
Some Practical Aspects of Rendering

Andreas Schilling

ABSTRACT The scan conversion of simple primitives, e.g., vectors and triangles has
been worked on in many different ways. General descriptions of algorithms often do not
consider 'minor' problems, that can be difficult to solve in practical implementation. Some
of these problems are addressed in the following and ways to solve them are presented l

.

The paper consists of two parts. The first part deals with the scan conversion of
triangles, the second part describes the implementation of two vector drawing algorithms .

• Drawing Triangles: Calculation of Parameters for Incremental Algorithms

1. 	 Polygons can be represented by edge functions, that are negative on one, and
positive on the other side of the edge. This representation is used in rendering
hardware like PROOF [5], Pixel Planes [3] or in software algorithms like the
one described by Pineda [4]. The parameters can be chosen in such a way,
that the function represents the distance between pixel and edge. In this case
the function value can be used to determine the subpixel mask. To get these
parameters, the function has to be normalized [1], which usually requires the
calculation of a square root. But there is an elegant way to avoid the square
root.

2. 	 Color increments (Gouraud shading) and z increments, that are used to inter
polate the colors and depth can become very large, if they are calculated in
the conventional way, which is described e.g. in [2]. This can cause the color
(z) value of edge pixels to be computed wrong or even to overflow. It is shown,
how this occurs and how the problem can be solved .

• 	 Drawing Lines

Line drawing without antialiasing is performed with the Bresenham algorithm,
which can be implemented on the triangle render hardware.

A simple anti aliasing is performed with an algorithm, that is not much more complex
than the Bresenham algorithm.

'The experiences, described here were gained in a research project, partly supported by the Commis
sion of the European Communities through the ESPRIT II-Project SPIRIT, Project No. 2484 [6,7].

http://www.eg.org
http://diglib.eg.org

54

y

~
I

><

The ASIC produces for all Pixels:
X-Address, V-Address
interpolated Colors (R. G, B)
interpolated Z-Values
Subpixelmask

Fig. 1. Functions of the ASIC

1 	 Drawing Triangles: Calculation of Parameters for
Incremental Algorithms

The rendering chip in the SPIRIT workstation is able to render triangles and lines. The
first information that is needed for the rendering of triangles (see Fig. 1) is the information,
which pixels belong to the triangle. How to get these pixels is the topic of the first section.

1.1 A Practical Distance Measure the Square Distance (LI Norm)

For the scan conversion, we use an algorithm like the one described by Pineda in [4]. A
presumption for this kind of algorithms is an edge function, that behaves like the one
shown in Fig. 2. It is positive on one side and negative on the other side of the edge. With
three units that can calculate such edge functions, we can now decide, whether a certain
point lies inside the triangle or outside. If all three edge functions are positive, the point
is inside, otherwise it is outside.

How Can We Get Such a Function?

The easiest way is to choose a linear function

E(x, y) = (x - X)de x + (y Y)dey

with the condition:
dexflX + deyLlY = 0

If we use
de", flY

as X increment and
dey = -LlX

as increment in Y direction, we get the formula suggested by Pineda with the advantage
that the calculation is very simple. The edge units can be built of only adders, with
out multipliers, as we only have to add the increments proceeding from one pixel to its
neighbor.

We can scale the above formula by an arbitrary factor. So if we need the Euclidean
distance, we can normalize the increments by dividing the values by the Euclidean length
of the vector (L2 norm). We then get the following increments:

55

All three Edge
functions positive
= Inside triangle

I

Fig. 2. Example of edge functions for rendering

I
-1---':-1~ ~Y=3

-O.8~
(X,y)---t

\---~X=4 ~

Fig. 3. X and Y increments of the edge function

56

Fig. 4. Circular distance

dex

~y

JKx 2 +LlY2
and

dey =
~X

and we can still use the same edge units, because the distance is a linear function in X
and Y (see example edge in Fig. 3).

Why Do We Need This Distance?

Until now, we used only the sign of the edge function for the decision if we are in or out. So
the value of the distance is of no interest. But if we want to calculate subpixel information
for later antialiasing, we need exact data about the edge. The distance, together with the
slope information is enough to look up the subpixel mask, i.e. the information, which part
of the pixel is covered (see Fig. 1). One little detail has to be noticed. We now have to
consider not only pixels with their center inside the polygon (positive edge function), but
also pixels that are covered less than half (edge function between 0 and -o.something). We
cannot give a fixed distance, because it is different for edges with different slopes (1/J2
for edges with a slope of 45°) 1/2 for vertical or horizontal edges). So if we take all pixels
not more than 1/J2 away from the edge into consideration, we will get too many pixels,
but that is better than losing pixels that we wanted to get. In Fig. 4 can be seen, why
we call this distance the circular distance. All edges that have a given distance from the
pixel center form a circle.

Now there is a formula for the increments that solves several problems at one time.
If we look at the most demanding part of the increment calculation above, we see the
square root in that formula. Now the simplest solution is to omit the root and take the

57

Fig. 5, Sqnare distance

sum of the absolut.e values of b.X and b.Y instead. Speaking in mathematical terms that
means, we divide by the L1 norm or Manhattan distance instead of the L2norm. The new
increments are:

dex
Ib.XI + Ib.YI

and

b.X
dey = -1b.XI + Ib.YI

The distance is not independent of the angle anymore. But if we don't want to do a
more complex filtering (like convolution with sine(dist)), than we need something like a
rectangular box filter. A circular filter never would result in a homogeneous coverage of
the screen. So this formula is not only more easy to calculate, but also a more desired
result. We call this definition of distance the square distance (see Fig. 5).

For the calculation of the subpixel mask, the square distance is as useful as the circular
one, because all information about the edge is contained in the distance and the increments
(for the slope of the edge).

1.2 Color and z Increments

Why Do We Need Increments?

Let's explain it with the calculation of the depth. We have a plain triangle in the x-y-z
space. We could calculate the depth from the x and y coordinates with a linear formula
like z dzx x x +dzy x y + zoo But normally we render neighboring pixels one after the

58

y

z dzx

x

Fig. 6. Calculation of z with an incremental algorithm

other, so we can save the multiplication and add only dzx or dzy as we go from one pixel
to the next (see Fig. 6).

How Can We Calculate the Increments~

Because we have the three vertices of the triangle with their x, y and z values, it is as
simple as solving a system of linear equations.

The formula for dzx for example is:

dzx -L". -."L = IZl Z21/1 Xl xzl
Yl Y2 YI Yz

(If vertex YO is not located at the origin, we move it to the origin by subtracting xo,
Yo and Zo from the coordinates of the vertices Vi and "V2)

But let's have a closer look at what we really do (Fig. 7). First the two-fold area of

the triangle in the x-y-plain is calculated (Axy I Xl X21). Then the two-fold area of
Yl Yz

the triangle in the y-z-plain is divided by the first value. (Azy = IZl ZZI). The result is
Yl Yz

the increment in the x-direction. The values for the y-direction and the color increments
for both directions are obtained analogously. Because the area in the x-y-plain may be
very small, the increments can become very large.

What Is the Problem with Large Increments?

First of all, big increments don't fit into our registers. Second, and that is the main
problem, we can get very wrong z values or colors. Fig. 8 shows, how this happens. The
problem is, that with our equations we calculate the Z or color at the pixel center. So if
we need the z value or color of a pixel, that lies on the border of the triangle with the
center outside of it, we a value that can be even outside of the allowed range.

In order to avoid this, we apply the following rule: The area Axy is divided by the longer
side of its bounding box. If the result is smaller than 1, this means that in the average
in every line (column) less than half a pixel is covered. Surely not more than one pixel

59

x

Ax, =1

f=---+---:~-- Z
Y

A.., =I Z I Z a I/2
YI Ya

Fig. 7. Calculation of increments

0

- -
200

.......-
""")(

0

Fig. 8. Overflow problem with conventional increments

60

dZ"1 - 25

•Q 0 0 0 0 0
I

.......
o 125

.......

... 0 0 0 "'0

\ -f+
•\ I

dz",

dZ set to 0 set to 0 --50
1

Fig. 9. Solutions for the overflow problem-lines of interpolation are emphasized

per line (column) is covered. So it doesn't make sense to calculate the increments in the
direction perpendicular to that longer side. These increments are set to O. The increments
in the other direction are calculated as the ratio of the edge values of z (respectively r, 9
or b) and the length of the bounding box. By using this method, the increment values can
become not larger than the maximum values of z, r, 9 and b. With this simple method we
introduce other errors by omitting the information of the third vertex. If we want to be
totally correct, we can obtain it by interpolating along a line within the triangle as shown
in Fig. 9. The formula for the increments looks like dz", (ZJ/Yl + Z2/Y2)/2 for the first
part of the triangle and dzx = (ZJ/Yl + Z2/Y2)/2 for the second part. The disadvantage of
the second method is, that the triangle usually must be rendered in two parts.

In both cases we need only 2 protection bits for the digits left of the decimal point
(one for overflow, one for underflow). Clipping the output at the minimum and maximum
values of the colors or z is still required for the triangles rendered in the normal way.

2 Vector Drawing

Two algorithms are used for vector drawing. Both are implemented on the same hardware,
that is used to calculate the edge functions for triangles. For fast lines without antialiasing,
we use the Bresenham algorithm. The second algorithm performs the drawing of thin,
smoothened vectors, which consist of only two pixels per row (resp. column).

2.1 Fast Vectors

The Bresenham algorithm is easy to perform with the same hardware, that is used for the
calculation of the edge functions for the triangles. It is explained using a vector with a
slope 0 <= m <= 1 as an example. Using the Bresenham algorithm a modified distance
is calculated. It is the Euclidean distance multiplied by the two-fold length of the vector.
However, this distance is calculated one pixel in advance in order to be able to decide how
to proceed. Moreover, the calculated value is the (scaled) distance from a point located
1/2 pixels higher than the point exactly right of the current pixel. By this the sign of
this value can be used to discern whether to proceed to the right or in the upper right
direction.

61

Fig. 10. Thin smoothened vector

So the distance is initialized with a value of eo = flY -flX/2, then the increments for
the X-direction (de:r; flY) and for the direction 45 degrees up to the right (dex + dey =
flY -flX) are loaded. The control logic controls according to the sign of the current
distance whether to increment only X or X and Y. Our hardware only allows to load
increments up to an absolute value of 1. Therefore the above mentioned increments are
divided by an arbitrary power of two, which means, that the number is simply loaded; the
hardware does not use the position of the 'decimal'-point. \Vith the Bresenham algorithm
only those pixels are calculated that are really needed.

2.2 Thin Vectors with Fast Antialiasing: the Fineline Algorithm

A cheap antialiasing method for vectors uses only two pixels per row resp. column. The
brightness values assigned to these two pixels add up to 100% of the desired brightness for
the vector. To get such 'antialiased' lines, we can also use the same hardware as for the
calculation of the triangle edges. As example we take again a vector with a slope between
o and 1. Possible directions for the next pixel to calculate are diagonally up to the right,
upwards and downwards (see Fig. 10). The values for the distance, the colors and the
z-value are stored every time after a step downwards or up to the right. So always the
lower of the two pixels of a column is chosen. By this we can ensure, that proceeding to
the upper right again leads to a hit.

The brightness of the pixels is distributed in such a way, that the values of one
column add up to 100%. For that purpose the up-down-distance from the vector for Pixel
i is calculated as:

ei eo + (Xi - Xo) * dex + (Y; - Yo) *dey,

62

3

which is achieved with the following parameters:

.6.Y
de", =

.6. X
and

dey 1

This linear formula implies, that the distance function e for a neighboring pixel can be
computed by simply adding or subtracting dey or dey + de", resp. for diagonal neighbors.
The starting value of the distance eo is 0, when the starting point (x,y) of the vector is
in a pixel center. Otherwise, Co has to be calculated:

eo=Y y+(X x)*dc""
where x and y are the coordinates of the vector starting point, and X and Y are the

(integer) pixel coordinates of the starting pixel.
The resulting distance is used to calculate the color C of the pixels from the original

color Cory:
C = Cory * (1- abs(e))
When proceeding to a new column, the first pixel is always set. The sign of e deter

mines, whether the second pixel is above or below the first one.
The ASIC works as a state machine. Fig. 11 and 12 show the state diagrams for the

Bresenham machine and the Fineline machine. The value e, that is used for the decision,
is the distance or error term, described above. The bold arrows indicate the directions,
in which the machine proceeds for the case of a line with a slope between 0 and 1. The
words PUSH and POP show, where the current value ofthe error term (or edge function)
and colors/z are stored and retrieved in order to proceed from a previously reached point
rather than from the current point. Note that the Fineline machine needs only 2 states
more than the Bresenham machine. This is not complex compared to the state machine
for the Pineda algorithm, which is shown in Fig. 13 for comparison.

Like with the Bresenham algorithm, with the Fineline algorithm normally only those
pixels are calculated, that are really needed. This means, that the efficiency remains the
same; the Fineline algorithm is exactly two times slower than the Bresenham algorithm,
because the number of pixels that have to be drawn has doubled.

Conclusion

Some special problems in rendering have been shown and solutions were presented. They
represent only a small fraction of the large class of problems, that are generally not
addressed in the literature.

63

References

[1] 	 Fuchs, H., Goldfeather, J., Hultquist, J. P., Spach, S., Austin, J. D., Brooks, F. P., Eyies, J. G. and
Poulton, J.: Fast spheres, shadows, textures, transparencies, and image enhancements in pixel-planes.
Computer Graphics, 19(3):111-120, July 1985.

[2] 	 Fuchs, H. and Poulton, J.: Pixel planes: A vlsi-oriented design for a raster graphics engine. VLSI
Design, 3:20-28, 3rd Quarter 1981.

[3] 	 Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather, J., Ellsworth, D., Molnar, S., Turk, G., Tebbs,
B. and Israel, L.: Pixel-planes 5: A heterogeneous multiprocessor graphics system using processor
enhanced memories. Computer Graphics, 23(3):79-88, July 1989.

[4] 	 Pineda, J.: A parallel algorithm for polygon rasterization. Computer Graphics, 22(4):17-20, August
1988.

[5] 	 Schneider, B.: Eine ohjektorientierte Architektur for Hochleisiungs-Display-Prozessoren. PhD thesis,
Eberhard-Karls-Universitat Tiibingen, 1990.

[6] 	 Slater, M.: The graphics subsystem of the Spirit workstation. Presentation given at the Eurographics
Conference., September 1989.

[7] 	 Zabolitzky, J. G.: The matter of Spirit. Presentation given at the Eurographics Conference., September
1989.

64

NOP

start Bresenham

e < 0

e < 0

ready (from all states)e < 0

Fig. 11. State diagram for Bresenham vector drawing

65

start Fineline

e < 0

ready (from states 41 and 42)

Fig. 12. State diagram for 'antialiased' vector drawing

66

_ alate

Fig. 13. State diagram for the Pineda algorithm

