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Abstract
Vector field visualization aims at generating images in order to convey the information existing in the data. We
use Markov Random Field (MRF) texture synthesis methods to generate the visualization from a set of sample
textures. MRF texture synthesis methods allow generating images that are locally similar to a given example
image. We extend this idea for vector field visualization by identifying each vector value with a representative
example image, e.g. a strongly directed texture that is rotated according to a 2D vector. The visualization is
synthesized pixel by pixel, where each pixel is chosen from the sample texture according to the vector values of
the local pixel. The visualization locally communicates the vector information as each pixel is chosen from a
sample that is representative of the vector. Furthermore it is smooth, as MRF texture synthesis searches for best
fitting neighborhoods. This leads to dense and smooth visualizations with the additional freedom to use arbitrary
representation textures for any vector value.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

Vector fields arise from experiments, measurements and
simulations in many scientific and engineering disciplines.
The visualization of this data is important to understand the
underlying nature of the processes exhibiting a particular
field or to be able to predict the behavior of systems in the
real world.

Most vector field visualization techniques generate raster
images and require vector information for each pixel. How-
ever, not every pixel contains information about the field
at its location; rather several pixels are used to generate
anisotropic textures that, together, represent the direction
and magnitude of the field.

The main problem of vector field visualization is to gener-
ate expressive textures (where conveying the vector informa-
tion in a certain point requires large groups of pixels) while
not missing important detail. If, for instance, glyphs are used
for visualization (e.g. lines or arrows), the question is where

to place them (see 22 for a possible answer). If they are too
sparse, detail is missing, if they are too dense, they overlap
and information is lost.

A common way of vector field visualization is to intro-
duce regularity into an otherwise irregular pattern. The most
prominent methods are spot noise 23 and line integral con-
volution (LIC) 5. However, it seems that some degrees of
freedom of the raster image are wasted for the presentation
of noise, which does not directly contribute to the communi-
cation of information.

In this work, we present a vector field visualization tech-
nique that is capable of generating continuous visualizations
of a vector field. The user may define textures for any vec-
tor value in the field. This information is used to generate
a smooth image that respects the mapping from vectors to
textures.

Our approach exploits recent Markov model texture syn-
thesis methods9, 25, 1, 15. The basic idea is to generate an im-
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Figure 1: Vector field visualizations synthesized using MRF texture synthesis with a gradient example texture that is rotated and
scaled according to the vector field. The two images use different sample textures, which are characterized by lines of different
orientations.

age by selecting pixels from an example based on similar
neighborhoods. More specifically, each pixel in the output
image is statistically chosen by comparing the (already syn-
thesized) neighborhood in the output with all possible loca-
tions in the example image. Thus, structures in the example
image are re-synthesized in the output image.

The main idea of this work is to use a space of exam-
ple images rather than only one. In each pixel, the example
image is determined by the vector in the vector field at the
respective location. To visualize a direction field, for exam-
ple, one might pick any anisotropic texture and rotate it in
each pixel so that its major axes are aligned with the vector
field. Scalar values in the field could be visualized by scal-
ing the example images. An example is given in Figure . In
general, any procedural or manual way to define a mapping
from vector space to example image space is possible.

2. Related work

2.1. Vector field visualization

Vector field visualization is a large and diverse field. We will
only briefly discuss work that is directly related to our ap-
proach. For a good overview of flow visualization see the
STAR of Post et al.18.

Direct visualization techniques use color coding or icons
to represent samples of the vector field. The use of little ar-
rows as icons has been termed hedgehod displays16.

Geometric visualization is similar to direct visualization,
however, uses geometric objects extracted from the field

rather than fixed icons. Typical geometric objects are iso-
vector objects (contours) or integral objects (streamlines).

Both approaches require the vector field to be sampled
and the icons or objects are placed according to the sampling
pattern. Sampling on a regular grid might lead to aliasing
artifacts and one might want to optimize the pattern so that
objects are evenly distributed over the resulting image22.

Texture-based visualization could be seen as a geometric
visualization approach that uses dense, regular sampling. In
most techniques isotropic noise is smeared in the direction
of the vector field. Spot noise23 distributes a set of inten-
sity functions (spots) over the domain, which are moved by
small steps over time. Intensity functions can be chosen in a
way that also magnitude information is displayed7. Line in-
tegral convolution (LIC)5 starts from a white noise texture
and integrates the gray values along lines. This results in
a tangental smoothing of the noise texture so that the tex-
ture is smooth along the tangents and noisy along the gra-
dient. LIC has been extended in several directions, mainly
to make the computation faster and to incorporate additional
information in the visualization. An idea related to LIC is
to smooth the white noise image with a varying anisotropic
filter, whose major axes are aligned with the vector field8.
The most recent texture-based flow visualization techniques
exploit modern graphics hardware to compute LIC-like tex-
tures in real-time24.

Other approaches are based on algorithmic painting via
vector-like brush strokes (see Haeberli11 and Crawfis6 for a
3d extension), on reaction diffusion techniques (see Turk20,
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Witkin27) and hyper-textures for a 3-dimensional visualiza-
tion (for more details see Perlin17).

2.2. Texture synthesis

Our approach is based on recent texture synthesis methods.
The goal of texture synthesis is as follows: Given a sample of
a texture, synthesize a new texture of arbitrary resolution that
appears to be generated by the same underlying process to a
human observer. Approaches mostly differ in the model used
to describe the stochastic process that generates the textures.

Recent approaches model textures as Markov Random
Fields (MRF)9, 25, 1, 15 and generate the output texture in a
pixel by pixel fashion. The idea of these works is roughly
the same. The new texture is generated in scan-line order
(or, more generally, on a space filling curve). Each pixel
is synthesized by comparing its neighborhood to all sim-
ilarly shaped neighborhoods in the sample texture. These
comparisons lead to a distance, which is used to compute
the probability to choose the best matching pixel. Very sim-
ilar neighborhoods result in highest probabilities. Random
number generation together with the probability distribution
lead to the selection of the neighborhood, which contains the
pixel to be synthesized.

The most time consuming process during synthesis is the
comparison of a given neighborhood with all similar blocks
in the input sample. A look-up table can be used to speed up
this process significantly4. Another way to synthesize large
textures faster is to copy blocks rather than pixels in each
step of the algorithm10.

The size of the neighborhood depends on the size of the
structure in the example texture. Large structures require
large neighborhoods, which leads to slow processing. If the
example texture exhibits structures on several scales even
large neighborhoods might fail to capture large and small
features of the texture. A better approach to capture features
on several scales is to use image pyramids and a multiresol-
tuion synthesis process12, 2, 25: The output is first generated
on lower resolution using a low-pass filtered version of the
example texture. The resolution of the output is then refined
using examples with more detail. The process is repeated
until the finest level of the example is reached. With this ap-
proach, large-scale features are in the coarse image, thus,
avoiding neighborhoods with a large number of pixels.

Some works consider the idea of using more than one ex-
ample texture or to adapt the texture to local properties. In
particular, works that synthesize texture directly on manifold
surfaces embedded in 3-space19, 21, 26 use a direction field
over the surface and adapt an anisotropic example so that
it conforms with the direction field. This is in part somewhat
similar to our approach. However, here we focus on the visu-
alization of the properties of a given vector field, while tex-
turing a manifold surface allows to adapt the direction field
to the purpose of texturing.

Figure 2: Pyramid levels for the synthesis process of the im-
age in Figure 1

3. Approach

Our approach to vector field visualization is a generalization
of Markov Random Field texture synthesis methods. Most
texture synthesis methods use one texture example and aim
at producing an image that is locally similar to the sample.
Our idea is to assume that each vector value in the vector
field has an ideal candidate texture, which reflects properties
of this vector such as direction or magnitude. Consequently,
the visualization is generated by synthesizing each pixel us-
ing an example texture according to the vector value in the
location of the pixel.

More formally, let Φ be a vector field in d dimensions
over R

2:

Φ : R
2 → R

d (1)

Each vector ~v = Φ(x,y) defines an example texture image,
i.e.

τ(~v) : [0,1]2 → [0,1]c (2)

with c = 1 for gray level and c = 3 for colored textures.

To generate a visualization of a certain part of the vec-
tor field one defines the pixel counts of the output image,
which in turn define the sampling of the vector field. The
pixel at (x,y) is computed using an appropriate neighbor-
hood (or neighborhood pyramid) of that pixel and the MRF
texture synthesis method with example texture τ(Φ(x,y)).
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Figure 3: Examples of sample patterns for imput images.

Note that this approach combines the ideas of glyph based
visualization with dense, texture-based approaches. Each
vector value could have its own glyph/texture – the texture
synthesis technique assures that these glyphs are combined
in a seamless way.

This approach is quite general and allows arbitrary exam-
ple images for different vector values. To achieve expressive
results, however, the mapping from vector values to example
textures has to be continuous and intuitive.

In most cases one wants to visualize the properties (i.e.
direction and magnitude) of the vector field. The magnitude
can be easily computed using an appropriate norm of the
values, i.e.

A(x,y) = ||Φ(x,y)|| (3)

Assigning a direction requires a projection of the vector onto
the image plane. Let Φ(x,y)x and Φ(x,y)y be those projec-
tion then

θ = arctan
Φ(x,y)y

Φ(x,y)x
(4)

is the angle of the tangent in the vector field relative to the
x-axis.

A straightforward approach for the mapping from vector
values to example images would be to use the information in
A and θ to scale and rotate an example image. This is also the
approach that we have used to generate all examples in this
work. Typical example images should have a certain direc-
tional structure and scale features so that their scale and rota-
tion is easy to perceive. The set of example images we have
used is depicted in Figure 3. Figures 3.9 - 3.12 are derived
from 3. We have mostly used simple gray scale images that
are constant along one direction and smoothly vary along the
other. Figures and 7 show the visualization results obtained
for the same vector field using different example textures
(i.e. using the first two samples of Figure 3. See Figure 9 for
further examples.

Critical points are prominent features in vector fields. We

have generated visualizations of isolated critical points to
evaluate how prominent those features become in the visual-
ization. The result is depicted in Figure 5.

In addition, one could perform a local analysis and
determine critical points (using the eigenvalues of the
Jacobian13, 14). Special textures could then be devoted to the
different classes of critical points.

Figure 4: Scaled and rotated sample input images.

To sum up, the typical procedure of vector visualization
using MRF texture synthesis uses the following steps:

• An example image defines the visualization primitive. The
primitive should be anisotropic and scale-dependent.

• The dimensions of the output image are set; the dimen-
sions also define the sampling of the vector field. It is as-
sumed that these samples are accessible.

• For every pixel in the output image, the sample image is
modified according to the vector values, that is, the input
texture is rotated and scaled by these parameters (see Fig-
ure 4).

• For every pixel an L Neighborhood is defined, which is
comprised of neighboring pixels (the size is user defined).

• Every pixel in the output image is generated in scan order
with a routine, which searches the most similar pixel in the
modified sample image, according to a probability model.

• These probabilities are defined from comparing the dis-
tancies between the neighboring pixels inside the neigh-
borhoods.

In particular, the synthesis algorithm is described by the
following pseudo-code, where is for reasons of brevity re-
stricted to the case of single resolution:
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Figure 5: Visualization of critical points.

function synthesizePixel

1 for(x = 0; x < outWidth; x++) {
2 for(y = 0; y < outHeight; y++) {
3 outN = CalculateNeighborhood(x, y);
4 A = CalculateAmplification(x, y);
5 θ = CalculateAngleRotation(x, y);
6 AmplifyInput(A);
7 RotateInput(θ);
8 for(i = 0; i < inWidth; i++) {
9 for(j = 0; j < inHeight; j++) {

10 inArrN = CalculateNeighborhood(i, j);
11 distance = CompareNeighborhoods(outN, inArrN);
12 }
13 }
14 bestMatch = GetBestPixel(distance);
15 SynthetizeOutputPixel(bestMatch);
16 }
17 }

Table 1 and Table 2 explain the variables and the functions
used in the pseudo-code.

4. Results & Discussion

We have implemented the ideas using a pyramid-based ver-
sion of MRF texture synthesis. Figures 6 and 8 show some
of the results obtained using a simple sample texture.

We feel that the approach has several notable features.
These include:

Accuracy The synthesis method works pixel by pixel – this
guaranties a smooth and continuous output.

Generality The approach is fully general: every vector field
can be visualized, given an arbitrary mapping from vector

Variable Description

outWidth Horizontal size of sample output image
outHeight Vertical size of sample output image
outN "L" Neighborhood
A Vector field amplitude at current output position
θ Vector field phase at current output position
inWidth Horizontal size of sample input image
inHeight Vertical size of sample input image
inArrN Array of neighborhoods for input image pixels
distance Difference (in terms of pixel values) between

the "L" neighborhoods
bestPixel Best match based on distance comparison

Table 1: Table of variables

Figure 6: Different parts of the vector field visualized using
the same output resolution.

values to texture samples. This allows the generation of
pop-out visual features for application dependent critical
values.

Ease of use It is simple to define a meaningful mapping
from vectors to examples by using phase and amplitude
of the field to rotate and scale a single sample texture.

The size of a sample image plays a critical role in rotat-
ing/scaling of the image and has to be chosen appropriately.
Small examples allow details to be visualized, however, it
is hard to achieve continuity for changing vector values (see
Figure 7). Large structures allow to use larger neighborhoods
for comparison and are likely to yield smoother results. Yet,
this comes at the price of locality.

The time needed for generating the visualization is identi-
cal to the texture synthesis method used. Rotated and scaled
versions of the examples are precomputed and fetched from
look-up tables. Most MRF texture synthesis methods require
several minutes to several hours to generate the results de-
picted in this paper. We have not yet optimized our code
to include very recent variants that promise significantly re-
duced computation times4.
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Figure 8: Examples of synthetized vector fields.

Figure 9: Synthetized outputs: two vector fields are obtained both usind two sets of different input sample images chosen from
Figure 3

5. Conclusions

We have presented an approach to vector field visualization
that combines the flexibility of direct, icon-based methods
with the effective use of display area typical for texture based
methods. In a sense, the method generalizes texture-based

methods to use arbitrary texture samples rather than only
noise.

Although it is fairly straightforward, we have not yet ex-
ploited the idea of using special example textures for critical
points or special, application specific values in the vector
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Function Description

CalculateNeighborhood calculates the neighborhood of
current output pixel

CalculateAmplification calculates the vector field
amplitude in the output image at
(x,y) location

CalculateAngleRotation calculates the vector field phase
in the Output Image at (x,y)
location

AmplifyInput amplifies the input sample by its
argument

RotateInput rotates the input sample by its
argument

CompareNeighborhoods compares the current output pixel
neighborhood with those of the
input image pixels

GetBestPixel chooses the pixel (in input image),
whose neighborhood best matches
that of the current output pixel
(in terms of minimum distance)

SynthetizeOutputPixel sets the current output pixel to the
value of bestMatch

Table 2: Table of functions

field. Incorporating this feature should lead to stronger vi-
sual results.

This approach is also promising for the visualization of
higher dimensional data or tensor fields if some reasonable
mapping from values to example textures could be defined.
In general, we feel that more investigation for suitable map-
pings from data values to example textures is needed.

Finally, our current implementation would benefit from
using the latest possibilities in speeding up the texture syn-
thesis computation.
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