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Abstract

In this work, an original solution to 3D face identification is proposed, which supports recognition also in the case
of probes with missing parts. Distinguishing traits of the face are captured by first extracting 3D keypoints of a
face scan, then measuring how the face surface changes in the keypoints neighborhood using a local descriptor. To
this end, an adaptation of the meshDOG algorithm to the case of 3D faces is proposed, together with a multi-ring
geometric histogram descriptor. Face similarity is then evaluated by comparing local keypoint descriptors across
inlier pairs of matching keypoints between probe and gallery scans. Experiments have been performed to assess
the keypoints distribution and repeatability. Recognition accuracy of the proposed approach has been evaluated
on the Bosphorus database, showing competitive results with respect to existing 3D face biometrics solutions.

Categories and Subject Descriptors (according to ACM CCS): 1.3.8 [Computer Graphics]: Applications— 1.3.5
[Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object repre-

sentations

1. Introduction

Accuracy of automatic identity recognition based on faces
still suffers from many factors, such as pose changes, illu-
mination variations, facial expressions and occlusions. To
solve these problems, face recognition using 3D scans of the
face has been recently proposed as an alternative or com-
plementary solution to conventional 2D face recognition ap-
proaches using still images or videos, so as to allow ac-
curate face recognition also in real-world applications with
unconstrained acquisition. Confirming this recent research
trend, several 3D face recognition approaches have been pro-
posed and experimented in the last few years (see the survey
in [BCF06], and the literature review in [BDP10, WLT10]
for a thorough discussion). However, many of the works
appeared in this field proposed conventional face recogni-
tion experiments, where both probe and gallery scans are
assumed to be acquired cooperatively in a controlled envi-
ronment in which the whole face is precisely captured and
represented. These methods mainly focussed on face recog-
nition in the presence of expression variations, reporting
very high accuracy on benchmark databases, like the FRGC
v2.0 [PFS*05]. Solutions enabling face recognition in un-
cooperative scenarios are now attracting an increasing in-
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terest [PPTK11]. In such a case, probe scans are acquired
in unconstrained conditions that may lead to missing parts
(non-frontal pose of the face), or to occlusions due to hair,
glasses, scarves, hand gestures, etc. These difficulties are
further sharpened by the recent advent of 4D scanners (3D
plus time), capable of acquiring temporal sequences of 3D
scans. In fact, the dynamics of facial movements captured
by these devices can be useful for many applications, but
also increases the acquisition noise and the variability in sub-
jects’ pose. In summary, techniques supporting face recog-
nition using 3D partial face scans are gaining importance
in making existing techniques deployable in more general
contexts and, in perspective, in scenarios where dynamic 3D
acquisition is performed. However, the research in this con-
text is still preliminary also due to the limited number of face
databases that also comprise partial acquisitions of 3D faces.

In this work, we propose an original 3D face recognition
approach which is capable to perform subject identification
also in the case parts of the face scans are missing. We rely
on the observation that describing the face with local geo-
metric information extracted at the neighbors of keypoints
allows partial face comparison by sparse keypoints match-
ing. According to this, the contribution of our approach and
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its novelty over existing solutions using a similar frame-
work [MBOO08], [LC11], and [MFK*10,SKVS13] is as fol-
lows: Original adaptation of the meshDOG detector to the
case of face meshes (Sect. 2); Definition of the multi-ring
Geometric Histogram as local descriptor at the keypoints
(Sect. 3); 3D keypoints matching that also encompasses out-
liers removal using RANSAC (Sect. 4); An original investi-
gation of keypoints detection addressing distribution and re-
peatability of keypoints (Sect. 5.1), and cohesiveness of local
descriptors of neighboring keypoints (Sect. 5.2). A compre-
hensive evaluation and comparison of our work with state of
the art solutions is also carried out on the Bosphorus dataset
(Sect. 5.3). Finally, results are discussed and future research
directions are outlined in Sect. 6.

2. 3D Keypoints of the Face

Among 3D keypoint detectors [BBB*11, STS12], the re-
cently proposed meshDOG algorithm [ZBVHO09] has proven
its effectiveness in locating repeatable extrema on 3D
meshes [BBB*11]. However, so far meshDOG keypoints
were used for matching generic objects; In the following, we
present the adaptation of the method for extracting keypoints
of 3D face meshes.

Keypoints detection starts by defining and computing a
scalar function f on a 3D mesh S. In principle, the function
f can be any scalar function f(v) : S — R, that for any ver-
tex v € S returns a scalar value. In our case, we used the
mean curvature at vertex v, computed according to [Pey09],
as value of the function f(v). Though such function is not
completely intrinsic, and therefore not completely invariant
to local isometric deformations, in practice the keypoints de-
tected using mean curvature in our framework turned out to
be more stable on 3D face data than keypoints obtained using
Gaussian curvature. Similar results were reported in [STS12]
for meshDOG keypoints, and in [MFK*10, SKVS13] for
meshSIFT. Once the function f is computed for each ver-
tex of the mesh, the keypoints detection proceeds in three
subsequent steps. In the first step, a scale-space representa-
tion of the scalar function f is constructed. At each scale, the
function f is convolved with a Gaussian kernel:
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where ¢ is the standard deviation of the Gaussian (set equal
to 6 = 21/ 3 eavg in our experiments, being eqyg the average
edge length); and, at any vertex v;, x is the distance between
neighboring vertices and v;, that is ||v; — v;||.

The scale-space of f is built incrementally on N+1 lev-
els, so that: fo = f, fi = fo* &, f2 =/f1%8 ... [n =
fn—1%*8&c. The N Difference of Gaussian (DOG) are then ob-
tained by subtracting adjacent scales, e.g., DOG| = f] — fo,
DOG, = f, — f1, ...,DOGyN = fy — fn—1. In so doing, it
is relevant to note that the geometry of the face does not

change, but the different scalar functions f; and DOGjy, de-
fined on the mesh. Once the scale-space is computed, the ex-
trema are selected as the maxima of the DOG across scales.
In particular, a vertex is an extremum at a given scale k if
its DOGy, value is the maximum with respect to the DOGy,
values in the 1-ring neighbourhood at the same scale. The
extrema of the scale space obtained at the previous step are
then sorted according to their magnitude. Only the top 1% of
the sorted vertices are retained as extrema in our setting. The
last step aims to remove unstable extrema, by retaining only
those with corner characteristics, according to the Hessian
computed at each vertex v of the mesh [Low04]. The ratio
between the largest Adyqx and the lowest A,,;;, eigenvalues of
the Hessian matrix is a good indication of a corner response,
which is independent of the local coordinate frame (we used
Amax/Mmin = 4 as a minimum value of threshold responses).
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Figure 1: (a) Values of f. at different scales ( fy is the mean
curvature); (b) 3D face scan and DOGy, values at different
scales with the 3D keypoints detected at that scale (in red).

An example of the scale-space construction is reported in
Fig. 1. In (a), f; values at different scales (f being the mean
curvature) are shown for a sample face. In (b), gray lev-
els are used to represent the DOG values at different scales
(scales 2, 16, and 64 are reported). The derivation of multi-
ple DOG scales allows the identification of more stable key-
points, which are typically located at highest scales, whereas
keypoints detected in the first DOG scales are likely to be un-
stable and more affected by noise, as shown in Fig. 1(b). At
the first level of the scale-space (see DOG2), the keypoints
are mainly located in the mouth and eyes regions (quite un-
stable with expressions) and around the nose and the eye-
brows (more stable regions under expression changes). As
the scale increases, keypoints tend to be more distributed on
the face (see for example DOG64). At these latter scales,
some keypoints are located in the forehead, cheekbone and
chin, with some keypoints close to the pronasal and nasion
(regions of these keypoints are much less affected by expres-
sion variations). In the case keypoints are detected at multi-
ple different scales only the keypoint occurring at the highest
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scale is retained. Based on these observations, only the key-
points detected in the last 64 DOG scales (out of 96 total
scales) are considered for local descriptor computation.

3. Multi-Ring Geometric Histogram

The geometric histogram (GH) is a local geometric descrip-
tor proposed in [AFRW98] and employed in surface align-
ment and matching. Basically, it is a 2D accumulator, or fre-
quency table, that counts the frequencies of two geometrical
measurements, namely, the angle and the distance between
pairs of facets in a given neighborhood of a keypoint. In the
following, we propose a variation of the GH, which develops
on the idea of constructing the GH descriptor at a given key-
point in an incremental way, by accounting for an ordered
sequence of ring facets defined around the keypoint.

We used the Ordered Ring Facets (ORF) method to iden-
tify the facets of the mesh which are comprised in the
neighborhood of a keypoint [WRK12]. In this approach, the
neighbourhood around a central (root) facet ¢ is constructed
through a sequence of concentric rings of facets emanating
from f.. The facets are arranged circular-wise within each
ring. The size of the neighbourhood is simply controlled by
the number of rings. This mechanism allows an easy analysis
of the GH variability, and thus of the local geometry evolu-
tion, as the size of the neighbourhood increases. When the
triangular mesh is regular and the facets are nearly equilat-
eral, the ORF rings form an approximation of iso-geodesic
rings around the central facet z.. The ORF construction has
a linear complexity. Fig. 2 depicts examples of ORF’s with
increasing number of rings and their related GH’s. In the ex-
periments reported in Sect. 5, we obtained good results by
using 8 ORF as neighborhood of the keypoints.

| B

Figure 2: ORF neighbourhoods with different sizes con-
structed at a facial keypoints, and their corresponding GHs.

The Geometric Histogram definition starts by consider-
ing a triangular mesh approximation § = {t,....,fs} of an
object surface. The discrete geometric distribution is con-
structed for each triangular facet #; in a given mesh which
describes its pairwise relationship with each of the other
surrounding facets within a predefined neighbourhood. The
range of the neighbourhood controls the degree to which
the representation is a local description of shape. Here, we
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choose a neighbourhood range that encompasses the facets
that share one or two vertices with the central triangular facet
(Fig. 3(b)). The distribution is defined such that it encodes
the surrounding shape geometry in a manner which is in-
variant to rigid transformations of the surface and which is
stable in the presence of surface clutter and missing data.
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Figure 3: GH computation: (a) Geometric measurements
used to characterise the relationship between two facets t;
and tj. (b) A facet t| and its neighbour facets. (c) For each
pair (t1,ts) in (b), the angle . between the two facets’ nor-
mals, the minimal and the maximal of the perpendicular dis-
tance from the plane of t| to the facet t; are computed. (d)
The pairs (o.,d) derived from these measurements are en-
tered in a 2D accumulator, thus obtaining a geometric dis-
tribution; (e) The geometric distribution can be visualized
with a gray level mapping.

Fig. 3(a) shows the measurements used to characterise
the relationship between facet #; and one of its neighbour-
ing facets 7;. These measurements are the relative angle, a,
between the facet normals, and the range of perpendicular
algebraic distances, d, from the plane in which facet #; lies
to all points on the facet ;. The range of perpendicular al-
gebraic distances is defined by [din,dmax], where dp, and
dmax are the minimal and the maximal of the distance from
the plane in which 7; lies to the facet ;. These values are sim-
ply obtained by calculating the distances to three vertices of
the facet ¢; and then selecting the minimal and the maximal
distance. Since the distance measurement is a range, a single
value dpin < d < dimax can be derived, based on the ampli-
tude of the range [dyin, dmax] and the resolution adopted for
the distance quantization d. The group of pairs (o, d), ex-
tracted from the measurements related to a given facet and
its neighbours (Fig. 3(b)-(c)), are entered to a 2D discrete
frequency accumulator that encodes the perpendicular dis-
tance d and the angle o (Fig. 3(d)). This accumulator has size
N x M, where N and M are the number of bins in the axis o
and d, respectively. The values of the accumulated matrix are
also normalized so as to sum up to 1. The accumulator can
be visualized in a 2D plotting using a gray level colormap
(Fig. 3(e)), and stored in a matrix for subsequent process-
ing. This representation only depends upon the surface shape
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and not on the placement of facets over the surface. This in-
dependence on the placement of the facets is important as
it guarantees the invariance of the correspondence with re-
spect to geometric transformations. In our experiments, we
considered the computation referred to the central facet 7.,
using N = 8 and M = 20. With respect to the computation of
the central GH, we introduced a variant which is related to
the definition of Ordered Ring Facets (ORF) [WRKI12]. In
particular, in our approach, a GH is constructed on each of
the rings that constitute the ORF of a keypoint: This means
that the GH descriptor is actually given by a set of GH, con-
structed on the sequence of rings which surround the key-
point (an 8-rings ORF has been used). This improves the
descriptiveness of GH by capturing information on how the
local characteristic of the surface changes when the distance
from the keypoint increases. This multi-ring structure is also
exploited during the match. In particular, the normalized GH
can be viewed as a probability density function, and thus can
be adapted to probabilistic matching paradigms. To this end,
the Bhattacharyya distance (dp) is used as metric for evalu-
ating the similarity between GHs at each ring. According to
this, given two GHs in the form of 1D arrays of K = N x M
elements, A(/) ={ay,...,ax} and B(l) = {by,...,bg}, their
distance at ring-1 is computed as:

The overall distance between two multi-ring GH, computed
on L rings is then obtained by accumulating the distances
between the GHs at different rings.

4. Face Comparison

Given two face scans, their comparison is performed by
matching the multi-ring GH descriptor of keypoints under
the constraint that a consistent spatial transformation exists
between inliers pairs of matching keypoints.

To this end, local shape descriptors at the keypoints de-
tected in probe and gallery scans are compared using Eq. (2),
so that for each keypoint in the probe, a candidate corre-
sponding keypoint in the gallery is identified. In particular, a
keypoint kp in the probe is assigned to a keypoint kg in the
gallery, if they match each other among all keypoints, that is,
if and only if kj is closer to kg than to any other keypoint in
the gallery, and kg is closer to kj than to any other keypoint
in the probe. In so doing, it is also required the second best
match is significantly worse than the best one (i.e., a match
is accepted if the ratio between the distance of the best and
the second best matches is lower than 0.7).

As a result of this match a candidate set of keypoint cor-
respondences is identified. The actual set of keypoint cor-
respondences is then obtained as outcome of a constraint
targeting the consistent spatial transformation between cor-
responding keypoints in the probe and gallery scans. The

RANSAC algorithm [ZKMO05,FB81] is used to identify out-
liers in the candidate set of keypoint correspondences. This
involves generating transformation hypotheses using a min-
imal number of correspondences and then evaluating each
hypothesis based on the number of inliers among all features
under that hypothesis. In our case, we modeled the problem
of establishing correspondences between sets of keypoints
detected on two matching scans as that of identifying points
in % that are related via a rotation, scaling and transla-
tion transformation (RST transformation). According to this,
at each iteration, the RANSAC algorithm validates sampled
pairs of matching keypoints under the current RST hypoth-
esis, updating at the same time the RST transformation ac-
cording to the sampled points. In this way, corresponding
keypoints whose RST transformation is different from the fi-
nal RST hypothesis are regarded as outliers and are removed
from the match. The number of keypoints matches is then
used as similarity measure between scans. Matching exam-
ples are reported in Fig. 4(a)-(b), for scans of same and dif-
ferent subjects, respectively. In the figure, detected keypoints
are highlighted (in blue) with a “+”; Corresponding key-
points based on descriptors matching are connected by green
lines; Finally, the inlier matching passing the RANSAC al-
gorithm, are shown with a red line connection. It can be ob-
served as applying RANSAC, just the matches that show a
coherent RST transformation among each other are retained,
thus avoiding matches of keypoints that are located in differ-
ent parts of the face in two scans.

(@)

(b)

Figure 4: Comparison of scans of same (a), and differ-
ent subjects (b). All the detected keypoints are shown with
“+”. Lines indicate matching keypoints (in green), and in-
liers matching after RANSAC (in red).

5. Experimental Results

The performance of the proposed approach have been eval-
uated in a comprehensive set of experiments, which include
three parts:
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1. The goal of the first session of experiments was to investi-
gate the keypoints number, distribution and repeatability
(see Sect. 5.1);

2. In the second session, we provide more insights on the
relationship between the position of the keypoints and the
corresponding descriptors (see Sect. 5.2);

3. Finally, the third session of experiments (see Sect. 5.3),
reports the recognition performance of the proposed ap-
proach on the Bosphorus database. This dataset has been
used in other works on 3D face recognition, thus permit-
ting a direct comparison of our approach with state of the
art solutions.

5.1. Keypoints Distribution and Repeatability

The idea of representing the face by extracting local descrip-
tors from the neighbor of a set of 3D keypoints, relies on
the assumption of intra-subject keypoints repeatability: Key-
points extracted from different facial scans of the same indi-
vidual are expected to be located approximately in the same
positions of the face. Since keypoints detection only depends
on the geometry of the face surface through its mean curva-
ture (see Sect. 2), these keypoints are not guaranteed to cor-
respond to specific meaningful landmarks of the face. For the
same reason, the detection of keypoints on two face scans of
the same individual should yield to the identification of the
same points of the face, unless the shape of the face is altered
by major occlusions or non-neutral facial expressions.
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Figure 5: Repeatability of keypoints.

To test the repeatability of keypoints detection, we used a
subset of the 3D scans of the Binghantom University 3D face
database (BU-3DFE) [YWS*06]. We considered 80 sub-
jects, each with 25 scans showing six different facial expres-
sions at four gradation (from moderate to exaggerated), plus
the neutral one (2000 scans in total). We followed the ap-
proach proposed in [MBOO8], and measured the correspon-
dence of the location of keypoints detected in two face scans
by performing ICP registration. Accordingly, the 3D faces
belonging to the same individual are automatically regis-
tered and the errors between the nearest neighbors of their
keypoints (one from each face) are recorded. Figure 5 shows
the results of our keypoint repeatability experiment, by re-
porting the cumulative rate of repeatability as a function of
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increasing values of the distance. The repeatability reaches a
value of 90% for frontal faces with neutral and non-neutral
expressions at a distance error of Smm (with an average num-
ber of 360 keypoints detected per scan). We remark that
these results, and those reported in the following about the
number of detected keypoints, have been obtained by com-
puting 96 DOG scales, and retaining the unique keypoints
that are detected in the last 64 DOG scales (see also Sect. 2).

Table 1 also reports the number of keypoints detected on
the face scans of the BU-3DFE. In particular, separate values
are given for the average, minimum and maximum number of
keypoints. No remarkable differences are observed for the
number of keypoints detected on left or right probes. Non-
neutral expressions have a small impact on the number of
detected keypoints, which remains comparable to that ob-
tained for frontal neutral scans (in some cases, an increase in
the number of keypoints is observed).

dataset number of keypoints
name scans | avg ~min  max
BU-3DFE neutral 80 | 327 265 402
BU-3DFE expressive 1920 | 361 292 464
BU-3DEFE rotal 2000 | 360 265 464

Table 1: Number of detected keypoints per scan (average,
min and max).

From Tab. 1, it results that the number of detected key-
points is quite large. In fact, an important trait of a keypoint
detector is the amount of repeatable keypoints it can pro-
vide to the subsequent modules of an application. Detecting
a small number of keypoints can not be enough to apply ge-
ometrical verification or outliers removal steps, whereas too
many may waste computational resources [STS12]. In the
case of meshDOG, the number of detected keypoints is the
result of the thresholds involved in the detection algorithm
(see Sect. 2). Of course, making these thresholds more se-
lective, the number of keypoints can be reduced. In our ex-
periments, the number of keypoints reported in Tab. 1, repre-
sented a good compromise between computational cost and
accuracy of recognition. A number of detected keypoints on
3D face scans of the order of hundreds is also reported for
the keypoints detector defined by Mian et al. [MBOO0S], and
for the meshSIFT detector [SKVS13]. For example, in the
meshSIFT, an average number of 560 keypoints is reported,
with a number of matching at rank-1 of about 97. The recent
survey on 3D keypoint detectors [STS12], also reported that
meshDOG tend to extract a high number of keypoints, that
accumulate around areas characterized by high local curva-
ture. These results seem to support our findings.

5.2. Keypoints Clustering

Observing the keypoints distribution across different facial
scans it results that they are not fully dispersed but, on the
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opposite, a considerable portion of them share quite close
locations. This spatial clustering aspect of the keyppoint dis-
tribution is attractive as it has the potential of reducing the
combinatorial number of matches between face keypoints,
thus speeding-up the matching process. In our context, a
cluster of keypoints Sy is defined as the group of keypoints
that are within the spherical neighborhood of radius r of a
keypoint k. of the set, that is:

Sk(_:{ki Z|kc—ki‘<r, iZl,...,nkr, }’lk(_>1}. 3)

So, according to Eq. (3), a set with a single keypoint cannot
be considered as cluster, but a cardinality greater than one is
required. The radius r is set to r = p - d, where d is the mean
of the edge length in the mesh and p is an integer. The com-
putation of the clusters is performed with a neighborhood
grouping procedure. The hypothesis we consider here is that
a cluster of keypoints should produce similar or at least quite
close descriptors, so that just the central keypoint k. can be
considered in the matching rather than all the keypoints in
the cluster. The degree of compliance of a given cluster of
keypoints with this assumption can then be adopted as a va-
lidity criterion on whether or not to accept that cluster in the
matching. For instance, if a cluster obtained with a low » has
quite disparate descriptors at its keypoints, it might result
in conflicting matching. Following this intuition, we studied
how such hypothesis sounds for the scans data of the BU-
3DFE. To this end, we examined the behavior of the clus-
ters, as the sphere radius increases, in terms of: (i) Variation
of their number; (ii) Homogeneity with respect to the GH
descriptor, that is the extent to which the local descriptors
computed at keypoints in a cluster keep close as r increases
(ideally, the descriptors should be identical at all the key-
points within a given cluster).

To verify the hypothesis above, an experiment has been
conducted on the BU-3DFE facial scans. For each face scan,
the following quantities have been computed (with p ranging
from 1 to 5, and thus for increasing radius r):

e The ratio oo = (N — (n+%))/N, where N, | and y, are the
numbers of keypoints, clusters, and single keypoints, re-
spectively. The numerator represents the number of key-
points that would be used in the matching if a cluster is
substituted by its central keypoint. So, the ratio o can be
regarded as the amount of keypoints reduction due to key-
points clustering;

e The mean u of the pair-wise distances between the GH
descriptors in each cluster. Depending on the u value,
clusters are then divided into four groups of increasing
4, as reported in Tab. 2. The threshold 0.2 has been cho-
sen upon a statistics in which we estimate the maximum
distance between GH descriptors computed at the same
locations for different scans of a same person. This sub-
division reflects the homogeneity of the GH descriptors
within a cluster: Clusters in the group-1 are the most ho-
mogenous; At the other extreme, clusters of group-4 ex-

hibit the highest disparity and thus should be discarded
from the match.

Group u
1 1n<0.2
2 02<u<05
3 0.5<u<038
4 0.8 <u

Table 2: Groups of clusters based on the mean p of the pair-
wise distances between GH descriptors in each cluster.

Results of this analysis are summarized in Fig. 6 and
Fig. 7. In Fig. 6, the mean and standard deviation of the ratio
o are plotted against the radii of the spherical neighborhood
(values of p from 1 to 5 have been used). We notice that
for p = 1, that is for clusters practically confined within a
facet and its adjacent neighbors, the average percentage rate
of keypoints reduction is around 30%. This value increases
up to more than 50% for p = 2. This is very encouraging if
we assume that the local shape is not expected to change too
much in a such reduced neighborhood.
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60 | /%//%k bt
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Figure 6: Mean ratio o, in percentage, with respect to the
spherical neighborhood size (parameterized by p). The ver-
tical bars also report the standard deviation at each p.

Figures 7(a)-(d) report the percentage of clusters belong-
ing to the four groups listed in Tab. 2, with respect to spheri-
cal neighborhood size p. We notice that the average number
of clusters having a mean of pair-wise distances u between
GH descriptors remains above 60% up to the third spherical
neighborhood (group-3). This is encouraging as it means that
the homogeneity, and thus the trustworthiness of the clusters,
for a considerable number of clusters, is not compromised
when the extent of the neighborhood increases. On the other
hand, we notice that the number of non-homogenous groups
remains less than 30% up to the second neighborhood size,
especially for group-2. Extremely non-homogenous clusters
(group-3 and group-4) have very low proportions, yet they
are present across all the neighborhood sizes. These can be
viewed as outliers or instable clusters (group-4 in particular),
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for which the descriptors show large disparity. Therefore, in-
cluding in the match the clusters belonging to group-3 and
group-4 can jeopardize the accuracy of the results.
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Figure 7: Percentage of clusters belonging to groups 1, 2, 3,
and 4 (reported from (a) to (d), respectively), for increasing
spherical neighborhood size (p).

This statistical analysis provides insights on the clustering
aspects of the keypoints, evidencing the potential of exploit-
ing this characteristic for reducing the combinatorial space
in keypoints matching. The final goal of this is improving the
plausibility of the match by eliminating unreliable keypoints.
Based on the results above, the keypoints can be ranked in
the following way: (i) Keypoints belonging to clusters of
group-1; (ii) Individual keypoints; (iii) Keypoints belonging
to clusters of group-2.

5.3. Recognition Results

Recognition experiments have been performed on the
Bosphorus database. This dataset has been collected
at the Bogazici University and made available during
2008 [SAD*08]. It consists of the 3D facial scans and im-
ages of 105 subjects acquired under different expressions
and various poses and occlusion conditions. Occlusions are
given by hair, eyeglasses or predefined hand gestures cover-
ing one eye or the mouth. Many of the male subjects have
also beard and moustache. The majority of the subjects are
Caucasian aged between 25 and 35, with a total of 60 males
and 45 females. The database includes a total of 4,666 face
scans, with the subjects categorized as follows:

e 34 subjects with up to 31 scans per subject (including 10
expressions, 13 poses, 4 occlusions and 4 neutral);

e 71 subjects with up to 54 different face scans. Each
scan is intended to cover one pose and/or one expres-
sion type, and most of the subjects have only one neu-
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tral face, though some of them have two. Totally, there
are 34 expressions, 13 poses, 4 occlusions and one or
two neutral faces. In this set, 29 subjects are professional
actors/actresses, which provide more realistic and pro-
nounced expressions.

This variability of the scans in terms of subjects’ pose,
expressions and occlusions, motivated us in selecting this
dataset for our experiments. In addition, this dataset has been
used by many state of the art solutions for 3D face recogni-
tion, thus permitting a direct comparison with our approach.

In our experiments, we used the same protocol proposed
in [LC11] and [SKVS13], thus allowing a direct compar-
ison of the results. For each subject, the first neutral scan
was included in the gallery, whereas the probe scans have
been organized in different classes as reported in Tab. 3 (the
number of probes per class is also indicated). The first class
groups probes according to their facial expression, distin-
guishing between neutral probes and expressive probes, plus
some not-classified probes. Probes where subjects exhibit
Face Action Units are accounted in the second class, by con-
sidering scans with Lower Face Action Unit (LFAU), Up-
per Face Action Unit (UFAU), and Combined Action Unit
(CAU). Finally, the last class reports probes with missing
parts due to Yaw Rotation (YR), Pitch Rotation (PR) and
Cross Rotation (CR), plus probes with Occlusions (O). For
methods in [LC11] and [SKVS13], the rank-1 RR is reported
as appear in the respective publications.

rank-1 RR
Probes (#) Lietal. Smeetsetal. this work
Neutral (194)  100.0% - 97.9%
Anger (71) 88.7% - 85.9%
Disgust (69) 76.8% - 81.2%
Fear (70) 92.9% - 90.0%
Happy (106) 95.3% - 92.5%
Sad (66) 95.5% - 93.9%
Surprise (71) 98.6% - 91.5%
other (18) - - 100.0%
LFAU (1549) 97.2% - 96.5%
UFAU (432) 99.1% - 98.4%
CAU (169) 98.8% - 95.6%
YR (735) 78.0% - 81.6%
PR (419) 98.8% - 98.3%
CR (211) 94.3% - 93.4%
0 (381) 99.2% - 93.2%
All (4561) 94.1% 93.7% 93.4%

Table 3: Rank-1 RR for different probe classes. Our ap-
proach is compared with [LC11] and [SKVS13].

Results show that our approach has overall performance
which are very close to state of the art solutions, and for
some categories are even better. In particular, our solution
performs particularly well in recognizing scans with missing
parts (see for example the YR category). More in detail, our
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approach achieves an accuracy of 45.7% on scans with -90°
left/right yaw rotations. Result for these scans is not directly
reported in [SKVS13].

6. Discussion and Future Work

In this work, we have proposed an original approach to 3D
face recognition based on the idea of capturing local infor-
mation of the face surface around a set of 3D keypoints
detected at multiple scales according to differential surface
measurements. The approach, first detects 3D keypoints of
the face mesh, then local descriptors are extracted at each
keypoint and used to find keypoint correspondences dur-
ing the match. To improve the accuracy of keypoints cor-
respondences, a spatial constraint is introduced using the
RANSAC algorithm. In summary, the proposed approach
presents some new solutions in the perspective to make 3D
face recognition deployable in real non-cooperative contexts
of use: The approach is fully-3D, and does not require any
costly normalization or alignment; The meshDOG keypoints
combined with the multi-ring GH, provide a good compro-
mise between robustness to expression changes and missing
parts of the face; The inclusion of a statistical technique for
outliers removal largely improves the recognition results.

The comparative evaluation carried out on the Bosphorus
database showed that our solution can compete with state
of the art works evidencing a clear advantage in the case of
probes with large missing parts.

In perspective, the proposed framework could be easily
adapted to include texture information of the face, so as to
define a multi-modal solution that combines together, in the
function used for meshDOG detection, 2D and 3D data.

References

[AFRWO98] ASHBROOK A., FISHER R., ROBERTSON C.,
WERGHI N.: Finding surface correspondance for object recog-
nition and registration using pairwise geometric histograms. In
Proc. European Conference on Computer Vision (Friburg, Ger-
many, June 1998), pp. 674—-686. 3

[BBB*11] BOYER E., BRONSTEIN A. M., BRONSTEIN M. M.,
BusTos B., DAROM T., HORAUD R., HOTZ I., KELLER Y.,
KEUSTERMANS J., KOVNATSKY A., LITMAN R., REINING-
HAUS J., SIPIRAN 1., SMEETS D., SUETENS P., VANDER-
MEULEN D., ZAHARESCU A., ZOBEL V.: Shrec 2011: robust
feature detection and description benchmark. In Proc. of Euro-
graphics Workshop on 3D Object Retrieval (3DOR 2011) (Llan-
dudno, UK, April 2011). 2

[BCF06] BOWYER K. W., CHANG K. I., FLYNN P. J.: A survey
of approaches and challenges in 3D and multi-modal 3D+2D face
recognition. Computer Vision and Image Understanding 101, 1
(Jan. 2006), 1-15. 1

[BDP10] BERRETTI S., DEL BIMBO A., PALA P.: 3D face
recognition using iso-geodesic stripes. IEEE Transactions on
Pattern Analysis and Machine Intelligence 32, 12 (Dec. 2010),
2162-2177. 1

[FB81] FISCHLER M. A., BOLLES R. C.: Random sample con-
sensus. Communications of the ACM 24, 6 (June 1981), 381-395.
4

[LC11] L1iH., CHEN L.: SHREC’11 track: Salient points. In Eu-
rographics Workshop on 3D Object Retrieval (Llandudno, UK,
April 2011), pp. 89-95. 2,7

[Low04] Lowg D.: Distinctive image features from scale-
invariant key points. International Journal of Computer Vision
60, 2 (Nov. 2004), 91-110. 2

[MBOO08] MIAN A. S., BENNAMOUN M., OWENS R.: Keypoint
detection and local feature matching for textured 3D face recog-

nition. [International Journal of Computer Vision 79, 1 (Aug.
2008), 1-12. 2,5

[MFK*10] MAES C., FABRY T., KEUSTERMANS J., SMEETS
D., SUETENS P., VANDERMEULEN D.: Feature detection on 3D
face surfaces for pose normalisation and recognition. In /EEE In-
ternational Conference on Biometrics: Theory, Applications and
Systems (BTAS) (Washington D.C., USA, Sept. 2010), pp. 1-6. 2

[Pey09] PEYRE G.: Toolbox graph. In MATLAB Central File
Exchange Select (2009). 2

[PES*05] PHILLIPS P. J., FLYNN P. J., SCRUGGS T., BOWYER
K. W., CHANG J., HOFFMAN K., MARQUES J., MIN J.,
WOREK W.: Overview of the face recognition grand challenge.
In IEEE Workshop on Face Recognition Grand Challenge Exper-
iments (San Diego, CA, June 2005), pp. 947-954. 1

[PPTK11] PASSALIS G., PERAKIS P., THEOHARIS T., KAKA-
DIARIS I. A.: Using facial symmetry to handle pose variations
in real-world 3D face recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 33, 10 (October 2011),
1938-1951. 1

[SAD*08] SAVRAN A., ALYUZ N., DIBEKLIOGLU H., CELIK-
TUTAN O., GO B., SANKUR B., AKARUN L.: Bosphorus
database for 3D face analysis. In Proc. First COST 2101 Work-
shop on Biometrics and Identity Management (May 2008). 7

[SKVS13] SMEETS D., KEUSTERMANS J., VANDERMEULEN
D., SUETENS P.: meshSIFT: Local surface features for 3D face
recognition under expression variations and partial data. Com-
puter Vision and Image Understanding 117, 2 (February 2013),
158-169. 2,5,7, 8

[STS12] SALTI S., TOMBARI F., STEFANO L. D.: Performance
evaluation of 3D keypoint detectors. International Journal of
Computer Vision to appear (2012). 2,5

[WLT10] WANG Y., Liu J., TANG X.: Robust 3D face recogni-
tion by local shape difference boosting. IEEE Transactions on
Pattern Analysis and Machine Intelligence 32, 12 (Oct. 2010),
1858-1870. 1

[WRKI12] WERGHI N., RAHAYEM M., KJIELLANDER J.: An or-
dered topological representation of 3D triangular mesh facial sur-
face: Concept and applications,. EURASIP Journal on Advances
in Signal Processing to appear (July 2012). 3, 4

[YWS*06] YIN L., WEI X., SUN Y., WANG J., ROSATO M.:
A 3D facial expression database for facial behavior research. In
Proc. IEEE Int. Conf. on Automatic Face and Gesture Recogni-
tion (Southampton, UK, Apr. 2006), pp. 211-216. 5

[ZBVHO09] ZAHARESCU A., BOYER E., VARANASI K., HO-
RAUD R.: Surface feature detection and description with appli-
cations to mesh matching. In Proc. IEEE Int. Conf. on Computer
Vision and Pattern Recognition (Miami Beach, FL, June 2009),
pp. 373-380. 2

[ZKMO5] ZULIANIM., KENNEY C. S., MANJUNATH B. S.: The
multiransac algorithm and its application to detect planar homo-
graphies. In IEEE International Conference on Image Processing
(Sep 2005). 4

(© The Eurographics Association 2013.



