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ABSTRACT The scan conversion of simple primitives, e.g., vectors and triangles has 
been worked on in many different ways. General descriptions of algorithms often do not 
consider 'minor' problems, that can be difficult to solve in practical implementation. Some 
of these problems are addressed in the following and ways to solve them are presented l

. 

The paper consists of two parts. The first part deals with the scan conversion of 
triangles, the second part describes the implementation of two vector drawing algorithms . 

• Drawing Triangles: Calculation of Parameters for Incremental Algorithms 

1. 	 Polygons can be represented by edge functions, that are negative on one, and 
positive on the other side of the edge. This representation is used in rendering 
hardware like PROOF [5], Pixel Planes [3] or in software algorithms like the 
one described by Pineda [4]. The parameters can be chosen in such a way, 
that the function represents the distance between pixel and edge. In this case 
the function value can be used to determine the subpixel mask. To get these 
parameters, the function has to be normalized [1], which usually requires the 
calculation of a square root. But there is an elegant way to avoid the square 
root. 

2. 	 Color increments (Gouraud shading) and z increments, that are used to inter­
polate the colors and depth can become very large, if they are calculated in 
the conventional way, which is described e.g. in [2]. This can cause the color 
(z) value of edge pixels to be computed wrong or even to overflow. It is shown, 
how this occurs and how the problem can be solved . 

• 	 Drawing Lines 

Line drawing without antialiasing is performed with the Bresenham algorithm, 
which can be implemented on the triangle render hardware. 

A simple anti aliasing is performed with an algorithm, that is not much more complex 
than the Bresenham algorithm. 

'The experiences, described here were gained in a research project, partly supported by the Commis­
sion of the European Communities through the ESPRIT II-Project SPIRIT, Project No. 2484 [6,7]. 

http://www.eg.org
http://diglib.eg.org
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The ASIC produces for all Pixels: 
X-Address, V-Address 
interpolated Colors (R. G, B)
interpolated Z-Values 
Subpixelmask 

Fig. 1. Functions of the ASIC 

1 	 Drawing Triangles: Calculation of Parameters for 
Incremental Algorithms 

The rendering chip in the SPIRIT workstation is able to render triangles and lines. The 
first information that is needed for the rendering of triangles (see Fig. 1) is the information, 
which pixels belong to the triangle. How to get these pixels is the topic of the first section. 

1.1 A Practical Distance Measure the Square Distance (LI Norm) 

For the scan conversion, we use an algorithm like the one described by Pineda in [4]. A 
presumption for this kind of algorithms is an edge function, that behaves like the one 
shown in Fig. 2. It is positive on one side and negative on the other side of the edge. With 
three units that can calculate such edge functions, we can now decide, whether a certain 
point lies inside the triangle or outside. If all three edge functions are positive, the point 
is inside, otherwise it is outside. 

How Can We Get Such a Function? 

The easiest way is to choose a linear function 

E(x, y) = (x - X)de x + (y Y)dey 

with the condition: 
dexflX + deyLlY = 0 

If we use 
de", flY 

as X increment and 
dey = -LlX 

as increment in Y direction, we get the formula suggested by Pineda with the advantage 
that the calculation is very simple. The edge units can be built of only adders, with­
out multipliers, as we only have to add the increments proceeding from one pixel to its 
neighbor. 

We can scale the above formula by an arbitrary factor. So if we need the Euclidean 
distance, we can normalize the increments by dividing the values by the Euclidean length 
of the vector (L2 norm). We then get the following increments: 
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All three Edge 
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Fig. 2. Example of edge functions for rendering 
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Fig. 3. X and Y increments of the edge function 
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Fig. 4. Circular distance 

dex 

~y 

JKx 2 +LlY2 
and 

dey = 
~X 

and we can still use the same edge units, because the distance is a linear function in X 
and Y (see example edge in Fig. 3). 

Why Do We Need This Distance? 

Until now, we used only the sign of the edge function for the decision if we are in or out. So 
the value of the distance is of no interest. But if we want to calculate subpixel information 
for later antialiasing, we need exact data about the edge. The distance, together with the 
slope information is enough to look up the subpixel mask, i.e. the information, which part 
of the pixel is covered (see Fig. 1). One little detail has to be noticed. We now have to 
consider not only pixels with their center inside the polygon (positive edge function), but 
also pixels that are covered less than half (edge function between 0 and -o.something). We 
cannot give a fixed distance, because it is different for edges with different slopes (1/J2 
for edges with a slope of 45°) 1/2 for vertical or horizontal edges). So if we take all pixels 
not more than 1/J2 away from the edge into consideration, we will get too many pixels, 
but that is better than losing pixels that we wanted to get. In Fig. 4 can be seen, why 
we call this distance the circular distance. All edges that have a given distance from the 
pixel center form a circle. 

Now there is a formula for the increments that solves several problems at one time. 
If we look at the most demanding part of the increment calculation above, we see the 
square root in that formula. Now the simplest solution is to omit the root and take the 
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Fig. 5, Sqnare distance 

sum of the absolut.e values of b.X and b.Y instead. Speaking in mathematical terms that 
means, we divide by the L1 norm or Manhattan distance instead of the L2norm. The new 
increments are: 

dex 
Ib.XI + Ib.YI 

and 

b.X 
dey = -1b.XI + Ib.YI 

The distance is not independent of the angle anymore. But if we don't want to do a 
more complex filtering (like convolution with sine(dist)), than we need something like a 
rectangular box filter. A circular filter never would result in a homogeneous coverage of 
the screen. So this formula is not only more easy to calculate, but also a more desired 
result. We call this definition of distance the square distance (see Fig. 5). 

For the calculation of the subpixel mask, the square distance is as useful as the circular 
one, because all information about the edge is contained in the distance and the increments 
(for the slope of the edge). 

1.2 Color and z Increments 

Why Do We Need Increments? 

Let's explain it with the calculation of the depth. We have a plain triangle in the x-y-z 
space. We could calculate the depth from the x and y coordinates with a linear formula 
like z dzx x x +dzy x y + zoo But normally we render neighboring pixels one after the 
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Fig. 6. Calculation of z with an incremental algorithm 

other, so we can save the multiplication and add only dzx or dzy as we go from one pixel 
to the next (see Fig. 6). 

How Can We Calculate the Increments~ 

Because we have the three vertices of the triangle with their x, y and z values, it is as 
simple as solving a system of linear equations. 

The formula for dzx for example is: 

dzx -L". -."L = IZl Z21/1 Xl xzl 
Yl Y2 YI Yz 

(If vertex YO is not located at the origin, we move it to the origin by subtracting xo, 
Yo and Zo from the coordinates of the vertices Vi and "V2) 

But let's have a closer look at what we really do (Fig. 7). First the two-fold area of 

the triangle in the x-y-plain is calculated (Axy I Xl X21). Then the two-fold area of 
Yl Yz 

the triangle in the y-z-plain is divided by the first value. (Azy = IZl ZZI). The result is 
Yl Yz 

the increment in the x-direction. The values for the y-direction and the color increments 
for both directions are obtained analogously. Because the area in the x-y-plain may be 
very small, the increments can become very large. 

What Is the Problem with Large Increments? 

First of all, big increments don't fit into our registers. Second, and that is the main 
problem, we can get very wrong z values or colors. Fig. 8 shows, how this happens. The 
problem is, that with our equations we calculate the Z or color at the pixel center. So if 
we need the z value or color of a pixel, that lies on the border of the triangle with the 
center outside of it, we a value that can be even outside of the allowed range. 

In order to avoid this, we apply the following rule: The area Axy is divided by the longer 
side of its bounding box. If the result is smaller than 1, this means that in the average 
in every line (column) less than half a pixel is covered. Surely not more than one pixel 
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Fig. 7. Calculation of increments 
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Fig. 8. Overflow problem with conventional increments 
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Fig. 9. Solutions for the overflow problem-lines of interpolation are emphasized 

per line (column) is covered. So it doesn't make sense to calculate the increments in the 
direction perpendicular to that longer side. These increments are set to O. The increments 
in the other direction are calculated as the ratio of the edge values of z (respectively r, 9 
or b) and the length of the bounding box. By using this method, the increment values can 
become not larger than the maximum values of z, r, 9 and b. With this simple method we 
introduce other errors by omitting the information of the third vertex. If we want to be 
totally correct, we can obtain it by interpolating along a line within the triangle as shown 
in Fig. 9. The formula for the increments looks like dz", (ZJ/Yl + Z2/Y2)/2 for the first 
part of the triangle and dzx = (ZJ/Yl + Z2/Y2)/2 for the second part. The disadvantage of 
the second method is, that the triangle usually must be rendered in two parts. 

In both cases we need only 2 protection bits for the digits left of the decimal point 
(one for overflow, one for underflow). Clipping the output at the minimum and maximum 
values of the colors or z is still required for the triangles rendered in the normal way. 

2 Vector Drawing 

Two algorithms are used for vector drawing. Both are implemented on the same hardware, 
that is used to calculate the edge functions for triangles. For fast lines without antialiasing, 
we use the Bresenham algorithm. The second algorithm performs the drawing of thin, 
smoothened vectors, which consist of only two pixels per row (resp. column). 

2.1 Fast Vectors 

The Bresenham algorithm is easy to perform with the same hardware, that is used for the 
calculation of the edge functions for the triangles. It is explained using a vector with a 
slope 0 <= m <= 1 as an example. Using the Bresenham algorithm a modified distance 
is calculated. It is the Euclidean distance multiplied by the two-fold length of the vector. 
However, this distance is calculated one pixel in advance in order to be able to decide how 
to proceed. Moreover, the calculated value is the (scaled) distance from a point located 
1/2 pixels higher than the point exactly right of the current pixel. By this the sign of 
this value can be used to discern whether to proceed to the right or in the upper right 
direction. 
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Fig. 10. Thin smoothened vector 

So the distance is initialized with a value of eo = flY -flX/2, then the increments for 
the X-direction (de:r; flY) and for the direction 45 degrees up to the right (dex + dey = 
flY -flX) are loaded. The control logic controls according to the sign of the current 
distance whether to increment only X or X and Y. Our hardware only allows to load 
increments up to an absolute value of 1. Therefore the above mentioned increments are 
divided by an arbitrary power of two, which means, that the number is simply loaded; the 
hardware does not use the position of the 'decimal'-point. \Vith the Bresenham algorithm 
only those pixels are calculated that are really needed. 

2.2 Thin Vectors with Fast Antialiasing: the Fineline Algorithm 

A cheap antialiasing method for vectors uses only two pixels per row resp. column. The 
brightness values assigned to these two pixels add up to 100% of the desired brightness for 
the vector. To get such 'antialiased' lines, we can also use the same hardware as for the 
calculation of the triangle edges. As example we take again a vector with a slope between 
o and 1. Possible directions for the next pixel to calculate are diagonally up to the right, 
upwards and downwards (see Fig. 10). The values for the distance, the colors and the 
z-value are stored every time after a step downwards or up to the right. So always the 
lower of the two pixels of a column is chosen. By this we can ensure, that proceeding to 
the upper right again leads to a hit. 

The brightness of the pixels is distributed in such a way, that the values of one 
column add up to 100%. For that purpose the up-down-distance from the vector for Pixel 
i is calculated as: 

ei eo + (Xi - Xo) * dex + (Y; - Yo) *dey, 
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which is achieved with the following parameters: 

.6.Y 
de", = 

.6. X 
and 

dey 1 

This linear formula implies, that the distance function e for a neighboring pixel can be 
computed by simply adding or subtracting dey or dey + de", resp. for diagonal neighbors. 
The starting value of the distance eo is 0, when the starting point (x,y) of the vector is 
in a pixel center. Otherwise, Co has to be calculated: 

eo=Y y+(X x)*dc"" 
where x and y are the coordinates of the vector starting point, and X and Y are the 

(integer) pixel coordinates of the starting pixel. 
The resulting distance is used to calculate the color C of the pixels from the original 

color Cory: 
C = Cory * (1- abs(e)) 
When proceeding to a new column, the first pixel is always set. The sign of e deter­

mines, whether the second pixel is above or below the first one. 
The ASIC works as a state machine. Fig. 11 and 12 show the state diagrams for the 

Bresenham machine and the Fineline machine. The value e, that is used for the decision, 
is the distance or error term, described above. The bold arrows indicate the directions, 
in which the machine proceeds for the case of a line with a slope between 0 and 1. The 
words PUSH and POP show, where the current value ofthe error term (or edge function) 
and colors/z are stored and retrieved in order to proceed from a previously reached point 
rather than from the current point. Note that the Fineline machine needs only 2 states 
more than the Bresenham machine. This is not complex compared to the state machine 
for the Pineda algorithm, which is shown in Fig. 13 for comparison. 

Like with the Bresenham algorithm, with the Fineline algorithm normally only those 
pixels are calculated, that are really needed. This means, that the efficiency remains the 
same; the Fineline algorithm is exactly two times slower than the Bresenham algorithm, 
because the number of pixels that have to be drawn has doubled. 

Conclusion 

Some special problems in rendering have been shown and solutions were presented. They 
represent only a small fraction of the large class of problems, that are generally not 
addressed in the literature. 
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Fig. 11. State diagram for Bresenham vector drawing 
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e < 0 

ready (from states 41 and 42) 

Fig. 12. State diagram for 'antialiased' vector drawing 
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Fig. 13. State diagram for the Pineda algorithm 


