
Graphics Hardware (2004)
T. Akenine-Möller, M. McCool (Editors)

© Eurographics Association 2004.

PixelView: A View-Independent Graphics
Rendering Architecture

J. Stewart, E.P. Bennett, and L. McMillan

Department of Computer Science, The University of North Carolina at Chapel Hill, USA

1. Introduction

Viewpoint specification is fundamental to traditional com-
puter graphics rendering. Both the transformation of a
scene to eye space in the traditional graphics pipeline and
the origination of viewing rays in a ray-casting system de-
pend on the viewpoint. Moreover, many subsequent render-
ing steps are also impacted by the choice of viewpoint, in-
cluding clipping, projection, illumination calculations,
shading, and visibility determination. As a result, changing
the viewpoint frequently gates the entire process of interac-
tive rendering, as each rendered frame is initiated with the
specification of a viewpoint, followed by the scene descrip-
tion, and culminating with the final displayed image.

There are many potential advantages to decoupling
viewpoint specification from rendering. First, immediate
efficiency improvements are available if rendering costs
are amortized over multiple views. They result from reuse
of shading calculations as well as exploiting the coherency
of surface reflection with smooth variations in viewpoint.
A second advantage results from beginning the rendering
process before the viewing position is resolved, thereby re-
ducing latency.

However, the ultimate advantage of separating render-
ing from viewpoint selection is that it becomes possible to
render the same scene for multiple eyes. Possible applica-

tions include shared virtual environments (stereo viewing
by many participants of a computer-generated scene). In
the future, view-independent graphics rendering hardware
will also be essential to support the multitude of viewpoints
required for real-time autostereoscopic and holographic
display devices.

Abstract
We present a new computer graphics rendering architecture that allows “all possible views” to be extracted
from a single traversal of a scene description. It supports a wide range of rendering primitives, including po-
lygonal meshes, higher-order surface primitives (e.g. spheres, cylinders, and parametric patches), point-based
models, and image-based representations. To demonstrate our concept, we have implemented a hardware proto-
type that includes a 4D, z-buffered frame-buffer supporting dynamic view selection at the time of raster scan-out.
As a result, our implementation supports extremely low display-update latency. The PixelView architecture also
supports rendering of the same scene for multiple eyes, which provides immediate benefits for stereo viewing
methods like those used in today’s virtual environments, particularly when there are multiple participants. In the
future, view-independent graphics rendering hardware will also be essential to support the multitude of view-
points required for real-time autostereoscopic and holographic display devices.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing Algorithms;
Display Algorithms; Bitmap and Frame Buffer Operations. I.3.1 [Computer Graphics]: Graphics Processors. I.3.6
[Computer Graphics]: Graphics Data Structures and Data Types.

Figure 1: Photograph of our hardware prototype of the
PixelView architecture. The prototype is on the right, its
VGA output is in the middle, and the PC controller is on
the left.

http://www.eg.org
http://diglib.eg.org

Stewart et al / PixelView: A View-Independent Graphics Rendering Architecture

© Eurographics Association 2004.

We have developed a new computer graphics rendering
architecture, called PixelView, in which a single traversal
of the scene description generates “all possible views” (or
at least a wide range of views). PixelView is compatible
with the scene descriptions used by traditional 3D render-
ing hardware (i.e. polygons). In addition, PixelView, like
the Reyes rendering system and many ray-casting render-
ers, supports any higher-order surface primitive for which a
world-space subdivision scheme exists. It also natively
supports point-based models as well as image-based repre-
sentations, all within a unified rendering architecture.

The primary contributions of our PixelView rendering
system include:

• A scalable system architecture for supporting
real-time, view-independent rendering of 3-D
models

• A hardware prototype of a 4D, z-buffered frame
buffer demonstrating the viability of dynamic
view selection at scan-out

• Hardware rendering of primitives with view-
dependent reflectance by a technique that we call
“point casting”

In addition, we consider possible representations and
compressions for the radiance of view-dependent points to
reduce storage and bandwidth requirements.

2. Overview

We begin with a high-level overview of PixelView via a
comparison with the traditional graphics pipeline, with a
focus on the role of view specification.

The left side of Figure 2 shows a traditional graphics
pipeline. Polygon vertices (in object space) are fed into the
geometry stage for transform and lighting. This stage out-
puts lit, screen-space triangles that are subsequently raster-
ized into fragments. These fragments are then shaded and
textured. Various other raster operations, such as depth-
comparison, compositing, and filtering, can then be per-
formed before the final color values are written into the 2D
frame buffer.

The right side of Figure 2 shows the PixelView pipeline.
Our system supports any primitive that can be subdivided
in world space. Primitives enter the subdivision stage,
where they are first transformed from object space into
world space. The primitives then undergo world-space sub-
division and are shaded and textured. The shader/texture
stage outputs fully shaded world-space points, which are
then “point cast” into specific bins of the 4D frame buffer.
Lastly, because a point will generally not fall exactly into a
bin, its contribution is “scattered” into nearby bins. Specif-
ics of the various pipeline stages are discussed in subse-
quent sections. For now, we will focus on the role that view
information plays in each rendering approach.

When comparing the pipelines, note that view specifica-
tion comes into play very early in the traditional graphics
pipeline. Specifically, the first operation that typically hap-
pens to vertices in the geometry stage is to transform them

into eye space via the modelview matrix. Many later steps
in the pipeline are also affected by the viewpoint. Thus,
changing the viewpoint requires re-traversal and re-
rendering of the entire scene.

Alternatively, note that no view transform occurs in the
PixelView geometry processing stages. In fact, no view
transform occurs at any point along a primitive’s path into
the frame buffer. That is, no knowledge of the virtual cam-
era’s location and orientation is required to render primi-
tives into the 4D frame buffer. We can “get away with this”
because we render a sampled version of the outgoing radi-
ance from each point of the scene. The viewpoint specifica-
tion can thus move to the display stage, where it is used to
reconstruct a particular view during scan-out. This allows
the viewpoint to change without re-rendering the scene.
Furthermore, this fundamental reorganization of rendering
tasks allows us to re-visit the tradeoffs between rendering
quality and frequency of scene updates.

3. Previous Work

The recent advent of flexible programmable graphics
hardware has ignited renewed interest in alternative archi-
tectures for real-time rendering [OKTD02; PBMH02].
However, one of the least flexible remaining functions in
existing architectures is the scan-out mechanism used to re-
fresh the display. The only exposed controls for display re-
fresh are for setting the resolution (and perhaps setting the
origin of the memory block allocated for the frame buffer).
There are compelling reasons for optimizing this function-
ality via a hardwired implementation. In particular, because
the performance of graphics processing units is often dic-

Figure 2: High-level comparison between a typical
OpenGL-style pipeline and PixelView. Only the display
stage in PixelView requires knowledge of the viewpoint, al-
lowing reuse of shading and rendering calculations.

Subdivision

Shader/Texture

Point Casting

Scatter

4D Frame

Display

Geometry

Rasterization

Shader/Texture

Fragment

2D Frame

Display

View Info

PIXELVIEW OpenGL

View Info

76

Stewart et al / PixelView: A View-Independent Graphics Rendering Architecture

© Eurographics Association 2004.

tated by available memory bandwidth, there is a significant
benefit in optimizing the appreciable, constant, and real-
time demands of display refresh. In other words, it makes
sense to minimize the demands of refresh to free up mem-
ory bandwidth for other compelling rendering functions.

However, the lack of flexibility in display scan-out lim-
its the ability to address certain problems related to dy-
namic view selection and latency compensation [OCMB95;
BFMZ94]. Regan et al. recognized this limitation and con-
structed a novel 3D frame buffer with flexible scan-out cir-
cuitry for the specific purpose of studying display latency
[RMRK99]. Although successful at reducing latency, their
system lacked vertical parallax (i.e. it limited the viewing
positions to points along a specific line), and it limited the
image plane to the face of the display device. Moreover, it
required off-line rendering to pre-compute the contents of
the 3D frame buffer. The display stage of the PixelView
architecture extends and generalizes Regan et al. into a 4D
frame buffer. Its flexible scan-out stage supports both hori-
zontal and vertical parallax. Furthermore, the PixelView
architecture contains geometry and rasterization stages that
allow primitives to be rendered into the 4D frame buffer.

Another active area of research has been the decoupling
of slow rendering processes from the interactive demands
of viewing and animation. Others have proposed special-
purpose hardware [RP94] and software [MMB97; BWG03;
Gla88] rendering systems to address this problem. Many of
these systems also incorporate 3D [RMRK99] and 4D
[War98; Bal99] frame buffers or ray caches, which are
sampled and interpolated to produce view-specific render-
ings. Most of these systems operate as lazily evaluated
caches, meaning that samples from previously rendered
views are combined with samples from the current view-
point. This approach generally requires no, or very little,
variation in each point’s reflectance as a function of view-
point, with the notable exception of Bala [BWG03] who
maintained a metric describing the range of views over
which each radiance sample was valid.

Our approach renders the contribution of each primitive
into all possible views. This affords a heretofore-
unexploited type of coherency that is currently unavailable
to traditional view-dependent rendering architectures, at the
price of potentially rendering rays that might go unseen.
There has even been some work on exploiting the coher-
ence of rendering due to smooth variations in viewing posi-
tion [Hal98]. This system effectively transformed and har-
nessed the power of 3D rendering to allow space-time or
EPI rendering. We attempt to exploit the same sort of co-
herence in our shading approach. However, we do not fo-
cus on rendering epipolar planes one-at-a-time, but instead
render the out-going radiance from each 3D point and use
z-buffering to resolve visibility.

Our system relies on substantial preprocessing of dis-
play primitives much like Reyes [CCC87] and Talisman
[TK96]. Specifically, we are able to render directly only
those primitives that can be appropriately subdivided in
world space. Moreover, as the average size of a rendering
primitive shrinks, alternative primitives have been sug-

gested. Examples of these include point-based models
[RL00; PZvBG00; ZPKG02; PKKG03] and image-based
models [SGHS98]. PixelView is capable of directly render-
ing and displaying point-based representations with view-
dependent effects, as well as light fields [LH96] and lumi-
graphs [GGSC96]. Each display type can be easily com-
bined with any of the others. Furthermore, the sampling
and reconstruction strategies used in PixelView draw heav-
ily on those developed for point-based primitives and light
field rendering.

4. The PixelView Architecture

This section describes the various stages in the PixelView
architecture. Note that this section is intended to provide a
general, abstract description of the architecture, in contrast
to the specific, concrete implementation presented in Sec-
tion 5. Referring to Figure 2, we begin with the “lower
half” of the pipeline (i.e. rasterization and display).

4.1. A 4D Frame Buffer

In PixelView, the standard 2D frame buffer is replaced
with a 4D ray buffer. Frame buffers are commonly de-
scribed as an array of pixels, but in the context of 3D ren-
dering, they are more accurately characterized as an array
of rays seen from a single viewpoint. This “frame buffer as
ray buffer” concept is appropriate for both ray-casting and
OpenGL-style renderers.

View independence is achieved by generalizing the 2D
“ray buffer” into 4D. The resulting structure is, in essence,
a light field/lumigraph, with rays specified by their inter-
section with two parallel planes [LH96; GGSC96]. Follow-
ing the notation of Gortler et al. [GGSC96], we call these
two planes the s-t plane and the u-v plane. Our frame
buffer is thus a 4D collection of radiance values, a finite
sampling of light rays parameterized by (s,t,u,v). Once the
4D frame buffer has been “populated”, novel views can be
generated without the need to re-render scene geometry.

4.2. Display/Scan-Out

New images can be created during scan-out by taking a 2D
slice of the 4D frame buffer. This involves mapping scan-
out pixel coordinates (i,j) into ray coordinates (s,t,u,v).
Conceptually, the pixel coordinates are specified by rays,
and the intersection of these rays with the s-t plane and u-v
plane defines an (s,t,u,v) quadruple, as shown in Figure 3.
The resulting mapping is given by the following four linear
rational equations (a derivation is given in Appendix A).

)2(),()1(),(
www

ttt

www

sss

CjBiA
CjBiA

jit
CjBiA
CjBiA

jis
++
++

=
++
++

=

)4(),()3(),(
www

vvv

www

uuu

CjBiA
CjBiA

jiv
CjBiA
CjBiA

jiu
++
++

=
++
++

=

The A, B, and C coefficients are defined with respect to

the current position and orientation of the virtual camera
(i.e. the current view). Each equation has a numerator of

77

Stewart et al / PixelView: A View-Independent Graphics Rendering Architecture

© Eurographics Association 2004.

the same form, though the coefficients are different. The
denominator is identical for all four equations.

These four equations represent the 2D planar slice of the
4D frame buffer, which maps an (i,j) pixel coordinate to an
(s,t,u,v) ray index. As the scan-out iterates through i and j,
these equations generate addresses into the 4D data struc-
ture. Note that the denominator varies with i and j, requir-
ing per-pixel division. If, however, the image plane of the
virtual camera is restricted such that it is always parallel to
the s-t and u-v parameterization, the equations simplify to
the following linear expressions.

)6(),()5(),(tttsss CjBiAjitCjBiAjis ′+′+′=′+′+′=

)8(),()7(),(vvvuuu CjBiAjivCjBiAjiu ′+′+′=′+′+′=

Thus, we now have simple linear expressions in terms of
pixel coordinates (i,j). Such expressions map well to hard-
ware. The sacrifice for this elegance is that the orientation
of our camera’s image plane is now restricted. However,
for applications such as autostereoscopic and CAVE-style
virtual reality displays, it is practical to define the fixed
viewing surface to be parallel to the s-t and u-v planes.
That is, for these applications, this viewing configuration is
inherent.

Our scan-out equations are similar to those used by
Regan et al. in [RMRK99], but they are slightly more gen-
eral. By limiting the viewing positions to points along a
specific line, and by limiting the image plane to the face of
the display device, Equations 5, 7, and 8 can be further
simplified to those used in [RMRK99] (Equation 6 be-
comes unnecessary).

4.3. Point Casting and Scatter

Given a 4D frame buffer and the equations for scan-out, we
must next tackle the issue of how to fill the frame buffer.
The defining characteristic that separates the PixelView ar-
chitecture from being “just a light-field viewer” is its abil-
ity to render geometric primitives into its 4D frame buffer.
The geometry processing stage (i.e. subdivision and
shader/texture) produces world-space points, each with an
associated radiance map. These maps represent a sampled
version of the outgoing radiance for each point. This radi-
ance needs to be added to the 4D frame buffer for each s-t
sample location. This process is dubbed “point casting” to
indicate that a single point broadcasts its radiance out to a
set of s-t sample points, instead of the more typical map-
ping to just a single camera’s center of projection.

As shown is Figure 4, the process is performed by first
iterating over the set of all s-t sample locations and finding
the ray connecting the current sample location with the
point primitive. This ray is then intersected with the u-v
plane, and the 2D coordinate of that intersection determines
the u-v sample location. This represents the (s,t,u,v) loca-
tion in the 4D frame buffer where the radiance will be
stored if it passes the 4D z-buffer test at that location. The

intersection is given by the following two equations (a deri-
vation is given in Appendix B).

)10()()9()(vvuu BtAtvBsAsu ′′+′′=′′+′′=

Thus, we must once again evaluate a linear expression,

similar to the calculations required during scan-out. In this
case, the coefficients are related to the (x,y,z) location of
the scene point, the location of the u-v plane (f), and the
terms in the matrices of Equation 16 (see Appendix B).

Note that, in general, the u-v intersection will not be an
integer value. That is, the ray will usually not fall exactly
in an (s,t,u,v) bin. Thus, the radiance contribution should
be “scattered” into nearby bins.

4.4. Subdivision

Point primitives are ideal for the PixelView architecture
because they specify a distinct ray to each s-t and u-v sam-
ple point, simplifying the point-casting process. However,
it is possible to convert other primitives into this point-
based representation through world-space subdivision.
Note that all subdivision occurs without considering occlu-
sion, which is handled through z-buffering at the time of
point casting.

Polygonal models are subdivided into points until a suf-
ficient density is achieved so that holes are not created
when the points are mapped into the 4D frame buffer. The
first pass of subdivision converts each polygon into a set of
triangles to simplify subdivision. Subsequent passes per-
form a standard midpoint subdivision algorithm. The proc-
ess continues until the length of each side of the triangle is
less than half the size of a sample in the 4D frame buffer.
This stopping criterion is not applied to the region as a
whole, but instead to each individual subdivided triangle to
allow for more precise sampling on large polygons. The

Figure 3: 2D depiction of rays displayed in scan-out. Each
frame, PixelView evaluates a linear expression based on
the camera matrix to determine which (s,t,u,v) rays are
seen.

s

virtual camera

u

f

world-space
scene

78

Stewart et al / PixelView: A View-Independent Graphics Rendering Architecture

© Eurographics Association 2004.

method is similar to the Reyes approach [CCC87], but
without explicit advance knowledge of the camera location,
requiring uniform world-space subdivision.

Higher-order surfaces use subdivision algorithms more
specific to their natural parameterizations. Thus, each of
the supported higher-order surfaces is implemented with its
own world-space subdivision procedure. For instance, a
sphere is subdivided by algorithmically distributing points
over the sphere’s surface. By avoiding a traditional triangu-
lation stage, the creation of geometry artifacts is avoided.
Finding improved subdivision methods for primitives that
are more complex remains an area for future research.

4.5. Shading

For point geometry fed directly into the hardware, Pixel-
View needs color-shading information for each surface
point’s (x,y,z) coordinate. For polygonal and higher-order
objects computed by PixelView, illumination must be ap-
plied.

Current rendering architectures depend on high-speed
parallelism to accomplish the shading operations required
at each point. However, the speed of a shading model is not
as important when scan-out is decoupled from render-
ing/shading, as it is in PixelView. In order to create the il-
lusion of smooth camera motion, traditional hardware must
re-render an entire scene into a double buffer and then
swap it at the next vertical refresh. This fill rate into the
double buffer determines the frame rate of the system. Be-
cause PixelView can create user camera motion without re-
sorting to reshading the entire scene, its frame rate is de-
termined by the speed of the scan-out hardware, which is a
constant independent of scene complexity. While the user
is moving the view within a scene, a new scene is being
shaded and is swapped in when complete. This independ-
ence allows implementation of more complex local and
global shading algorithms with less concern for completing
a frame by an arbitrary deadline, while still providing guar-
anteed view-update latency.

Hardware shading might be implemented using points
output from subdivision and the normals generated during
that process. For global illumination, this would imply a re-
tained-mode graphics interface for primitive specification,
or an immediate-mode interface for local illumination.

PixelView has the ability to interface with software ren-
derers and offline storage of 4D frame buffers (e.g. 3D
movies). This data could be loaded directly into the 4D
frame buffer, bypassing PixelView’s shading stage in a
manner similar to how image-based rendering models are
loaded. Another option is to transmit raw points and pre-
computed view-dependent global illumination, and then
lets PixelView handle the placement of those points into
the 4D frame buffer.

4.6. View-Dependency of Pixels

The ability to generate a 4D frame buffer without knowing
the location of the user’s camera in advance introduces the

problem of accounting for scene elements with view-
dependent specular reflections. Obviously, if all objects in
the scene are diffuse, this is not an issue. If there is specu-
lar data, a method for shading, formatting, and point cast-
ing this extra information is needed.

The mapping of each outgoing view direction to the s-t
sample points will be referred to as the radiance map of a
point. For example, Phong radiance maps tend to be sim-
pler than ray-traced reflective maps, which can resemble
point-specific environment maps.

Dealing with point-specific radiance maps raises the is-
sue of computing large numbers of samples for each point
and transmitting them to the hardware. Luckily, a great
deal of exploitable coherence exists in the raw maps
[LH96]. There is much more radiance-map coherence for
true object points than for arbitrary points in space. This
coherence allows radiance maps to be transferred to and
within the PixelView hardware as compressed data. For re-
flection and refraction, the data is not as structured, but in
cases with a limited viewable range, the variation in illu-
mination is far smaller than that found, for example, in a
spherical environment map. This data could still be com-
pressed using a more typical compression algorithm, be-
cause it exhibits the same type of spatial coherence seen
when viewing the world through a normal camera.

The general structure of point-specific radiance-map co-
herence implies that wavelet-based compression would be
a natural fit. However, there exists the opportunity to create
compression algorithms and basis functions that are better
suited to a specific shading model, such as for specular
highlights.

The point-casting process is similar for both diffuse and
specular points. PixelView acknowledges the difference
between diffuse and specular points by requiring only a
single color for a diffuse point and a full radiance map for
all s-t samples for a specular point.

s

sample points

u

f

(x,y,z)
world-space

scene

Figure 4: 2D depiction of a world-space point being
rasterized into the 4D frame buffer via “point casting”.
The world-space point is tested against each s-t sample
point to determine where u-v intersections occur. The
point’s radiance is then applied to those (s,t,u,v) samples.

79

Stewart et al / PixelView: A View-Independent Graphics Rendering Architecture

© Eurographics Association 2004.

5. A PixelView Implementation

In order to demonstrate the feasibility and advantages of
the PixelView architecture, we have chosen to implement a
proof-of-concept prototype (see Figure 1), with the follow-
ing objectives:

• To examine the feasibility of dynamic view se-
lection at the time of pixel scan-out

• To measure the memory bandwidth utilization of
dynamic view selection and investigate the im-
pact of different memory organizations on the re-
quired bandwidth

• To investigate the addressing, coherency, and
fill-rate implications of illuminating and shading
each primitive from multiple viewing directions

• To explore the algorithm simplifications and
tradeoffs implied by a practical hardware imple-
mentation

Some of these objectives could have been addressed en-
tirely in simulation. However, modern system design tools
make it quite easy to move rapidly from a functional simu-
lation model to a FPGA prototype. Moreover, the advan-
tages of physical prototypes are that they do not wallpaper
over many of the engineering issues that can be easily
overlooked in simulation, such as accurate memory mod-
els, signal distribution, routing delays, floor planning, and
datapath complexity.

Another possible implementation avenue for the Pixel-
View architecture would be to map it onto one of today’s
Graphics Processing Units (GPUs). It is clear that the trend
in graphics hardware is towards increasing flexibility and
generality. In effect, GPUs can be viewed as programmable
parallel-processing units. We expect this to become in-
creasingly true in the future. However, there are many as-
pects of GPUs that, at present, are rendering architecture
specific or unexposed. Examples of this include frame
buffer scan-out logic and memory organization, both of
which are critical to demonstrating the feasibility of Pixel-
View.

We have chosen to prototype only a limited subset of
the PixelView architecture. Specifically, our system im-
plements only one “light slab” [LH96] of an all-views ar-
chitecture. A complete all-views implementation would in-
clude at least 4 (and more likely 6) slabs to enclose a re-
gion of empty space. More slabs would be necessary in
scenes with intervening occluders. Of course, there are
tradeoffs between the range of actual view-independence
and the frequency of re-rendering, and we plan to investi-
gate those tradeoffs more in the future. Even so, a single
light-slab implementation is still technically interesting,
because it maps directly to a through-the-window viewing
paradigm. Thus, it would be able to support interactions
similar to those of a single-wall CAVE VR architecture,
but with support for correct stereo viewing for multiple
participants.

Lastly, we have also chosen to use a general-purpose
host processor to emulate the geometry processing stages
of the PixelView pipeline. These stages generally require
floating point computation and involve more decision-
making and variations in control flow than the later stages
of the PixelView pipeline. We intend to investigate a
hardware version of this front-end geometry processing in
the future.

5.1. Hardware Prototype

The hardware begins with the point-casting stage. Recall
that the shader/texture stage outputs world-space (x,y,z)
points along with their associated radiance maps that cap-
ture view-dependent reflectance. The hardware “rasterizes”
these points into the 4D frame buffer. Visibility is deter-
mined via a corresponding 4D z-buffer. Scan-out is an in-
dependent function that uses view updates from the host
PC to determine the latest view parameters at the start of
each frame. This section gives details about how this hard-
ware is implemented.

Figure 5 features a block diagram of the hardware sys-
tem. The primary components are a single Xilinx
XC2S300E Field Programmable Gate Array (FPGA), a
single 8Mx16 SDRAM, a 10-bit video DAC, and a USB
1.1 port. The Xilinx and the SDRAM are both clocked at
100 MHz. The 4D frame buffer and 4D z-buffer reside in
the SDRAM, each occupying 4Mx16. The frame buffer
contains 16-bit RGB565 color values, and the z-buffer con-
tains 16-bit two’s complement depth values. Since we are
limited to 4Mx16, the 4D buffers are organized as 8x8 s-t
sample points, each with a corresponding set of 256x256 u-
v samples.

We will first focus on point casting. The point caster re-
ceives (x,y,z,color) information from the PC. It uses this in-
formation to iterate over the s-t sample points and calculate
the corresponding u-v bins. Each s-t sample point generates
a conditional write to update the 4D frame buffer at the
closest u-v sample. However, the write occurs only if the z
value of the current point is “nearer” than the value cur-

PC
PC

Interface

8Mx16 SDRAM @ 100MHz
Holds 4D Frame Buffer and Z

Display

Point Caster

SDRAM Controller

Video
DAC

Subdivision

Shader/Texture

Figure 5: Block diagram of the PixelView prototype. Point
casting and display occur independently, allowing scan-out
rate to be decoupled from rendering rate. A host PC im-
plements the subdivision and shader/texture stages.

 FPGA @ 100 MHz
USB 1.1

80

Stewart et al / PixelView: A View-Independent Graphics Rendering Architecture

© Eurographics Association 2004.

rently at the corresponding location in the 4D z-buffer.
Given enough (x,y,z) points, the 4D frame buffer will be
“fully populated” and appear as a solid image.

Recall from Section 4.3 that determining u and v is a
relatively straightforward evaluation of a linear expression.
Specifically, it is an incremental calculation that utilizes
accumulators. No multiplication or division is necessary.

Turning now to the scan-out/display hardware, it runs at
a constant 640x480 at 60Hz. After vertical sync (i.e. at the
start of each frame), the hardware grabs the latest view pa-
rameters from the PC. It then begins to iterate through (i,j)
pixel coordinates just like a normal 2D scan-out. The dif-
ference is that the pixel coordinates for conventional scan-
out map directly to frame buffer addresses, whereas our
scan-out must calculate the equivalent (s,t,u,v) quadruple.
The mechanisms for doing these calculations are similar to
those for point casting, as they both involve the evaluation
of a linear expression.

5.2. Scan-Out Memory Bandwidth

Bandwidth is always a primary concern in any graphics
hardware system. It is reasonable to wonder how our 4D
memory organization affects DRAM performance. Our
hardware system has two main users of memory band-
width: the point-casting stage and the display stage. The
display stage generates sequential (i,j) pixel values as in
normal scan-out, but these values are then mapped into 4D.
Referring back to Figure 3, note that the s-t plane is
sparsely sampled, whereas the u-v plane is finely sampled.
Thus, scan-out tends to stay in a single s-t bin for several
pixels. We can use this to our advantage by “swizzling”
(s,t,u,v) such that the bank/row address of the DRAM stays
in the same page for several iterations (Figure 6). Using
this scheme, we achieve page-hit rates well over 90% dur-
ing scan-out, and scan-out consumes only 4 percent of
available bandwidth.

5.3. Point-Casting Performance

The prototype system is able to transmit and rasterize over
80,000 points per second. This equates to over five million
rays per second written into the 4D frame buffer. Note that
this rate is limited by the USB 1.1 interface between the
host PC and the prototype, not by the point-casting hard-
ware. At this rate, point casting consumes about 17 percent
of available bandwidth. Factoring in scan-out and SDRAM
auto-refresh, we have consumed less than 25 percent of
available bandwidth. Thus, we have sufficient bandwidth to
add additional point-casting units to process incoming
points in parallel and increase point-casting performance.
However, we would still ultimately be limited by the speed
bottleneck of the USB interface, and so we chose not to do
this.

6. Results

An important result of our research is the completion of the
working prototype that demonstrates the benefits, capabili-
ties, and plausibility of the PixelView architecture. This

section provides examples of all supported primitive types
captured from the PixelView prototype.

The example images are captured from a VGA scan
converter connected to the VGA output of the PixelView
prototype. All examples run at a constant frame rate of 60
frames per second within a 256x256 window inlaid in a
640x480 display. The images shown here have been
enlarged to show detail. A better idea of the final output
can be gained from watching the supporting video. The
subdivision for these models has been computed on the
host PC and transmitted to the board in a point stream for-
mat consistent with what a hardware-based subdivider
would output.

The quality of reconstruction in these results is largely a
function of memory size. The SDRAM can store only 8x8
s-t samples in the 4D frame buffer at a resolution of
256x256 and still allow room for 16-bit z-buffering. In ad-
dition, the reconstruction method used here is nearest
neighbor. Better reconstruction methods, such as quadrilin-
ear interpolation, could be implemented at the cost of addi-
tional memory bandwidth.

Our polygonal models are subdivided by the host PC
and transmitted to the prototype as specular point samples.
The model in Figure 8 shows a 3263-faced polygonal
model of a cow with vertex normals. This is subdivided
into 600899 Phong-shaded point samples, which are suffi-
cient to render the scene for any view. The excess points
are removed by z-buffering and all occlusions are properly
resolved.

The point based terrain map data shown in Figure 9
represents a dataset of 2048x2048 (x,y,z) texture mapped
points forming a model of Puget Sound in Washington.
This data is easy for PixelView to work with because it
does not need to subdivide or shade the points before point
casting.

Data Bus

16

Col
 Bank/
Row

SDRAM
BA1
BA0
A11
A10
A9
A8
A7 DQ15 -
A6 DQ0
A5
A4
A3
A2
A1
A0

z-sel

u

t

s2
s1

v

s0

Figure 6: Swizzling of (s,t,u,v) samples into SDRAM ad-
dresses to achieve increased scan-out coherence. Half the
banks are used for z-buffer data and half for color data, de-
termined by the high order bank pin.

81

Stewart et al / PixelView: A View-Independent Graphics Rendering Architecture

© Eurographics Association 2004.

Image-based rendering datasets can be loaded directly
into the 4D frame buffer and then viewed from a virtual
camera position. The light field in Figure 10 was taken
with a real-world light-field capture rig and digitized. The
data set is comprised of 8x8 camera images, each with a
resolution of 256x256 pixels, which map directly into the
4D frame buffer.

The final example, Figure 11, depicts 14 reflective and
refractive spheres against a texture-mapped background; all
described as higher-order surfaces. Ray tracing was used to
compute the view-dependant radiance maps of each point
in this data set. Each point and its radiance map is point
cast and then scanned out at 60 frames per second.

7. Discussion and Future Work

While our prototype system addresses many of the issues
posed by the PixelView architecture it leaves many unad-
dressed. Two issues of particular interest are how the Pix-
elView architecture scales to a significantly larger 4D
frame buffer, and how its rendering performance scales as
multiple simultaneous views are supported. How to ani-
mate objects is another area of interest.

7.1. Scalability

We envision that a minimal practical PixelView system
would incorporate at least 4G ray samples. Addressing
such a large memory block poses immediate issues. Con-
sider the cost of clearing the buffer’s z and color values
alone. We believe that the solution to this problem is to dis-
tribute the 4D frame buffer over multiple functional units,
each with a slice of the 4D frame buffer that shares small
overlap regions with its adjacent neighbors (Figure 7). We
envision that the granularity of these modules would match
the prevailing memory density, providing one geometry
processing and rasterization/display unit per memory chip
in order to maximize the system bandwidth.

However, this need for high memory bandwidth is fur-
ther aggravated by the need to support multiple simultane-
ous views. If a PixelView-like system were employed to
drive an autostereoscopic or holographic display, then it is
conceivable that every ray in the frame buffer would need
to be read out at the update rate. While the update rate
might be minimal for a static scene, we would still like to
support animations and dynamic scenes at interactive rates.
We believe the solution here is redundancy. Each ray
within the 4D frame buffer might need to be replicated as
many as 16 times to support in excess of 1024 views. This
further increases the memory requirements by a factor of
16 to 64G rays. While this seems unimaginable now, in ten
years time it might be both achievable and affordable.

7.2. Animation

In a 4D frame buffer, the notion of a partial screen clear
seems especially helpful, particularly for supporting anima-
tion. Ideally, one would like to remove all contributions
from a given point set in a past frame and re-render only
those portions of the frame buffer that have changed. An

old double-buffering trick used in traditional systems might
prove to be particularly useful for the PixelView system.
Specifically, one can render static elements into a back-
ground buffer and then reload them to initialize each ren-
dered frame. This trick is seldom used because it fixes the
viewpoint in favor of fast animation, but it is particularly
inviting for a view-independent architecture, like Pixel-
View.

7.3. Other Issues

A more general-purpose implementation of PixelView than
our prototype would include the complete linear rational
addressing implied by Equations 1 through 4. This seems
achievable, because it is similar to the per-pixel divide re-
quired for perspective correct interpolation in today’s
hardware. We only require that similar circuitry be used in
the frame buffer scan-out stage, where it could be heavily
pipelined.

The image quality of PixelView could be improved with
better reconstruction. A naïve implementation of quadrilin-
ear interpolation causes an additional 16x increase in
memory bandwidth. However, caching methods could be
employed to reduce bandwidth requirements.

The point-casting bandwidth of PixelView could also be
reduced considerably by including compression of the radi-
ance maps. Off-the-shelf methods, such as wavelet com-
pression, would probably do a good job, but we are particu-
larly interested in the possibility of compression methods
with basis functions optimized for radiance modeling. Any
new compression bases would probably need to be used in
combination with compression methods for general images,
because the limiting case of a mirror reflector leads to a
general image. Adding compression would increase com-
putation in the primitive processing front end, but this in-
crease is probably offset by the reduction in communica-
tion bandwidth.

8. Conclusions

We have presented PixelView, a new hardware rendering
architecture that generates all possible views of a scene af-
ter a single traversal of the scene description. PixelView

Display 1

Geometry
Processing

G G G G

Rasterization R R R R

Figure 7: Block diagram of scalability via multiple Pixel-
View devices. Geometry processing and rasterization are
performed in parallel, with each rasterizer controlling part
of the light field, and subsequently part of each scan-out.

Display 2

82

Stewart et al / PixelView: A View-Independent Graphics Rendering Architecture

© Eurographics Association 2004.

supports a wide range of rendering primitives, including
polygonal meshes and higher-order surfaces. It also sup-
ports recently developed point and image-based rendering
primitives. Moreover, we have developed a working hard-
ware prototype of a 4D, z-buffered frame buffer that sup-
ports dynamic view selection at raster scan-out to demon-
strate the viability of such a system. Graphics systems like
PixelView are capable of supporting extremely low display
update latencies. They will also enable efficient rendering
of shared virtual environments supporting multiple simul-
taneous participants. In the future, view-independent
graphics rendering architectures, like PixelView, will also
be essential to provide the multitude of viewpoints required
for real-time autostereoscopic and holographic display de-
vices.

References

[Bal99] Bala, K., “Radiance interpolants for interactive
scene editing and ray tracing” Doctorial
Thesis, Dept. of Computer Science and
Electrical Engineering, Massachusetts Institute
of Technology (MIT), 1999.

[BWG03] Bala, K., Walter, B., and Greenberg, D.,
“Combining edges and points for interactive
high-quality rendering”, Proc. SIGGRAPH
2003.

[BFMZ94] Bishop, G., Fuchs, H., McMillan, L., and
Zagier, E.S., “Frameless rendering: Double
buffering considered harmful”, Proc.
SIGGRAPH 1994, pp. 175-176.

[CCC87] Cook, R. Carpenter, L, and Catmull, E., “The
Reyes image rendering architecture,” Proc.
SIGGRAPH 1987, pp. 95 102.

[Gla88] Glassner, A.S., “Spacetime ray tracing for
animation”, IEEE Computer Graphics and
Applications, 60-70, 1988.

[GGSC96] Gortler, S.J., Grzeszczuk, R., Szeliski, R., and
Cohen, M. F., “The lumigraph”, Proc.
SIGGRAPH 1996, pp. 43-54.

[Hal98] Halle, M., “Multiple viewpoint rendering”,
Proc. SIGGRAPH 1998, pp. 243-254.

[LH96] Levoy, M. and Hanrahan, P., “Light field
rendering”, Proc. SIGGRAPH 1996, pp. 31-42.

[MMB97] Mark, W. R., McMillan, L., and Bishop G.,
“Post-rendering 3d warping”, Proc. 1997
Symposium on Interactive 3D Graphics, pp. 7-
16, 1997.

[OCMB95] Olano, M., Cohen, J., Mine, M., and Bishop,
G., “Combating rendering latency”, 1995
Symposium on Interactive 3D Graphics, 1995.

[OKTD02] Owens, J.D., Khailany, B., Towles, B., and
Dally, W.J., "Comparing Reyes and OpenGL
on a stream architecture," Proc. SIGGRAPH/
EUROGRAPHICS conference on graphics
hardware, pp. 47-56, 2002.

[PKKG03] Pauly, M., Keiser, R., Kobbelt, L.P., and
Gross, M., “Shape Modeling with Point-
Sampled Geometry”, Proc. SIGGRAPH 2003.

[PZvBG00] Pfister, H., Zwicker, M., van Baar, J., and
Gross, M., "Surfels: Surface elements as
rendering primitives", Proc. SIGGRAPH 2000,
pp. 335-342.

[PBMH02] Purcell, T.J., Buck, I., Mark, W.R., and
Hanrahan, P., “Ray tracing on programmable
graphics hardware”, Proc. SIGGRAPH 2002,
pp. 703-712.

[RMRK99] Regan M., Miller G., Rubin S., and Kogelnik
C., "A Real Time Low-Latency Hardware
Light-Field Renderer", Proc. SIGGRAPH
1999, pp. 287-290.

[RP94] Regan M. and Pose R., "Priority rendering
with a virtual reality address recalculation
pipeline", Proc. SIGGRAPH 1994, pp. 155-
162.

[RL00] Rusinkiewicz, S. and Levoy, M., “QSplat: A
multiresolution point rendering system for
large meshes”, Proc. SIGGRAPH 2000.

[SGHS98] Shade, J., Gortler, S., He, L., and Szeliski, R.,
"Layered depth images," Proc. SIGGRAPH
1998, pp.231-242, 1998.

[TK96] Torborg, J. and Kajiya, J.T., “Talisman:
Commondity realtime 3D graphics for the
PC”, Proc. SIGGRAPH 1996, pp. 353-363.

[War98] Ward, G.J., “The Holodeck: a parallel ray-
caching rendering system”, 2nd Eurographics
Workshop on Parallel Graphics and
Visualization, 1998.

[ZPKG02] Zwicker, M., Pauly, M., Knoll, O., and Gross,
M., “Pointshop 3D: an interactive system for
point-based surface editing, Proc. SIGGRAPH
2002, pp. 322-329.

Appendix A. Derivation of Scan-Out Equations

Equation 11 below gives a model of the “image plane” of
the virtual camera used to specify the current view. Spe-
cifically, given a point E (the eye point), a vector P that
spans the image plane in the i-direction, a vector Q that
spans the image plane in the j-direction, and a vector O
from the eye point to the (0,0) pixel of the image plane,
Equation 11 maps pixel coordinates (i,j) to (x,y,z) points in
world space.

)11(
1














⋅
















⋅+
















=
















j
i

OQP
OQP
OQP

E
E
E

z
y
x

zzz

yyy

xxx

z

y

x

λ

The following two equations represent a similar map-

ping for the s-t and u-v planes. Specifically, they define the
world-space points that fall on the planes. In Equation 12,
vector L spans the s-t plane in the s-direction, vector M
spans the s-t plane in the t-direction, and vector S goes

83

Stewart et al / PixelView: A View-Independent Graphics Rendering Architecture

© Eurographics Association 2004.

from the world origin to (s,t) = (0,0). Similar definitions
exist for Equation 13.

)13(
1

)12(
1 















⋅
















=
































⋅
















=
















v
u

UGF
UGF
UGF

z
y
x

t
s

SML
SML
SML

z
y
x

zzz

yyy

xxx

zzz

yyy

xxx

If we place the s-t plane at z = 0, define L parallel to the

x-axis, and define M parallel to the y-axis, Equation 12
simplifies to Equation 14. Similarly, if we place the u-v
plane at z = f, define F parallel to the x-axis, and define G
parallel to the y-axis, Equation 13 simplifies to Equation
15.

)15(
100

0
0

)14(
1000

0
0
















⋅
















=
































⋅
















=
















v
u

f
UG
UF

z
y
x

t
s

SM
SL

z
y
x

yy

xx

yy

xx

Setting the right side of Equation 11 equal to the right

side of Equation 14, we can solve for s and t in terms of i
and j. Likewise, we can solve for u and v in terms of i and j
using Equations 11 and 15. This yields Equations 1 through
4 in Section 4.2.

Moreover, if the image plane of the virtual camera is re-
stricted such that it is always parallel to the s-t and u-v
planes, the Pz and Qz terms in Equation 11 become zero,
and consequently, the denominator becomes a constant.
This results in Equations 5 through 8 in Section 4.2.

Appendix B. Derivation of Point-Casting Equations

Assuming the simplified s-t and u-v configuration from
Appendix A, the following equation represents the ray
starting at a particular s-t sample point and passing through
a particular point on the u-v plane:

)16(
1000

0
0

100
0

0

1000
0

0
































⋅















−
















⋅















+
















⋅















=
















t
s

SM
SL

v
u

f
UG
UF

t
s

SM
SL

z
y
x

yy

xx

yy

xx

yy

xx

τ

Viewing this expression as a system of three equations,
note that the last equation is simply z = τ·f. Consequently,
you can easily solve for τ and substitute back to solve for u
and v in terms of s and t. This yields Equations 9 and 10 in
Section 4.3.

Figure 8: Screen capture of a subdivided polygonal model.

Figure 9: 4-million point-sample model of Puget Sound.

Figure 10: A “real-life” 8x8 by 256x256 light field.

Figure 11: Ray-traced scene with view-dependent points.

84

