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Abstract
We introduce artist Lucy Pullen’s Double Meandering Algorithm, first in its original form as a pen-and-paper
drawing algorithm and then as a procedurally generated animation. We utilize a chain of cubic Bézier curves
to represent the characteristic spiraling line, assigning each control point according to a pseudo-randomized
algorithm. The resulting curves are then animated segment by segment, reflecting the artist’s process of creating
the pen-and-paper drawing. By digitizing the Double Meandering Line drawing, we can also reveal the process of
creation through animation, granting us the ability to exhibit a fundamental part of the drawing that is lost in the
traditional pen-and-paper presentation.

Categories and Subject Descriptors (according to ACM CCS): J.5 [Computer Graphics]: Computer Applications—
Fine Arts

1. Introduction

We present a digital representation of a pen-and-paper
‘drawing game’ called the Double Meandering Line. The
Double Meandering Line is the novel creation of Lucy
Pullen, professor and conceptual artist based in New York
and Victoria, British Columbia.

The Double Meandering Line is a form of generative art
based on a set of predetermined rules; a finished drawing
is simply an outcome of following simple two-dimensional
rules for laying down each iteration of curves. The result-
ing shapes, however, appear to be three-dimensional after
completion. A key feature of the drawing is the process, not
just the context of the finished work. To experience the con-
trast, the viewer must witness the drawing in the making – a
luxury that is not afforded by the traditional gallery model.
Thus, we endeavor to create a procedurally generated ani-
mation that bypasses the inherent limitations of both static
‘finished’ art and process art.

Our procedurally generated animation, the Double Mean-
dering Algorithm, attempts to capture the three-dimensional
effect achieved by the artist by combining the same sort of
segment drawing rules with chains of cubic Bézier curves
and pseudo-randomized variables to generate a digital draw-
ing with a similar aesthetic.

Figure 1: An analog Double Meandering Line drawing by
Lucy Pullen serves as the basis for our digital algorithm.

In this paper we report discoveries made as computer sci-
entists try to blend their skills with the talents of an artist to
create a digital version of an artist’s "drawing game", and to
reveal the process through animation.

2. Related Work

Our shared interest as researchers in art and computer sci-
ence is in new imagery. To make new images, we have taken
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a process of our own creation and are attempting to recreate
it in another domain. This job exceeds the scope of a sin-
gle creative individual and discipline. We are working with
inside information on a particular artistic method in the do-
main of computer science.

Our primary goal is to emulate the results of the Double
Meandering Line moreso than the process of it – we break
pre-existing rules if we find a better solution. However, the
artist is actively involved in the planning and development of
the procedurally generated animation described in this paper,
making the system a collaborative work rather than a deriva-
tive on the part of a research group.

2.1. Background in Visual Art

Guidelines for technical drawings of industrial objects were
first described by the French Academy in the late 1800’s. In
her essay "The Language of Industry", Molly Nesbitt dis-
cusses how Marcel Duchamp used these rules to create new
modes of abstraction [Nes86]. Common objects such as the
shovel and the urinal appeared as art object Readymades as
early as 1917, thus breaking the classifications established
by the French Academy.

It is accepted practice in both Minimalism and Concep-
tualism for the artist to be removed from the physical con-
struction of the finished piece. Minimalist Donald Judd had
sculptures constructed by factory contractors, and Concep-
tual artist Lawrence Weiner produced pieces that consisted
of nothing but short instructions, which could stand alone or
be carried out by gallery staff onsite [Hop00]. In both cases,
the only name attached to the creative aspect of work is that
of the artist, and we adhere to this convention here.

Generative art is associated with practices where the artist
cedes control of the outcome to a self-supporting system,
such as a set of rules or a computer [Gal03]. Though the term
itself is a 20th century invention, the principles have been in
use for far longer – the definition of a self-supporting system
could be as broad as to include the use of concepts as uni-
versal as symmetry. The movement encompasses not only
visual art, but also music and literature. It is one of the prin-
cipal movements to deal with the element of randomness,
which can often be the main driving force of the work.

As computers are one of the primary platforms for self-
supporting systems at our disposal today, a good portion
of computer-assisted art falls under the generative art head-
ing. Additionally, web application platform such as Flash
and Processing have given generative artists a convenient
medium in which to develop and package their work. For
example, Jared Tarbell maintains a collection of his algorith-
mic art on the internet, complete with source code [Tar10].

2.2. Background in Computer Graphics

Much research in the fields of Computational Aesthetics and
Non-Photorealistic Rendering originate in the emulation of

the personal styles of visual artists. For example, work by
Lee et al. introduces a fluid jet simulation that allows a user
to produce pictures in the style of Jackson Pollock [LOG06].
Xu et al. developed a system that replicates traditional Chi-
nese ink paintings as digital strokes, which can be manipu-
lated to create animations based on the paintings [XXK∗06].

Our work as a programming artifact has intents in
common with generative art and computational aesthet-
ics [Gre05], but our Double Meandering Algorithm is heav-
ily based on the traditional drawing rules of one specific set
of works by Lucy Pullen.

3. Double Meandering Line Drawing

A firm understanding of the Double Meandering Line is
a prerequisite to the development of the digital algorithm.
Though differences between the analog and digital processes
are inevitable, we want to adhere as closely as possible to the
original process. The Double Meandering Line is not gener-
ative art, but the algorithm is generative by necessity. We
concentrate on the generative art principles of the Double
Meandering Line in our analysis, as it is the most effective
paradigm for our purposes.

Complexity in the Double Meandering Line is the accu-
mulation of many simple parts. The drawing consists of two
parallel lines following a curve, from the beginning point of
each spiral to the end without touching. Together they cre-
ate the impression of breadth in a unified object. Each pair
of curves comes back to near where they started and once
the lines intersect, they stop and then both lines continue on
the other side; one leads and the other follows, as if form-
ing a knot or length of rope. However, this is not a drawing
of a knot as explored by Kaplan and Cohen [KC03]. This
is a simple set of rules, creating a deliberate manufacture of
coherent abstraction.

In this paper we present a study and implementation based
on a simple, early version of the Double Meandering Line as
the basis of our system, presented in Figure 1.

3.1. Terminology

First, we will describe some terminology that will be used
throughout this paper. We define each loop of the drawing
as a curlicue and the process of drawing each curlicue as an
iteration. A spiral can be described as a series of curlicues
with connected ends. We define the spine of the spiral as the
imaginary line on which each curlicue is strung.

The curlicues of the spiral define the mutual path of two
parallel lines. The line drawn on the inside edge of the spine
is always the first one to be drawn, so we will refer to it
as the original line and the outside line the following line.
Through parameterization and randomization we control the
spine or offset path of the curlicues onto the page, generating
the 3D-esque shape found in the Double Meandering Line.
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Figure 2: Progression of a Double Meandering Line drawing spiral from start to finish, by Lucy Pullen.

3.2. Step by Step Analysis

As a "drawing game", the Double Meandering Line requires
no tools save for a drawing surface and a pen. Though more
complex, post-spiral Double Meandering Line drawings can
span large swaths of paper, the technique is scaleable to any
size. Generally, two to four variously sized and shaped spi-
rals are drawn on the same page, overlapping each other. The
combination of multiple spirals furthers the sense of depth
and adds complexity to the composition.

The process of creating a Double Meandering Line of the
spiral type is a straightforward, step-by-step process. The
Double Meandering Line has two stages: an Opening Stage
and a Closing Stage. The Opening Stage starts with a self
intersecting curlicue, with the following line running paral-
lel to the first and ending upon contact with the original line.
The next curlicue is a larger version of the first iteration, with
the original and following lines starting close to, but not ex-
actly, where they left off. They start from a point of contact
with the following line rather than exactly where they left
off, illustrated in Figure 2. This creates an illusion of over-
lap and depth as if the double lines are a single entity, similar
to the ‘rope’ found in Celtic knots.

As the curlicues increase in size, irregularities occur in the
shape of the curve – an accidental bias towards one end of
the curve, for example. Instead of correcting for the previous
irregularities, the curlicues exaggerate the characteristics of
these irregularities as they grow in size. The most exagger-
ated of these irregularities forms a visible bias and is called
the attractor. The attractor is the main feature of the Closing
stage, where the curlicues cease to increase in size. Instead,
the curlicues begin to flatten and taper towards the attractor.
This continues until the curlicue becomes thin and elongated

to the point where it cannot contain the next iteration. Then,
the line stops iterating and trails off in the direction of the
tail. The result is a conch-like shape that appears to be made
of thick wire.

Double Meandering Lines depend on the interrelation be-
tween an iteration and its predecessors. The shape of each
iteration can be predicted by the previous iteration, but can-
not be fully explained; the irregularities of the predecessor
are amplified with each iteration.

4. Procedurally Generated Animation

From the analysis of the Double Meandering Line, we gather
a set of requirements for a program that will emulate the
drawings with reasonable accuracy. The computer algo-
rithm’s success lies in the convincing emulation of a spiral
shape, balancing randomization with authenticity.

We require a structure that easily accommodates a
smoothly spiraling line. The structure should be aware
enough of the shapes of the previous iterations to imitate
the overall shape, while also having the flexibility to change
drastically between iterations.

For our initial algorithm we considered two-dimensional
spirals, such as the logarithmic spiral, since spirals are al-
ready similar to the shape of the Double Meandering Lines
and can be described using a single polar coordinate equa-
tion. However, they are not sufficiently malleable – one can-
not independently warp the shape of a particular iteration
without affecting the shapes of the preceding or succeeding
iterations. The shape of the spiral iterations can only be mod-
ified via a global matrix warp, which cannot warp a single
iteration of the spiral without affecting the others.
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Instead, we take advantage of the flexibility and control-
lability of drawing with splines. The use of splines is inef-
ficient compared to the use of spiral primitives, as even a
single Bézier curve is composed of multiple equations. A
chain of Bézier curves also requires storage for each and ev-
ery node position in the chain. Regardless, accuracy of shape
takes precedent over speed in this case. A chain of Bézier
curves, linked from end to end, creates a malleable curved
line that can serve as our spine. Though the spiral arrange-
ment must be created from scratch, the placement of each
node is completely independent from all the others. Bézier
curves also make it easy to animate a drawing line because
the curves are rasterized as connected line segments.

In our algorithm, we first determine the control points of
the curlicues and the parameters necessary for determining
the spine of the spiral in the shape calculation stage. The
original and following lines are then drawn to the screen in
the animation stage.

The first version of the Double Meandering Algorithm
was developed using the Processing API. It has since been
ported to iOS devices in Objective C.

4.1. Structure

We generate each iteration of curlicues using four cubic
Bézier curves, labeled C1 though C4 (Figure 3a). Each cu-
bic Bézier curve is modified by four control points, which
will be labelled cp1 through cp4; cp1 and cp4 represent the
endpoints of the line, while cp2 and cp3 are used as tangent
vectors that control the trajectory of each end of the curve.

C1

C2

C3

C4

(a)

p1 p2

p3
p4

p4n

(b)

Figure 3: The structure of a single curlicue, or "iteration".
a) The four independent Bézier curves used to build the loop.
The filled cp4 share the same coordinates as the unfilled cp1
of the previous curve. b) The five mutual points that occur in
an open-ended curlicue, with the first and last points being
mutual points with the preceding and succeeding curlicues.

Thus for each iteration we need to assign coordinates to 16
control points, four per each curve. Each curve shares its cp1
with the cp4 of the previous curve and its cp4 with the cp1
of the next curve, thus the duplicate endpoints that can be

treated as a single entity we call pi, for i ∈ [1,4] (Figure 3b).
The new points, p1 through p4 (and p4n, representing the p4
of the next curlicue), are also attached to two tangent control
points, i.e. the cp3 of the preceding curve and to cp2 of the
next curve. The coordinates of these two control points are
always set to be the reverse of one another, thus maintain-
ing C1 continuity between the previous curve and the next.
We note that a higher order spline curve (such as a NURBS)
may replace the four curves, however here we document our
original approach. The spiral is defined by at least six itera-
tions of curlicues, depending on how many iterations are in
the Opening Stage.

4.2. Shape Calculation

In the first stage of our algorithm we set up the random vari-
ables that parameterize the control points and spine of the
spirals. First, we randomly choose the main direction for the
spine of the spiral based on one of three types, illustrated in
Figure 4. Each spiral type is based on which curlicue point
acts as the attractor: p2, p3 or p4.

Next we initialize the variables of our spirals with ran-
domized values within the ranges listed below.

• Seed coordinates of the spine, i.e. center position of
the first curlicue, C

• Radius of the curlicue, r, a value between 0.5% and
4% of the screen width

• Additional length of spine, between 1% and 2% of the
r * i, the current iteration

• Growth of radius during growth iterations in the Open-
ing Stage, between 60% and 140% of r
• Number of growth iterations in the Opening Stage, be-

tween 1 and g, for g ∈ [3,5]
• Attractor tilt shift, between -797.5% and 12.8% of r,

depending on spiral type

The seed coordinates for the center of the first curlicue are
restricted to values that keep the center of the spiral on the
screen. Additionally, for the first spiral, we further restrict
its position and size such that the whole spiral fits on screen,
taking into account the size and type of spiral. We relax this
restraint for subsequent spirals, creating a parameterization
such that a satisfactory percentage of the spiral will be drawn
on the screen.

The drawing of a spiral consists of two phases, similar to
the process described by the artist: growth iterations (Open-
ing Stage) and warp iterations (Closing Stage). During the
growth iterations (or the opening of the spiral), the radius
of each respective curlicue increases according to the initial-
ized radius growth multiplier. A spiral consists of a randomly
determined number of growth iterations between 1 and g, for
g ∈ [3,5]. In each growth iteration, we process the Bézier
curve control points of the associated curlicue. The control
points are initialized to lie in a circle of radius r around the
current curlicue center, C. Then, we alter the position of the
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Figure 4: Three basic types of spirals define the direction of the spine of the spiral, according to an attractor point.

control points based on the attractor tilt shift, as shown in
Figure 5. Finally, we increment the center of the curlicue to
the next coordinate on the spine and, if this is a growth iter-
ation, increase the radius.

Figure 5: A test case for warping towards an attractor. In
this case, the attractor is p2.

During the warp iterations, or the Closing Stage, the ra-
dius ceases to grow, but the spine changes trajectory and the
shape of the curlicue becomes more and more exaggerated
towards the attractor. We found that algorithmically deter-
mining the number of warp iterations in the Closing Stage
was difficult. Through trial and error, we determined that six
warp iterations followed by the tail most closely replicated
the behavior of the spirals found in Lucy Pullen’s drawings.
The basis spirals already have some bias towards one side of
the attractor as opposed to the other. If pulled too far against
the direction of the tangent tilt, the shape of the spiral will
break down. The lopsided attractor tilt shift modifier values
account for this problem.

When we reach the end of the warp iterations, we use one

last iteration to make a tail. We achieve this by setting the
control points before the attractor like a regular warp itera-
tion. Then, we multiply the coordinates of the attractor by a
scale factor of suitable magnitude (default setting is 300%),
and set all the control points after it to those same multiplied
coordinates. This gives us a ‘tail’ that follows the same tra-
jectory as the attractor.

4.3. Drawing and Animation

The Double Meandering Line begins in the first dimension
with a point, graduates to the second dimension with a line,
and to the third dimension with a second line. The digital
Double Meandering Algorithm takes this progression one
step further towards a four dimensional drawing in time.
This brings new aesthetic considerations to the table – for
example, the seamless removal of old spirals from the screen
and the ideal speed of animation.

The ultimate goal of the digital Double Meandering Al-
gorithm is to create an animation that conveys the process
of the drawing, rather than emphasizing the finished project.
To recap, the original line and following line in a finished
Double Meandering Line do not come across as indepen-
dent entities. Instead, they tend to form a single double-lined
line entity, perhaps even appearing as the outline of a rope.
Yet, the separate natures of the original and following lines
is an intrinsic part of the philosophy behind the Double Me-
andering Line. Hence, our primary objective is to convey the
leading nature of the original line and the subordinate aspect
of the following line in the animation.

As Bézier curves are traditionally drawn in line segments,
we can easily draw partial curves simply by drawing more or
fewer segments. A drawing-in-progress animation can thus
be achieved simply by increasing the number of drawn seg-
ments from frame to frame. We employ the same principle
in reverse to ‘un-draw’ the spiral, allowing for attractive and
theme-appropriate erasure.
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Figure 6: Results of our Double Meandering Algorithm: complete drawings in our procedurally generated animation system.

The original line is defined by the shape calculation step
discussed in Section 4.2. The following line is simply drawn
with an additional Bézier curve chain parallel to the original
line, offset by 500% of the line width. To convey the sep-
arate and subordinate nature of the following line, the fol-
lowing line animation lags two full curves behind the first.
This gives an orbiting appearance to the animation, as the
two drawing lines are directly opposed to each other at all
times during the drawing animation.

We must also deal with the illusory depth of the Double
Meandering Line. Although our goal is a 2D drawing, we
can easily use the benefit of a 3D rendering buffer and we do
not need to calculate depth values in a complex manner. In-
stead we use orthographic projection and a slight offset into
the screen for each iteration to automate occlusion. We repli-
cate the overlapping curlicue loops in our algorithm simply
by receding each line segment into the background by a sin-
gle pixel. We also draw a background-coloured strip that ac-
companies the following line as it is being drawn. This strip
lies between the two lines and covers the curlicues that re-
cede further into the background, thus simulating the requi-
site empty space.

Since we designed the animation to run into perpetuity, we
must remove the spirals from the screen in a pleasing way
in order to showcase new ones. We achieve this by having
the lines ‘un-draw’ themselves, erasing themselves from the
screen in the same order as they were drawn. Alternate meth-
ods could include fading old spirals into the background as
new spirals are drawn, or simply flushing the screen after all
the spirals have finished drawing.

The current speed of animation is arbitrarily chosen and
depends largely on the speed of the rendering engine. The

Processing 3D API in Java takes approximately 2:41 min-
utes to complete the drawing and erasure of three spirals.
While the rush of a faster progression is more aesthetically
satisfying, the current speed is more accurate to the speed of
the original pen-and-paper drawing and showcases the dif-
ferences between each successive curlicue. Even if the ideal
speed is faster than the current one, changing this element
requires the animation to be modified to fit another engine.

5. Conclusions

The boundary between science and the arts is alternately
judged to be either imaginary or impermeable, depending
on the matter at hand – imaginary when the project is con-
ceptualized, and impermeable when the objectives are not
being reached as planned. Interdisciplinary projects are his-
torically fraught with tension due to an unexpected inability
for people with such different backgrounds to reconcile their
differences. Ultimately, the success of an interdisciplinary
project comes down to the ability and willingness of both
parties to communicate. We believe that only by working to-
gether from the beginning on the digitization of the Double
Meandering Line have we been able to successfully create
the Double Meandering Algorithm.

The Double Meandering Algorithm is not ‘canned
chance’ but a concatenation of singular aesthetic events. The
pen-and-paper drawing is static. The algorithm is diachronic
– the singular nature of each spiral becomes apparent in time.
Increasing the amount of time one can spend with the oper-
ation is worthwhile. The result can be called a concatena-
tion of singularity [Rau10], or a chain of distinct events that
form a new thought. As aesthetic experiences go, watching
the transition from one event to another is satisfying.
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Figure 7: An analog Double Meandering Line drawing by
Lucy Pullen with a more complex base.

In her later Double Meandering Line drawings, Pullen ex-
plores the ‘meandering’ element to a much greater extent by
bringing the third dimension into play and abandoning the
spiral structure altogether after a few initial loops. Our algo-
rithm is completely unable to keep up with the scale of her
vision, due to the huge discrepancy between the rigid rules
of the digital drawings and the free-flowing, periodically en-
forced rules of the later analog drawings.

We are actively investigating what increases or decreases
the sense of 3D space in the Double Meandering Algorithm.
This is a compositional problem that is solved through the
artist’s conscious choices, and is not easy to quantify. One
observer mentions that in order to establish the illusory 3D
scope in which the drawings exist, the drawings appear to re-
quire at least two spirals with almost perpendicular spines to
be on the screen at the same time. It also appears to be nec-
essary to balance the sizes of all three spirals to consistently
offer a sense of relative scale. This is one of the many cases
where authenticity and randomization appear to be at odds
with one another. In the future we will explore the param-
eter space of our algorithm and look forward to increasing
our algorithm’s flexibility to both mimic the same evolution-
ary steps experienced by Pullen’s more recent drawings and
to take steps that may not be easily explored in hand drawn
Double Meandering Lines.
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