
Eurographics Symposium on Parallel Graphics and Visualization (2011)

T. Kuhlen, R. Pajarola, and K. Zhou (Editors)

Distributed OpenGL Rendering in Network Bandwidth

Constrained Environments

B. Neal1, P. Hunkin1 and A. McGregor1

1The University of Waikato, Hamilton, New Zealand

Abstract

Display walls made from multiple monitors are often used when very high resolution images are required. To utilise

a display wall, rendering information must be sent to each computer that the monitors are connect to. The network

is often the performance bottleneck for demanding applications, like high performance 3D animations. This pa-

per introduces ClusterGL; a distribution library for OpenGL applications. ClusterGL reduces network traffic by

using compression, frame differencing and multi-cast. Existing applications can use ClusterGL without recompila-

tion. Benchmarks show that, for most applications, ClusterGL outperforms other systems that support unmodified

OpenGL applications including Chromium and BroadcastGL. The difference is larger for more complex scene

geometries and when there are more display machines. For example, when rendering OpenArena, ClusterGL out-

performs Chromium by over 300% on the Symphony display wall at The University of Waikato, New Zealand. This

display has 20 monitors supported by five computers connected by gigabit Ethernet, with a full resolution of over

35 megapixels. ClusterGL is freely available via Google Code.

1. Introduction

In recent years, clusters of interconnected workstations have

become a common solution for powering large composite

displays, or “display walls”. These displays are typically

both physically large (e.g. 10m x 3m) and high resolution

(e.g. 30 megapixels). Applications that need this type of

resource include scientific data set visualisation, advanced

human-computer interaction experiments, and many others.

This type of display is often used with high resolution

3D interactive applications that use accelerated graphics via

OpenGL. Ideally the applications would run at a minimum

of 60 frames per second to ensure smooth interaction. In

this scenario, the typical bottleneck is the speed at which

OpenGL commands can be transferred from the computer

hosting the application to the display computers. The net-

work is significantly slower than the PCIe graphics bus con-

nection that carries the commands when a single machine is

used.

Several systems have been developed to make cluster ren-

dering possible. Some require applications to be modified

or recompiled. While this approach has the most scope for

performance optimisation, it requires that source code and

technical skills are available before a new application can

be run on a display wall. On the other hand, the range or

applications that can be supported by approaches that do not

require the application to be modified are limited by network

performance.

This paper describes ClusterGL, a system that transpar-

ently distributes rendering over multiple rendering nodes

without modification to the application. ClusterGL uses

three optimisations to reduce network traffic and improve

performance for demanding applications. The system was

initially developed to allow a visualisation of network traffic

created by the BSOD network monitoring system [Hun09],

to be displayed at high resolution on a display wall (see fig-

ure 1). Existing approaches did not perform well enough to

support this application which creates a large amount of dy-

namically changing vertex data.

ClusterGL is currently in operation on the Symphony

Cluster display wall [Wai11], at The University of Waikato,

New Zealand. The wall has 20 22” monitors in a 5x4 ar-

rangement. It has a total resolution of 8400x4200 (approxi-

c© The Eurographics Association 2011.

DOI: 10.2312/EGPGV/EGPGV11/021-029

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV11/021-029

B. Neal, P. Hunkin & A. McGregor / ClusterGL

Figure 1: Network traffic being visualised on the Symphony wall

mately 35Megapixels). The monitors are driven by five dis-

play nodes that are connected to one another via a single

gigabit Ethernet switch. The goal for the project was to be

able to support BSOD and other applications at the full res-

olution of the display wall with a frame rate of at least 60

Frames Per Second (FPS), the refresh rate of a typical LCD

monitor. Additionally, existing applications should be able

to use the wall without modification or recompilation. Clus-

terGL successfully meets these goals.

2. Background and related work

There are other approaches to implementing distributed ren-

dering for display walls. The main approaches are described

in the following sections.

2.1. Single machine systems

Recent advances in GPU technology such as AMD Eyefin-

ity [AMD09] allow up to six monitors to be connected to a

single PCIe graphics card. Up to four of these cards can be

used in a single display machine, allowing up to 24 moni-

tors to be connected as one computers display surface. This

provides high levels of performance, as there is no network

traffic involved.

However (at the time of writing), this approach requires

specialised hardware, and will only scale to 24 total moni-

tors. The techniques we describe here, allow scaling beyond

the capabilities of a single machine.

2.2. 2D only

Some systems are intended primarily for 2D render-

ing. These include Distributed Multi-head X (XDMX)

[MKDF04] and the Scalable Adaptive Graphics Environ-

ment (SAGE) [JRJ∗06, LBH07]. While there may be some

support for 3D acceleration, these systems do not meet the

requirements of many 3D applications. Because high per-

formance 3D applications are our area of interest, these ap-

proaches are not considered further here.

2.3. Indirect rendering

Xorg provides indirect network rendering capabilities for

OpenGL applications and can be used for a display wall

when using Distributed Multi-head X (XDMX) [MKDF04].

This involves an additional layer of indirection between the

application and the graphics hardware. This allows com-

mands to be tunnelled over a network but means the applica-

tion will suffer a speed penalty. Some of the more complex

graphics features provided by OpenGL extensions (like most

advanced shaders operations) do not operate in an indirect

rendered environment so this approach also does not meet

our needs.

c© The Eurographics Association 2011.

22

B. Neal, P. Hunkin & A. McGregor / ClusterGL

Figure 2: Overview of ClusterGL running on five display nodes

2.4. Frame buffer copying

Sage [JRJ∗06, LBH07] supports OpenGL applications in

a network environment by copying the rendered OpenGL

frame buffer contents over the network. Unlike many of the

approaches, its performance does not degrade with high-

complexity geometries because geometry information is not

passed over the network. However, while this approach is

simple and easy to implement, it creates a large quantity of

network traffic, particularly when high resolutions are re-

quired. On the Symphony display wall this would achieve

frame rates of less than 10 FPS depending on the real-time

compressibility of the image.

2.5. Parallel OpenGL rendering

Equalizer [EMP09] is a widely-used parallel rendering

framework for OpenGL applications. It greatly increases

rendering efficiency by parallelising rendering code, but re-

quires modification to the original application and does not

meet our goals.

2.6. OpenGL command stream

WireGL [HEB∗01] and its successor Chromium [HHN∗02]

operate by capturing the OpenGL command stream and

passing the commands and their arguments over the network

to remote OpenGL renderers. This technique normally re-

quires much less network traffic that frame buffer copying

and scales better to high resolutions. For many applications,

performance is still limited by network performance, partic-

ularly if there are complex geometries and/or many display

nodes. This method has become the most widely used solu-

tion for distributed OpenGL rendering for unmodified appli-

cations.

BroadcastGL [IRK05] also uses this approach but reduces

network load by using a reliable broadcast protocol. Instead

of using TCP [Pos81] which provides a reliable point-to-

point transport mechanism, BroadcastGL uses UDP [Pos80]

which can multi-cast a single packet to multiple destinations

but does not provide reliable transmission. Using multi-cast

reduces network traffic because the data is sent once for all

display nodes, rather than once for each display node. Clus-

terGL also uses multi-cast; more details are given in sec-

tion 3.3.

The current implementation of BroadcastGL only imple-

ments a small subset of the OpenGL API up to v2.1 (390

of the 1228 commands), which limits the applications that

can use it. The project is not under active development and

the software is not publicly available, however a copy was

provided for benchmarking purposes. See section 4.

3. ClusterGL

ClusterGL allows Unix applications that use OpenGL to be

transparently rendered on a display wall. It was developed

and tested on the Debian distribution of GNU/Linux but

should work well on most Unix systems. ClusterGL cap-

tures the OpenGL command stream in a similar manner to

Chromium and BroadcastGL. However, it uses three opti-

misations to improve performance. These are: frame differ-

encing, described in section 3.1; compression, described in

section 3.2; and multi-cast, described in section 3.3.

ClusterGL has two main components: a client library on

the machine that is running the application and a renderer

which runs on the machines that are connected to the dis-

plays. Figure 2 shows the architecture for five display nodes.

The client library is implemented as a shared library and

is responsible for capturing the OpenGL commands from

an OpenGL application. A user wishing to use ClusterGL

sets their LD_PRELOAD environment variable so that Clus-

terGL’s implementation of the OpenGL calls are used in

preference to the standard systemOpenGL library. The Clus-

terGL implementations of the OpenGL calls serialise their

parameters, perform the optimisations noted above and send

the call and parameters to the display nodes. Individual op-

c© The Eurographics Association 2011.

23

B. Neal, P. Hunkin & A. McGregor / ClusterGL

timisations can be disabled to match the needs of the appli-

cation.

Many OpenGL calls include a pointer to an array of data

currently stored in RAM. The size of this array must be

known to be able to serialise the data for transmission across

the network. Some calls provide this value as an additional

argument, while others can easily be calculated with pre-

existing knowledge of the data layout. However, some calls

do not provide enough information to be able to calculate

the array size. In these cases, the size of the array is pro-

vided in a later call when rendering the geometry using that

pointer. ClusterGL caches these calls until the size of the ar-

ray is known. This allows correct serialisation of the array

so it can be passed to the rendering nodes.

The renderers receive the optimised commands from the

client library and expand them by reversing the optimisa-

tions. They then call the native OpenGL library to execute

the instructions and render the image via the local graphics

card.

Each renderer is configured to display the part of the vir-

tual display that its monitors show. The Symphony wall is

bigger than the maximum size of an OpenGL context (which

on the hardware we use is 8192x8192) so simply manipulat-

ing the OpenGL viewport will not fully solve the problem–

if it is used, a part of the display will be blank because it

is outside the OpenGL viewing context. Instead, ClusterGL

manipulates the frustum so that only the part of the world

that is displayed by that node is in the rendering space. The

normal use of the frustum has the centre of the frustum at the

centre of the world with equal lengths for the left and right

boundaries. This is not the case when the frustum is used

to select just a part of the world that may, for example, be

entirely to the left of the centre line. This requires manual

calculation of the frustum parameters.

Monitor bezel compensation is performed by increasing

the size of the virtual world to match the resolution that

would be formed if the bezels were replaced with display

surface at the same number of dots-per-inch as the monitors.

The pixels that are "under" the bezels in this extended image

are not rendered. This means that diagonal lines in the ge-

ometry appear straight on the display. Some 2D applications

(e.g. still images) are easier to view without bezel compen-

sation. ClusterGL allow bezel compensation to be disabled

if appropriate.

The time that renderers take to render their part of the

display may vary because they have different objects to ren-

der. To maintain accurate synchronisation of the images dis-

played by the each display node, the client library periodi-

cally sends synchronisation packets to the renderers (the de-

fault is every 20 frames). The client will wait until replies

from all synchronisation packets are received before sending

new frame data. Our experience over a range of applications,

including scientific animations and interactive 3D games, is

that no noticeable cases of lost synchronisation occur.

3.1. Frame Differentials

Many OpenGL applications produce sequences of frames

where the OpenGL commands for each frame are very simi-

lar to previous frames but with small differences. For exam-

ple, successive frames might draw the same object but with

small differences in rotation.

ClusterGL optimises repeated sequences by only trans-

mitting the differences between consecutive frames. The

frame differential algorithm is shown in figure 3.

Figure 3: Pseudo-code outline of the operation of the CLUS-

TERGL_REPEAT ClusterGL command

This approach requires that the command stream

be buffered on both the client and renderer side.

When renderers receive the commands sent by

CLUSTERGL_REPEAT(), they copy the required number

of OpenGL instructions from the previous frame command.

The client library ensures that a CLUSTERGL_REPEAT()

command cannot be invoked before a full set of frame

commands has been transmitted.

In the best case (where a scene is static except for an ini-

tial transform), an entire frame can be sent with just three

commands (see the example in figure 4). In the worst case,

no frame differencing occurs and performance is the same as

it would be with this optimisation turned off. This is because

the CPU and memory cost of maintaining the frame com-

parison buffers is negligible when compared with the cost of

network transmission.

This technique incurs an overhead of increased CPU us-

age. However, most application are limited by network band-

width (which is the primary motivation for this work). In this

case, the CPU is not fully utilised and the additional CPU

overhead does not significantly change the performance of

the application as a whole.

c© The Eurographics Association 2011.

24

B. Neal, P. Hunkin & A. McGregor / ClusterGL

Figure 4: Pseudo-code outline of the operation of the Clus-

terGL REPEAT_ALL command

3.2. Stream Compression

Even after frame differencing had reduced the redundancy in

an OpenGL command sequence, it is possible to compress

it further using general purpose compression algorithms.

There may be common sequences of instructions that are

less regular, or at a finer scale, than that required for frame

differencing to be effective. Further, native OpenGL applica-

tions write textures to the graphics card in an uncompressed

format. While the performance cost of compression and de-

compression is not warranted on a single system, it can be

useful when OpenGL commands are sent over a network.

To be useful, the compression algorithm must be able

to compress the OpenGL instruction stream and thereby

decrease the bandwidth needed to send it to the render-

ers but not require so much CPU time that the CPU be-

comes a new bottleneck. ClusterGL currently supports the

libZ [lGA10] and LZO [Obe10] compression algorithms.

On our hardware, the LZO algorithm performs very well on

most OpenGL command streams, typically achieving> 70%

compression without saturating the CPUs on either the com-

pressing or decompressing nodes.

3.3. Multi-cast

Every instruction in an OpenGL command stream is re-

quired, and must be reliably sent to each rendering client.

TCP [Pos81] can be used to provide a reliable, in order

stream of data between two network hosts. However, TCP

is a point-to-point protocol, meaning the data can only be

transmitted to one rendering client at a time. To send the

stream of OpenGL instructions to all rendering clients, mul-

tiple TCP connections are needed. This means that the same

data is set over the network multiple times and the network

capacity is effectively divided by the number of rendering

nodes. This effect reduces the performance and limits the

scalability of display walls.

ClusterGL uses UDP [Pos80]; a connectionless protocol

that does not guarantee the data will arrive at the destina-

tion, nor the order in which the packets will arrive. UDP is

lightweight and offers broadcast and multi-cast ability. This

allows a stream of data to be sent to multiple destinations

using a single send command. The data will only be trans-

mitted once over the network. Switches along the path will

forward each packet to all destinations.

While UDP permits multi-cast, graphical rendering re-

quires reliable, in sequence delivery of data. Existing reli-

able multi-cast protocols contain complex processes to add

reliability [CGF∗01, ARA09, SL96, WVK∗01]. These pro-

tocols are designed to operate over complex networks with

multiple hops. As most display walls have a dedicated, high

speed network, the current reliable multi-cast protocols are

not optimised for this type of network.

To add reliability to UDP multi-cast packets, ClusterGL

adds a 12 byte header onto each packet. The header pro-

vides message sequencing and loss detection. While the

high-volume OpenGL command stream is sent over UDP,

a TCP connection is also used between the client and each

renderer. This allows communication in the reverse direction

for OpenGL commands that return a result. It also provides a

reliable channel for positive or negative acknowledgements

of the data that has arrived via UDP.

As the network is dedicated for display wall traffic and

only contains a single switch, it is very uncommon for

data not to arrive reliably and in order. At the end of each

OpenGL frame (which may have been sent via multiple UDP

messages) each renderer sends an acknowledgement mes-

sage (ACK) to notify the ClusterGL client library that all

data has arrived successfully. If a renderer receives a packet

that is not the next in the sequence, a negative acknowledge-

ment (NACK) is sent to the library. When the library receives

a NACK, it retransmits all packets starting from the offset

the renderer that transmitted the NACK packet is expect-

ing. Renderers that did not experience loss simply drop the

retransmitted packets, while the renderer(s) that were miss-

ing the packet(s) are able to catch up. Note that there is no

extra network overhead associated with broadcasting to all

renderers. Also, the little CPU time used by renderers to re-

ceive and skip the unneeded frames is not significant because

those renderers must stay in sync with those that did lose the

frame; they will have CPU to spare.

A double buffering scheme is used to allow overlap be-

tween the network transmission and the application generat-

ing the next frame. That is, while one frame is begin trans-

mitted on the network, the client library returns to the appli-

cation allowing it to generate the next frame.

4. Benchmarks

ClusterGL was benchmarked against Chromium and Broad-

castGL on the Symphony display wall described in the in-

troduction. The OpenGL distribution platforms are:

1. BroadcastGL: The most recent version of BroadcastGL

was obtained directly from the authors.

2. Chromium: Version 1.7 with the default settings.

3. ClusterGL: Version 0.9 with the default settings (all opti-

misation features and bezel correction enabled).

c© The Eurographics Association 2011.

25

B. Neal, P. Hunkin & A. McGregor / ClusterGL

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000 2500

fp
s

number of cubes

BroadcastGL
ClusterGL
Chromium

Native

Figure 5: Display list stress test results

4.1. Cube Test

The first test is a display list stress test. It involves render-

ing a number of static cubes, each with different colours.

This test is based on the NeHe Tutorial 12 [Mol03]). The

test generates a large number of OpenGL instructions and

consequently a high network load. The test approximates a

static model, for example a background scene in computer

applications or a large, complex scientific model.

Figure 5 shows the results for rendering between 25 and

2,500 cubes. In addition to the frame rate achieved by the

three systems, the performance of OpenGL on a single sys-

tem is shown, rendering at 1680x4440 to a single vertical

slice of our wall. This gives a best case reference.

With this application, ClusterGL benefits from frame dif-

ferencing and compression. Its performance follows the

same trend as the best case (running the application locally)

achieving in the range of close to 100% (for small numbers

of cubes) to about 62% for 2500 cubes.

Chromium also performs well with small numbers of

cubes but it’s performance drops more quickly than Clus-

terGL. The biggest discrepancy is at 225 cubes (ClusterGL

is approximately 100% of the best case while Chromium is

approximately 20%).

While BroadcastGL produces less network traffic than

Chromium, it does not perform as well as Chromium (it

achieves between 5% and 25% of the best case). We be-

lieve this is probably because of inefficiencies in the de-

sign of the BroadcastGL reliable multi-cast protocol. With a

larger number of rendering nodes (as might be the case with

a very large display wall) BroadcastGL might outperform

Chromium as its savings in network traffic become more

dominant.

4.2. OpenArena

The cube test is a simple stress test. While it is easy to

analyse it does not necessarily represent real applications.

As a cross check, we compared the performance of Clus-

terGL and Chromium when running OpenArena [Ope05]

on the Symphony display wall. OpenArena is a free and

open source first-person shooter game. It is heavily based

on the open source release of Quake III Arena. It uses a

wide range of OpenGL commands (testing OpenGL cover-

age) as well as producing a lot of data in most frames. We

only tested ClusterGL and Chromium in this case because

BroadcastGL does not implement enough of the OpenGL

API to run OpenArena successfully.

To test each system, the “anholt” time demo was run using

each system. This demo is used as a standard benchmark by

the Xorg development team (and many others) to test the

speed of OpenGL implementations. [anh05, FE09, SJNC09,

JBG∗10] The demo generates a sequence of 840 frames as

quickly as the hardware will allow.

In the test, ClusterGL averaged 102.5 FPS compared with

Chromium’s average of 32.6 FPS. Chromium has less varia-

tion in the frame rate. We believe this is because the amount

of data it needs to send varies less. ClusterGL’s optimisations

c© The Eurographics Association 2011.

26

B. Neal, P. Hunkin & A. McGregor / ClusterGL

Figure 6: OpenArena running under ClusterGL

vary in their effectiveness but always allow it to outperform

Chromium. For more than 80% of the test the difference in

frame rates is greater than three times. For a game, this is a

significant difference. 98% of the time, ClusterGL exceeds

60 FPS where as Chromium never achieves this rate.

ClusterGL produces a maximum frame rate of 500 frames

per second when the player is spawning. At this time, the

game is displaying a static menu with less variation in the

background.

The anholt test described above uses an “indoor” map.

OpenArena is particularly stressful when rendering outdoor

maps. This is because the majority of geometry data needs

to be transmitted every frame as the player is often able to

see from one end of the map to the other. We also tested

the two systems with the “osago2” outdoor map. Chromium

averaged 8 FPS compared with 25 FPS for ClusterGL.While

ClusterGL is closer to the target frame rate of 60 FPS neither

achieve it in this case.

4.3. Impact of individual optimisations

The effectiveness of various combinations of optimisation

techniques were benchmarked on the OpenArena timedemo

and compared to Chromium. As a reference, they were also

compared to a single machine running in full screen mode

at 1680x4440 and no remote renderers (i.e. not using Clus-

terGL or Chromium). The results are shown in table 1.

These results are indicative only. The relative improve-

ment of each technique is dependent on the application;

some applications may benefit more than others for a given

technique.

5. Discussion

In our testing, ClusterGL’s optimisations reduced network

traffic and significantly increase frame rates for all applica-

tions tested. Performance declined as the geometry became

more complex but following the same trend as OpenGL on

a single machine. The primary source of this decrease is the

CPU and GPU load required to generate and render the more

complex scenes.

We observed that ClusterGL traffic tends to be more

“bursty” than Chromium traffic. In the worst case, Clus-

terGL sends each OpenGL instruction individually. This al-

ways happen on the first frame in a repeated sequence.

In the example of the Display List application, ClusterGL

transmitted the initial burst of commands in the first frame,

causing a bandwidth spike. After that, throughput fell as

CLUSTERGL_REPEAT instructions take effect.

As Chromium has not had any significant updates since

Technique Average FPS

None 22.5

Compression 59.9

Deltas 27.6

Compression + Deltas 66.7

Multicast + Deltas 68.6

Compression + Multicast 83.6

All techniques 102.5

Chromium 32.6

Single Machine 155.7

Table 1: The effect of different ClusterGL optimisations on

the OpenArena timedemo benchmark

c© The Eurographics Association 2011.

27

B. Neal, P. Hunkin & A. McGregor / ClusterGL

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900

fp
s

frame number

ClusterGL
Chromium

Figure 7: OpenArena results

2005, it only contains support for OpenGL version 2.0 or

earlier. Applications that use newer features are not able

to be run or do not render correctly. OpenGL 2.1 contains

new methods–for example newer versions of pixel and ver-

tex shaders. These features are widely used in modern appli-

cations. ClusterGL supports most OpenGL 2.1 calls.

6. Future Work

Currently, ClusterGL supports 92% of the OpenGL API.

This subset supports all the applications that we have run

to date. While we would like to achieve 100% coverage, this

is difficult to achieve because not all calls are well docu-

mented. Most of the remaining calls are vendor extensions

to OpenGL or rarely used legacy support and software will

normally adapt to run without them.

It is possible to improve the frame differencing algorithm

that ClusterGL uses. In particular, streams of instructions

that contain instruction re-ordering will currently defeat the

optimiser. Techniques to identify more cases where differ-

encing can be used should further improve ClusterGL’s per-

formance.

Another bottleneck in the performance of ClusterGL is

the time spent blocking, waiting for return data from each

renderer. For example, a poorly written OpenGL applica-

tion may request the maximum view port dimensions every

frame. This results in a network round trip, while ClusterGL

waits for the returned value, before carrying on running the

application. This could be improved by using a cache of

recently used objects on the client and returning the infor-

mation from the cache. Static values, such as the maximum

view port dimensions, could be cached during initialisation,

while dynamic values, such as lighting parameters, could be

cached as they are sent in calls. Our initial experimentation

indicates that this can result in significant gains; up to three

times the frame rate in one case.

7. Conclusion

ClusterGL is a new system to allow unmodified OpenGL

applications to use a multiple monitor display wall. Clus-

terGL includes optimisations that reduce network traf-

fic and increase frame rates. In tests to date, it achieves

significant performance improvements over other ap-

proaches that support unmodified applications. The system

is generic enough to be suitable for a range of applica-

tions and hardware. ClusterGL is available via Google Code

http://code.google.com/p/clustergl2.

c© The Eurographics Association 2011.

28

http://code.google.com/p/clustergl2

B. Neal, P. Hunkin & A. McGregor / ClusterGL

References

[AMD09] AMD: Eyefinity, Sept. 2009.
http://www.amd.com/US/PRODUCTS/

TECHNOLOGIES/AMD-EYEFINITY-TECHNOLOGY/

Pages/eyefinity.aspx Accessed: 3 Mar 2011. 2

[anh05] ANHOLT: anholt timedemo, Apr. 2005.
http://dri.freedesktop.org/wiki/

Benchmarking Accessed: 3 Mar 2011. 6

[ARA09] ADAMSON B., ROCA V., ASAEDA H.: RFC5740:
NACK-Oriented Reliable Multicast (NORM) transport protocol,
Nov. 2009. http://tools.ietf.org/html/rfc5740
Accessed: 3 Mar 2011. 5

[CGF∗01] CROWCROFT J., GEMMELL J., FARINACCI D., LIN

S., LESHCHINER D LUBY M., MONTGOMERY T., RIZZO L.,
TWEEDLY A., BHASKAR N., EDMONSTONE R.,
SUMANASEKERA R., VICISAN L.: RFC3208: PGM reliable
transport protocol specification, Dec. 2001.
http://tools.ietf.org/html/rfc3208 Accessed: 3

Mar 2011. 5

[EMP09] EILEMANN S., MAKHINYA M., PAJAROLA R.:
Equalizer: A scalable parallel rendering framework. IEEE
Transactions on Visualization and Computer Graphics 15

(2009), 436–452. DOI 10.1109/TVCG.2008.104. 3

[FE09] FECHTELER P., EISERT P.: Depth map enhanced
macroblock partitioning for H.264 video coding of computer
graphics content. In Proceedings of the 16th IEEE international

conference on image processing (Piscataway, NJ, USA, Nov.
2009), ICIP’09, IEEE Press, pp. 3405–3408.
DOI 10.1109/ICIP.2009.5413851, issn 1522-4880. 6

[HEB∗01] HUMPHREYS G., ELDRIDGE M., BUCK I., STOLL

G., EVERETT M., HANRAHAN P.: WireGL: A scalable
graphics system for clusters. In SIGGRAPH ’01: Proceedings of

the 28th annual conference on computer graphics and

interactive techniques (New York, NY, USA, 2001), ACM,
pp. 129–140. DOI 10.1145/383259.383272. 3

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R., FRANK R.,
AHERN S., KIRCHNER P. D., KLOSOWSKI J. T.: Chromium:
A stream-processing framework for interactive rendering on
clusters. ACM Trans. Graph. 21, 3 (July 2002), 693–702.
DOI 10.1145/566654.566639. 3

[Hun09] HUNKIN P.: The BSOD Network Visulisation Tool,
June 2009.
http://research.wand.net.nz/software/

visualisation.php Accessed: 3 Mar 2011. 1

[IRK05] ILMONEN T., REUNANEN M., KONTIO P.: Broadcast
GL: An alternative method for distributing OpenGL API calls to
multiple rendering slaves. In WSCG: Journal of The Winter

School of Computer Graphics, volume 13, Plzen, Czech

Republic (2005), Science Press, pp. 65–72.
http://dblp.uni-trier.de/db/conf/

wscg/wscg2005.html#IlmonenRK05 Accessed: 3 Mar

2011. 3

[JBG∗10] JURGELIONIS A., BELLOTTI F., GLORIA A. D.,
LAULAJAINEN J.-P., FECHTELER P., EISERT P., DAVID H.:
Testing cross-platform streaming of video games over wired and
wireless LANs. In Proceedings of the 2010 IEEE 24th

International Conference on Advanced Information Networking

and Applications Workshops (Washington, DC, USA, 2010),
WAINA ’10, IEEE Computer Society, pp. 1053–1058. 6

[JRJ∗06] JEONG B., RENAMBOT L., JAGODIC R., SINGH R.,
AGUILERA J., JOHNSON A., LEIGH J.: High-Performance
dynamic graphics streaming for scalable adaptive graphics
environment. In SC ’06: Proceedings of the 2006 ACM/IEEE

conference on Supercomputing (New York, NY, USA, 2006),
ACM, p. 108. DOI 10.1145/1188455.1188568. 2, 3

[LBH07] LORENZ M., BRUNNETT G., HEINZ M.: Driving tiled
displays with an extended chromium system based on stream
cached multicast communication. Parallel Computing 33, 6
(2007), 438 – 466. Parallel Graphics and Visualization
DOI 10.1016/j.parco.2007.02.016
http://www.sciencedirect.com/science/article/

B6V12-4N7RW3T-1/2/404a2ead18e70a0f106b7bcb262

69fe8 Accessed: 3 Mar 2011. 2, 3

[lGA10] LOUP GAILLY J., ADLER M.: A massively spiffy yet
delicately unobtrusive compression library, Apr. 2010.
http://www.zlib.net/ Accessed: 3 Mar 2011. 5

[MKDF04] MARTIN K. E., DAWES D. H., FAITH R. E.:
Distributed multihead X project, June 2004.
http://dmx.sourceforge.net/Accessed: 3 Mar 2011.
2

[Mol03] MOLOFEE J.: The NeHe OpenGL tutorial, Sept. 2003.
http://nehe.gamedev.net. 6

[Obe10] OBERHUMER M. F. X. J.: LZO version 2.0.4, Oct.
2010.
http://www.oberhumer.com/opensource/lzo/

Accessed: 3 Mar 2011. 5

[Ope05] OPENARENA:, Apr. 2005.
http://www.openarena.ws Accessed: 3 Mar 2011. 6

[Pos80] POSTEL J.: RFC768: User Datagram Protocol, Aug.
1980. http://tools.ietf.org/html/rfc768
Accessed: 3 Mar 2011. 3, 5

[Pos81] POSTEL J.: RFC793: Transmission Control Protocol,
Sept. 1981. http://tools.ietf.org/html/rfc793
Accessed: 3 Mar 2011. 3, 5

[SJNC09] SHI S., JEON W. J., NAHRSTEDT K., CAMPBELL

R. H.: Real-Time remote rendering of 3d video for mobile
devices. In Proceedings of the seventeen ACM international

conference on Multimedia (New York, NY, USA, 2009), MM
’09, ACM, pp. 391–400. 6

[SL96] SANJOY P., LIN J.: RMTP: A Reliable Multicast
Transport Protocol. In INFOCOM ’96. Fifteenth Annual Joint

Conference of the IEEE Computer Societies. Networking the

Next Generation. (San Francisco, CA , USA, Mar. 1996), IEEE.
5

[Wai11] WAIKATO UNIVERSITY: The symphony cluster, 2011.
http://symphony.waikato.ac.nz/ Accessed: 3 Mar

2011. 1

[WVK∗01] WHETTEN B., VICISANO L., KERMODE R.,
HANDLEY M., FLOYD S., LUBY M.: RFC3048: Reliable
multicast transport building blocks for one-to-many bulk-data
transfer, Jan. 2001.
http://tools.ietf.org/html/rfc3048 Accessed: 3

Mar 2011. 5

c© The Eurographics Association 2011.

29

http://www.amd.com/US/PRODUCTS/
TECHNOLOGIES/AMD-EYEFINITY-TECHNOLOGY/
Pages/eyefinity.aspx
http://dri.freedesktop.org/wiki/
Benchmarking
http://tools.ietf.org/html/rfc5740
http://tools.ietf.org/html/rfc3208
10.1109/TVCG.2008.104
10.1109/ICIP.2009.5413851
10.1145/383259.383272
10.1145/566654.566639
http://research.wand.net.nz/software/
visualisation.php
http://dblp.uni-trier.de/db/conf/
wscg/wscg2005.html#IlmonenRK05
10.1145/1188455.1188568
10.1016/j.parco.2007.02.016
http://www.sciencedirect.com/science/article/
B6V12-4N7RW3T-1/2/404a2ead18e70a0f106b7bcb262
69fe8
http://www.zlib.net/
http://dmx.sourceforge.net/
http://nehe.gamedev.net
http://www.oberhumer.com/opensource/lzo/
http://www.openarena.ws
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc793
http://symphony.waikato.ac.nz/
http://tools.ietf.org/html/rfc3048

