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Figure 1: Simulation of the ERK pathway within a simplified cell model (25 billion atoms, center). With our optimized visual-
ization algorithm, it is possible to render this data set at 3.6 fps. Left: close-up view rendered with depth of field. Right: close-up
view showing the cytoskeleton and signal proteins. For molecules near the camera, individual atoms are discernible.

Abstract

Molecular visualizations are a principal tool for analyzing the results of biochemical simulations. With modern
GPU ray casting approaches it is only possible to render several millions of atoms at interactive frame rates
unless advanced acceleration methods are employed. But even simplified cell models of whole-cell simulations
consist of at least several billion atoms. However, many instances of only a few different proteins occur in the
intracellular environment, which is beneficial in order to fit the data into the graphics memory. One model is
stored for each protein species and rendered once per instance. The proposed method exploits recent algorithmic
advances for particle rendering and the repetitive nature of intracellular proteins to visualize dynamic results
from mesoscopic simulations of cellular transport processes. We present two out-of-core optimizations for the
interactive visualization of data sets composed of billions of atoms as well as details on the data preparation
and the employed rendering techniques. Furthermore, we apply advanced shading methods to improve the image
quality including methods to enhance depth and shape perception besides non-photorealistic rendering methods.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing, 1.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data

structures and data types, J.3 [Computer Applications]: Life and Medical Sciences—Biology and genetics

1. Introduction

The interactive rendering of large particle systems has been
an active area of research for many years. One of the most
prominent areas of application is the visualization of the re-
sults from particle-based simulations. The data sets coming
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from this domain have been rapidly increasing in size over
the last years. This is partly due to the advancements of the
simulation software and partly due to the increasing compute
capability and the availability of massively parallel hardware
like compute clusters and accelerators like GPUs. Exa-scale
visualization still seems to be a long way off, but even the
data sets available today are pushing the rendering capabil-
ity of current graphics hardware to its limits. However, it is
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important that the visualization keeps up with the simula-
tions to ensure that the domain scientists can still analyze
their data sets. One possible and popular approach is to use
compute clusters for visualization. From our perspective, it
is important to enable the visualization of large particle data
sets on common desktop workstations. This is not only more
convenient for the user but also enables a wider range of
users to get access to the data. Our main focus lies on the
visualization of biomolecular data sets. More precisely, we
want to visualize the results from coarse-grained (so-called
mesoscopic) particle-based simulations of whole cells. Even
though the simulations operate on single particles represent-
ing whole molecules, our goal was to visualize the simula-
tion on an atomic scale (cf. Figure 1). This can help scien-
tists to see the detailed function of cellular processes and
gain a better understanding of cellular dimensions and com-
plexity. While atom-based simulations typically range up to
only tens of millions of atoms, mesoscopic simulations can
easily reach tens of billions of atoms if shown on an atom-
istic level. Our work builds on the recent work of Lindow
et al. [LBH12] who visualize molecular structures recon-
structed from electron tomography images. As in the work of
Lindow et al., our simulation data sets consist of large num-
bers of instances of only few individual molecules. Apart
from showing the underlying data of the simulation and pro-
viding new, detailed insights into the simulated system, our
work can also be used for artistic reasons and educational
purposes, e.g. for showing the crowded internal environ-
ment of the cell. Therefore, we also show the applicability
of various image enhancement techniques to create render-
ings which are visually pleasing and, moreover, highlight the
structure and spatial relationships in the data.

The main contribution of our work is an application
for the interactive visual exploration and visual analy-
sis of mesoscopic whole-cell simulations on an atomistic
level of detail. We use an extended and optimized version
of [LBH12] to visualize our dynamic data sets resulting from
simulations. Furthermore, we show the applicability and fea-
sibility of illustrative methods to enhance the data analysis
and image quality. Our visualization is interactive for giga-
scale particle data sets on consumer graphics hardware.

2. Previous Work

When dealing with huge particle data sets, parallel visu-
alization approaches are a reasonable and, in most cases,
promising approach. Popular visualization frameworks like
ParaView [LHAO1] support parallel visualization. As stated
in the introduction, our work focuses on visualizations us-
ing commodity desktop workstations equipped with high-
end consumer graphics hardware. In the following, we there-
fore focus on the previous work from this area.

Simple glyph-based visualization of particle data sets is a
flexible and powerful representation for data analysis. Most
commonly, particles are rendered as spheres or ellipsoids,

where features can be mapped to visual qualities, like the
radius or color of a sphere. Gumhold [GumO03] introduced
the concept of point-based GPU ray casting to render large
numbers of ellipsoids interactively. This method can be seen
as the de-facto standard for rendering quadrics nowadays
since it is vastly superior to classical triangle-based geom-
etry in terms of speed and image quality. Recently, Grottel
et al. [GRE09] showed that it is possible to render millions of
spheres interactively on modern GPUs without advanced ac-
celeration techniques. They also evaluated different ways to
upload the data to the GPU for rendering, which today is one
of the major bottlenecks for visualizing large, dynamic data
sets. Subsequently, they extended their method using a two-
level occlusion culling and deferred shading [GRDEI10].
With this optimized technique, they have been able to render
data sets of up to 100 million particles interactively. How-
ever, as with all occlusion culling methods, their algorithm is
only beneficial for dense data sets with a large amount of oc-
cluded geometry. This is not the case for our data sets since
the interior of our simulated cell is rather sparsely populated
due to the simplified simulation model.

Recently, Lindow et al. [LBH12] presented a method
to render biomolecular data sets comprising over a bil-
lion atoms. Since they visualize molecular structures recon-
structed from electron tomography (ET) images, their data
sets consist of many instances of the same molecules. Due
to the limited resolution of ET images it is only possible to
identify individual molecules or molecular complexes, but
not to extract the spatial structure or even individual atoms.
Therefore, the same model is used to visualize all molecules
of a certain species. Their visualization method exploits
this fact to achieve interactive rendering performance. The
general idea of their algorithm can be outlined as follows:
Each molecular model is uploaded to the GPU memory dur-
ing the preprocessing stage. During rendering, instances of
the bounding boxes of the uploaded models are rendered
for each molecule. The individual atom spheres are then
rendered using a GPU ray marching approach within each
bounding box, similar to GPU volume ray casting [HSS*05].
In Section 5, we give a detailed description of the original
algorithm and explain our extensions and optimizations. A
similar approach was presented by Lampe et al. [LVRHO07]
to visualize large proteins. They assemble the proteins on
the GPU after transferring only the position and rotation of
each amino acid. The individual atoms per amino acid are
stored in a texture. The points for the atoms are generated
and transformed in the geometry shader and rendered using
ray casting in the fragment shader. In contrast to [LBH12],
this method is limited by the number of primitives that can
be emitted by the geometry shader.

3. Biological Background

In recent years, systems biology became an emerging, multi-
disciplinary field. Systems biology investigates the charac-
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teristics and the complex interactions of all elements in a
particular biological system [Pal00]. Methods from systems
theory are used to build mathematical models of processes
within an organism. These models are tested either with in-
silico simulations or heuristics. Afterwards, the model re-
sults are then compared with the data obtained in experi-
ments. In the context of our work, signaling processes in the
cellular environment are of special interest.

We approximate the complex interior of a biologi-
cal cell for in-silico simulations as described by Falk
et al. [FKREQ9]. The plasma membrane defines the outer
boundaries of the cellular environment and has a spheri-
cal shape. The nucleus, which contains the DNA, is located
in the interior of the cell. The remaining space inside the
plasma membrane, the cytoplasm, is filled with various com-
partments, proteins, hormones, and water molecules, which
are the most abundant species. The number of proteins of
the same species in a single cell ranges from only a few
to billions. For example, there are about 500 billion actin
molecules in a liver cell. The structure of the cell is main-
tained by the cytoskeleton, a scaffold built of three differ-
ent filament types. Microtubules exhibit a cylindrical form
of thirteen protein columns. Their main functions are the
stabilization and movement of the cell and the intracellu-
lar transport. Actin filaments, also known as microfilaments,
stabilize the cell and withstand both tensile and compressive
forces. The intermediate filaments, the third filament type,
build a tightly connected network around the nucleus. They
serve as fixture for organelles in the cytoplasm. All three
types of filaments are represented by elongated cylinders.
Proteins in the cytoplasm move by diffusion and through the
so-called motorized transport along microtubules and actin
filaments with the aid of motor proteins.

Molecular dynamics simulations are not suitable to simu-
late such a cellular environment on the atomic scale because
they only cover time scales in the range of picoseconds and
nanoseconds. Such timescales are too small to reproduce the
effects of cellular signaling mechanisms, which take place
in seconds to even hours. To solve this problem, mesoscopic
simulations can be employed. When neglecting atomistic
effects, the atomic structure of a signaling molecule can
be replaced by a sphere with the hydrodynamic radius of
the physical molecule. We use a three-dimensional agent-
based stochastic simulation employing CUDA for GPU ac-
celeration [FOE*11] where each agent represents one sin-
gle molecule. This type of simulation also considers spatial
effects like asymmetric protein distributions in contrast to
models solely based on differential equations, which use av-
erage concentrations [PSQHO06].

4. Data

The atomic structures of all molecules used in this paper are
obtained from the protein data bank (PDB) [PDB]. The data
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Figure 2: Structure of microtubules. Left: a-tubulin (dark
green) and B-tubulin (light green). Right: thirteen complexes
of o- and B-tubulin are arranged in a circle building one turn
of a microtubule.

files provide information on the location and type of atoms
as well as conformal information.

Proteins can usually be loaded from a single file. However,
in some cases a file might contain only a part of the protein
which then has to be combined with other protein parts.

Microtubules consist of o- and B-tubulin, which form
dimers (Figure 2). Thirteen dimers (PDB-ID: 1TUB) are ar-
ranged in a circle building one row of the microtubule yield-
ing a hollow structure. The dimer itself is about 8 nm high
and is continuously shifted along the microtubule axis reach-
ing 12nm per turn [LBK*07]. The resulting seam on one
side of the tubule can be seen in Figure 2, right.

Actin filaments are two intertwined monomers consisting
of individual actin molecules (PDB-ID: 3MFP). Figure 3
shows one complete turn of the helical structure built by
28 actin molecules, i.e. 14 molecules per monomer. The
length of one turn is 77.3 nm. The helix can be constructed
either with the transformation provided in the PDB entry or
the model of Holmes et al. [HPGK90].

5. Algorithm

The rendering method we are using relies on the fact that,
even though the overall number of particles in the scene may
be as high as several billions of atoms, the number of indi-
vidual molecules is typically quite low. That is, the atom po-
sitions of each type of molecule have to be stored only once
and can be rendered for all instances of the same molecules.
This reduces the number of atoms which have to be stored
in main or graphics memory to at most a few millions. In the
following, we explain the rendering technique presented by
Lindow et al. [LBH12] onto which our work is based on. We
also go into detail about our extensions and optimizations to
the original work.

Molecule Setup and Instancing. As outlined in Section 3,
our primary sources of data are mesoscopic simulations
which do not operate on individual atoms but on whole
molecules. Therefore, all molecules in the scene are rigid,
that is, they are only translated and rotated, but do not un-
dergo any internal deformations. Consequently, we have to
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Figure 3: Actin filaments are built of two intertwined actin monomers and one complete turn of a monomer consists of 14 actin
molecules. The normal approximation (right) enhances the global structure compared to the shading with exact normals (left).

transfer the atomistic molecular models only once per pro-
tein type to the GPU memory—just like the original algo-
rithm. During rendering, we can draw multiple instances of
the same molecule. This allows keeping the amount of data
which has to be transferred for each render pass from the
CPU to the GPU very low. For each molecule we render, we
only have to transfer the translation and rotation which can
either be stored in a single matrix or in a quaternion and an
additional translation vector. In the vertex shader, the quater-
nion rotation must then be converted back into a matrix.

For the microtubules we use two instance blocks, one with
ten rows consisting of 130 tubulin dimers resulting in 882k
atoms and one with twenty rows (1.76 M atoms). The two
blocks of the actin filaments consist of 28 actin molecules
(82k atoms) and 56 molecules (164 k atoms) respectively.
The blocks of actin filaments or microtubules are fitted on
the filaments of the cytoskeleton from the simulation. Since
the elongation of those blocks is small compared to the total
length of the filaments, the remaining uncovered part is less
than 80 nm and, therefore, negligible.

Grid Traversal and Ray Casting. To allow for fast, high-
quality rendering of the atoms, we employ ray casting to
compute the intersections between the viewing rays and
the atoms. A uniform grid is used for space subdivision
to reduce the number of intersection tests. All atoms of a
molecule are sorted into this grid. A box-sphere intersection
is used to determine all cells of the grid with which an atom
intersects. To store the data of the uniform grid we use the
grid data structure proposed by Lagae and Dutré [LDOS].
Each cell of the grid is mapped onto one voxel of a 3D tex-
ture. The atomic data—i.e. position, radius, and color IDs—
are stored in two additional 2D textures. The first texture
contains the atom position and its radius represented in 32-
bit floating point values. The color identifiers, e.g. atom type,
chain ID, or strand ID, are stored in the second texture with
up to four channels. This additional data is accessed via a
2D index stored in the 3D grid texture. In addition to the 2D
index, each voxel also contains the number of atoms in this
cell. Upon rendering the atoms, only the grid’s bounding box
of each instance is drawn. By rendering only the back faces
of the bounding box and computing the corresponding posi-
tion on the front side, the ambiguity between front and back
faces is avoided. The fragment shader computes the view ray
through each fragment covered by the bounding box and tra-

verses the grid cells front to back. The individual ray-sphere
intersections for the atoms are consequently computed per
grid cell. As soon as at least one atom is hit, the grid traver-
sal can be stopped. Note that it is important to compute all
intersection in one grid cell to obtain the closest intersection
because the atoms are not ordered.

Lindow et al. [LBH12] observed that a ray-voxel traver-
sal [AW87] is superior to a ray-layer traversal, where sev-
eral grid cells have to be considered for each step along the
view ray. The only drawback of the former method is that
the atoms have to be replicated for each grid cell they inter-
sect. If the size of the grid cells is chosen with respect to the
atom size, one can ensure that a single atom is contained in
at most eight grid cells. Moreover, the better rendering speed
outweighs the additional memory consumption, which is not
a problem on current GPUs with 1 GiB or more of graphics
memory. Lindow et al. proposed a grid where the number of
voxels equals the number of atoms. We chose the size of the
grid cells with respect to the atom size, ensuring that a single
atom is contained by at most eight grid cells. Hence, a voxel
size of 4 Angstrém was chosen. In our experience, this also
gives the best performance. We observed that in this case,
the resulting number of voxels roughly corresponds with the
number of atoms, that is, we concur with Lindow et al.

Deferred Shading. Similar to Grottel et al. [GRDE10],
Lindow et al. [LBH12] use deferred shading to speed up the
rendering. Both works also use a normal correction scheme
to smooth out high frequencies between adjacent normals of
distant objects. This results in a more continuous lighting
which creates a surface-like impression.

Grottel et al. [GRDE10] propose to use deferred shading
with different normal calculations depending on the distance
from the camera. For near objects, the analytically com-
puted normals are used for shading. As the objects move
away from the camera an approximated normal is used. The
approximated normal is the normal of the center point of
a quadratic Beziér surface over the current point and its
neighbors. A smooth transition between analytical and ap-
proximate normal is obtained by linear interpolation. Fig-
ures 3 & 4 show a comparison between analytical and ap-
proximated normals.

(© The Eurographics Association 2012.



M. Falk, M. Krone, & T. Ertl / Atomistic Visualization of Mesoscopic Whole-Cell Simulations 127

Figure 4: Normal estimation along a microtubule. Left: interpolation between analytical normal (red) and averaged normal
(blue) depending on the camera distance. Center: the roughness of the surface is revealed with normal estimation. Right:
without normal estimation. Note, only direct illumination is applied.

5.1. Optimizations

Depth Culling. In classical polygon-based computer
graphics, the OpenGL pipeline can reduce the computational
load by the early z test, which takes place after the vertex
processing stage: If a fragment which is closer to the camera
than the current fragment was already rendered, the compu-
tation for the current fragment can be aborted. However, the
early z test is automatically disabled if a fragment shader
manipulates the depth of the fragment or uses discard
to reject fragments. We actually need both functions: We
need the correct per-fragment depth values for all spheres for
molecule-molecule intersections and we must discard frag-
ments where a ray traverses the bounding box of an object
but does not write any output because no atom is hit.

We propose to store the depth of the closest intersection
and reuse it in the fragment shader to perform an early re-
ject. If the stored depth value is smaller than the depth of the
bounding box front, the computation in the fragment shader
can safely be discarded. In case the front position is closer
the grid traversal takes place and if an intersection is found,
the resulting depth is stored into a second texture. The two
textures with the depth values are swapped in a ping-pong
fashion after n molecule instances have been drawn. The reg-
ular depth buffer is still necessary to ensure the correct depth
ordering of the n instances of one pass. Since we assume the
molecules to be randomly distributed in our cell n can be
large and the optimization is still beneficial (see Section 6).

To avoid a second render target, which would slow down
the rendering, we combine the depth information with the
normal and the color ID resulting from the ray-sphere inter-
sections. By using integer color IDs, we can save the scaled
third component of the normal together with the color id and
are able to reconstruct the normal in the deferred shading.
Therefore, it is possible to store the normal, the color ID,
and the closest depth in a single texture. In the subsequent
deferred rendering, both result textures are sampled and the
texture with the smaller depth value is chosen.

Hierarchical Ray Casting When visualizing our simula-
tion results, most of the molecules will only cover a few pix-
els on the final image. The resulting artifacts can be reme-
died by the approximate normal approach described above.
But this does not reduce the computation workload for ren-
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dering. Hence, we extend the original algorithm of Lindow
et al. [LBH12] by a hierarchical ray casting. If, during the
grid traversal, a grid cell covers only a single pixel, we can
omit the ray-sphere intersection tests, because it is impos-
sible to distinguish individual spheres anyway. In this case,
our algorithm only makes one texture lookup to determine
whether the grid cell is empty or not. If the grid cell is not
empty, this will be considered as a hit and the grid traver-
sal will be stopped. This is only valid because the grid cells
have roughly the same size as an atom. Therefore, the prob-
ability of an atom being hit by a ray traversing the corre-
sponding grid cell is high. The result is basically a binary
voxelization of the data set. The same approach can be used
for whole molecules if the bounding box of the molecule
covers only one pixel on the image plane. This technique
is especially feasible for our simulation data sets where the
cytoskeleton is composed of very large molecules and the
signal proteins are quite small in comparison. Note that this
has no effect on the deferred shading, since we only use ap-
proximated normals for distant objects. The approach also
prevents molecules from being invisible because they would
be smaller than one pixel and not be hit by the view rays.

The size of the pixel is calculated for the depth at the end
of the current view ray. With the aid of the intercept theorem
the pixel size is obtained from the field of view, the viewport
height in pixels, and the corresponding depth. Since no in-
tersection tests are performed when the pixel is larger than a
grid cell, a special coloring scheme has to be employed. We
propose to use the color ID of the first entry of the cell. This
has the advantage, that coloring according to chain, strand,
or instance ID is still possible and also visible. Other pos-
sible color schemes could comprise of a precomputed aver-
aged color per grid cells or just a single color predefined per
molecule instance.

5.2. Shading and Postprocessing

We use deferred shading [ST90] for the final image genera-
tion. One of the most important features of deferred shad-
ing is that it limits lighting computations only to visible
fragments. This it not only advantageous because it reduces
the computational load, it also allows us to use various
post-processing techniques in image-space. Using the atom-
istic representation, the user can apply the common coloring
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Figure 5: Depth of field applied to a sparse test scene (10
billion atoms). The red actin filament (right) is in focus.

schemes for molecular graphics. For the proteins, we imple-
mented coloring by element, by molecular subunit or chain,
and by instance ID. For the cytoskeleton, the user can addi-
tionally select coloring per strand.

We allow the user to choose between a variety of illus-
trative methods to enhance the final image. All methods
have been chosen to facilitate the visual analysis of the ren-
derings as well as for artistic reasons. Artistic renderings,
which resemble a hand-drawn illustration, are often easier
on the human perception. A prominent example for this are
the Molecule of the Month renderings by the renowned il-
lustrator David Goodsell [Goo] and the work on enhancing
real-time molecular graphics by Tarini et al. [TCMO6]. Like-
wise, we added the option to apply depth-dependent silhou-
ettes [ST90]. Silhouettes are a simple, yet effective cue to
emphasize spatial differences and to separate objects.

Depth of field is an effect from photography which sepa-
rates foreground and background since only objects in the
focal plane are sharp whereas everything out of focus is
blurred (cf. Figures 1 & 5). In visualization, this can be used
to draw the attention of the user to a specific region. The field
in focus gets shallower as the focused object gets closer to
the camera. Consequently, far away focal points lead to a
broad field in focus. To obtain the depth of field effect, we
create a mipmap chain of the color and depth buffer of the
scene. The circle of confusion, which depends on the depth
of the fragment, is then used to sample the mipmap chain.

The commonly used local lighting can be confusing and
lead to artifacts when rendering a huge number of small
spheres. Toon shading is a non-photorealistic rendering tech-
nique which shows discreet steps in the coloring instead
of a smooth gradient. We allow the user to switch be-
tween local lighting, toon shading, and flat shading. Addi-
tionally, the user can use screen space ambient occlusion
(SSAO) [Kaj09] to enhance depth perception. Due to the
lack of lighting, flat shading offers no shape cues for the
rendered spheres. However, in combination with the depth-
dependent silhouettes and a toon-shaded variant of SSAO,
flat shading results in a very clear and useful visual appear-
ance (cf. Figure 6).

Figure 6: Non-photorealistic rendering of a protein using
flat shading, silhouettes, and toonified screen space ambient
occlusion, colored according to the chain (PDB-1D: 3PPJ).

6. Results

We integrated the atomistic rendering method in our visu-
alization program which is used by our project partners to
analyze the results of the mesoscopic simulations. A screen-
shot of the application is shown in Figure 7. The user can
load the simulation data sets into the program and select dif-
ferent views to analyze the results. The main view in Fig-
ure 7 shows the atomistic visualization with the cytoskele-
ton, proteins, and the nucleus. The user can also select graph
views like the one bottom right which show for example the
radial concentration of a certain kind of protein. The appli-
cation was designed in collaboration with the users in order
to maximize the usability and user-friendliness and the ser-
viceability for the intended visual analysis.

We measured the performance of our visualization using
data sets from our mesoscopic simulation. The simulation
setup and the resulting data set are described in section 6.1.
The results of our measurements are given in section 6.2.

6.1. ERK Pathway

The mitogen-activated extracellular-signal-regulated kinase
(ERK) pathway is responsible for cell growth, prolifera-
tion, and differentiation. Growth factors initiate the sig-
nal cascade from Raf over MEK to ERK. The ERK
pathway is modeled in our system as follows. The up-
stream part of the pathway, B-Raf (PDB-ID: 3PPJ), is lo-
cated near the plasma membrane and always active. MEK1
(PDB-ID: 1S9J) on the second tier is activated by B-
Raf via double-phosphorylation, i.e. adding two phosphate
groups. The activated form of MEKI activates the final
protein, which is ERK1 (PDB-ID: 1ERK). Activated pro-
teins might be deactivated by phosphatases, here MKP3
(PDB-ID: 1MKP), by removing the phosphate groups.

The diameter of the plasma membrane was set to 10 um
and the diameter of the nucleus in the center to 4 um. Table 1
lists the components of our simulated cell. About 250,000
proteins are present in the beginning and the total amount
keeps almost constant over the course of time. The simula-
tion of 7s with a step width of Az = 50us took about two
hours on an NVIDIA GeForce GTX 560. The mesoscopic
simulation approximates molecules by spheres. Hence, ro-
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Figure 7: The visualization application used for our work.
The framework supports different data views which can be
freely arranged. The top view shows the atomistic visualiza-
tion of the simulation data, the lower left view shows the cel-
lular simulation setup, and the bottom right is a graph view.
The parameters are listed in the panel to the right. Users can
create additional views to show other data values or visual-
ization styles.

tational diffusion is not modeled explicitly, but instead in-
corporated into the reaction rates. To account for the random
rotation of proteins in the visualization, we mimic rotational
diffusion by applying random rotations onto each molecule
when the respective time step is loaded. We account for the
rotational diffusion by biasing the rotation to the direction of
movement. That is, we apply the random rotation together
with a rotation that aligns the protein to the direction of
movement. The molecule position and rotation between two
time steps is computed using linear interpolation. Figure 1
shows the ERK pathway simulation data set.

6.2. Rendering Performance

We measured the performance of our method using various
data sets from real molecular dynamics simulations. Our test
system was an Intel Core i7 920 (4x2.6 GHz) with 6 GiB
RAM and a NvIDIA GeForce GTX 580 (1.5 GiB RAM). We
used a grid cell size of 4 A. For the depth culling, the number
of proteins per iteration was set to 4,096, which turned out to
give the best results. The view resolution was 1920x 1200.
We adjusted the camera so that most of the screen was cov-

Table 1: Parameters of the components of the ERK model.
The letter B denotes billions ( 10° ).

Type #Elems. Length # Instances # Atoms
[um] long short

Actin 7,500 9,873 62,051 3,622 14.34B

Tubules 800 1,303 7,954 378 10.44B

ERK 246,000 — — — 0.59B

Total 25,421,804,076 =25.42B
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ered by the cell and zoomed in so that the proteins in the
foreground were not rejected by hierarchical ray casting. As
with all ray casting methods, the rendering performance is
highly depending on the camera adjustment and the number
and size of objects in the scene. Therefore, we will not con-
duct a formal comparison with the performance values given
by Lindow et al. [LBH12] but rather compare our optimiza-
tions to the original algorithm.

For the huge data set containing more than 25 billion
atoms, we measured 1.8 fps without any optimizations. With
our custom depth culling enabled, the frame rate was 2.2 fps
which is about 20 % faster. With the hierarchical ray cast-
ing and no depth culling, we measured 3.3 fps (about 80 %
faster). With hierarchical ray casting and depth culling, the
frame rate was at 3.6 fps, which is twice as high as the non-
optimized version. Zooming further into the scene similar to
Figure 1 (right) led to an increase in the rendering perfor-
mance to about 8 fps. The rendering of the whole cell, as de-
picted in the center of Figure 1, was possible with 3.6 fps at
a height of 1200 pixels when enabling all optimizations. The
data set was rendered at 10.3 fps when covering only half
the viewport height and 21.8 fps at a third of the height. We
executed the same test using various other simulation data
sets which were different in size but used the same building
blocks as the one described in section 6.1. In all our measure-
ments, we observed similar speedups for our optimizations.

7. Future Work

So far, our simulations do not include information about the
rotation of the proteins. However, we apply a biased rota-
tion for rendering which is modeling the rotational diffusion
as explained in section 6.1. In the future, we want to add a
more refined stochastic model of the rotational diffusion to
the underlying simulation which is developed in collabora-
tion with our project partners.

The rendering method we used for our work is restricted
to static molecules. As future work, we want to investigate
the feasibility of this algorithm for rendering partly dynamic
models which are composed rigid molecules. One applica-
tion could be myosin filaments, where only the head domain
is moving, or partly rigid MD simulations of viral envelopes,
where the capsid proteins are internally rigid but moving.

Another promising direction for future developments
would be the usage of tight-fitting bounding geometry. Es-
pecially for the filaments and tubules, the currently used
bounding box contains many empty cells. Using cylindri-
cal bounding boxes could lead to higher performance while
requiring an only slightly more elaborate grid traversal strat-
egy. Other possible bounding geometries would, for ex-
ample, include spheres, object-aligned bounding boxes or
roughly approximated convex hulls.

GPU ray casting can not only useful for rendering implicit
surfaces but also applicable for rendering large numbers of
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triangulated objects [GRZ*10]. In the future, we would like
to investigate how the method described in this paper could
be combined with mesh-based geometry. This would enable
rendering not only simple sphere-based molecular models
but also arbitrary objects like complex, precomputed molec-
ular surfaces [CGO7, KSES12].

8. Summary and Conclusion

We presented a method to visualize mesoscopic whole-cell
simulations in atomic detail. Our rendering method is an ex-
tension of the recent work by Lindow et al. [LBH12]. With
our optimized algorithm, it is possible to render the intracel-
lular environment with several billions of atoms at interac-
tive frame rates on current graphics hardware. We modeled
the simulated interior of the cell using readily available stan-
dard data sets from the Protein Data Bank [PDB].

Our application allows the user to apply several methods
for image enhancement methods like screen space ambient
occlusion [Kaj09] and illustrative, non-photorealistic ren-
dering techniques. These methods can be used to facilitate
shape and depth perception. They allow to interactively cre-
ate visually pleasing, artistic images similar to [Goo], which
can be used for instance in publications or as educational
resources.

The visualization is integrated into a visualization appli-
cation that is used by our collaborators from the field of sys-
tems biology. We presented our results to these project part-
ners and got positive feedback. Amongst other things, they
had the impression that this detailed visualization creates a
better understanding of cellular dimensions and complexity
than simplified representations. In the future, we would like
to conduct a formal user study to confirm these anecdotal,
preliminary statements.
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