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Table 1: Relighting error for different loss related ablations across
the test dataset according to different metrics. We also report the
MSE for shadow prediction. For all metrics, less is better.

Method Relight Shadow

DSSIM|. LPIPS| MSE| MSE|

MSE loss for target

shadows (no LPIPS) 171 0159 .0437 150
No PatchGAN 162 .0190 .0405 .169
Our 154 .0160 .0399 175

1. Detailed Network Architecture

In Fig. [T| we present a detailed architecture blueprint of our network
with all inputs, modules, networks, and outputs.

2. Training Data Examples

In Fig. 2] we present random training examples from our dataset.
For each viewpoint we provide two lighting conditions and their
respective ground truth shadows.

3. Real world ground truth evaluation

We evaluate our method on a real world lighting scenario. To en-
able this we utilize separate images taken roughly from the same
viewpoint with different lighting conditions. As shown in Fig. [3|we
observe that whilst the network output looks plausible, the shadows
are misaligned from the target ground truth. We believe this is due
to distortions in the predicted depth estimation for this scene.
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4. Further Ablations

In addition to the ablations presented in the main paper (Sec. 5.1 and
Sec. 5.2), we also undertake further ablations specifically evaluating
the use of specific loss function components. Tbl. [T provides the
quantitative evaluation for these ablation. As expected, the MSE loss
is smaller for shadows when used as the training metric. Overall the
pipeline appears to perform marginally better when the PatchGAN
loss term is used which seems surprising. While small variations
might be due to the randomness of the training process, it is possi-
ble that the PatchGAN loss helps escape local minima leading to
better convergence. Moreover, as shown in Fig.[4] this loss helps in
producing complex localized effects such as high frequency reflec-
tions on tree leaves (Fig. [ first row) or reflection on the water and
better looking clouds (Fig. ] second row). Training with E-LPIPS
[KHL 19] for shadows does not provide a strong advantage numeri-
cally but has a strong impact on the sharpness on elongated shadows
as can be seen in Fig.[5] Without the E-LPIPS loss and with a more
traditional MSE loss, the shadow network tends to produce overly
smooth shadows as a slight misalignment of boundaries is strongly
penalized.
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Figure 1: Blueprint of our full relighting system. Where arrows are not included assume flow remains in the current direction. All deep
learning-based functions were implemented in the PyTorch framework (v1.9).
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Figure 2: Examples of training pairs. From left to right: Input, Ground Truth Source Shadows, Target, Ground Truth Target Shadows.
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Ground Truth

Figure 4: Ablation results when removing the PatchGAN loss. From left to right: Input, Our relighting, Ablation result.
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Figure 5: Ablation results where the E-LPIPS loss is replaced by an MSE loss. Input to the network is shown on the left. (top) Ours for target
shadow (left) and output (right). (bottom) Ablation for target shadow (left) and output (right).
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