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Abstract
Muscular activity during human motion is usually quantified by measuring the electrical potential during muscle activation
using electromyography (EMG). However, apart from producing electrical activity, muscular contraction of many skeletal mus-
cles also induces subtle deformation of the skin surface. In this paper, we present a method to estimate muscular activation from
such 3D skin deformation. To this end, we introduce a capture system that reconstructs the 3D motion of the skin from multi-view
video data and simultaneously measures true muscle activity with EMG sensors. Our data reveals strong correlations between
the skin deformation and muscular activity during one-leg stances. We propose a pose normalization procedure and a novel
model based on Supervised Principal Component Regression that automatically segments individual muscles and estimates
their activation from 3D surface deformation. Our evaluation shows that the model generalizes to varying body shapes and that
the estimated activation closely fits the measured EMG data.

CCS Concepts
•Applied computing → Life and medical sciences;

1. Introduction

Estimating muscular activity is one of the most important tasks
to understand and assess human motion, with applications in er-
gonomics, kinesiology, biomechanics, and even for clinical diagno-
sis of neuromuscular diseases. The gold standard method to quan-
tify muscle activations is electromyography (EMG) that measures
electrical activity emitted by muscle cells when neurologically ac-
tivated [LRI74], essentially by sticking an electrode onto the skin
surface or into the muscle fiber. However, this measurements are
expensive, can only be applied pointwise, and the installation re-
quires trained specialists. This restricts practicability in everyday
clinical and research life. However, activation of some human mus-
cles produces subtle deformation that become visible on the skin
surface. In this paper, we show that from measurements of such
deformations on the 3D skin surface it is possible to estimate un-
derlying muscular activity.

In particular, we focus on muscle activity estimation during
balance tests due to their wide use. For example, the one-leg
stance is used to measure the postural stability of individuals
[FMV00], with applications in rehabilitation, training and geri-
atrics [ZHV∗10, HRW∗00], e.g. as indicator for the risk of falling.

† This work was supported in part by ESF (grant number 100231931,
TISRA).
‡ These two authors contributed equally

Maintaining body balance requires constant coordinated activation
of a multitude of muscles mostly in the lower leg. Skin deformation
during one-leg stances is extremely subtle, in the range of at most
a few millimeters. State-of-the-art markerless performance capture
systems are able to reconstruct full body human geometry in mo-
tion at high visual fidelity [TdAS∗10], but are not yet able to re-
construct sub-millimeter precise skin surface deformation. We thus
opt for the marker based system of Neumann et al. [NVH∗13], that
we extend to achieve even higher detail. In addition, we simulta-
neously record muscle activity using synchronized EMG sensors,
in order to relate these signals to the visible skin deformation. In
this study, we need such a high-end recording system, because it
is not yet clear which level of detail is required for muscle activity
estimation.

In the analysis process, we isolate the surface deformation
by subtracting rigid motion of the limbs using an effective pose
normalization step. The resulting data reveals strong correlations
between visible muscle deformation and electrical activity espe-
cially in the muscles Peroneus longus (Figure 3a) and Tibialis
anterior (Figure 3b). We use the data to train a model that automat-
ically estimates muscle activity from the 3D surface recordings.
To this end, we extend Supervised Principal Component Re-
gression [BHPT06] with a Graph-Cut based mesh segmentation
method. Finally, we demonstrate that the model can estimate
muscular activity and also generalizes to different body shapes.
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In summary, our contributions are:

• a system to simultaneously measure muscle activity (using
EMG) and detailed dynamic 3D geometry of muscles at sub-
millimeter precision (using an improved version of the video-
based system of Neumann et al. [NVH∗13])
• a model based on Supervised Principal Component Regression

with a Graph-Cut based mesh segmentation to estimate muscular
activity.

This research has the longer-term goal of supplementing the
EMG technology with a camera-based tracking method. A camera-
based system would significantly reduce the cost of such a mea-
surement and make it applicable for more facilities. In addition,
temporally and spatially synchronized records of skin surface data
may provide a new modality for gait analysis applications. While
the EMG procedure can measure muscle activity only very locally,
our measurement method is surface-based and may be able to re-
veal yet unkown spatio-temporal muscle behavior patterns. For ex-
ample, it could be possible to analyze where certain muscle defor-
mation take place on the skin or exactly how the muscle volume
and shape change during exercise, which is not yet possible with
EMG.

2. Related Work

Estimation of muscular activity is usually studied in the fields
of biomechanics. The gold standard is EMG recording, which is
an electrodiagnostic medicine technique for evaluating and record-
ing the electrical activity produced by skeletal muscles. There are
two kinds of EMG: surface EMG [De 97] and invasively intra-
muscular EMG [PS02]. Surface EMG assesses muscle function by
recording muscle activity with electrodes on the skin. These can
only provide a limited assessment of the muscle activity. In con-
trast, intramuscular EMG needles can be positioned precisely to
record individual muscle fibers, at the cost of being highly inva-
sive. Muscular activity may also be inferred indirectly with ultra-
sound recordings [HPHG03], where muscle volume or elongation
during activation can be (manually) segmented. These measure-
ments showed that muscle activity and volume change are linearly
correlated only for small forces up to 30%. At higher levels of con-
traction, the muscle volume changes relatively little. Since the mus-
cle activity in the one-leg stance is rather small, it can be consid-
ered as linear with the volume change. Another study investigates
the physiological oddity in facial muscles of subjects with Autism
Spectrum Disorder in comparison to that of a control [SBHI15]
group. However, this study is limited to static facial expressions.
Only recent studies showed that muscle activity may be estimated
from images [ABF15] or from shape changes captured by depth
sensors [SYA∗16]. However, these approaches are limited in their
evaluation since the model was trained and tested on the same per-
son. Their models are relatively black-box machine learning mod-
els, while ours is a simple supervised PCA regression model that
is easily interpretable. We show, that our model also generalizes
across multiple subjects and allows fine-grained visualization of
the specific skin deformation that correlate with actual muscular
activity as measured by EMG.

Simulation-driven muscle simulations in computer graphics aim
at generating the skin surface of a virtual character or creature and
thus rely on simplified volumetric models of muscle tissue [Lee11].
In contrast, the biomechanics community relies on abstract mod-
els containing bones and actuators (muscles/tendons), with a fo-
cus on accurate estimation of muscular forces for example with
OpenSIM [DAA∗07]. OpenSIM’s inverse dynamics solves for the
muscle forces that are required for the given motion (e.g. captured
with a Motion Capture system). OpenSIM models have to be care-
fully evaluated and calibrated from EMG recordings and work reli-
ably for fast, long-range motions. Additionally, the analysis of the
one-leg stance requires ground reaction forces measured by a force
plate.

Data-driven muscle simulations generates a muscle deformation
model by capturing skin deformation from (dynamic) scans of real
people. When animating human characters, data-driven models are
often used because they provide a realistic image with little ef-
fort [ASK∗05, LMR∗15]. Neumann et al. [NVH∗13] were the first
to model muscle deformation as a function of external force with
a data-driven approach. Gassel et al. [GNW17] extend upon this
work and link the data-driven model with muscle forces computed
from the biomechanical simulation model OpenSIM [DAA∗07].
This allows generating plausible deformation of individual muscles
given muscle forces. In this work we invert this idea and estimate
the muscle activity from the visible muscle deformation. But as
common with data-driven models, we require an accurate method
for measuring the 3D muscle deformation.

Multi-view performance capture originally aims at reconstruct-
ing dynamic geometry of human subjects, possibly including
clothing and props [TdAS∗10]. State-of-the-art approaches han-
dle very general scenes [CCS∗15] and can even run in real-time
[DTF∗15, IZN∗16]. However, these approaches are not yet able
to precisely capture muscle deformation, since the subtle muscle
deformation cannot be tracked/matched on mostly textureless skin
unless the camera resolution is high enough that individual skin
pores become visible [BB14]. Several works thus resorted to us-
ing markers for capturing the skin surface. Park et al. [PH08] use
up to 350 conventional motion-capture markers to reconstruct hu-
man skin deformation. Bogo et al. [BRPMB17] use an expensive
3D scanning setup involving multiple camera-projector rigs to ob-
tain 3D geometry and recover very detailed skin deformation by
tracking bodypaint stamps applied to the skin of the subjects. Neu-
mann et al. [NVH∗13] use a simpler multi-camera setup, paint
random dots onto the skin and use them both for 3D reconstruc-
tion and tracking. Here, we adopt their approach and show that
it can indeed recover muscle twitches up to millimeter accuracy
using only 16 HD cameras, with only 12 used for the reconstruc-
tion. The other 4 cameras were used for overview purposes. The
application of dots on the skin directly is maybe laborious, but
is intentionally used here to obtain ground-truth reference data.
Later iterations of our approach can instead use pattern-printed
tights [WCF07, SSK∗05, Neu16] as a close proxy to the skin sur-
face.

Pose normalization is necessary to subtract the rigid motion of the
bones from the actual muscle or soft tissue deformation. Some data-
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Figure 1: Capturing muscle deformation: (a) Subjects are recorded by a multi-sensor setup consisting of 16 synchronized video cameras.
(b) Camera positions after calibration. (c) Wireless EMG sensors simultaneously record electrical activity in the muscles. (d) Stereo pair of
cameras showing the random dot pattern on the skin. (e) Template mesh and reconstructed 3D point cloud. (f) Template mesh closely fits
point cloud after non-rigid ICP.

driven shape modeling approaches [ASK∗05, NVH∗13, LMR∗15]
internally already do this by first applying rigid (body part) ro-
tations and then modeling the residual deformation due to soft
tissue and muscle deformation. In other words, they model de-
formation in pose space [LCF00]. Although not explicitely de-
signed for pose normalization, unsupervised decomposition meth-
ods [KSO10, NVW∗13] may also be used for extracting pose-
specific deformation. Nevertheless, the explicit task of pose nor-
malization of a given captured 3D surface was first formulated by
Beeler and Bradley [BB14] for face stabilization. Their approach
relies on anatomic constraints specific to human faces and cannot
be readily extended to the lower body. To this end, anatomic skin
deformation models have been developed for other parts, for ex-
ample to precisely capture bone motion of the shoulder-arm area
from noisy depth sensor measurements [ZHK15]. However, since
anatomical based models require significant amount of engineer-
ing and since the motion of the leg in our data is not very high,
we instead adapt a simple but effective skinning decomposition
method [KSO10] to perform a pose normalization, cf. Section 3.2.

3. Data Acquisition

As a basis for further analysis, we developed a new multi-modal
capture system to record simultaneously detailed time-varying 3D

geometry of human skin and muscular activity. Here, we briefly
describe our setup and give an overview of the captured dataset.

3.1. 3D Reconstruction and Registration of Skin Surfaces

To capture skin deformation at high detail, we use a vision-based
reconstruction approach that measures dense dynamic 3D geom-
etry with a multi-camera system (cf. Figure 1a). 16 HD cameras
(Grasshopper GRAS-20S4C) from PointGrey (1600× 1200 pixels
resolution @ 30Hz) are arranged in a convergent setup around the
lower body (Figure 1b). To facilitate space-time reconstruction, we
apply a pattern of dense dots to the skin. (Figure 1d). These dots
are reconstructed in 3D using the multi-graph matching method
of [NVH∗13] with improvements as presented in [Neu16, Section
2.3]. The algorithm delivers a 3D point cloud for each recorded
frame. These 3D points are then tracked by matching them across
the whole sequence with the affine-invariant modification of Shape
Context developed in [NVH∗13].

We then bring a template mesh of the lower body (Figure 1e),
into correspondence with all the captured 3D point clouds. In par-
ticular, we perform non-rigid iterative-closest-point (ICP) with As-
rigid-as-possible surface regularization [SA07] using the global
formulation of [ZNI∗14]. In contrast to [NVH∗13], this provides
a tighter fit of the mesh in areas where a dense pattern of dots was
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Figure 2: Pose normalization. (a) Displacements from rest shape
without pose normalization show mostly rigid motion of the lower
leg. (b) Estimated blending weights for body parts to be used for
pose normalization (green = foot, cyan = lower leg, violet = upper
let, red = hip). (c) After applying these blending weights for pose
normalization, muscle and tendon deformation become visible.

visible while properly interpolating in areas where the EMG sen-
sor occluded the dots. As a result, we obtain the deformed template
mesh closely fitting to the reconstructed dots (Figure 1f).

3.2. Pose normalization

When directly measuring displacements of the reconstructed 3D
mesh from a rest shape, most will be due to rigid motion of the
limbs due to the sway of the body around its center of pressure, as
visible in Figure 2a. In a last step, we remove pose-related motion
of the foot, the lower and the upper leg: we first estimate a segmen-
tation into body parts from a squat motion of the same leg using
the method of Kavan et al. [KSO10], cf. Figure 2b. Then, based on
this segmentation, a rigid transformation can be estimated for each
of the body parts and for each time step. Using linear blend skin-
ning we can apply the inverse transformation at each step for each
body part to obtain a mesh sequence with the articulated motion
almost entirely removed (cf. Figure 2c). Since every recorded sub-
ject stood in a slightly different place, in the last step the subject is
aligned by procrustes to the reference subject.

3.3. EMG Recording

We simultaneously measure electrical activity in seven different
muscles using the wireless surface EMG sensor Myon 320 by Pro-

(a) (b)

Figure 3: Anatomy of the muscles (a) Peroneus Longus and
(b) Tibialis Anterior, pictures provided by DocCheck (http://
flexikon.doccheck.com)

2.0

0.0
0.10.0m

ea
n 

de
fo

rm
at

io
n 

[m
m

]

activation (EMG)

correlation coefficient: 0.84

(a)

1.4

0.0
0.050.0

r: 0.84

activation (EMG)

correlation coefficient: 0.65

(b)

Figure 4: Correlation plot between mean mesh deformation and
EMG signal. (a) Tibialis Anterior (b) Peroneus Longus

Physics (https://www.myon.ch). These sensors are attached to the
skin of the person and thus give only a rough estimate of the overall
activity of muscles that are relatively close to the surface (cf. Sec-
tion 2, in contrast to intramuscular EMG). EMG sensors were syn-
chronized to the multi-camera system using hardware triggers to
start recording: The EMG sensors act as master triggers since they
offer the highest refresh rate in this setup. Trigger signals from
the EMG are intercepted by an Arduino and passed via USB to
the multi-camera setup, which is internally synchronized using the
PointGrey MultiCamera API. EMG sensors are attached to the fol-
lowing muscles: Rectus femoris, Vastus medialis, Biceps femoris,
Tibialis anterior, Peroneus longus, Soleus and Gastrocnemius. Of
these muscles, only Tibialis anterior and Peroneus longus are typi-
cally active during the one-leg stance. EMG data were normalized
using a maximum voluntary contraction (MVC) trial (this proce-
dure corrects for typical subject- and muscle-specific variances by
expressing EMG measurements relative to the maximal value seen
during strong voluntary contraction that we recorded separately).
Signals are denoised using a high and low pass butterworth filter
followed by notch filtering and root mean square smoothing.
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Figure 5: Development of surface mask with graphcut to muscle Peroneus longus on subject 1. (a) Correlations of the vertices, color-
coded in red. (b) Clipped correlations. (c) Simple tresholding. The black mask lies exact under the red correlations. (d) Execution of the
graphcut with optimized parameters. The correlations are shown in red above the black mask. (e) Subgraph with largest connected area. This
removes the area, that is circled in d. (f) Muscle masking with same parameters on subject 2. Mask looks similar.

Subject Age [years] Weight [kg] Sex Height [cm]

#1 21 81 m 181
#2 56 67 w 173
#3 32 65 m 180
#4 35 70 m 184

Table 1: Overview of the captured subjects.

3.4. Dataset

We recruited 4 subjects, 1 female and 3 male, to be captured, with
age varying from 21 to 56 years, cf. Table 1. Each subject performs
the same predefined motions. Here, we specifically concentrate the
analysis on one-leg stances. For each subject, three repetitions of
16 second long one-leg stances were recorded.

3.5. Explorative Data Analysis

With the simultaneous multi-sensor data at hand, we can now in-
vestigate if there is a correlation between electrical activity of the
muscles and 3D skin deformation. To this end, the 3D displacement
after pose normalization is averaged inside a manually chosen area
per muscle. This gives a rough estimate of the overall deformation
for each muscle in each recorded video frame. This average defor-
mation already correlates well with the actual EMG signal, as vis-
ible from the correlation plots in Figure 4. This important insight
motivates the construction of a new model that estimates muscle
activity as explained in the following.

4. Model

The correlation analysis (Figure 4) clearly shows correlations be-
tween 3D skin deformation and muscular activity measured via

EMG. This leds us to build a model that maps the 3D skin de-
formation to the EMG sensor. To this end, we propose an extension
to Supervised PCA [BHPT06]: we first automatically find a local
muscle area and then perform Principal Component Regression to
linearly predict the EMG signal from the deformation in that area.
Once this model has been trained on a subset of subjects from our
dataset, it can be applied to predict the muscular activity of new,
previously unseen subjects from the skin deformation.

4.1. Preliminaries

Formally, we are given the pose-normalized 3D locations of all N ∈
N vertices v( f )

i ∈ R3, i ∈ {1, . . . ,N} for each of the f ∈ {1, . . . ,F}
recorded mesh surfaces (e.g. successive frames of a one-leg stance
motion). During training, we are also given the corresponding EMG
signal y ∈ RF at that each frame. We first need to determine a "rest
shape" frame f0 where the muscle activity is as low as possible
(e. g. f0 = argmin j y j) to obtain the vertex displacements, d( f )

i =

v( f )
i − v( f0)

i (from hereon, we shall use the word deformation for
these vertex displacements). Then we collect all displacements into
a displacement matrix X ∈ RF×3N , by stacking the displacement
vectors corresponding to one frame into a single row:

X =


(d(1)

1 )> (d(1)
2 )> · · · (d(1)

N )>

(d(2)
1 )> (d(2)

2 )> . . . (d(2)
N )>

...
...

. . .
...

(d(F)
1 )> (d(F)

2 )> . . . (d(F)
N )>

 (1)

In principle, we could directly learn a mapping of the deformation
of one frame X f ,? ( f ’th row in matrix X) to the EMG readings y f ,
but this is prone to overfitting, cf. Figure 9. Principal Component
Analysis (PCA) could be used to prevent this, but running PCA di-
rectly on X might still pick up on deformation not related to the
specific muscle measured by the EMG sensor. Thus, we provide
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only a subset of vertices from X to PCA that correlate well with the
EMG signal y. This general idea of removing irrelevant features
before running PCA is known as supervised principal component
analysis [BHPT06] (SPCA), where features are selected based on
their correlation with the target variable y. However, simply select-
ing individual vertices performs poorly since the selected area con-
tains many outliers and overfits on the specific area of the subject in
the training set, cf. Figure 5c. Therefore, we propose to find a mask
that both fits the correlations well and being sufficiently localized
and smooth at the same time.

4.2. Masking muscles

We formulate finding a binary muscle mask m ∈ {0,1} (defined
over the vertices) using Graph Cuts optimization [EFS56, GF08].
The graph is defined by the mesh topology. We define unary po-
tentials (for the data term in Graph Cuts optimization) from the co-
efficient of multiple correlation Ri ∈ [0,1] [CCWA13] between the
vertex i and the EMG signal y, which basically estimates how well a
linear model would predict the EMG from the motion of the vertex
i alone. We clip those values to a specific range [Rmin,Rmax] and
renormalize to [0,1] in order to further weaken poorly correlated
vertices (cf. Figure 5b). In all our experiments, we use Rmin = 0.7,
Rmax = 0.9. The pairwise potentials (for the smoothness term in
Graph Cuts) are set to a smoothing value s = 0.6. To improve
the mask, the unary potentials for the sink and source node were
weighted with a pre-factor P. Empirically we found that values
Psink = 0.6, Psource = 9.0 worked best.

The resulting mask corresponding to Peroneus longus on subject
1 is shown in Figure 5d. The final mask might still contain small
isolated areas on the mesh that can be easily filtered out by remov-
ing all but the largest connected area from the mask (Figure 5e).
The automatically generated mask confines the muscle area very
well. As we show in our experiments, the mask generalizes well
to other people and is consistent across different body shapes (Fig-
ure 5f).

4.3. Principal Component Regression

The muscle mask is now used to select the vertices from X for su-
pervised principal component analysis. Essentially we just run PCA
on the vertices in the muscle area to obtain K principal compo-
nents. These principal components correspond to the main modes
of displacement in this area. We can now learn a simple linear
model that maps from the PCA projection space to the EMG signal,
g : RK → R. Notice that we could have also learned the mapping
directly from the masked displacements to the EMG, but our exper-
iments show that this leads to severe overfitting when applying the
learnt model to another person. The PCA prevents this, by summa-
rizing the collective motion in the muscle area.

5. Results

To evaluate our method, we perform a quantitative evaluation. As
described in Section 3.4, we captured 4 subjects in one-leg stance.
We first test if our model can estimate the EMG from 3D surface de-
formation on a single person in Section 5.1. We also show that the

model generalizes to different persons (Section 5.2). Furthermore,
in Section 5.3 the performance of different model components is
compared. Ultimately, Section 5.4 shows the interpretability of our
model by visualizing deformation muscle deformation.

5.1. Accuracy on Single Subject

We trained the model on two repetitions of the one-leg stance of one
person and then measured the model performance on one left-out
repetition. This simulates how the model generalizes to new motion
of the same person. The correlation coefficient between the muscle
activity predicted by the model and the real EMG is shown in Ta-
ble 2. The muscular activity of Peroneus longus and Tibialis ante-
rior can be predicted very well, because both muscles are typically
active during balance tasks and their volume changes are clearly
visible on the skin. Figure 6 shows that the model-estimated fits
the real EMG signal very closely. The absolute estimation error is
0.009 (EMG values run in values from 0.0 to 0.2). Figure 6 also
shows the 3D deformation at different points in time, thereby mak-
ing it possible to see where the skin deforms. For Peroneus longus,
deformation show up directly on the muscle and a bit on the tendon.
In contrast, Tibilias anterior activation visually appears mostly at
the tendon. The results of Soleus and Gastrocnemius are worse, pre-
sumably because these muscles are typically not very active during
balance exercises.

5.2. Cross Subject Evaluation

To test how the model generalizes to new body shapes, we per-
formed a cross subject evaluation: The model is trained on one per-
son and then evaluated on the remaining persons. The high corre-
lation coefficients in Figure 8 hint at excellent generalizability of
our model even in face of very different physical constitutions and
body shapes - especially for the muscles Peroneus longus and Tib-
ialis anterior. Admittedly, the accuracy for subject 4 of the muscle
Peroneus longus is suboptimal in all cases (Figure 8a). This may be
related to a different muscle strategy or anomaly in the muscle of
the subject. As visible in Figure 7, the trend and shape of both sig-
nals matches remarkably well. However, the model fails at estimat-
ing the correct maximal amplitude of the EMG signal when trained
and tested on different subjects, cf. Figure 7. Here the absolute av-
erage estimation error is 0.03. In other words, the model estimates
the EMG only up to a subject-specific factor. This happens mainly
due to different constitutions of the subjects as well as due to slight
differences in attachment points of the EMG electrodes.

Subject Peron. long. Tibial. ant. Soleus Gastrocnemius

#1 0.83 0.90 0.60 0.30
#2 0.88 0.89 0.78 0.74
#3 0.86 0.88 0.59 0.74
#4 0.63 0.90 0.65 0.58

Table 2: Accuracy on single subject displayed as correlation co-
efficients between the estimated and real EMG signal. The three
results per muscle and subject were averaged for clarity.
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Figure 6: Result of EMG estimation for (a) Peroneus longus on subject 1 and (b) Tibialis anterior on subject 3 when testing on a single
subject. For this, the estimated and real signal are assigned on the time axis. The y-axis represents the activation of the muscle. Furthermore,
the strength of the deformation on the skin is color-coded in shape representations. For red colors there is a indentation and for blue colors a
bulge. It can be seen that the deformation strength matches the muscle activation.
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Figure 7: Time course when tested and trained on different subjects. The upper graphics show estimated and real plotted on the same
axis. A large offset can be seen, which can be explained by the different value ranges of the EMG signals on different subjects. When plotted
on two scaled axes, it becomes apparent that the course also agrees well. (a) Peroneus longus, trained on subject 1 and tested on subject 2 (b)
Tibialis anterior, trained on subject 4 and tested on subject 1.

MASK NO MASK

DIRECT 0.35 0.16
PCA 0.63 0.51

Table 3: Comparison of Model Performance: Average correla-
tion coefficient between estimated and measured EMG (peroneus
longus and Tibialis anterior, cross correlation accross all subjects)
after disabling the masking (NO MASK) and/or the PCA (DI-
RECT) in our model. Our model with masking and PCA clearly
performs best.

5.3. Comparison of Model Components

To demonstrate the importance of both muscle masking and PCA
within our model, we performed an ablation study by remov-
ing those components and checking how that affects model accu-
racy. Instead of using the mask, we learn on the whole leg ("NO
MASK"). Instead of running a PCA, we regress muscle activity di-
rectly from the displacements of all the vertices ("DIRECT"). We
can see in Table 3 that both masking and especially PCA signif-
icantly improve accuracy of the model. Training the model from

vertex displacements directly ("DIRECT") results in severe overfit-
ting, as also demonstrated in Figure 9.

5.4. Visualization of Exaggerated Muscle Deformation

Another useful application is the visualization of deformation of
specific muscles. Such muscle deformation are usually not clearly
visible, because the deformation takes place in the range of mil-
limeters. With our approach we are able to exaggerate muscle de-
formation: Instead of learning a model that maps from the PCA
projection to the EMG, we learn K models (each for one principal
component), that maps backwards the EMG signal to the PCA pro-
jection space, g :R→RK . The predicted PCA space from the EMG
Signal is now weighted with a prefactor to exaggerate the shape de-
formation. After invers transformating the PCA space in the vertex
space, the exaggerated muscle deformation can be rendered as in
Figure 10. This technique is similar to that used by [GNW17], but
it isolates different muscles automatically. Such a feature could be
used for realistic representation of muscle deformation in character
animation, but also for educational and even medical purposes to
study spatial arrangement and behavior of the muscle.
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#1

#2

#3

#4

0.87 0.89 0.75 0.49

0.85 0.91 0.81 0.33

0.81 0.81 0.89 0.18

0.03 0.56 0.30 0.83
#1 #2 #3 #4

(a) Peroneus longus

0.91 0.63 0.62 0.89

0.88 0.91 0.68 0.89

0.76 0.38 0.91 0.71

0.86 0.54 0.56 0.94
#1 #2 #3 #4

(b) Tibialis anterior

#1

#2

#3

#4

0.76 0.40 0.58 0.60

0.64 0.70 0.65 0.61

0.57 0.45 0.83 0.59

0.71 0.28 0.54 0.74
#1 #2 #3 #4

(c) Soleus

0.83 0.65 0.78 0.34

0.32 0.78 0.02 0.11

0.59 0.16 0.84 0.15

0.38 0.07 0.58 0.84
#1 #2 #3 #4

(d) Gastrocnemius

Figure 8: Accuracy on cross subject evaluation. Here, the cor-
relation coefficients between the estimated and real EMG signal
is represented. The model is trained on one subject (y-axis) and
tested on another (x-axis). The results on the main diagonal are
better since the model was learned and tested on the same subject.
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Figure 9: Comparison of PCA and DIRECT Regression. (a)
Model was trained on the same trail as tested. The direct regres-
sion of the vertex displacements overfits very strongly, the signal
can be almost perfectly reconstructed. In contrast, the PCA based
variant overfits much less. (b) Comparison between DIRECT and
PCA regression when training and testing was done on different
trials. It can be seen, that PCA Regression can estimate the signal
much better as DIRECT variant.

(a) (b) (c)

Figure 10: Muscle deformation with exaggeration by the factor
of six (a) rest position (b) Peroneus longus (c) Tibialis anterior

6. Discussion

In this paper, we tackled the novel task of estimating muscle
activity from high-resolution 3D recordings of the skin surface.
Our method based on Supervised Principal Component Regression
works reliably on certain muscles of the lower limb during the one-
leg stance, even across different subjects. Nevertheless, there are
some limitations that need to be fixed before our method can be
tested in clinical settings.

Our pose normalization procedure fails for large motion (run-
ning, walking, jumping, etc.): linear blend skinning is (known to
be) bad at modelling skin deformation during knee bends and there-
fore, not all pose-related deformation can be successfully sub-
tracted. This could be fixed by adapting an existing data-based
models such as [LMR∗15] or by building anatomical models sim-
ilar to [BB14, ZHK15]. Such models could better predict pose-
related deformation and thus should be able to successfully separate
the subtle muscle deformation for large motion.

Our model assumes a linear relationship between skin deforma-
tion and EMG, which is known to be correct up to about 30% for
skeletal muscles [HPHG03]. Other studies suggest a nonlinear re-
lationship and hysteresis effect [MP00] between muscle expansion
and muscle activation. Here, nonlinear models and more data could
yield further insights and improvements. Additionally, we observed
a latency between the EMG and the 3D data. In the present work
we fixed this by offsetting the EMG signal by 100 milliseconds
(this lag was consistent for all subjects). In the future, we plan to
carefully inspect if this is an issue in our synchronization proce-
dure or if we are indeed observing a biological phenomenon that
causes visible muscle volume changes to lag behind neurological
activation. Further insights in this direction may be gained by com-
paring our 3D measurements to data obtained by detailed muscle
structure models [Roe12], but that would require careful subject-
specific registration of such models to our 3D surface data. Our sys-
tem could also enable the analysis of anomalies of certain muscle
movements (Figure 8a, subject 4). More data and a comprehensive

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

164



Johannes Metzler & Thomas Neumann et al. / Estimation of Muscle Activity in One-Leg Stance from 3D Surface Deformation

medical anamnesis of the involved patients is required to clarify
whether these observations are caused by an anomaly/impairment
or a model error. Furthermore, it should be investigated to what soft
tissue thickness between skin surface and muscle estimation works.

While our model is able to predict the shape of the muscle acti-
vation remarkably well, it is not able to estimate the true maximal
amplitude of the EMG signal. This might be fixable with better
maximum voluntary contraction (MVC) normalization. However,
it might also be necessary to normalize the maximum skin defor-
mation across subjects, which again requires data from more peo-
ple.

Right now, we use a dot pattern that has to be painted onto the
skin. This was done on purpose to facilitate 3D reconstruction at
maximum possible precision. While the dots are applied randomly
and relatively quickly, such a procedure would be completely im-
practical in a clinical setting. Alternatively, pattern printed tights
may be used. The 3D surface of the tight is a close proxy of the true
skin surface and first tests with the system of [Neu16, Section 2.2]
showed that muscle deformation are well visible underneath those
tights and 3D reconstruction with that system could be possible in
realtime. To reduce hardware costs, the number and resolution of
the cameras could be gradually reduced to find out what hardware
is needed to reliably estimate muscle activity.

Finally, it is worth pointing out that our system is only a proof-of-
concept right now. To assess its practicability for medical/clinical
applications, a large-scale medical study would be needed, with
impaired and healthy subjects including different control groups.

7. Conclusion

In summary, our novel multi-sensor system records 3D surface ge-
ometry of the skin in high spatio-temporal resolution along with
EMG data for the first time. With data collected from this sys-
tem we showed that there is strong correlation between visible
skin bulges and electrical muscle activation. Our model is able to
estimate muscle activity from subtle skin deformation in one-leg
stance. In the future, we would like to substantially improve the
pose normalization step. We further need to extend the method in
order to analyse more muscles and apply it to more complex mo-
tions as well as to a broader range of healthy and impaired sub-
jects. 3D skin deformation as offered by our system are an interest-
ing new modality that promises precise insights into the temporal
and spatial strategies of muscle control and may lead to improved
biomechanical assessment and therapy planning.
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