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We present an OpenGL-assisted visibility culling algorithm
to improve the rendering performance of large polygonal mod-
els. Using a combination of hierarchical model-space partitioning,
OpenGL-assisted view-frustum culling, and OpenGL-assisted oc-
clusion culling, we achieve a significantly better performance on
general polygonal models than previous approaches. In contrast to
these approaches, we only exploit common OpenGL features and
therefore, our algorithm is also well suited for low-end OpenGL
graphics hardware.

Furthermore, we propose a small addition to the OpenGL ren-
dering pipeline to enhance the framebuffer’s ability for faster and
more detailed occlusion queries.

CCS Categories: I.3.3 [Picture/Image Generation]: Viewing al-
gorithms, Occlusion Culling; I.3.5 [Computational Geometry and
Object Modeling]: Object hierarchies; I.3.7 [Three-Dimensional
Graphics and Realism]: Hidden Line/Surface Removal;

Keywords: Visibility culling, occlusion culling, hierarchical data
structures, OpenGL, sloppy n-ary space partitioning trees.

1 Introduction

Hidden-line-removal and visibility are among the classic topics in
computer graphics [13]. A large variety of algorithms are known to
solve these visibility problems, including the z-buffer approach [7],
the painter algorithm [13], and many more.

Recently, visibility and occlusion culling have been of special
interest for walkthroughs of architectural scenes [1, 36, 27] and ren-
dering of large polygonal models [23, 15]. Unfortunately, these ap-
proaches are limited to cave-like scenes [23, 38], or require special
hardware support [21].

In this paper, we present an algorithm for general visibility
queries. This algorithm exploits several OpenGL features in order
to obtain faster results for large polygonal models. To show the ap-
plicability of our algorithm – in terms of graphics performance – on
low-end graphics workstations, we performed all measurements on
an SGI O2/R10000 and an SGI Octane/MXE graphics workstation.
Furthermore, we propose an extension to the OpenGL rendering
pipeline to add features for improved general occlusion culling.

In a pre-process, the polygonal models are subdivided into
sloppy n-ary space-partitioning-trees (snSP-trees). In contrast to
most standard partitioning-trees, like the BSP-tree [14], our subdi-
vision is not a precise one; snSP-tree sibling nodes are possibly not
disjoint. This is to prevent large numbers of small fractured poly-
gons, which can cause numerical problems and an increase of the
rendering load.

During the actual visibility culling, the OpenGL selection buffer
is used to implement a view-frustum culling of the nodes of our sub-
division tree. Thereafter, the remaining nodes of our snSP-tree are
rendered into our implementation of avirtual occlusion bufferto de-
termine the non-occluded nodes. Finally, the polygons of the snSP-
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of Tübingen, Auf der Morgenstelle 10/C9, D72076 T¨ubingen, Germany

nodes considered potentially visible are rendered into the frame-
buffer.

Overall, our algorithm features:

� Portability: Only basic OpenGL-functionality is used for the
implementation of the algorithm. No additional hardware
support, such as for texture-mapping [40], or special occlu-
sion queries are necessary. Even most low-end OpenGL sup-
porting PC 3D graphics cards are able to use our visibility
culling scheme.

� Adaptability: Due to the use of the OpenGL rendering
pipeline, the presented algorithm adapts easily to any OpenGL
graphics card. Features that are not supported in hardware can
be disabled, or are realized in software by the OpenGL imple-
mentation.

� Generality: No assumptions of the scene topology or restric-
tion on the scene polygons are made.

� Significant Culling: Although high culling performance is
always a trade-off between culling efficiency and speed effi-
ciency, our algorithm obtains high culling performance, while
keeping good rendering performance.

� Well-balanced Culling: Different computer systems intro-
duce different rendering and CPU performance. The pre-
sented algorithm provides an adaptive balancing scheme for
culling and rendering load.

Our paper is organized as follows: In Section 2, we briefly out-
line previous work that has been done in the field of visibility and
occlusion culling. Section 3 discusses some scene organization is-
sues and Section 4 presents details of our algorithm. Section 5 an-
alyzes the results and provides a discussion of our algorithm. In
Section 6, we discuss hardware related issues of occlusion culling.
Specifically, we discuss existing hardware (Section 6.1), and we
discuss hardware for advanced occlusion information (Section 6.2).
Finally, we state our conclusion and briefly describe future work.

2 Related Work

There are several papers which provide a survey of visibility and
occlusion culling algorithms. In [40], Zhang provides a brief re-
cent overview with some comparison. Brechner surveys methods
for interactive walkthroughs [6]. Occlusion algorithms for flight
simulation are surveyed in [29].

Early approaches are based on culling hierarchical subdivision
blocks of scenes to the view-frustum [15]. Although this is a sim-
ple but effective scheme for close-ups, this approach is less suited
for scenes that are densely occluded, but lie completely within the
view-frustum.

In architectural model databases, the scene is usually subdivided
into cells, where each cell is associated with a room of the build-
ing. For each potential view point of the cells, the potential visi-
ble set (PVS) is computed to determine the visibility. Several ap-
proaches have been proposed in [1, 36, 27]. However, it appears



that the cell subdivision scheme is not suitable for general polygo-
nal scenes without a room-like subdivision, which limits their ap-
plicability significantly.

Several algorithms have been proposed in computational geom-
etry. A brief overview can be found in [16]. Coorg and Teller pro-
posed two object space culling algorithms. In [11], a conservative
and simplified version of the aspect graph is presented. By estab-
lishing visibility changes in the neighborhood of single occluders
using hierarchical data structures, the number of events in the as-
pect graph is significantly reduced.

Secondly, by combining a shadow-frustum-like occlusion test of
hierarchical subdivision blocks (i.e., octree blocks), the number of
occlusion queries is reduced [12]. However, both algorithms are
neither suited for dense occluded scenes with rather small occluders
(resulting in a large increase of queries), nor for dynamic scenes.

Cohen-Or et al. proposed an�-Visibility-Culling for distributed
client/server walkthroughs [9, 10, 8]. Computing the shadow-frusta
for a series of local view points and an occluder permits visibil-
ity queries on the local client. While this approach showed good
performance with small polygonal scenes (< 50K polygons) in a
client/server environment, it seems less suited for large polygonal
scenes with more than 500K polygons.

In [24], an occluder database – a subset of the scene database – is
selected. During the occlusion culling, the shadow-frusta of the oc-
cluders are computed and a scene hierarchy is culled against these
shadow-frusta. Overall, the surveyed computational geometry-
based visibility approaches only deal with convex occluders, which
limits their practical use severely.

In 1993, Greene et al. proposed the hierarchical z-buffer al-
gorithm (HZB) [21, 20, 18], where a simplified version for anti-
aliasing is used in [20]. After subdividing the scene into an oc-
tree, each of the octants is culled against the view-frustum as pro-
posed in [15]. Thereafter, the silhouettes of the remaining octants
are scan-converted into the framebuffer to check if these blocks are
occluded. If they are not occluded, their content is assumed to be
not occluded as well; if they are occluded, nothing of their content
can be visible. The occlusion query itself is performed by checking
a z-value-image-pyramid for changes. Unfortunately, this query is
not supported by common graphics hardware. Furthermore, main-
taining the z-pyramid turns out to be a very expensive operation.
However, we consider this algorithm as the inspiring origin of our
approach, presented in Section 4.

In [19], Greene presents a hierarchical polygon tiling approach
using coverage masks. This algorithm improves the occlusion
query of a HZB, due to the two-dimensional character of the tiling.
However, the main contribution of this algorithm is an anti-aliasing
method, as the algorithm has advantages for very high-resolution
images. The strict front-to-back order traversal of the polygons
– necessary for the coverage masks – needs some data structure
overhead. Building a hierarchy of an octree of BSP-trees limits the
application of this algorithm to static scenes. However, some tech-
niques to overcome these drawbacks are discussed by Greene [19].

Naylor presented an algorithm, based on a 3D BSP-tree for the
representation of the scene, a 2D BSP-tree as image representation,
and an algorithm to project the 3D BSP-tree subdivided scene into
the 2D BSP-tree image [31].

Hong et al. proposed a fusion between the hierarchical z-buffer
algorithm [21] and the PVS-algorithm in [27]. In this z-buffer-
assisted occlusion culling algorithm, a human colon is first sub-
divided into a tube of cells in a pre-process. Thereafter, the oc-
clusion is determined on-the-fly by checking the connecting portals
between these colon cells, exploiting the z-buffer and temporal co-
herence to obtain high culling performance [23]. Unfortunately,
this approach is closely connected to the special tube-like topol-
ogy of the colon and therefore, is not suited for general occlusion
culling problems.

In [38], a voxel-based occlusion culling algorithm is presented.
After classifying the scene on a grid of samples of the dataset as
void-cells, solid-cells and data-cells, the occlusion is determined
in a pre-process for each potential view point. Presumably, this
algorithm achieves good results for cave-like scenes, but has a high
memory and processing overhead for sparse scenes like the forest
scene of Section 5. Therefore, this algorithm is not suited for a
general occlusion culling algorithm.

In 1997, occlusion culling using hierarchical occlusion maps
(HOM) was presented [40, 39]. Similar to [24], an occluder
database is selected from the scene database. Using these occlud-
ers, bounding boxes of the potential occludees of the scene database
are tested for overlaps, using the image hierarchy of the projected
occluders. Strategies for dynamic scenes are presented in [35] and
[40]. Sudarsky and Gotsman propose a fast update of the hierar-
chical data structure, such as the octree block of the HZB. Zhang
[40] et al. suggest using each object of a scene as an occluder in the
HOM algorithm.

3 Scene Organization

In general, subdivision schemes for general polygonal models are
difficult to derive. This results in individual solutions for differ-
ent datasets. Hong et al. [23] use a technique which subdivides a
voxel-based colon dataset along its skeleton. The size of the differ-
ent subdivision entities depends on how many voxels belong to this
entity. In [34], Snyder and Lengyel proposed that the designer of
the scene needs to provide the subdivision. Similarly, Zhang et al.
used a pre-defined scene database [40]. The most general approach
is to subdivide a polygonal model into more or less regular spa-
tial subdivision schemes, such as BSP-trees [14, 31, 19], k-D-trees
[5], or Octrees [18, 21]. While these subdivision schemes produce
good results on polygonal models extracted by the Marching Cubes
algorithm [26] from uniform grid volume datasets – which provide
a “natural” subdivision on Marching Cubes cell base, these schemes
run into numerous problems on general models. If a polygon of the
model lies on a subdivision boundary of an octree block or a BSP-
/k-D-tree subdivision plane, it must be split into several smaller tri-
angles, in order to produce the necessary disjoint representation of
the bounding volumes. Unfortunately, this procedure can increase
the number of small and narrow polygons tremendously.

Several approaches from collision detection propose differ-
ent techniques to generate hierarchical subdivisions. In [17],
Gottschalk et al. use statistical methods to derive a tree hierarchy of
oriented bounding boxes (OBBTree). Barequet et al. use the BOX-
TREE data structure to provide subdivisions similar to the OBB-
Tree and to the octree scheme [2]. While the previous approaches
use oriented bounding boxes (OBB) or axis-aligned bounding boxes
(AABB), Klosowski et al. use discrete orientation polytopes (k-
dops) to generate better fitting convex hull, where the AABB are a
special case of the k-dops [25].

3.1 Sloppy N-ary Space Partitioning Trees

In our approach, we propose the use of a sloppy n-ary Space Parti-
tioning tree (snSP-tree). The geometry of the scene is usually orga-
nized in the leaf nodes (geometry nodes) of the tree structure. The
upper or inner nodes (subdivision nodes) represent the bounding
volume of their child nodes in the subtree.
Generally, this tree structure is similar to octrees, BSP-trees, k-D-
trees, or other bounding volume representations. In contrast, a node
in a snSP-tree does not have a fixed number of child nodes, hence
the namen-ary Space Partitioning tree. However, the actual dif-
ference (to octrees, BSP-trees, or k-D-trees) is given by theslop-
pinessof the partitioning scheme, where the bounding volumes of
tree nodes of the same tree level are not necessarily disjoint. Hence,



polygons which extend into the bounding volume of another sub-
division node, do not need to be split into two (or more) smaller
triangles; instead, the bounding volume of such polygons overlaps
into the bounding volume of the other subdivision node, resulting
in a non-disjoint partitioning.
Using a snSP-tree as subdivision representation, we can store any
give model in such a tree without a re-triangulation of overlapping
polygons. Nevertheless, polygons which expand over large parts of
a model, i.e. floors, should be subdivided into smaller polygons to
ensure a well balanced tree.

3.2 Scene Subdivision

Using a snSP-tree a subdivision data structure, unfortunately does
not solve the actual subdivision problem. However, it removes
some of the limitations of other subdivision schemes.

Some semi-automatic subdivision is provided by the SGI
OpenGL Optimizer package [33]. Unfortunately, it turned out
that most generated subdivisions needed to be tuned in order to
achieve reasonably good performance, i.e., minimal bounding vol-
umes. One of the problems is that Optimizer tends to put all ge-
ometry – which did not fit into the created scene subdivision – in
the right-most branch of the respective subtree, resulting in a poor
subdivision quality.

While good results can be achieved using scenes where addi-
tional information is available (i.e., medical scanner data (octree or
BSP subdivision), or pre-subdivided scenes), the subdivision per-
formance for general models remains improvable.
In our approach, we use a subdivision scheme developed for ray-
tracing [30], which we adapted to the needs of occlusion culling
[28]. Basically, a set of polygons is subdivided in two or more en-
tities, based on a cost function. At each of the subdivision steps,
the polygons of each entity are sorted along the three coordinate
axes according to their barycenters. Based on the three sorted lists,
potential subdivision planes are evaluated using the cost function.

Although the snSP-tree does not rely on AABB, we use this
bounding primitive to be represented by the inner nodes of the
snSP-tree.

4 OpenGL-assisted Occlusion Culling

The general strategy of our visibility culling algorithms is similar
to the hierarchical approach proposed by Garlick [15] and used by
the HZB [21] and the HOM [40]. Occluded objects of a subdi-
vided scene are culled in an initial view-frustum step, and a sub-
sequent occlusion culling step. While Garlick used only view-
frustum culling of a hierarchically subdivided scene, Greene and
Zhang added an occlusion culling step to the general algorithm.
As with most occlusion culling algorithms, the latter two algorithm
basically differ by how to detect occluded objects in screen-space.
Greene used a z-pyramid to determine changes in the z-buffer indi-
cating a not occluded object. In contrast, Zhang used a hierarchical
screen projected map of pre-selected occluders.

In this section, we present a novel solution to the occlusion prob-
lem. Our algorithm is based on core OpenGL functionality and uti-
lizes the available capabilities of OpenGL to check for occlusion.
As mentioned earlier, we assume a sloppy n-ary Space Partitioning
tree (snSP-tree) as a hierarchical representation of a scene, which is
generated once per scene in a pre-processing step1. For each frame,
we perform view-frustum and occlusion culling on this subdivision
tree. Figure 1 schematically illustrates the pipeline of our culling
algorithm. The individual steps are described in detail in the fol-
lowing sections.

1The snSP-tree structure is only generated for static parts of a scene;
dynamic parts are handled differently which is discussed in Section 5.1.4.
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Figure 1: Survey of the basic algorithm.

4.1 View-Frustum Culling

In contrast to other published approaches, we use OpenGL to per-
form the view-frustum culling step. In detail, we use theOpenGL
selection modeto detect whether a bounding volume interferes with
the view-frustum. This OpenGL mode is designed to identify ge-
ometric objects rendered into a specific screen area [37], which in
our case is the whole screen. The polygonal representation of the
bounding volume (as convex hull) is transformed, clipped against
the view-frustum, and finally rendered without contributing to the
actual framebuffer [37]. Once a bounding volume intersects the
view-frustum – the hit buffer of OpenGL’s selection mode has a
contribution from this bounding volume object – we test whether
the bounding volume resides entirely within the view-frustum. In
this case, all subtrees of the bounding volume are marked poten-
tially visible. Otherwise, we recursively continue testing the child
nodes of the bounding volume hierarchy.

In rare cases, the bounding volumes can completely contain the
view-frustum – resulting in no contributions to the hit buffer of the
selection mode, due to a not visible bounding volume representa-
tion. This can be prevented by testing if the view point lies within
the bounding volume, or if the bounding volume lies in between the
near plane of the view-frustum and the view point.

As a result of the view-frustum culling step, leaves are taggedpo-
tentially visible, if they are not culled by the view-frustum culling,
or definitely not visible.

4.2 Occlusion Culling

The task of an occlusion culling algorithm is to determine occlu-
sion of objects in a model. We use avirtual occlusion buffer, being
mapped onto the OpenGL framebuffer to detect possible contribu-
tion of any object to the framebuffer. In our implementation of the
algorithm on a SGI O2 and a SGI Octane/MXE, we used the stencil
buffer for this purpose2. Intentionally, the stencil buffer is used for
advanced rendering techniques, like multi-pass rendering.

2Other buffers could be used as well, but the stencil buffer, as an integer
buffer, is often the least used buffer and has on some graphics systems an



To test occlusion of a node, we send the triangles of its bounding
volume to the OpenGL pipeline, use the z-buffer test while scan-
converting the triangles, and redirect the output into the virtual oc-
clusion buffer. Occluded bounding volumes will not contribute to
the z-buffer and hence, will not cause any trace orfootprint in the
virtual occlusion buffer.

Although reading the virtual occlusion buffer is fairly fast, it is
the most costly single operation of our algorithm, which accounts
for approximately 90% of the total costs of the occlusion culling
stage. This is mainly due to the time consumed for the setup getting
the buffer out of the OpenGL pipeline. For models subdivided into
thousands of bounding volumes, this can lead to a less efficient op-
eration. Furthermore, large bounding boxes require many read op-
erations. Therefore, we implemented a progressive occlusion test,
which reads spans of pixels from the virtual occlusion buffer using
a double interleaving scheme, as illustrated in Figure 2.

Although, the setup time on the O2 for sampling3 small spans of
the virtual occlusion buffer increases the time per sample, spans of
ten pixels achieved an almost similar speed-up as sampling entire
lines of the virtual occlusion buffer. For the Octane/MXE, we need
to read larger chunks from the framebuffer in order to achieve a
sufficient speed-up. Overall, there is a trade-off between sampling
with good visual quality, and sampling with a minimized setup
time.

Span not read from the buffer
Span read from the buffer

Figure 2: Progressive sampling of the virtual occlusion buffer using
a sampling value of 6. Hence, after six sampling iterations, the
correct occlusion information will be retrieved.

During motion of the view point, sampling with an appropriate
sampling rate enables low culling cost without producing visible
artifacts in our scenes. Once the movement stops, the buffer will
be read progressively until all values are tested. Basically, every
samplingth horizontal span is read from the buffer, where the y-
offset of this span is incremented bysampling

2
for every second

column of spans. For the purpose of illustration, Figure 2 uses a
sampling factor of six, which is smaller than the sampling factor
used in our measurements.

Please note that sampling introduces a non-conservatism into our
approach. In some cases, bounding boxes are considered occluded,
although they are not fully occluded. However, due to orientation
and shape, the actual geometry is usually much smaller than their
bounding boxes. Consequently, a not fully occluded bounding box
does not mean that the associated geometry is not fully occluded
as well. After performing some measurements, it turned out that
a sampling factor of ten is sufficient without compromising image
quality (see Figure 3). However, the sampling value can be adjusted
adaptively.

empirically measured better read performance than the other buffers.
3Basically, this scheme implements asamplingof the virtual occlusion

buffer, where 1

sampling
th of each bounding box is read in each iteration. In

other words, the algorithm needssamplingiterations to fully read the entire
bounding box.

4.3 Adaptive Culling

For complex models with deep visibility4, many almost occluded
objects contribute only a few pixels to the final image. Knowing
whether an object is not occluded does not introduce a measure of
the quantity of contribution. To cull objects which are almost oc-
cluded and therefore, are barely noticeable, we introduce adaptive
culling as our alternative to approximate culling [40].

(a) (b)

Figure 3: Alley of trees – bounding volumes of culled objects are
marked yellow: (a) Adaptive culling (94% culled). (b) Occlusion
culling (88% culled).

Each bounding volume object of the snSP-tree which generates
a footprint on the virtual occlusion buffer needs to be evaluated.
Therefore, we count the number of footprints of the object on the
virtual occlusion buffer. We consider the depth of the object, the
size of its 2D bounding box relative to the view plane, and the num-
ber of footprints. In other words, we calculate the percentage of
footprints relative to the depth and size of the object.

Adapcull(Obj) =
SizeOf2DBoundingBox(Obj)

SizeOfV iewplane

�

Dist(Eye) +Dist(Obj)

Dist(Eye)
(1)

where Sizeof2DBoundingBox(Obj) returns the number of pixels
of the screen projection of the bounding box, SizeOfViewplane re-
turns the number of pixels of the view plane, Dist(Eye) returns the
distance between view plane and view point, and Dist(Obj) returns
the minimal distance between theObj and the view plane.

For each potentially visible object, we evaluate Equation 1. If
Adapcull(Obj) is smaller than a user defined threshold, we con-
sider the object as occluded. This means that an object with a large
projected bounding box which is farther away than an object with a
similar sized projected bounding box, might have a larger contribu-
tion because of its size5.

Different strategies for dealing with almost occluded objects are
possible. First, as mentioned in the previous section, the actual
geometry is usually smaller than the associated bounding box. A
partially not occluded bounding box does not necessarily mean that
the associated geometry is not occluded. Therefore, culling of the
object may not have any visual impact. Second, if a small fraction
of the actual geometry might be not occluded, we will probably not

4In scenes with deep visibility, many objects in the background are vis-
ible, due to the sparse scene geometry. An example for such a scene is the
forest scene in Figure 3 and Figure 8.

5Several different heuristics can be used to determine if the contribution
of an almost occluded object is significant. In our view, a large but distant
object might have a larger visual impact than a small but less distant object
(considering the same projected size).



see any detail. Consequently, we could use a lower level of detail
representation of this geometry.

Figure 3 shows some results of our adaptive culling mode using
the first strategy, compared to the standard occlusion culling mode
of our algorithm6.

4.4 Further Optimizations

Several optimizations are exploited by our approach; many of these
ideas are already used by other approaches as well. In this section,
we discuss a few of them.

Depth Ordered Culling: Front-to-back, or depth sorted or-
der of the occlusion tests provides a good heuristic for fast filling
of the virtual occlusion buffer. Therefore, it is important to pro-
cess objects in depth sorted order. Thezmin andzmax values for
each bounding volume are returned by the view-frustum test for
free. The bounding volumes interfering within the view-frustum
are sorted by theirzmin value into aDepthList.

Interleaved Culling: Clearly, the subdivision tree representing a
model can be too deep to efficiently test every bounding volume for
occlusion. In the worst case, each leave could contain a single poly-
gon. This is circumvented by generating well balanced trees, hold-
ing sufficient polygons in each leaf. Additionally, the view-frustum
culling step and occlusion culling step are dynamically interleaved
to exploit culling coherence - an already occluded bounding volume
of a tree node does not require any further culling test for its child
nodes.

Our occlusion culling step tags each node as potentially visible
or occluded. During motion of the view point, those tags have to be
updated for every frame. As soon as the camera stops, only bound-
ing volumes, in the previous iteration determined as possibly oc-
cluded are progressively refined. Nodes earlier marked potentially
visible will stay potentially visible and can therefore be skipped.
The leaf nodes which contain the actual geometry are directly sent
to the rendering pipeline. This scheme changes once we determine
a bounding volume to be potentially visible, which has previously
been marked as possibly occluded. In this case, we have to perform
occlusion culling for all following nodes in theDepthList, due to the
changed occlusion in the image. As mentioned earlier, this change
of occlusion did not happen in our experiments using a sampling
factor of ten.

Cost-adaptive Culling: To obtain a good ratio between time
spent for rendering and time spent for culling, we need to ensure
that only a reasonable fraction of the rendering time is spent on
culling. Fgraphics, the factor which represents the render perfor-
mance, is hardware dependent and needs to be determined empiri-
cally. On the SGI O2, we determinedFgraphics = 1

3
as a reason-

ably good factor.
The cull depth adapts dynamically in order to meet the time bud-

get for culling. This budget is calculated using Equation 2, where
Trender is the absolute amount of time spent for rendering the pre-
vious frame.

Tculling = Trender � Fgraphics (2)

Once the accumulated culling time of the current frame exceeds
Tculling, the remaining nodes are simply culled against the view-
frustum and sent to the rendering pipeline. Furthermore, once a
node is detected to be entirely within the view-frustum, all leaves
of this node can directly be sent to the rendering pipeline without
further view-frustum culling the nodes in between.

6A threshold of 100 (0.02% of view plane) was used on a view plane of
650 by 650 pixels. Average distance to the objects was 10; their bounding
box projection size was on average 423 pixels; the view point was located
0.002 behind the view plane.

Overall Refined Algorithm: To integrate these additional fea-
tures, the basic algorithm is modified. TheDepthList is initial-
ized containing at least two uppermost tree nodes which intersect
with the view-frustum. Unless the time budget is not entirely con-
sumed, the head element of theDepthListis transferred to our cull
test. In an interleaved manner, view-frustum culling and occlusion
culling for a single frame are performed as described in the follow-
ing pseudo-code.

InitDepthList();
while (UsedTime < Budget)

Node = DepthList->getHead();
if (node == LEAF)

render(Node->polygons);
else if (OccTest(Node) == NOT_OCCLUDED)

forall (children(Node))
if (ViewFrustumTest(child)

== NOT_OCCLUDED)
DepthList->add(child);

if (UsedTime < Budget)
render(remaining_geometry);

One advantage of this interleaved culling scheme is the reduced cost
for sorting. For a well balanced snSP-Tree of twelve tree levels, we
measured for the cathedral scene an average list length of eight and
a maximum of 17 potentially visible boundary volumes.

5 Analysis

We examined our algorithm by processing four different scenes;
one architectural scene of a 3D array of gothic cathedrals, a city
scene, a forest scene to demonstrate adaptive culling, and – similar
to [40] – the content of a virtual garbage can of rather small objects.

In this section, we discuss the performance of our algorithm on
the test scenes described in Table 1. Note that the achieved per-
centage of model culled depends on the granularity of the snSP-
tree. The more the individual objects of a scene are subdivided,
the higher is the potential culling performance. Nevertheless, a
higher culling performance does not imply a higher rendering per-
formance. While culling up to 99% of many scenes is possible, the
overall rendering performance would drop in most cases. All mea-
surements were performed rendering images of 650�650 pixels on
an SGI O2 workstation with 256 MB of memory and an 175 MHz
R10000 CPU, and on an SGI Octane/MXE with 896 MB of mem-
ory and an 250 MHz R10000 CPU (where noted). Please note that
the datasets used for the SGI O2 were using triangle strips, while
this was not possible for technical reasons on the Octane.

In the second part of this section, we discuss some limitations
of our approach. Finally, we suggest some modifications of the
OpenGL rendering pipeline.

scene #triangles #objects #triangles
/object

cathedrals 3,334,104 8 416,763
city 1,056,280 300 3521
forest 452,981 12 + 1 28,500 + 110,981
garbage 5,331,146 2,500 about 2,100

Table 1: Model sizes.



5.1 Performance of the Algorithm

5.1.1 Cathedral Scene

In this scene, eight gothic cathedrals are aligned on a2�2�2 grid,
where each cathedral consists of 416,763 polygons (Figure 13).

Cathedral Scene

(a) (b)

Figure 4: (a) Interior view of cathedral. (b) Bounding volumes of
culled objects are marked in yellow.
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Figure 5: Framerate and percentage of model culled on SGI O2:
V+O denotes view-frustum culling and occlusion culling, VFC de-
notes view-frustum culling only, and DR denotes direct rendering
without any culling.

According to Section 4, we perform two different culling phases,
consisting of view-frustum culling and occlusion culling. Figure 5
shows framerate and percentage of model culled of our algorithm
on the cathedral scene for a sequence of about 100 frames. For
our performance tests, we measured three different modes:Direct
rendering (DR) – without any culling,view-frustum culling only
(VFC), andview-frustum and occlusion culling(V+O).

The view-frustum only mode culls only small portions of the
eight cathedral model; for most view points the other cathedrals
are still within the view-frustum. However, occlusion culling is far
more successful. Up to an additional 65% of the model is culled
away. Due to the occlusion culling, we obtained an average speed-
up of seven (Figure 5).
Overall, view-frustum culling accounts for approximately 4.5% of
the overall time costs, occlusion culling for 17.1%, and rendering of
the potentially visible geometry accounted for approximately 71%.

On the Octane, we achieved an average framerate of 5.3 fps with
V+O, resulting in an average speed-up of 12 (see Table 2). The
distribution of the time costs for the individual steps was approxi-
mately the same as for the O2.

City Model

(a) (b)

Figure 6: City model is rendered using V+O culling: (a) Visitor’s
view. (b) Bird’s-eye view of visitor’s view – all yellow bounding
volumes are not rendered due to occlusion culling.
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Figure 7: Framerate and percentage of model culled on SGI O2:
V+O denotes view-frustum culling and occlusion culling, VFC de-
notes view-frustum culling only, and DR denotes direct rendering
without any culling.

5.1.2 City Model

The city model is constructed out of three-hundred buildings. Each
building contains some interior furniture, which is occluded at all
times (Figure 6).

Figure 7 shows framerate and percentage of model culled of the
city model. Three culling modes were measured while rendering
a sequence of 100 frames:Direct rendering (DR) – no culling,
view-frustum culling only (VFC), andview-frustum and occlu-
sion culling(V+O). While the view point is moving near the ground
of the scene, 99.8% of the geometry is culled using our culling
scheme. Only 3.9% up to 39.9% of the geometry is culled due
to view-frustum culling, where the remaining geometry is culled
due to our occlusion culling algorithm. On average, we achieved
a framerate of almost two frames per second, which represents a
speed-up of about eight against view-frustum culling only.
Overall, view-frustum culling accounts for approximately 30.1% of
the total rendering time costs, occlusion culling for 61.4%, and the
final rendering of the potentially visible geometry only 6.8%.

On the Octane, we achieved an average framerate of 7.7 fps with
V+O, resulting in an average speed-up of 9.8 (see Table 2). The
distribution of the time costs for the individual steps are 1.4% for
view-frustum culling, 7.1% for occlusion culling, and 91.2% for the
final rendering.



Forest Scene

(a) (b)

(c) (d)

Figure 8: The forest scene is rendered using adaptive culling which
culled 88% of the structure: (a) Front view. (b) Overview – all
culled bounding volumes are marked yellow. (c) The forest scene
is rendered using V+O culling which culled 77% of the structure.
(d) Overview – all culled bounding volumes are marked yellow.

5.1.3 Forest Scene

The forest scene consists of 12 “tree with leaves” objects – each
consists of 28,500 polygons – and one model of ”Castle del Monte”
of 110,981 polygons behind the trees (Figures 8 and 14). The scat-
tered, yet dense occluded structure of the leaf trees has special de-
mands for an occlusion culling algorithm. Depending on the sub-
division of those trees, we achieve higher additional culling, due to
adaptive culling; Figure 9 shows an average additional reduction of
11% of the geometry using adaptive culling (AC), compared to the
usual V+O culling of our algorithm.
Partially due to the higher framerate of adaptive culling, the over-
all distribution or time costs is different for adaptive and standard
culling. For standard culling, view-frustum culling accounts for
approximately 10.1%, occlusion culling for approximately 11.6%,
and the final rendering of the potentially visible geometry accounts
for approximately 78%. For adaptive culling, view-frustum culling
accounts only for 6.4%, occlusion culling for 16.7%, and the final
rendering for approximately 76.2% of the total rendering costs.

On the Octane, we achieved an average framerate of 5 fps with
AC and 4.7 fps with V+O, resulting in an average speed-up of 6.5
and 6.1 (see Table 2). The distribution of the time costs for the
individual steps was approximately the same as for the O2.

5.1.4 Virtual Garbage Can Scene

To cull dynamic scenes, a special mode can be used. While we use
the snSP-tree representation for the static parts of the scene, the dy-
namic parts are represented by leaf nodes only. The virtual garbage
can scene only contains dynamic parts, hence the whole scene is
represented by leaf nodes only. We show the performance of this
mode on this particular scene in Figure 10. 2,500 independent, po-
tentially moving objects of an average size of about 2,100 polygons
are contained in the scene. 96% of the total 5,331,146 polygons are
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Figure 9: Forest scene; framerate and percentage of model culled on
SGI O2: V+O denotes view-frustum culling and occlusion culling,
VFC denotes view-frustum culling only, and AC denotes adaptive
culling.

culled. The average obtained speed-up on a SGI O2 is still larger
than seven.

Virtual Garbage Can Scene

(a) (b)

Figure 10: (a) Front view. (b) Bird’s perspective of front view – all
yellow bounding volumes are not rendered due to occlusion culling.
Direct rendering took more than 28 seconds, while rendering using
our algorithm took less than four seconds.

5.2 Discussion

Most occlusion culling algorithms focus on fast determination if the
rendering of bounding volumes changes the content of the frame-
buffer, hence the associated geometry would be potentially visible
[21, 23, 40, 27]. In our approach, we introduced a virtual occlu-
sion buffer which contains the occlusion information. Still, similar
to the other approaches, this information has to be read out of the
rendering pipeline and searched for changes.

We performed our measurements – in terms of graphics perfor-
mance – on a low-end graphics workstations, the SGI O2, and on a
SGI Octane/MXE as a mid-range graphics workstation. Similar to
PC graphics cards, the O2 performs parts of the rendering pipeline
by the CPU. Only operations associated with the rasterization are
executed by special purpose graphics chips, such as framebuffer
operation, which leads to fast access to the framebuffer. However,
this is not true on highly distributed and interleaved graphics sub-
systems, like the InfiniteReality graphics of SGI, or to some ex-
tent on the Octane/MXE graphics. In these cases, the setup-time
for reading the framebuffer are significantly larger, thus limiting
the performance of our occlusion culling algorithm. Measurements
on the SGI Octane/MXE showed that reading many small portions



scene #triangles culling culling speed-up
O2 MXE O2/MXE

cathedrals 3,334,104 91.3% 92.5% 4.2 / 12.6
city 1,056,280 99.8% 87.7% 4.8 / 9.8
forest AC 452,981 89.0% 83.0% 3.8 / 6.5
V+C 452,981 84.7% 80.5% 2.6 / 6.1
garbage 5,331,146 96.0% 38.2% 7.0 / 5.0

Table 2: Average performance of OpenGL-assisted Occlusion
Culling algorithm compared to view-frustum only culling. The for-
est scene reflects comparison of adaptive culling (AC) and V+O
culling to view-frustum culling.

from the stencil buffer imposes a manifest time penalty. Increas-
ing the size of the samples (and decreasing the number of samples)
reduces this overhead, but can lead to severe visual impact, due to
large undersampled areas (which are of the same size as the sam-
ples). Especially Marching Cubes generated surfaces are sensitive
to these undersampled areas. Finding an optimum of a low number
of samples while guaranting a sufficient visual quality depends very
much on the datasets and the respective graphics hardware.
Overall, our scheme works well on graphics systems based on
memory-centered architectures – such as the O2, the new Visual
PC of SGI, or most of the PC graphics cards –, but performs with a
reduced speed-up on highly interleaved graphics systems.

6 OpenGL and Occlusion Culling

There are many limiting factors for OpenGL-assisted occlusion
culling. Probably most important is the lack of a distinctive
hardware supported occlusion culling stage within the rendering
pipeline. The strategy presented in this paper so far, as well as
others [21, 40], circumvents this by reading values from the frame-
buffer to detect contributing geometry. Therefore, the ultimate lim-
itation is given by the framebuffer access time. Not surprisingly,
read operations are in general relatively expensive and hence, such
occlusion culling strategies are not well suited for real-time appli-
cations where 30 frames per second and more are required. Dra-
matic improvements in respect to framerate are usually reported for
applications providing hardly any interactivity. Here, the overall
framerate can be improved to a peak performance of about five or
ten frames per second while not all of the possibly cullable geome-
try is actually culled. Further improvements could only be achieved
if the occlusion query itself is fast, i.e. with real hardware support
for occlusion culling.

In the remainder we will discuss available hardware support
for occlusion culling and introduce further desirable mechanisms
which enable more detailed occlusion queries and hence, additional
performance gains.

6.1 Available Hardware Support

In 1997, Hewlett-Packard proposed an extension to OpenGL pro-
viding an occlusion query based on a flag [22, 32]7. Similar to the
approach presented in this paper, a bounding volume is rendered
without affecting the framebuffer content. This operation is per-
formed in a special OCCLUSIONMODE. While rendering geom-
etry in this mode, a flag will be set in case a fragment passes the
depth test of the rendering pipeline. Figure 11 illustrates this pro-
cess which is located within the per-fragment-stage of the OpenGL
pipeline. Basically, the result of the z-buffer comparison is used

7SGI’s recent Visual PC provides similar functionality.
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Figure 11: Schematic of the per-fragment-stage of the graphics
pipeline illustrating where the occlusion flag is established.

to establish occlusion information. Thus, the flag is set in the case
that any portion of the rendered geometry would contribute to the
current content of the framebuffer. Hence, instead of reading entire
portions of the framebuffer, the query is reduced to a simple flag
test which is very fast.

Depending on the scene, the described occlusion culling method
can increase the framerate multiple times of the framerate achieved
using view frustum culling only [4]. Here, noticeable framerates of
up to 20 Hz can be reported for scenes which are rendered at hardly
interactive speed without using this mechanism.

Real-time framerates are somewhat limited since occlusion
culling time and actual render time need to be well balanced, thus
limiting the amount of occlusion tests which can be performed per
frame. Despite the efficient query, establishing the occlusion in-
formation is still costly. First, the OCCLUSIONMODE needs to
be activated, second all the bounding geometry is scan-converted
independent of the state of the occlusion flag, and finally, for
non-occluded bounding volumes, valuable render-time is sacrificed
without culling any actual geometry. Frequently, bounding volumes
are detected visible while being mostly occluded; a visible bound-
ing volume does not necessarily denote that the actual geometry is
visible. Tighter bounding volumes might reduce this effect.

Overall, the process of establishing occlusion information is not
accelerated since the bounding geometry still needs to be rendered,
however, the occlusion query is very fast.

6.2 Advanced Occlusion Information

Instead of using a simple occlusion flag, we propose an entireOc-
clusion Unitwhich collects more detailed information [3]. In gen-
eral, the Occlusion Unit should provide information such as number



of visible pixels, closest z-value, number of projected pixels, min-
imal screen space bounding box, etc. These values can be used to
decide in which level-of-detail the possibly visible geometry should
be rendered, e.g. if only a few pixels of the bounding volume are
visible, the actual geometry could be rendered at a very coarse level
of detail. Hence, for visible bounding volumes, rendering of the
possibly visible actual geometry can be accelerated by using sim-
plified models, thus achieving higher performance.

To enable the proposed Occlusion Unit, the fragment parameters
such asx; y screen space address of the fragment and the corre-
sponding depth valuez need to be provided. Additionally, the write
enable signal of the depth buffer test, which is used to write and up-
date the framebuffer with the fragment which is closer than the so
far stored fragment, needs to be available. Therefore, the Occlusion
Unit is located right at theDepth Buffer Test, as it is demonstrated
in Figure 12. Aprojection hit counter(PHC) counts the number of
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Figure 12: Schematical description of the Occlusion Unit.

projected pixels to give an accurate measure of the projected area
in screen space. Thenon-occlusion hit counter(NOHC) counts the
number of pixels which actually contribute to the framebuffer. Fur-
ther registers are needed to store the closest z-value and the minimal
screen space bounding box of visible pixels.

For each incoming fragment, the projection hit counter (PHC) is
incremented. Furthermore, the non-occlusion hit counter (NOHC)
is increased, if the depth buffer test was successful, which denotes
the contributing pixels of the framebuffer. To trigger the increment
of the non-occlusion hit counter, an AND operation is needed. Be-
sides increasing hit counters, a test is performed whether the screen
bounding box defined by the already found non-occlusion hits is
increased due to the newly found hit.

The proposed extension can easily be integrated into hardware
and will allow for more detailed occlusion queries such that geom-
etry can be rendered at the appropriate level of detail. A very first
step towards more detailed occlusion queries is proposed for SGI’s
visual PC; however only an occlusion flag is supported.

With more detailed occlusion information as described above,
non-interactive applications with a high occlusion depth will finally
be able to achieve real-time framerates.

7 Conclusion and Future Work

In this paper we have presented a visibility culling algorithm based
on core OpenGL functionality. By combining different framebuffer
features and sloppy n-ary Space Partitioning-trees – as model-space
subdivision – significant culling performance and reasonable fram-
erates were obtained. On average, the culling performance ex-
ceeded 90%, while a rendering speed-up factor of almost five –
compared to view-frustum culling – was achieved. In comparison,
the Hierarchical Occlusion Maps approach [40] achieved speed-ups
of 1.5 to 3.5 on a SGI InfiniteReality and MaximumImpact. While
our approach encounters some limitations using highly distributed
and interleaved graphics hardware (such as SGI’s InfiniteReality), it
is especially well suited for low- and mid-end graphics subsystems.

Furthermore, we proposed to add features for occlusion culling
to the OpenGL rendering pipeline. Specifically, we suggest to add
a footprint flag and a footprint counter to qualify and quantify oc-
clusion.

There are still areas for future work on this algorithm. Among
the most important are

� Multi-resolution: Large model databases usually use multi-
resolution methods to represent different levels of detail. In-
corporating this level-of-detail functionality is important for
the rendering of large-scale scenes, and is of special interest
for the adaptive culling mode.

� Parallelization: Using a multi-threaded implementation for
the occlusion queries promises faster traversal of our model-
space snSP-tree. However, using multiple threads for the pro-
cessing of OpenGL primitives adds a potential bottleneck into
our occlusion stage.

� Scene Organization:Different scenes of different topology
require subdivision schemes of different topology and depth.
However, optimizing these structures is not a trivial task and
needs further investigation.
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Figure 13: Overview of the cathedral scene.

Figure 14: ”Suddenly, the old castle appeared behind the branches
of the trees .....”


