to uncover the cortical generators of stylization effects, addressing the possibility of
differential recruitment of visual areas such as fusiform or occipital face areas.

7.3 Experiment Design

Participants Thirty-three participants were recruited at Bielefeld University. They
gave written informed consent and received 11 Euros or course credit for participa-
tion. The Bielefeld University ethics committee approved the study (EUB number
2016-112). All methods were performed in accordance with the guidelines and regu-
lation at Bielefeld University. The participants (22 females) were 23.30 years on av-
erage (SD = 3.68), all of them right-handed and had normal or corrected-to normal
vision. Upon structured interview, no participant reported a current neurological or
psychiatric disorder or relevant medication intake.

Stimuli For the current study, all stylized characters from Chapter 5 were used
with adjusted camera view and aspect ratio, such that all faces are nearly of the
same size and the eyes are located at similar positions (Figure 7.4). Background
planes with a 50% grey were inserted in the 3D scenes before rendering. In addition,
photographs of the real actors have been added. To keep the experiment tractable,
only three emotional expressions (happy, angry, neutral) per stylization level were
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used without interchanging shape and material. In addition, facial neotenic cues
have been computed by measuring the relative size of facial parts (Cunningham
1986).

Procedure The faces were randomly presented for 600ms, followed by a fixation
cross with variable latencies (randomly between 400ms and 500ms). All faces were
repeated fifteen times, while it was prevented that the same stimulus was presented
twice in a row. Faces were presented on a 15.4-inch screen (Dell Latitude D830)
with 1600×1200 pixel resolution (image width: 800; height: 1142). The background
colour was 50% grey. The stimulus presentation lasted for about ten minutes, while
the whole session took approximately 50 minutes. Participants had no task but
were instructed to attend to the presented faces, while moving as little as possible.
Participants were encouraged to reduce their eye-movements by focusing on the
fixation cross.

EEG recording and analyses EEG was recorded from 128 BioSemi active elec-
trodes2. The recorded sampling rate was 2048Hz. During recording, Cz was used
as reference electrode. Biosemi uses two separate electrodes as ground electrodes:
A Common Mode Sense active electrode (CMS) and a Driven Right Leg passive
electrode (DLR). The two electrodes form a feedback-loop which enables to measure
the average potential close to the reference in the AD-box3, where also information
about extra functions of the CMS/DRL loop can be retrieved. Four additional elec-
trodes (EOG) measured horizontal and vertical eye-movement. These were placed
at the outer canthi of the eyes and below the eyes.

Pre-processing and statistical analyses were done using BESA4, EMEGS (Peyk
et al. 2011) and SPM85 for EEG data. Offline, data were re-referenced to the average
reference and then filtered with a forward 0.16Hz high-pass and a zero-phase 30Hz
low-pass filter. Filtered data were segmented from 100ms before stimulus onset
until 600ms after stimulus presentation. The 100ms before stimulus onset were
used for baseline correction. Eye-movements were corrected using the automatic
eye-artifact correction method implemented in BESA (Ille et al. 2002). Additionally,
trials exceeding a threshold of 120μV were rejected. Overall, 4.04% of all electrode
measurements were interpolated. On average, 5.41% of all trials were rejected,
leaving 28.38 trials per cell, leading to 85 trials per realism condition and 170 trials
per emotion condition.

Cortical source reconstructions of significant ERP differences were generated
and statistically assessed with SPM8 for EEG (Litvak & Friston 2008), following
recommended procedures. First, a realistic boundary element head model (BEM)
was derived from SPMs template head model based on the Montreal Neurological
Institute (MNI) brain. Electrode positions were then transformed to match the
template head, which is thought to generate reasonable results even when individual
subjects’ heads differ from the template (Litvak et al. 2011). Average electrode
positions as provided by BioSemi were co-registered with the cortical mesh template
for source reconstruction. This cortical mesh was used to calculate the forward
solution. For the inverse solution, the group inversion algorithm was used (Litvak

2www.biosemi.com
3http://www.biosemi.com/faq/cms&drl.htm
4http://www.besa.de
5http://www.fil.ion.ucl.ac.uk/spm/
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Figure 7.4: The stimulus set consists of the characters (male and female), three
emotions (angry, happy, neutral) and six stylization levels.
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& Friston 2008) and the solution was calculated from 100ms pre-baseline to 600ms
after stimulus onset.

Statistical analyses EEG scalp-data were statistically analyzed with EMEGS.
Six (stylization: level 0-5) by three (emotional display: angry, neutral, happy) re-
peated measure ANOVAs were set-up to investigate main effects of the communica-
tive sender, emotion and their interaction in time windows and electrode clusters
of interest. Partial eta-squared (η2P ) was estimated to describe effect sizes, where
η2P = 0.02 describes a small, η2P = 0.13 a medium and η2P = 0.26 a large effect (Cohen
1988). When Mauchly’s Test detected a violation of sphericity, degrees of freedom
were corrected according to Greenhouse-Geisser (Cunningham & Wallraven 2011).
For significant main effects, linear compared to u-shaped contrasts were calculated.
Time windows were segmented from 150 to 190ms to investigate the N170, from 250
to 400ms to investigate the EPN, and from 400 to 600ms to the LPP component,
after collapsing all conditions and visual inspection of the ERP components. For
the N170 and EPN time windows, two large symmetrical temporo-occipital clusters
of fifteen electrodes each were examined (left: I1, OI1, O1, POO3, PO9, PO9h,
PO7, PO7h, P9, P9h, P7, P7h, TP9h, TP7, TP7h; right: I2, OI2, PO10, POO4,
PO10, PO10h, PO8, PO8h, P10, P10h, P8, P8h, TP10h, TP8, TP8hT8). For the
LPP time windows, a large parietal cluster was investigated (twenty-six electrodes:
CCPz, CP5, CP5h, CP3, CP1, CPz, CP2, CP4, CP6, CPP5h, CPP3, CPPz, CPP4,
P3, P1, Pz, P2, P4, PPO3, PPO1, PPOz, PPO2, PPO4, PO3, POz, PO4). Results
did not change qualitatively when selecting different literature-based electrode clus-
ters for the N170, EPN or LPP (Dubal et al. 2011, Bublatzky et al. 2014, Itz et al.
2014).

Source reconstructions were performed for the main effects of face-stylization.
For each analyzed time window in scalp space, three-dimensional source recon-
structions were generated as NIFTI images (voxel size = 2mm × 2mm × 2mm).
These images were smoothed with a Gaussian kernel using an 8mm full-width half-
maximum. The statistical comparisons used in source space were based on significant
differences on the scalp. In line with previous studies (Schindler & Kissler 2016a,b,
Schindler et al. 2015), we describe statistical differences in source activity of vox-
els differing at least at an uncorrected threshold of p < 0.005 and a minimum of
twenty-five significant voxels per cluster. Additionally, in all tables results are shown
applying a family-wise error corrected threshold of p < 0.05. The identification of
activated brain regions was performed using the LONI atlas (Shattuck et al. 2008).

7.4 Measured Brain Activity

N170 For the N170 component, significant modulations of stylization (F (5, 160) =
15.93, p < 0.001, partial η2P = 0.332; see Figure 7.5), emotion (F (2, 64) = 50.33,
p < 0.001, partial η2P = 0.611; see Figure 7.6), as well as an interaction of stylization
with emotion (F (10, 320) = 2.44, p = 0.008, partial η2P = 0.071) were found over
the two large symmetrical occipital sensor groups (see Figure 7.5). For stylization
levels, we tested a linear (F (1, 32) = 0.09, p = 0.765, partial η2P = 0.003), compared
to a u-shaped contrast (F (1, 32) = 68.50, p < 0.001, partial η2P = 0.682), and found
a u-shaped form for the face-specific N170 component. Although these u-shaped
forms are visible and highly significant for all emotions, we identified with increased
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7.4 Measured Brain Activity

Figure 7.5: N170 ERP results. The upper panel displays the N170 at electrode
PO8. From this panel, the interaction between emotion and realism can be observed.
The lower panel shows the mean N170 over the occipital sensor cluster. Error bars
are +/- one standard deviation of the mean. Note that, while negative-going, the
N170 peak is still in the positive range (see top panel). Therefore, smaller bars
represent higher N170 amplitudes.
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7 Event-Related Potential Experiment

Figure 7.6: Emotion main effects for the N170 and the EPN. Left : Displayed
are the difference topographies for the main effects of emotion across all stylization
levels. Blue colours indicate a relatively larger negativity and red colours a larger
positivity. Right : Displayed is the time course for angry, happy and neutral faces at
electrode PO8.

realism less intense reactions towards happy expressions and more intense reactions
towards angry faces (see Figure 7.5, upper panel). Moreover, emotional modulations
resulted in a stronger quadratic (F (1, 32) = 59.81, p < 0.001, partial η2P = 0.651),
compared to a linear contrast (F (1, 32) = 41.64, p < 0.001, partial η2P = 0.565),
showing the most pronounced N170 for angry faces, smallest for neutral faces and
in between happy expressions (all ps< 0.001).

Additionally, there was a trend for a main effect of channel group (F (1, 32) =
3.37, p = 0.075, partial η2P = 0.095) and an interaction of stylization with channel
group (F (5, 160) = 3.30, p = 0.025, partial η2P = 0.087), showing in tendency a
u-shaped distribution with two maxima over the left and a u-shaped distribution
with one maximum over the right sensor cluster. The interaction of emotion with
channel group (F (2, 64) = 0.58, p = 0.532, partial η2P = 0.018) and triple interaction
were both insignificant (F (10, 320) = 1.03, p = 0.471, partial η2P = 0.031).

EPN In the EPN time range, over the same cluster, main effects of emotional con-
tent (F (2, 64) = 19.89, p < 0.001, partial η2P = 0.383) and laterality were observed
(F (1, 32) = 33.83, p < 0.001, partial η2P = 0.514; see Figure 7.6). The EPN effect
was somewhat better explained by a u-shaped form (F (1, 32) = 22.73, p < 0.001,
partial η2P = 0.415), compared to a linear contrast (F (1, 32) = 17.59, p < 0.001,
partial η2P = 0.355), where the strongest responses were found for angry faces, least
responses for neutral faces and happy faces in between. The effect of laterality
showed a larger EPN on the right compared to the left sensor group. All other main
and interaction effects were insignificant (ps> 0.10).
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7.4 Measured Brain Activity

Figure 7.7: LPP ERP results. The upper panel shows the time course for electrode
CPPz. Here an increase of LPP amplitudes can be seen for increasing realism. The
lower panel displays the mean LPP over the parietal sensor cluster. Error bars are
+/- one standard deviation of the mean.
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7 Event-Related Potential Experiment

There was no effect of stylization (F (5, 160) = 1.56, p = 0.215, partial η2P =
0.046), and no interaction of stylization with emotion (F (10, 320) = 1.04, p = 0.412,
partial η2P = 0.031), or channel group (F (5, 160) = 0.80, p = 0.555, partial η2P =
0.024). Further, there was no interaction of emotion with channel group (F (2, 64) =
0.76, p = 0.474, partial η2P = 0.023), and no triple interaction (F (10, 320) = 1.59,
p = 0.108, partial η2P = 0.047).

LPP In the LPP time window, over a large parietal sensor group, we found only
a main effect of stylization (F (5, 160) = 12.62, p < 0.001, partial η2P = 0.283).
Here, a linear increase in the LPP amplitude was observed (see Figure 7.7). The
linear contrast (F (1, 32) = 31.28, p < 0.001, partial η2P = 0.494) accounted for
substantially more variance explained than did a u-shaped contrast (F (1, 32) =
11.39, p = 0.002, partial η2P = 0.262). There was no effect of emotion (F (2, 64) =
0.04, p = 0.965, partial η2P = 0.001), and no interaction of stylization with emotion
(F (10, 320) = 1.00, p = 0.444, partial η2P = 0.030).

>

>

0                                3 t-Values

0                                3 t-Values

Figure 7.8: Source estimations for main effects of stylization level for the N170.
Upper panel : Displayed are the family-wise error corrected (p < .05) source activa-
tions for each stylization level. For all faces, significant generators can be observed
for the N170 in bilateral superior, middle and inferior occipital gyri, as well as in
the bilateral fusiform gyri. Lower panel : Displayed are the differences in source
activity between stylization levels (post-hoc contrasts, uncorrected p < .005). In the
N170, the real faces lead to larger middle and inferior occipital activations, while
the most stylized faces are processed more intensely in the right inferior occipital
gyrus / cuneus / lingual gyrus.
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7.5 Discussion

Cluster-level peak-level MNI coordinates LONI

Number of Peak Peak x y z Area
significant voxels t(1, 192) p-uncor (mm) (mm) (mm)

Level 5 > Level 0

408 3.35 < .001 28 -90 2 Mid OG R
86 2.70 < .005 -34 -90 8 Mid OG L

Level 0 > Level 5

169 3.31 < .001 18 -98 -14 Inf OG R

Table 7.1: Source estimations for stylization level main effects for the N170 (150-
190ms). Results show differences only between very stylized faces (level 0) and real
faces (level 5). Real faces elicited more activity in middle occipital regions, while
cartoon faces elicited more activity in the right inferior frontal gyrus / cuneus /
lingual gyrus.
Notes: Number of significant voxels = voxels which differ significantly between both conditions.

Peak p-uncor. = uncorrected p value. For each significant peak, respective coordinates (x, y and

z) are displayed in MNI space. If a cluster exhibited more than one peak, only the largest peak is

reported. Area = peak-level brain region as identified by the LONI atlas. Mid = middle. Inf =

inferior. OG = Occipital Gyrus. R / L = laterality right or left.

Source reconstruction Source reconstructions were calculated for significant ef-
fects of stylization level. All presented faces elicited strong visual responses (see Fig-
ures 7.8, and 7.9 upper panel). However, the extreme poles (photographs compared
to cartoon faces) showed a distinct processing already in the N170: While real faces
led to larger inferior and middle occipital activations, highly stylized faces caused
stronger responses in the right cuneus / lingual gyrus (see Figure 7.8, Table 7.1).
Thus, despite similar N170 peaks for the extreme poles, the cortical generators dif-
fer. For neither of the extreme poles did we find statistical differences in source
localization compared to moderately stylized characters.

Later, in the LPP stronger superior occipital and superior parietal activations are
observed for real compared to cartoon faces (see Figure 7.9, Table 7.2). These source
estimations mirror the linearly increasing LPP for higher realism. With increasing
realism of the faces, the differences to real faces become smaller and finally disappear
in middle occipital areas. For the reverse contrasts, no differences were found.

7.5 Discussion

The results are striking in that they reveal a dissociation of stylization effects on the
N170 and LPP: Taking into account that (i) the N170 amplitude is larger for faces
than for objects (Kanwisher et al. 1997, Deffke et al. 2007, Proverbio et al. 2010), (ii)
larger for real compared to schematic faces (Sagiv & Bentin 2001), and (iii) cuteness
and baby-like features have been associated with a larger N170 (Proverbio et al.
2010), we suggest neoteny and perceived face realism to drive the u-shaped N170
modulation. Analysis of stimulus properties (see Figure 7.10) indicates that neotenic
features, such as eye size, decrease non-linearly and very quickly for stylization
levels 0 to 2. On the other hand, perceived realism increases linearly for the tested
characters (Section 6.4).
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alues0 2 4 6 t-Va
Figure 7.9: Source estimations for main effects of stylization for the LPP time
window. Upper panel : Displayed are the family-wise error corrected (p < .05)
source activations for each realism level. For all faces, significant generators can be
observed for the LPP in bilateral superior, middle and inferior occipital gyri, as well
as in the bilateral fusiform gyri and bilateral superior parietal areas. Lower panel :
Displayed are the differences between realism levels (post-hoc contrasts, uncorrected
p < .005). In the LPP, real faces are processed more intensely in bilateral middle
and superior occipital and superior parietal areas. However, with increased realism,
these differences become smaller and finally disappear in middle occipital regions.
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7.5 Discussion

Cluster-level peak-level MNI coordinates LONI

Number of Peak Peak x y z Area
significant voxels t(1, 192) p-uncor (mm) (mm) (mm)

Level 5 > Level 0

1331 (707a) 7.47 < .001 -36 -86 18 Mid OG L
700 (483a) 7.09 < .001 28 -90 2 Mid OG R
673 (209a) 4.74 < .001 20 -82 30 Sup OG R

Level 5 > Level 1

1192 (639a) 6.51 < .001 -38 -84 20 Mid OG L
617 (356a) 5.51 < .001 34 -88 16 Mid OG R
685 (301a) 4.94 < .001 20 -82 30 Sup OG R

Level 5 > Level 2

1215 (610a) 6.06 < .001 -36 -86 20 Mid OG L
684 (345a) 5.13 < .001 20 -82 30 Sup OG R
749 (53a) 4.98 < .001 34 -92 2 Mid OG R

Level 5 > Level 3

1167 (348a) 5.63 < .001 -34 -88 20 Mid OG L
705 (369a) 5.24 < .001 20 -82 30 Sup OG R

565 4.10 < .001 36 -86 0 Mid OG R

Level 5 > Level 4

243 3.18 < .001 -38 -82 22 Mid OG L
329 2.91 < .005 20 -82 30 Sup OG R

Table 7.2: Source estimations for stylization level main effects for the LPP (400-
600ms). Results show enhanced activity for real faces compared to stylized faces.
Real faces (level 5) elicited more activity in middle and superior occipital regions.
Differences become smaller with increasing realism of the stylized faces.
Notes: aResulting cluster size with FWE-corrected threshold of p < .05 (geq25 significant voxels).

Number of significant voxels = voxels which differ significantly between both conditions. Peak

p-uncor = uncorrected p Value. For each significant peak, respective coordinates (x, y and z) are

displayed in MNI space. If a cluster exhibited more than one peak, only the largest peak is reported.

Area = peak-level brain region as identified by the LONI atlas. Inf = inferior, Mid = middle, Sup

= superior. OG = Occipital Gyrus. R / L = laterality right or left.
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Figure 7.10: Length and width of different facial parts, proportionally to the
length and width of the face – averaged across both characters. For more stylized
characters, the bigger eyes and smaller nose follow neotenic characteristics. However,
this is not the case for vertical eye placement or forehead height.

N170 generators were found to differ between very abstract and realistic faces:
Although all faces activated extended visual regions, including the right fusiform
gyrus, cartoon faces elicited stronger early visual cortex activations (cuneus, lingual
gyrus, inferior occipital gyrus), while for real faces, stronger activations were found
in middle occipital regions. Results suggest that processing of highly stylized faces
relies more on structural analysis, associated with the so-called occipital face area,
whereas realistic faces activate to a greater extent holistic processing, associated
with the fusiform face area (Haxby et al. 2000). Fusiform responses have been
found for a variety of face stimuli (Tong et al. 2000). However, within computer-
generated characters, stronger fusiform responses were found when these looked
and acted naturally and meaningfully (Shultz & McCarthy 2014). The present U-
shaped modulation could result from an interaction of perceived realism activating
fusiform-dependent holistic processing and neoteny features activating feature-based
processing in more occipital face areas.

Emotion effects on the N170 and EPN are in line with previous work (Schupp,
Öhman, Junghöfer, Weike, Stockburger & Hamm 2004, Mühlberger et al. 2009,
Hinojosa et al. 2015). They indicate that emotional expressions modulate the N170
and EPN responses across stylization levels, while, also in line with the literature, in
real faces, angry expressions had the largest impact on ERPs (Hinojosa et al. 2015).

It is remarkable that stylization and emotional expressions interact on the N170,
indicating an early interplay of structural analysis and emotional classification,
rather than dual processing routes for identity and expression. The present data
suggest that with increasing realism more resources are captured by cues signaling
threat (Bishop 2008). Accordingly, more realistic angry faces were rated more intense
compared to happy faces (see Section 6.5.1). On the other hand, for very stylized
faces, relatively stronger processing of happy expressions was observed. Neotenic
features may selectively enhance the processing of happy expressions. With the ex-
ception of the forehead, all neotenic features decrease or remain nearly unchanged
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7.5 Discussion

with increasing realism (Figure 7.10). Especially the big eyes and a small nose highly
contribute to a cute perception of the character which possibly amplifies processing
of positive expressions.

Unlike the N170 amplitude, LPP amplitude increases in line to perceived face
realism across the tested stylization levels. This might be due to the uniqueness of
a real face, prompting a multitude of ad hoc social inferences (Todorov et al. 2008).
Bruce and Young’s influential model suggests that after initial perceptual and struc-
tural analyses, the observed stimuli are compared with face representations stored
in memory, and if there is a match, person-specific knowledge is retrieved (Bruce
& Young 1986). Indeed, person-related semantic information enhances LPP ampli-
tudes (Abdel Rahman & Sommer 2012). Recently, it has been further shown that
biographical information can increase the LPP to computer-generated faces (Taylor
et al. 2016). Although we did not provide participants with explicit biographical
information, as a result of social inferences, the more realistic faces might be per-
ceived as having a unique biographical identity. Behavioral evidence showed that
computer-generated faces are harder to remember, possibly because they are not
encoded as a unique person (Balas & Pacella 2015, Crookes et al. 2015). The notice-
able discontinuity between levels 0–3 and 4–5 could also imply a categorical change
between realistic and non-realistic characters as shown by classification tasks at a
similar stylization level (Looser & Wheatley 2010, Cheetham et al. 2011).

Typically, distinctiveness is achieved by exaggerating specific spatial differences
between an individual and an average face (Lee & Magnenat-Thalmann 2000). Dis-
tinctiveness by shape or reflectance manipulations has been found to result in a
larger EPN and LPP as well as a steeper learning curve and better memory trace
for initially non-distinctive faces (Schulz et al. 2012, Kaufmann & Schweinberger
2012, Itz et al. 2014). However, naturally distinctive faces lead to the largest LPP
and are remembered even better (Schulz et al. 2012). Regarding the creation of the
currently used face stimuli, spatial differences were not overexaggerated in compar-
ison to an average face. However, rated face-realism and distinctiveness might not
be uncorrelated, as more realistic faces, for example, exhibit a more detailed tex-
ture. Other studies have related the enhanced LPP for real compared to doll faces
to the unique identity of the real face, generating an impression of personal social
presence (Wheatley et al. 2011). Future studies should aim to disentangle effects of
face-distinctiveness from face-realism.

Other factors can also modulate the LPP, but are unlikely to play a role in the
current experiment: For instance, LPP responses increase with higher perceived
familiarity (Eimer 2000). However, in Section 6.3.1 familiarity remained quite con-
stant across stylization levels. Similarly, facial attractiveness enhances the LPP
(Werheid et al. 2007, Marzi & Viggiano 2010). For our stimuli, appeal, which is
conceptually similar to attractiveness, was rated highest for medium-stylized faces
(see Section 6.4). Therefore, it is unlikely that attractiveness is responsible for LPP
modulations in our experiment. In source space, the linear modulation of the LPP
was reflected in larger and broader activations in occipito-parietal areas. The local-
ization of this increase is in line with both enhanced perceptual processing of more
realistic faces and, in particular, also memory-related processes.

Although higher LPP amplitudes have been reported for more emotional than
for neutral stimuli e.g., Flaisch et al. (2011), Bublatzky et al. (2014) and Steppacher
et al. (2015), we found no differences between emotional and neutral expressions on
this component. In general, during passive viewing, emotion effects are smaller for
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faces compared to complex scenes, and participants typically report less subjective
arousal for faces (Thom et al. 2013). Nevertheless, large emotion effects were present
for the N170 and EPN time window. Similarly, Thom et al. (2013) found emotion
effects for the N170, while for the EPN emotion effects were only descriptively visible
and no differences were found for the LPP. This suggests that without an explicit
task, a highly automatic response towards emotional facial expressions modulates
early components without affecting late stages of processing. In this vein, it has
been shown that at late stages emotion effects benefit more from attention to the
emotional category than do early responses (Schupp et al. 2007, Schindler & Kissler
2016b).

Overall, we demonstrated that stylized characters elicit neural effects that are
different from the ones elicited by real faces. Importantly, the pattern changes qual-
itatively across different processing stages, although the measured facial features
changed continuously across similar stylization levels. For face perception experi-
ments, which use computer-generated stimuli, this means that, unless a high level
of realism is achieved, results cannot be transferred directly to real humans. Thus,
computer-generated stimuli may be suitable to test initial hypotheses, but require
final validation with real photographs.

So far, it is unclear why or when exactly realism is beneficial in practical appli-
cations like games or perceptual studies, but the present study, in demonstrating
that realism affects different processing stages in a distinct manner, may offer some
clues: On the one hand, highly stylized faces, with their neotenic features, and very
realistic faces, influence early stage processing and are equally efficient in transient
attention capture. On the other hand, only more realistic faces induce the kind of
post-processing necessary to build an individual identity representation and likely
facilitating identification with the character. Beyond gaming, these findings have
implications for the design of virtual reality therapy settings, for instance of social
phobia. They underscore that depending on the overall goal optimal character design
will differ. If so, the uncanny valley phenomenon may also arise from a perceived
mismatch between situational expectations resulting from a given virtual scenario
and character appearance.

In character design, the main problem for artists is that, for adult characters,
neotenic and realistic features often exclude each other. For instance, skin smooth-
ness is a neotenic feature, but detailed pores and skin-impurities are required to
achieve full realism for a virtual character. Similarly, big eyes are considered as
cute, but realistic characters that have unnaturally big eyes are perceived as creepy
(Seyama & Nagayama 2007), inverting the intended effect. This dichotomy between
realistic characters on one side and rather cute characters on the other side, could
also explain the plausibility of the uncanny valley concept, and the present data
indeed reveal a neural dissociation that might support it. In practice, considering
two independent scales, one for realism and one for neotenic features, seems to be a
promising future direction to predict whether a stylized character will be perceived
positively or negatively when used in a game or as an interactive agent. Moreover,
these parameters can be controlled more easily than appeal or attractiveness, which
depend on many aspects and are more subjective.
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8 Conclusion

This thesis offers new and practically relevant insights for the creation of appealing
realistic and stylized characters by investigating in the fields of geometric modeling,
facial animation, face perception and involved processing by the brain. The first part
of the thesis focuses on technical aspects of creating realistic characters and highly
controllable stimuli. In addition, the presented algorithms improve existing solutions
of dense correspondence estimation and facial retargeting, which are fundamental
problems in computer graphics. The second part proves the benefit of the technical
contributions by enabling new experiments with gained insights that offer a set
of guidelines for character design in general. In the following, we shortly list our
contributions.

We started with describing a highly practical approach for creating realistic dig-
ital faces based on real people. The suggested pipeline in combination with the
reported alternatives for specific components can be implemented within a reason-
able time. Furthermore, we showed in the template fitting subsection how to ob-
tain best results out of the scanned 3D data. With ElastiFace we presented a
novel method for establishing correspondences between textured face models. The
strength of our approach is its simplicity, robustness, and performance. We have
shown that our method is more suitable for the fitting of non-isometric objects
than previously published non-rigid registration techniques. Additionally, we have
demonstrated practically relevant extensions for perception studies like matching
arbitrary texture layouts and part-based morphing. Our contribution to facial re-
targeting addresses primarily the pre-processing step of (sparse) blendshape transfer.
We exploit the inherent similarities between facial expressions of different propor-
tions to generate, through a combination of statistical and geometric methods, a
parallel parametrization that fits the range of motion of the actor and preserves the
semantic relationships and geometric properties of the facial rig’s blendshapes. Fur-
thermore, we introduced a new prior that takes advantage of the differential mesh
properties.

For the perceptual experiments, we created to our knowledge the first stimulus
set for two identities with a linear modulation of shape and material stylization. This
required, especially for the creation of realistic characters, a pipeline that combines
recent scientific results with best-practices within the industry. By applying the
texture transfer feature of ElastiFace, we investigated the impact of shape and
material stylization independently. Based on rating scale experiments, we identified
shape as the primary attribute for perceived realism, while material, especially the
albedo texture, affects more the perceived appeal. Our results have been consistent
across all tested expressions, with the exception of the angry expression that was
always perceived as less appealing. Furthermore, we measured EEG response while
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8 Conclusion

participants watched a subset of our stimuli. Our results indicate that face realism
has a strong influence on the N170 as well as the LPP component. We observed
an interaction already at the N170: While neotenic features, perceived realism and
emotions influence the N170 component, the LPP component is only influenced by
perceived realism. The increased LPP was caused by enhanced occipito-parietal
activity and could base on enhanced processing in face specific subregions. Overall,
our results suggest that realism is a bad predictor for the perception of appeal, and
that the intuition behind the uncanny valley hypothesis might be rather caused
through the combination of neotenic features and perceived realism.

By testing our character creation pipeline and ElastiFace on a real project,
namely the creation of our stimuli, we identified possible directions for further devel-
opment. Building our 3D assets often required manual interventions. This process
could be improved either by further automatization or by simplifying the editing
process. While current research focuses on automatization, the second aspect is
often ignored. However, being able to quickly fix corrupt data or combine several
scans to obtain the best results is of high practical relevance if the captured person or
technology is only available for a short time. For establishing dense correspondences
between profoundly different shapes, we consider improvements on user interaction
and speed as the most promising directions. We believe that an automatic solution
is out of scope in such a case because even humans are not able to select consistently
corresponding feature points between different shapes. Instead, “correct” correspon-
dences often depend on the context, and optimal correspondences are achieved faster
for the target application by quickly iterating different configurations.

In the context of facial animation, the main challenge to solve is the automatic
creation of blendshapes for different stylization levels. Such a feature would be
highly desirable in order to animate our characters. Existing technical limitations
were one of the main reasons why investigating the effect of realistic and stylized
animation was outside the scope of this work. Previous work has shown no difference
in ratings for realism, and only small differences in appeal ratings for static or
motion-captured characters (McDonnell et al. 2012). However, it is interesting to
note that blendshape based facial animation separates pose (shape) from timing.
This raises the fundamental question of how a stylized animation differs if facial
retargeting algorithms reliably compensate for individual facial expressions. Another
difficult but beneficial issue to solve, in order to extend the stimuli set, would be an
automatic or semi-automatic character stylization. This would require a more in-
depth understanding of how to maintain similarity across different stylization levels.
Finally, we tested in our ERP experiment only a subset of the available stimuli.
Using the existing or extending the current stimuli set for new ERP or fMRI studies
is an obvious future direction.
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A Supplemental Material for
Perceptual Experiments

A.1 Additional Diagrams and Analysis

A.1.1 Effect of Expressions in Experiments 1a and 1b

In this section, we discuss the results of Experiment 1a (shape and material) and
Experiment 1b (shading and lighting), analyzing the particular expressions of the
stimuli. For the analysis, we conducted a three-way repeated measure ANOVA. A
Tukey HSD test was used for pairwise comparisons within each experiment. Figure
6.15 shows the results, which we proceed now to analyze.

Realism A main effect of expression for realism was found in the shading and
lighting experiment (Exp. 1b: F (4, 76) = 3.78, p = 0.007), but not in the shape and
material experiment. The effect could mainly be attributed to the sad expression,
which has been rated slightly more realistic (p = 0.005) than others. Because the
means (3.90± 0.15) of all groups are within a small range, we classify this effect as
noise and omit similar examples for the rest of this section.

Appeal and Reassurance A main effect was found for appeal in both experi-
ments (Exp. 1a: F ∗(2.57, 54.01) = 33.14, pp < 0.0001,ε = 0.643; Exp. 1b: F ∗(1.53,
29.10) = 22.22, p < 0.0001, ε = 0.383), which is primarily caused by the anger
expression (p < 0.0001). Similarly, there is a main effect of expression for reassur-
ance in both experiments (Exp. 1a: F ∗(2.61, 54.77) = 24.61, p < 0.0001,ε = 0.652;
Exp. 1b: F ∗(1.68, 31.92) = 18.61, p < 0.0001, ε = 0.420), again mainly caused by
the anger expression (p < 0.0001).

Familiarity A similar main effect is obtained for familiarity (Exp. 1a: F (4, 84) =
8.80, p < 0.0001; Exp. 1b: F ∗(2.04, 38.84) = 5.15, p = 0.001,ε = 0.511). In this case
anger is the only reason for the significant differences of the means. But the anger
expression is only significantly different from the happy (p = 0.003) and neutral
expressions (p = 0.001).
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Figure A.1: Results of expressions in Experiments 1a: While emotions do not
differ in realism, the anger expression was perceived as more eerie and unappealing
for all stylization levels.

126



A.1.1 Effect of Expressions in Experiments 1a and 1b
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Figure A.2: Results of expression in Experiment 1b: Ratings for perceived realism,
appeal, reassurance and familiarity grouped by stylization level and expression.
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A.1.2 Results of Experiment 2 Itemized by Character
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Figure A.3: Results for Experiment 2: Ratings for perceived realism, separated
by expression, male and female.
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Figure A.4: Results for Experiment 2: Ratings for perceived realism, separated
by expression, male and female.
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Figure A.5: Results for Experiment 2: Ratings for perceived appeal, separated by
expression, male and female.
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Figure A.6: Results for Experiment 2: Ratings for perceived appeal, separated by
expression, male and female.

A.2 Renderings of all Stimuli

The following figures show all shading and lighting combinations of Experiment
1b (Section 6.3.2) and all shape and material combinations of Experiment 2 (Sec-
tion 6.4). In all cases, the x-axis represents the facial expressions. The y-axis
represents the shading and lighting setup or the material stylization levels respec-
tively.
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Figure A.7: Experiment 1b, shading and lighting. The five expressions (x-axis)
of the cartoon shape with Phong shader for skin, cloth etc., under three different
lighting setups (y-axis) – From top to bottom row : direct illumination with hard
shadows (DI and HS ), direct illumination with soft shadows (DI and SS ), and
global illumination with soft shadows (GI and SS ).
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Figure A.8: Experiment 1b, shading and lighting. The five expressions (x-axis)
of the cartoon shape with sophisticated materials for skin, cloth etc., under three
different lighting setups (y-axis) – From top to bottom row : direct illumination with
hard shadows (DI and HS ), direct illumination with soft shadows (DI and SS ), and
global illumination with soft shadows (GI and SS ).
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Figure A.9: Experiment 2. Five expressions (x-axis) of the level s0 shape of both
characters, combined with the five levels of material stylization (y-axis).
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Figure A.10: Experiment 2. Five expressions (x-axis) of the level s1 shape of both
characters, combined with the five levels of material stylization (y-axis).
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Figure A.11: Experiment 2. Five expressions (x-axis) of the level s2 shape of both
characters, combined with the five levels of material stylization (y-axis).
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Figure A.12: Experiment 2. Five expressions (x-axis) of the level s3 shape of both
characters, combined with the five levels of material stylization (y-axis).
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Figure A.13: Experiment 2. Five expressions (x-axis) of the most realistic shape
(level s4) of both characters, combined with the five levels of material stylization
(y-axis).
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A.3 Task Description for Participants (in German)

A.3 Task Description for Participants (in German)

A.3.1 Task Description for Experiments 1-2

In dem folgenden Experiment bitten wir Sie, unterschiedliche Charaktere zu beurteilen.
Als Charaktere bezeichnen wir realistische oder abstrakte Figuren, die in einem
Film oder Animationsfilm auftauchen. Jeder Charakter wird Ihnen für jeweils drei
Sekunden gezeigt. Im Anschluss bitten wir Sie, die gezeigte Figur nach den fol-
genden Kriterien zu beurteilen. Beim Beurteilen können Sie jederzeit auf diese
Kriterienbeschreibung zurückgreifen.

Kriterienbeschreibung

• abstoßend - ansprechend : Abstoßend bedeutet, dass Ihnen der Charakter nicht
gefällt und Sie ihn nur ungern anschauen. Einen ansprechenden Charakter
empfinden Sie hingegen als angenehm und schauen ihn gerne an.

• unheimlich - beruhigend : Ein unheimlicher Charakter erzeugt bei Ihnen Schauder,
Angst oder Grusel. Beruhigend bedeutet hingegen, dass der Charakter in Ih-
nen Gefühle von Sicherheit, Ruhe und Vertrauen auslöst.

• abstrakt - realistisch: Beschreiben Sie, ob der gezeigte Charakter eher eine
abstrakte Darstellung eines Menschen oder eine realistische Darstellung ist,
die mit einem Foto vergleichbar ist.

• ungewohnt - vertraut : Ungewohnt bedeutet, dass Sie noch nie einen vergleich-
baren Charakter gesehen haben. Vertraut bedeutet hingegen, dass Sie ähnliche
Charaktere schon öfter gesehen haben.

• unattraktiv - attraktiv : Beschreiben Sie, ob der gezeigte Charakter unattraktiv
oder hässlich ist, oder ob Sie ihn als schön und attraktiv bezeichnen würden.

A.3.2 Task Description for Experiment 3

In dem folgenden Experiment bitten wir Sie, den Gesichtsausdruck unterschiedlicher
Charaktere zu beurteilen. Als Charaktere bezeichnen wir realistische oder abstrakte
Figuren, die in einem Film oder Animationsfilm auftauchen. Jeder Charakter wird
Ihnen für jeweils vier Sekunden gezeigt. Danach sollen Sie den Gesichtsausdruck
mit dem aus Ihrer Sicht passendsten Adjektiv beschreiben. Ihnen stehen dazu die
folgenden Adjektive zur Verfügung:

• wütend

• fröhlich

• neutral

• traurig

• überrascht
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Im Anschluss sollen Sie bewerten, wie stark dieser Gesichtsausdruck ausgeprägt ist.
Die zwei folgenden Beispiele sollen die Aufgabe nochmal verdeutlichen.

Bsp 1 : Sie empfanden, die Figur wirkte sehr überrascht. Also wählen Sie als erste
Antwort, dass sie überrascht ist und als zweite Antwort, dass der Gesichtsausdruck
sehr stark ist.

Bsp 2 : Sie empfanden, die Figur wirkte hauptsächlich neutral und ein klein
bisschen fröhlich. Also wählen Sie als erste Antwort neutral aus und als zweite
Antwort, dass der Gesichtsausdruck mäßig stark ausgeprägt ist.
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