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1. Introduction 

Viewpoint specification is fundamental to traditional com-
puter graphics rendering. Both the transformation of a 
scene to eye space in the traditional graphics pipeline and 
the origination of viewing rays in a ray-casting system de-
pend on the viewpoint. Moreover, many subsequent render-
ing steps are also impacted by the choice of viewpoint, in-
cluding clipping, projection, illumination calculations, 
shading, and visibility determination. As a result, changing 
the viewpoint frequently gates the entire process of interac-
tive rendering, as each rendered frame is initiated with the 
specification of a viewpoint, followed by the scene descrip-
tion, and culminating with the final displayed image. 

There are many potential advantages to decoupling 
viewpoint specification from rendering. First, immediate 
efficiency improvements are available if rendering costs 
are amortized over multiple views. They result from reuse 
of shading calculations as well as exploiting the coherency 
of surface reflection with smooth variations in viewpoint. 
A second advantage results from beginning the rendering 
process before the viewing position is resolved, thereby re-
ducing latency. 

However, the ultimate advantage of separating render-
ing from viewpoint selection is that it becomes possible to 
render the same scene for multiple eyes. Possible applica-

tions include shared virtual environments (stereo viewing 
by many participants of a computer-generated scene). In 
the future, view-independent graphics rendering hardware 
will also be essential to support the multitude of viewpoints 
required for real-time autostereoscopic and holographic 
display devices. 

Abstract 
We present a new computer graphics rendering architecture that allows “all possible views” to be extracted 
from a single traversal of a scene description. It supports a wide range of rendering primitives, including po-
lygonal meshes, higher-order surface primitives (e.g. spheres, cylinders, and parametric patches), point-based 
models, and image-based representations. To demonstrate our concept, we have implemented a hardware proto-
type that includes a 4D, z-buffered frame-buffer supporting dynamic view selection at the time of raster scan-out. 
As a result, our implementation supports extremely low display-update latency. The PixelView architecture also 
supports rendering of the same scene for multiple eyes, which provides immediate benefits for stereo viewing 
methods like those used in today’s virtual environments, particularly when there are multiple participants. In the 
future, view-independent graphics rendering hardware will also be essential to support the multitude of view-
points required for real-time autostereoscopic and holographic display devices. 

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing Algorithms; 
Display Algorithms; Bitmap and Frame Buffer Operations. I.3.1 [Computer Graphics]: Graphics Processors. I.3.6 
[Computer Graphics]: Graphics Data Structures and Data Types. 

Figure 1: Photograph of our hardware prototype of the 
PixelView architecture. The prototype is on the right, its 
VGA output is in the middle, and the PC controller is on 
the left. 
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We have developed a new computer graphics rendering 
architecture, called PixelView, in which a single traversal 
of the scene description generates “all possible views” (or 
at least a wide range of views). PixelView is compatible 
with the scene descriptions used by traditional 3D render-
ing hardware (i.e. polygons). In addition, PixelView, like 
the Reyes rendering system and many ray-casting render-
ers, supports any higher-order surface primitive for which a 
world-space subdivision scheme exists. It also natively 
supports point-based models as well as image-based repre-
sentations, all within a unified rendering architecture. 

The primary contributions of our PixelView rendering 
system include: 

• A scalable system architecture for supporting 
real-time, view-independent rendering of 3-D 
models 

• A hardware prototype of a 4D, z-buffered frame 
buffer demonstrating the viability of dynamic 
view selection at scan-out 

• Hardware rendering of primitives with view-
dependent reflectance by a technique that we call 
“point casting” 

In addition, we consider possible representations and 
compressions for the radiance of view-dependent points to 
reduce storage and bandwidth requirements. 

2. Overview 

We begin with a high-level overview of PixelView via a 
comparison with the traditional graphics pipeline, with a 
focus on the role of view specification. 

The left side of Figure 2 shows a traditional graphics 
pipeline. Polygon vertices (in object space) are fed into the 
geometry stage for transform and lighting. This stage out-
puts lit, screen-space triangles that are subsequently raster-
ized into fragments. These fragments are then shaded and 
textured. Various other raster operations, such as depth-
comparison, compositing, and filtering, can then be per-
formed before the final color values are written into the 2D 
frame buffer. 

The right side of Figure 2 shows the PixelView pipeline. 
Our system supports any primitive that can be subdivided 
in world space. Primitives enter the subdivision stage, 
where they are first transformed from object space into 
world space. The primitives then undergo world-space sub-
division and are shaded and textured. The shader/texture 
stage outputs fully shaded world-space points, which are 
then “point cast” into specific bins of the 4D frame buffer. 
Lastly, because a point will generally not fall exactly into a 
bin, its contribution is “scattered” into nearby bins. Specif-
ics of the various pipeline stages are discussed in subse-
quent sections. For now, we will focus on the role that view 
information plays in each rendering approach. 

When comparing the pipelines, note that view specifica-
tion comes into play very early in the traditional graphics 
pipeline. Specifically, the first operation that typically hap-
pens to vertices in the geometry stage is to transform them 

into eye space via the modelview matrix. Many later steps 
in the pipeline are also affected by the viewpoint. Thus, 
changing the viewpoint requires re-traversal and re-
rendering of the entire scene. 

Alternatively, note that no view transform occurs in the 
PixelView geometry processing stages. In fact, no view 
transform occurs at any point along a primitive’s path into 
the frame buffer. That is, no knowledge of the virtual cam-
era’s location and orientation is required to render primi-
tives into the 4D frame buffer. We can “get away with this” 
because we render a sampled version of the outgoing radi-
ance from each point of the scene. The viewpoint specifica-
tion can thus move to the display stage, where it is used to 
reconstruct a particular view during scan-out. This allows 
the viewpoint to change without re-rendering the scene. 
Furthermore, this fundamental reorganization of rendering 
tasks allows us to re-visit the tradeoffs between rendering 
quality and frequency of scene updates. 

3. Previous Work 

The recent advent of flexible programmable graphics 
hardware has ignited renewed interest in alternative archi-
tectures for real-time rendering [OKTD02; PBMH02]. 
However, one of the least flexible remaining functions in 
existing architectures is the scan-out mechanism used to re-
fresh the display. The only exposed controls for display re-
fresh are for setting the resolution (and perhaps setting the 
origin of the memory block allocated for the frame buffer). 
There are compelling reasons for optimizing this function-
ality via a hardwired implementation. In particular, because 
the performance of graphics processing units is often dic-

Figure 2: High-level comparison between a typical 
OpenGL-style pipeline and PixelView. Only the display 
stage in PixelView requires knowledge of the viewpoint, al-
lowing reuse of shading and rendering calculations. 
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tated by available memory bandwidth, there is a significant 
benefit in optimizing the appreciable, constant, and real-
time demands of display refresh. In other words, it makes 
sense to minimize the demands of refresh to free up mem-
ory bandwidth for other compelling rendering functions. 

However, the lack of flexibility in display scan-out lim-
its the ability to address certain problems related to dy-
namic view selection and latency compensation [OCMB95; 
BFMZ94]. Regan et al. recognized this limitation and con-
structed a novel 3D frame buffer with flexible scan-out cir-
cuitry for the specific purpose of studying display latency 
[RMRK99]. Although successful at reducing latency, their 
system lacked vertical parallax (i.e. it limited the viewing 
positions to points along a specific line), and it limited the 
image plane to the face of the display device. Moreover, it 
required off-line rendering to pre-compute the contents of 
the 3D frame buffer. The display stage of the PixelView 
architecture extends and generalizes Regan et al. into a 4D 
frame buffer. Its flexible scan-out stage supports both hori-
zontal and vertical parallax. Furthermore, the PixelView 
architecture contains geometry and rasterization stages that 
allow primitives to be rendered into the 4D frame buffer. 

Another active area of research has been the decoupling 
of slow rendering processes from the interactive demands 
of viewing and animation. Others have proposed special-
purpose hardware [RP94] and software [MMB97; BWG03; 
Gla88] rendering systems to address this problem. Many of 
these systems also incorporate 3D [RMRK99] and 4D 
[War98; Bal99] frame buffers or ray caches, which are 
sampled and interpolated to produce view-specific render-
ings. Most of these systems operate as lazily evaluated 
caches, meaning that samples from previously rendered 
views are combined with samples from the current view-
point. This approach generally requires no, or very little, 
variation in each point’s reflectance as a function of view-
point, with the notable exception of Bala [BWG03] who 
maintained a metric describing the range of views over 
which each radiance sample was valid. 

Our approach renders the contribution of each primitive 
into all possible views. This affords a heretofore-
unexploited type of coherency that is currently unavailable 
to traditional view-dependent rendering architectures, at the 
price of potentially rendering rays that might go unseen. 
There has even been some work on exploiting the coher-
ence of rendering due to smooth variations in viewing posi-
tion [Hal98]. This system effectively transformed and har-
nessed the power of 3D rendering to allow space-time or 
EPI rendering. We attempt to exploit the same sort of co-
herence in our shading approach. However, we do not fo-
cus on rendering epipolar planes one-at-a-time, but instead 
render the out-going radiance from each 3D point and use 
z-buffering to resolve visibility. 

Our system relies on substantial preprocessing of dis-
play primitives much like Reyes [CCC87] and Talisman 
[TK96]. Specifically, we are able to render directly only 
those primitives that can be appropriately subdivided in 
world space. Moreover, as the average size of a rendering 
primitive shrinks, alternative primitives have been sug-

gested. Examples of these include point-based models 
[RL00; PZvBG00; ZPKG02; PKKG03] and image-based 
models [SGHS98]. PixelView is capable of directly render-
ing and displaying point-based representations with view-
dependent effects, as well as light fields [LH96] and lumi-
graphs [GGSC96]. Each display type can be easily com-
bined with any of the others. Furthermore, the sampling 
and reconstruction strategies used in PixelView draw heav-
ily on those developed for point-based primitives and light 
field rendering. 

4. The PixelView Architecture 

This section describes the various stages in the PixelView 
architecture. Note that this section is intended to provide a 
general, abstract description of the architecture, in contrast 
to the specific, concrete implementation presented in Sec-
tion 5. Referring to Figure 2, we begin with the “lower 
half” of the pipeline (i.e. rasterization and display). 

4.1. A 4D Frame Buffer 

In PixelView, the standard 2D frame buffer is replaced 
with a 4D ray buffer. Frame buffers are commonly de-
scribed as an array of pixels, but in the context of 3D ren-
dering, they are more accurately characterized as an array 
of rays seen from a single viewpoint. This “frame buffer as 
ray buffer” concept is appropriate for both ray-casting and 
OpenGL-style renderers. 

View independence is achieved by generalizing the 2D 
“ray buffer” into 4D. The resulting structure is, in essence, 
a light field/lumigraph, with rays specified by their inter-
section with two parallel planes [LH96; GGSC96]. Follow-
ing the notation of Gortler et al. [GGSC96], we call these 
two planes the s-t plane and the u-v plane. Our frame 
buffer is thus a 4D collection of radiance values, a finite 
sampling of light rays parameterized by (s,t,u,v). Once the 
4D frame buffer has been “populated”, novel views can be 
generated without the need to re-render scene geometry. 

4.2. Display/Scan-Out 

New images can be created during scan-out by taking a 2D 
slice of the 4D frame buffer. This involves mapping scan-
out pixel coordinates (i,j) into ray coordinates (s,t,u,v). 
Conceptually, the pixel coordinates are specified by rays, 
and the intersection of these rays with the s-t plane and u-v 
plane defines an (s,t,u,v) quadruple, as shown in Figure 3. 
The resulting mapping is given by the following four linear 
rational equations (a derivation is given in Appendix A). 
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The A, B, and C coefficients are defined with respect to 

the current position and orientation of the virtual camera 
(i.e. the current view). Each equation has a numerator of 
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the same form, though the coefficients are different. The 
denominator is identical for all four equations. 

These four equations represent the 2D planar slice of the 
4D frame buffer, which maps an (i,j) pixel coordinate to an 
(s,t,u,v) ray index. As the scan-out iterates through i and j, 
these equations generate addresses into the 4D data struc-
ture. Note that the denominator varies with i and j, requir-
ing per-pixel division. If, however, the image plane of the 
virtual camera is restricted such that it is always parallel to 
the s-t and u-v parameterization, the equations simplify to 
the following linear expressions. 
 

)6(),()5(),( tttsss CjBiAjitCjBiAjis ′+′+′=′+′+′=
 

)8(),()7(),( vvvuuu CjBiAjivCjBiAjiu ′+′+′=′+′+′=  
 

Thus, we now have simple linear expressions in terms of 
pixel coordinates (i,j). Such expressions map well to hard-
ware. The sacrifice for this elegance is that the orientation 
of our camera’s image plane is now restricted. However, 
for applications such as autostereoscopic and CAVE-style 
virtual reality displays, it is practical to define the fixed 
viewing surface to be parallel to the s-t and u-v planes. 
That is, for these applications, this viewing configuration is 
inherent. 

Our scan-out equations are similar to those used by 
Regan et al. in [RMRK99], but they are slightly more gen-
eral. By limiting the viewing positions to points along a 
specific line, and by limiting the image plane to the face of 
the display device, Equations 5, 7, and 8 can be further 
simplified to those used in [RMRK99] (Equation 6 be-
comes unnecessary). 

4.3. Point Casting and Scatter 

Given a 4D frame buffer and the equations for scan-out, we 
must next tackle the issue of how to fill the frame buffer. 
The defining characteristic that separates the PixelView ar-
chitecture from being “just a light-field viewer” is its abil-
ity to render geometric primitives into its 4D frame buffer. 
The geometry processing stage (i.e. subdivision and 
shader/texture) produces world-space points, each with an 
associated radiance map. These maps represent a sampled 
version of the outgoing radiance for each point. This radi-
ance needs to be added to the 4D frame buffer for each s-t 
sample location. This process is dubbed “point casting” to 
indicate that a single point broadcasts its radiance out to a 
set of s-t sample points, instead of the more typical map-
ping to just a single camera’s center of projection. 

As shown is Figure 4, the process is performed by first 
iterating over the set of all s-t sample locations and finding 
the ray connecting the current sample location with the 
point primitive. This ray is then intersected with the u-v 
plane, and the 2D coordinate of that intersection determines 
the u-v sample location. This represents the (s,t,u,v) loca-
tion in the 4D frame buffer where the radiance will be 
stored if it passes the 4D z-buffer test at that location. The 

intersection is given by the following two equations (a deri-
vation is given in Appendix B). 

 
)10()()9()( vvuu BtAtvBsAsu ′′+′′=′′+′′=  

 
Thus, we must once again evaluate a linear expression, 

similar to the calculations required during scan-out. In this 
case, the coefficients are related to the (x,y,z) location of 
the scene point, the location of the u-v plane (f ), and the 
terms in the matrices of Equation 16 (see Appendix B). 

Note that, in general, the u-v intersection will not be an 
integer value. That is, the ray will usually not fall exactly 
in an (s,t,u,v) bin. Thus, the radiance contribution should 
be “scattered” into nearby bins. 

4.4. Subdivision 

Point primitives are ideal for the PixelView architecture 
because they specify a distinct ray to each s-t and u-v sam-
ple point, simplifying the point-casting process. However, 
it is possible to convert other primitives into this point-
based representation through world-space subdivision. 
Note that all subdivision occurs without considering occlu-
sion, which is handled through z-buffering at the time of 
point casting. 

Polygonal models are subdivided into points until a suf-
ficient density is achieved so that holes are not created 
when the points are mapped into the 4D frame buffer. The 
first pass of subdivision converts each polygon into a set of 
triangles to simplify subdivision. Subsequent passes per-
form a standard midpoint subdivision algorithm. The proc-
ess continues until the length of each side of the triangle is 
less than half the size of a sample in the 4D frame buffer. 
This stopping criterion is not applied to the region as a 
whole, but instead to each individual subdivided triangle to 
allow for more precise sampling on large polygons. The 

Figure 3: 2D depiction of rays displayed in scan-out. Each 
frame, PixelView evaluates a linear expression based on 
the camera matrix to determine which (s,t,u,v) rays are 
seen. 
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method is similar to the Reyes approach [CCC87], but 
without explicit advance knowledge of the camera location, 
requiring uniform world-space subdivision. 

Higher-order surfaces use subdivision algorithms more 
specific to their natural parameterizations. Thus, each of 
the supported higher-order surfaces is implemented with its 
own world-space subdivision procedure. For instance, a 
sphere is subdivided by algorithmically distributing points 
over the sphere’s surface. By avoiding a traditional triangu-
lation stage, the creation of geometry artifacts is avoided. 
Finding improved subdivision methods for primitives that 
are more complex remains an area for future research. 

4.5. Shading 

For point geometry fed directly into the hardware, Pixel-
View needs color-shading information for each surface 
point’s (x,y,z) coordinate. For polygonal and higher-order 
objects computed by PixelView, illumination must be ap-
plied. 

Current rendering architectures depend on high-speed 
parallelism to accomplish the shading operations required 
at each point. However, the speed of a shading model is not 
as important when scan-out is decoupled from render-
ing/shading, as it is in PixelView. In order to create the il-
lusion of smooth camera motion, traditional hardware must 
re-render an entire scene into a double buffer and then 
swap it at the next vertical refresh. This fill rate into the 
double buffer determines the frame rate of the system. Be-
cause PixelView can create user camera motion without re-
sorting to reshading the entire scene, its frame rate is de-
termined by the speed of the scan-out hardware, which is a 
constant independent of scene complexity. While the user 
is moving the view within a scene, a new scene is being 
shaded and is swapped in when complete. This independ-
ence allows implementation of more complex local and 
global shading algorithms with less concern for completing 
a frame by an arbitrary deadline, while still providing guar-
anteed view-update latency. 

Hardware shading might be implemented using points 
output from subdivision and the normals generated during 
that process. For global illumination, this would imply a re-
tained-mode graphics interface for primitive specification, 
or an immediate-mode interface for local illumination. 

PixelView has the ability to interface with software ren-
derers and offline storage of 4D frame buffers (e.g. 3D 
movies). This data could be loaded directly into the 4D 
frame buffer, bypassing PixelView’s shading stage in a 
manner similar to how image-based rendering models are 
loaded. Another option is to transmit raw points and pre-
computed view-dependent global illumination, and then 
lets PixelView handle the placement of those points into 
the 4D frame buffer. 

4.6. View-Dependency of Pixels 

The ability to generate a 4D frame buffer without knowing 
the location of the user’s camera in advance introduces the 

problem of accounting for scene elements with view-
dependent specular reflections. Obviously, if all objects in 
the scene are diffuse, this is not an issue. If there is specu-
lar data, a method for shading, formatting, and point cast-
ing this extra information is needed. 

The mapping of each outgoing view direction to the s-t 
sample points will be referred to as the radiance map of a 
point. For example, Phong radiance maps tend to be sim-
pler than ray-traced reflective maps, which can resemble 
point-specific environment maps. 

Dealing with point-specific radiance maps raises the is-
sue of computing large numbers of samples for each point 
and transmitting them to the hardware. Luckily, a great 
deal of exploitable coherence exists in the raw maps 
[LH96]. There is much more radiance-map coherence for 
true object points than for arbitrary points in space. This 
coherence allows radiance maps to be transferred to and 
within the PixelView hardware as compressed data. For re-
flection and refraction, the data is not as structured, but in 
cases with a limited viewable range, the variation in illu-
mination is far smaller than that found, for example, in a 
spherical environment map. This data could still be com-
pressed using a more typical compression algorithm, be-
cause it exhibits the same type of spatial coherence seen 
when viewing the world through a normal camera.  

The general structure of point-specific radiance-map co-
herence implies that wavelet-based compression would be 
a natural fit. However, there exists the opportunity to create 
compression algorithms and basis functions that are better 
suited to a specific shading model, such as for specular 
highlights. 

The point-casting process is similar for both diffuse and 
specular points. PixelView acknowledges the difference 
between diffuse and specular points by requiring only a 
single color for a diffuse point and a full radiance map for 
all s-t samples for a specular point. 
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Figure 4: 2D depiction of a world-space point being 
rasterized into the 4D frame buffer via “point casting”. 
The world-space point is tested against each s-t sample 
point to determine where u-v intersections occur. The 
point’s radiance is then applied to those (s,t,u,v) samples. 
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5. A PixelView Implementation 

In order to demonstrate the feasibility and advantages of 
the PixelView architecture, we have chosen to implement a 
proof-of-concept prototype (see Figure 1), with the follow-
ing objectives: 

• To examine the feasibility of dynamic view se-
lection at the time of pixel scan-out 

• To measure the memory bandwidth utilization of 
dynamic view selection and investigate the im-
pact of different memory organizations on the re-
quired bandwidth 

• To investigate the addressing, coherency, and 
fill-rate implications of illuminating and shading 
each primitive from multiple viewing directions 

• To explore the algorithm simplifications and 
tradeoffs implied by a practical hardware imple-
mentation 

Some of these objectives could have been addressed en-
tirely in simulation. However, modern system design tools 
make it quite easy to move rapidly from a functional simu-
lation model to a FPGA prototype. Moreover, the advan-
tages of physical prototypes are that they do not wallpaper 
over many of the engineering issues that can be easily 
overlooked in simulation, such as accurate memory mod-
els, signal distribution, routing delays, floor planning, and 
datapath complexity. 

Another possible implementation avenue for the Pixel-
View architecture would be to map it onto one of today’s 
Graphics Processing Units (GPUs). It is clear that the trend 
in graphics hardware is towards increasing flexibility and 
generality. In effect, GPUs can be viewed as programmable 
parallel-processing units. We expect this to become in-
creasingly true in the future. However, there are many as-
pects of GPUs that, at present, are rendering architecture 
specific or unexposed. Examples of this include frame 
buffer scan-out logic and memory organization, both of 
which are critical to demonstrating the feasibility of Pixel-
View. 

We have chosen to prototype only a limited subset of 
the PixelView architecture. Specifically, our system im-
plements only one “light slab” [LH96] of an all-views ar-
chitecture. A complete all-views implementation would in-
clude at least 4 (and more likely 6) slabs to enclose a re-
gion of empty space. More slabs would be necessary in 
scenes with intervening occluders. Of course, there are 
tradeoffs between the range of actual view-independence 
and the frequency of re-rendering, and we plan to investi-
gate those tradeoffs more in the future. Even so, a single 
light-slab implementation is still technically interesting, 
because it maps directly to a through-the-window viewing 
paradigm. Thus, it would be able to support interactions 
similar to those of a single-wall CAVE VR architecture, 
but with support for correct stereo viewing for multiple 
participants. 

Lastly, we have also chosen to use a general-purpose 
host processor to emulate the geometry processing stages 
of the PixelView pipeline. These stages generally require 
floating point computation and involve more decision-
making and variations in control flow than the later stages 
of the PixelView pipeline. We intend to investigate a 
hardware version of this front-end geometry processing in 
the future. 

5.1. Hardware Prototype 

The hardware begins with the point-casting stage. Recall 
that the shader/texture stage outputs world-space (x,y,z) 
points along with their associated radiance maps that cap-
ture view-dependent reflectance. The hardware “rasterizes” 
these points into the 4D frame buffer. Visibility is deter-
mined via a corresponding 4D z-buffer. Scan-out is an in-
dependent function that uses view updates from the host 
PC to determine the latest view parameters at the start of 
each frame. This section gives details about how this hard-
ware is implemented. 

Figure 5 features a block diagram of the hardware sys-
tem. The primary components are a single Xilinx 
XC2S300E Field Programmable Gate Array (FPGA), a 
single 8Mx16 SDRAM, a 10-bit video DAC, and a USB 
1.1 port. The Xilinx and the SDRAM are both clocked at 
100 MHz. The 4D frame buffer and 4D z-buffer reside in 
the SDRAM, each occupying 4Mx16. The frame buffer 
contains 16-bit RGB565 color values, and the z-buffer con-
tains 16-bit two’s complement depth values. Since we are 
limited to 4Mx16, the 4D buffers are organized as 8x8 s-t 
sample points, each with a corresponding set of 256x256 u-
v samples. 

We will first focus on point casting. The point caster re-
ceives (x,y,z,color) information from the PC. It uses this in-
formation to iterate over the s-t sample points and calculate 
the corresponding u-v bins. Each s-t sample point generates 
a conditional write to update the 4D frame buffer at the 
closest u-v sample. However, the write occurs only if the z 
value of the current point is “nearer” than the value cur-
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Figure 5: Block diagram of the PixelView prototype. Point 
casting and display occur independently, allowing scan-out 
rate to be decoupled from rendering rate. A host PC im-
plements the subdivision and shader/texture stages. 
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rently at the corresponding location in the 4D z-buffer. 
Given enough (x,y,z) points, the 4D frame buffer will be 
“fully populated” and appear as a solid image. 

Recall from Section 4.3 that determining u and v is a 
relatively straightforward evaluation of a linear expression. 
Specifically, it is an incremental calculation that utilizes 
accumulators. No multiplication or division is necessary. 

Turning now to the scan-out/display hardware, it runs at 
a constant 640x480 at 60Hz. After vertical sync (i.e. at the 
start of each frame), the hardware grabs the latest view pa-
rameters from the PC. It then begins to iterate through (i,j) 
pixel coordinates just like a normal 2D scan-out. The dif-
ference is that the pixel coordinates for conventional scan-
out map directly to frame buffer addresses, whereas our 
scan-out must calculate the equivalent (s,t,u,v) quadruple. 
The mechanisms for doing these calculations are similar to 
those for point casting, as they both involve the evaluation 
of a linear expression. 

5.2. Scan-Out Memory Bandwidth 

Bandwidth is always a primary concern in any graphics 
hardware system. It is reasonable to wonder how our 4D 
memory organization affects DRAM performance. Our 
hardware system has two main users of memory band-
width: the point-casting stage and the display stage. The 
display stage generates sequential (i,j) pixel values as in 
normal scan-out, but these values are then mapped into 4D. 
Referring back to Figure 3, note that the s-t plane is 
sparsely sampled, whereas the u-v plane is finely sampled. 
Thus, scan-out tends to stay in a single s-t bin for several 
pixels. We can use this to our advantage by “swizzling” 
(s,t,u,v) such that the bank/row address of the DRAM stays 
in the same page for several iterations (Figure 6). Using 
this scheme, we achieve page-hit rates well over 90% dur-
ing scan-out, and scan-out consumes only 4 percent of 
available bandwidth. 

5.3. Point-Casting Performance 

The prototype system is able to transmit and rasterize over 
80,000 points per second. This equates to over five million 
rays per second written into the 4D frame buffer. Note that 
this rate is limited by the USB 1.1 interface between the 
host PC and the prototype, not by the point-casting hard-
ware. At this rate, point casting consumes about 17 percent 
of available bandwidth. Factoring in scan-out and SDRAM 
auto-refresh, we have consumed less than 25 percent of 
available bandwidth. Thus, we have sufficient bandwidth to 
add additional point-casting units to process incoming 
points in parallel and increase point-casting performance. 
However, we would still ultimately be limited by the speed 
bottleneck of the USB interface, and so we chose not to do 
this. 

6. Results 

An important result of our research is the completion of the 
working prototype that demonstrates the benefits, capabili-
ties, and plausibility of the PixelView architecture. This 

section provides examples of all supported primitive types 
captured from the PixelView prototype. 

The example images are captured from a VGA scan 
converter connected to the VGA output of the PixelView 
prototype. All examples run at a constant frame rate of 60 
frames per second within a 256x256 window inlaid in a 
640x480 display. The images shown here have been 
enlarged to show detail. A better idea of the final output 
can be gained from watching the supporting video. The 
subdivision for these models has been computed on the 
host PC and transmitted to the board in a point stream for-
mat consistent with what a hardware-based subdivider 
would output. 

The quality of reconstruction in these results is largely a 
function of memory size. The SDRAM can store only 8x8 
s-t samples in the 4D frame buffer at a resolution of 
256x256 and still allow room for 16-bit z-buffering. In ad-
dition, the reconstruction method used here is nearest 
neighbor. Better reconstruction methods, such as quadrilin-
ear interpolation, could be implemented at the cost of addi-
tional memory bandwidth. 

Our polygonal models are subdivided by the host PC 
and transmitted to the prototype as specular point samples. 
The model in Figure 8 shows a 3263-faced polygonal 
model of a cow with vertex normals. This is subdivided 
into 600899 Phong-shaded point samples, which are suffi-
cient to render the scene for any view. The excess points 
are removed by z-buffering and all occlusions are properly 
resolved. 

The point based terrain map data shown in Figure 9 
represents a dataset of 2048x2048 (x,y,z) texture mapped 
points forming a model of Puget Sound in Washington. 
This data is easy for PixelView to work with because it 
does not need to subdivide or shade the points before point 
casting. 
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Figure 6: Swizzling of (s,t,u,v) samples into SDRAM ad-
dresses to achieve increased scan-out coherence. Half the 
banks are used for z-buffer data and half for color data, de-
termined by the high order bank pin. 
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Image-based rendering datasets can be loaded directly 
into the 4D frame buffer and then viewed from a virtual 
camera position. The light field in Figure 10 was taken 
with a real-world light-field capture rig and digitized. The 
data set is comprised of 8x8 camera images, each with a 
resolution of 256x256 pixels, which map directly into the 
4D frame buffer. 

The final example, Figure 11, depicts 14 reflective and 
refractive spheres against a texture-mapped background; all 
described as higher-order surfaces. Ray tracing was used to 
compute the view-dependant radiance maps of each point 
in this data set. Each point and its radiance map is point 
cast and then scanned out at 60 frames per second. 

7. Discussion and Future Work 

While our prototype system addresses many of the issues 
posed by the PixelView architecture it leaves many unad-
dressed. Two issues of particular interest are how the Pix-
elView architecture scales to a significantly larger 4D 
frame buffer, and how its rendering performance scales as 
multiple simultaneous views are supported. How to ani-
mate objects is another area of interest. 

7.1. Scalability 

We envision that a minimal practical PixelView system 
would incorporate at least 4G ray samples. Addressing 
such a large memory block poses immediate issues. Con-
sider the cost of clearing the buffer’s z and color values 
alone. We believe that the solution to this problem is to dis-
tribute the 4D frame buffer over multiple functional units, 
each with a slice of the 4D frame buffer that shares small 
overlap regions with its adjacent neighbors (Figure 7). We 
envision that the granularity of these modules would match 
the prevailing memory density, providing one geometry 
processing and rasterization/display unit per memory chip 
in order to maximize the system bandwidth. 

However, this need for high memory bandwidth is fur-
ther aggravated by the need to support multiple simultane-
ous views. If a PixelView-like system were employed to 
drive an autostereoscopic or holographic display, then it is 
conceivable that every ray in the frame buffer would need 
to be read out at the update rate. While the update rate 
might be minimal for a static scene, we would still like to 
support animations and dynamic scenes at interactive rates. 
We believe the solution here is redundancy. Each ray 
within the 4D frame buffer might need to be replicated as 
many as 16 times to support in excess of 1024 views. This 
further increases the memory requirements by a factor of 
16 to 64G rays. While this seems unimaginable now, in ten 
years time it might be both achievable and affordable. 

7.2. Animation 

In a 4D frame buffer, the notion of a partial screen clear 
seems especially helpful, particularly for supporting anima-
tion. Ideally, one would like to remove all contributions 
from a given point set in a past frame and re-render only 
those portions of the frame buffer that have changed. An 

old double-buffering trick used in traditional systems might 
prove to be particularly useful for the PixelView system. 
Specifically, one can render static elements into a back-
ground buffer and then reload them to initialize each ren-
dered frame. This trick is seldom used because it fixes the 
viewpoint in favor of fast animation, but it is particularly 
inviting for a view-independent architecture, like Pixel-
View. 

7.3. Other Issues 

A more general-purpose implementation of PixelView than 
our prototype would include the complete linear rational 
addressing implied by Equations 1 through 4. This seems 
achievable, because it is similar to the per-pixel divide re-
quired for perspective correct interpolation in today’s 
hardware. We only require that similar circuitry be used in 
the frame buffer scan-out stage, where it could be heavily 
pipelined. 

The image quality of PixelView could be improved with 
better reconstruction. A naïve implementation of quadrilin-
ear interpolation causes an additional 16x increase in 
memory bandwidth. However, caching methods could be 
employed to reduce bandwidth requirements. 

The point-casting bandwidth of PixelView could also be 
reduced considerably by including compression of the radi-
ance maps. Off-the-shelf methods, such as wavelet com-
pression, would probably do a good job, but we are particu-
larly interested in the possibility of compression methods 
with basis functions optimized for radiance modeling. Any 
new compression bases would probably need to be used in 
combination with compression methods for general images, 
because the limiting case of a mirror reflector leads to a 
general image. Adding compression would increase com-
putation in the primitive processing front end, but this in-
crease is probably offset by the reduction in communica-
tion bandwidth. 

8. Conclusions 

We have presented PixelView, a new hardware rendering 
architecture that generates all possible views of a scene af-
ter a single traversal of the scene description. PixelView 
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Figure 7: Block diagram of scalability via multiple Pixel-
View devices. Geometry processing and rasterization are 
performed in parallel, with each rasterizer controlling part 
of the light field, and subsequently part of each scan-out. 
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supports a wide range of rendering primitives, including 
polygonal meshes and higher-order surfaces. It also sup-
ports recently developed point and image-based rendering 
primitives. Moreover, we have developed a working hard-
ware prototype of a 4D, z-buffered frame buffer that sup-
ports dynamic view selection at raster scan-out to demon-
strate the viability of such a system. Graphics systems like 
PixelView are capable of supporting extremely low display 
update latencies. They will also enable efficient rendering 
of shared virtual environments supporting multiple simul-
taneous participants. In the future, view-independent 
graphics rendering architectures, like PixelView, will also 
be essential to provide the multitude of viewpoints required 
for real-time autostereoscopic and holographic display de-
vices. 
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Appendix A. Derivation of Scan-Out Equations 

Equation 11 below gives a model of the “image plane” of 
the virtual camera used to specify the current view. Spe-
cifically, given a point E (the eye point), a vector P that 
spans the image plane in the i-direction, a vector Q that 
spans the image plane in the j-direction, and a vector O 
from the eye point to the (0,0) pixel of the image plane, 
Equation 11 maps pixel coordinates (i,j) to (x,y,z) points in 
world space. 
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The following two equations represent a similar map-

ping for the s-t and u-v planes. Specifically, they define the 
world-space points that fall on the planes. In Equation 12, 
vector L spans the s-t plane in the s-direction, vector M 
spans the s-t plane in the t-direction, and vector S goes 
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from the world origin to (s,t) = (0,0). Similar definitions 
exist for Equation 13. 
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If we place the s-t plane at z = 0, define L parallel to the 

x-axis, and define M parallel to the y-axis, Equation 12 
simplifies to Equation 14. Similarly, if we place the u-v 
plane at z = f, define F parallel to the x-axis, and define G 
parallel to the y-axis, Equation 13 simplifies to Equation 
15. 
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Setting the right side of Equation 11 equal to the right 

side of Equation 14, we can solve for s and t in terms of i 
and j. Likewise, we can solve for u and v in terms of i and j 
using Equations 11 and 15. This yields Equations 1 through 
4 in Section 4.2. 

Moreover, if the image plane of the virtual camera is re-
stricted such that it is always parallel to the s-t and u-v 
planes, the Pz and Qz terms in Equation 11 become zero, 
and consequently, the denominator becomes a constant. 
This results in Equations 5 through 8 in Section 4.2. 

Appendix B. Derivation of Point-Casting Equations 

Assuming the simplified s-t and u-v configuration from 
Appendix A, the following equation represents the ray 
starting at a particular s-t sample point and passing through 
a particular point on the u-v plane: 
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Viewing this expression as a system of three equations, 
note that the last equation is simply z = τ·f. Consequently, 
you can easily solve for τ and substitute back to solve for u 
and v in terms of s and t. This yields Equations 9 and 10 in 
Section 4.3. 

 
Figure 8: Screen capture of a subdivided polygonal model.

 

 
Figure 9: 4-million point-sample model of Puget Sound. 

 

 
Figure 10: A “real-life” 8x8 by 256x256 light field. 

 

 
Figure 11: Ray-traced scene with view-dependent points. 
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