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Abstract. A novel indexing scheme for solving the problem of nearest neigh-
bor queries in generic metric feature spaces for content-based image retrieval is
proposed to break the “dimensionality curse.” The basis for the proposed method
is the partitioning of the feature dataset into clusters that are represented by sin-
gle buoys. Upon submission of a query request, only a small number of clusters
whose buoys are close to the query object are considered for the approximate
query result, effectively cutting down the amount of data to be processed enor-
mously. Results concerning the retrieval accuracy from extensive experimentation
with a real image archive are given. The influence of control parameters is inves-
tigated with respect to the tradeoff between retrieval accuracy and computational
cost.

1 Introduction

Interest in digital images has increased enormously over the last few years, fuelled at
least in part by the ubiquity of digital media, the availability of large image archives,
and the rapid growth of the Internet infrastructure. Users in many professional fields
exploit the opportunities offered by the ability to access and manipulate remotely stored
images in all kinds of new and exciting ways. Finding an image whose content is truly
relevant to the user’s need has become the focal point of recent research in information
technology.

Problems with traditional methods of image retrieval [5] have led to the rise of
techniques for retrieving images on the basis of content descriptors for perceptual fea-
tures such as color, texture, shape, structure, and spatial relationship – a technology
now generally referred to as content-based image retrieval (CBIR). CBIR systems em-
ploy unsupervised automatic feature extraction algorithms on images by analyzing their
pixel distributions. This analysis results in compact feature descriptors, which convey
specific aspects of the image’s most salient visual properties [8, 10, 13].

Upon presentation of a query, the feature descriptor of the query image is compared
with all corresponding descriptors in the database by some well-defined similarity mea-
sure. A sequential search through all potential descriptors contained in the database
would be very time-consuming and inefficient. Therefore, an indexing scheme becomes
necessary in order to limit the number of potential target descriptors from the database
and reduce the computational effort needed to sequentially determine their similarity to
the query descriptor. This task is generally referred to as similarity indexing [14]. The
goal of similarity indexing is to reduce the amount of data to be processed by catego-
rizing or grouping similar objects together.
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2 Preliminaries

In this paper, we focus on providing a general purpose spatial indexing scheme appli-
cable to any feature derived from images that complies with the postulates of the metric
feature model. The common framework for the metric feature model is defined in the
remainder of this section.

2.1 Metric Feature Model

The metric feature model is based on the assumption that human similarity perception
corresponds with a measurement of an appropriate distance between features that model
the images’ characteristic properties.

Let � be a feature extraction algorithm that transforms images I into compact
feature descriptors !:

I
�
7�! ! (1)

Then (
; Æ) is called a generic feature space, where 
 is a – possibly infinite – set
called the feature domain whose elements are feature descriptors !, and Æ is a metric on

 called the dissimilarity measure. The metric Æ must satisfy the following properties:

Positivity
Æ(!i; !j) � 0 (2)

Self-similarity
Æ(!i; !i) = 0 (3)

Symmetry
Æ(!i; !j) = Æ(!j ; !i) (4)

Triangle Inequality
Æ(!i; !j) + Æ(!j ; !l) � Æ(!i; !l) (5)

It is assumed that the definition of the feature extraction algorithm� and its associated
dissimilarity measure Æ is only based on pre-attentive human similarity. This means
they depend only on the perceived stimuli of the visual content of the images, without
accounting for any previous knowledge, interpretation or reasoning.

This common framework includes the definition of ubiquitous d-dimensional fea-
ture vector spaces (
 � IRd), but is not necessarily limited to them.

2.2 Feature Dataset

Let
S = f !1; !2; : : : ; !Ng (6)

be a finite subset of a feature domain 
 called the feature dataset whose elements are
the feature descriptors from a set of N images.



2.3 K-Nearest Neighbor Query

By far the most common query of a CBIR system is a request like “find the first K
images most similar to the query example.” Such a request can be formulated as a K-
nearest neighbor query (K-NN query) in metric space: Given an query object !Q 2 

and an integer K � 1, the K-NN query SNN (!Q;K) selects the K elements from
the feature dataset S which have the smallest distance from !Q with the following
properties:

(i) SNN (!Q;K) � S

(ii) jSNN (!Q;K)j = K

(iii) 8 ! 2 SNN (!Q;K) 6 9 !0 2 S n SNN (!Q;K)

with Æ(!Q; !
0) < Æ(!Q; !)

(7)

3 State-Of-The-Art

The history of recent research on similarity indexing techniques can be traced back
to the middle 70’s when hierarchical tree structures (e.g.k-d tree) for indexing multi-
dimensional vector spaces were first introduced. In 1984, Guttman proposed the R-tree
indexing structure [7], which was the basis for the development of many other variants.
Sellis et al. proposed the R+-tree [12], and Beckman et al. proposed the best dynamic
R-tree variant, the R�-tree [2] in the following years.

A very extensive review and comparison of various spatial indexing techniques for
feature vector spaces can be found in [14]. Motivated by k-d tree and R-tree, they
proposed the VAM k-d tree and the VAMSplit R-tree. Experimentally, they found that
the VAMSplit R-tree provided the best performance, however, this was at the loss of
the dynamic nature of the R-tree.

Common to all of the cited research is the idea that feature descriptors are stored at
the leaf level of a hierarchical index tree structure. Each leaf corresponds to a partition
of the feature space and each node to a convex subspace spanning the partitions created
by its children. During a similarity query, the search space is reduced by pruning tree
branches at nodes that do not meet certain distance requirements. The main problem
with this approach is that it requires the calculation of the minimum distance from the
query point to the arbitrarily shaped convex subspace represented by the node being
examined. The most common approach for simplifying this problem is that partitions
are split into sub-partitions along a single axis of the vector space, ultimately creating
hyper-rectangular partitions whose sides are aligned parallel to the spanning axes of the
underlying feature space.

Most of the hierarchical spatial indexing methods work satisfactorily for lower di-
mensions, but suffer from the dimensionality curse [11] when applied to feature vectors
in medium- or high-dimensional feature spaces (d > 20). The dimensionality curse
is strictly related to the distribution of the dissimilarity measures between the feature
dataset and the query object. If the variance of the dissimilarities for a given query ob-
ject is low, then conducting an indexedK-NN query becomes a difficult task. A way to



obviate this situation is to conduct queries that come up with an approximate solution
of the K-NN query problem [1, 3].

In recent research, there have been many attempts to get a grip on the problem of
the dimensionality curse – one of them is the reduction of the dimensionality of the
underlying feature domain with a principal component analysis (PCA) or its variants.
In [9], Ng and Sedighain followed this approach to reduce the dimensionality, and in
[6] Faloutsos and Lin proposed a fast approximation of the Karhunen-Loeve Transform
(KLT) to perform the dimension reduction. However, even though experimental results
from their research showed that some real feature datasets can be considerably reduced
in dimension without significant degradation in retrieval quality, the image queries be-
come proportionally less accurate with the loss of dimensions.

The biggest shortcoming of the techniques mentioned is that they are inherently
only applicable to feature vector spaces, that is, each feature descriptor can be suitably
represented by an adequate vector of fixed dimensionality.

In the following section an indexing scheme is proposed that is applicable to feature
domains beyond the traditional vector spaces and enables fast approximate similarity
queries through a very simplistic indexing paradigm.

4 Buoy Indexing

The proposed indexing scheme is based on the idea that the feature dataset is decom-
posed into disjoint non-empty partitions of arbitrary convex shape. However, each par-
tition is NOT represented by a complex description of its extension or its boundaries
in the feature domain but rather by a single prototype element that is an element of the
feature domain itself. The prototype element serves as a buoy for its associated par-
tition. The membership of an element of the feature dataset to a specific partition is
solely determined by its metric distances to all buoys placed in feature space – a feature
descriptor exclusively belongs to the partition with the closest associated buoy in the
feature space. Ideally, each partition should have the same number of feature descrip-
tors as members, and the number of partitions should be an order of magnitude smaller
than the number of feature descriptors in the dataset. The buoys for a specific dataset
are stored in a simple list or in a more complex hierarchical structure (e.g. M -tree [4]).

In general, the task of partitioning a particular feature dataset S into k disjoint non-
empty subsets S1;S2; : : : ;Sk (also called clusters)

k[

i=1

Si = S (8)

Si 6= ; 8 1 � i � k ^ Si \ Sj = ; 8 1 � i; j � k; i 6= j (9)

is performed by any k-clustering algorithm. The number of clusters k is assumed to
be fixed and each descriptor of the feature dataset belongs to exactly one cluster (crisp
membership). By far the most common type of k-clustering algorithm is the optimiza-
tion algorithm.

The optimization algorithm defines a cost criterion

c : fS1;S2; : : : ;Skg ! IR+
0 (10)



which associates a non-negative cost with each cluster. The goal of the optimization
algorithm is then to minimize the global cost

c (S) =
kX

i=1

c (Si) (11)

for a given feature dataset.
If each clusterSi is represented by a buoy !̂i that is an element of the feature domain


 itself, then, the cost criterion of a cluster can be defined as

c(Si) =

jSijX

m=1

Æ(!̂i; !im) (12)

where !im is the mth element of Si, and jSij is the number of elements in Si.
Naturally, the centroid of the cluster would be chosen to be the buoy !̂ i (k-means

clustering algorithm). However, since many types of dataset do not belong to feature
spaces in which the mean is defined (the mean of two elements of the feature domain is
required to be an element of the feature domain itself – this is NOT always the case for
feature spaces that are not vector spaces), a different buoy for clusters must be chosen
for a more general type of feature space (see Sect. 2). Intuitively, the median of each
cluster is selected as its representative buoy (k-medians clustering algorithm). Note
that !̂i 2 Si � S � 
 and that !̂i is chosen to minimize the cost c(Si) of the cluster
itself.

4.1 Building the Index

The classic implementation of the optimization problem is an algorithm that tries to
minimize (11) iteratively. The algorithm converges if c(S) remains constant for two
consecutive iterations. The result is usually a local minimum of the optimization prob-
lem. Techniques like simulated annealing can be employed further to improve the result.

The pure k-medians clustering algorithm produces clusters with sizes 0 < jS ij �
N . In order to support the development of clusters of approximately the same size,
additional constraints on the cluster sizes are imposed during each iteration:

Smin � jSij � Smax (13)

If any cluster’s size exceeds the constraint of (13), the smallest cluster is deleted and
accordingly the largest cluster is split randomly into two equally sized clusters. The
member descriptors of the deleted cluster are assigned to the clusters with the closest
associated buoys. A high level description of the iterative optimization algorithm is
shown in Fig. 1.

4.2 Updating the Index

Considering that CBIR systems today are dynamic since new images are continuously
added to the image archive, the feature dataset increases with time also. Intuitively, the



Initialize clusters by assigning descriptors of dataset
Initialize buoys of clusters
Calculate global cost
repeat

for all clusters whose size exceed constraints
Find smallest cluster
Redistribute descriptors of smallest cluster to other clusters

according to the descriptors’ distance to the clusters’ buoys
Delete smallest cluster
Split largest cluster randomly
Update buoys of split clusters

Reassign descriptors of the dataset to clusters
according to the descriptors’ distance to the clusters’ buoys

Update buoys of clusters
Calculate global cost

until global cost remains constant

Fig. 1. Constrained k-Medians Clustering Algorithm

newly added descriptors are assigned to the cluster with the closest buoy. However,
since the buoys are not modified during this process, some clusters might grow ex-
tensively, while others might not grow at all. This necessitates an infrequent periodic
update to the index in order to compensate for the newly added feature descriptors. The
clusters are then simply initialized with the buoys of the old index to avoid starting the
iterative algorithm from scratch again.

With the number of descriptors increasing, it might even become necessary to in-
crease the overall number of clusters. In this case, empty clusters are added which are
then removed by the size constraint in following iterations.

4.3 Indexed Queries

Upon submission of an indexed query request, the first task is to conduct a k 0-NN query
on the set of buoys Ŝ = f!̂1; : : : ; !̂kg of the index in order to find the k 0 � k closest
buoys !̂0

i to the query object
ŜNN (!Q; k

0) � Ŝ (14)

Then, the second task is to perform an approximateK-NN querySANN (!Q;K; k0)
on the joint union of all member descriptors of the clusters S 0

i associated with the k0

closest buoys !̂0
i 2 ŜNN (!Q; k

0)

SANN (!Q;K; k
0) �

k0[

i=1

S 0
i (15)

where K is the number of results the query is supposed to return (typically K =
f10; 20; 50; 100g). The result is an approximation of the correct result given by a se-
quential K-NN query based on the whole dataset. The accuracy of SANN (!Q;K; k0)



mainly depends on the selection of parameter k 0. This is due to the fact that query ob-
jects might be located in areas of the feature space that are less populated by the dataset.
As a result, the variance of the distance distribution to the dataset descriptors for this
particular query object is low. This yields many potential candidate descriptors with
approximately the same distance to the query object. Because the feature space is in-
tentionally limited to a small number of clusters k 0 prior to the search, some potentially
relevant descriptors might not be returned during an indexed query.

Practically, this indexing paradigm yields a number of consecutive sequential NN-
searches. However, the overall number of comparisons necessary for an approximate
NN-search can be reduced significantly by a smart selection of the parameters k and k 0

with respect to the total number of descriptorsN present in the dataset. The interaction
between computational cost and retrieval accuracy is investigated in the next section.

5 Results

The overall retrieval accuracy of an approximate K-NN query SANN (!Q;K; k0) with
the proposed indexing scheme depends on the following features:

– the statistical distribution of a given feature dataset S in the feature domain 

– the specific characteristics of the metric Æ
– the number of clusters k and the initialization conditions of the constrained k-

medians clustering algorithm
– the query object !Q and the parameters k 0 and K of an indexedK-NN query

The first and second features are directly associated with the selection of a particular
feature extraction algorithm and its associated dissimilarity measure. The third is related
to the visual content of the images that are inserted into the dataset, and therefore, has
a random aspect. As a result, their influence cannot be made quantitatively tangible.
However, if the feature space and the dataset are selected carefully for an experimental
analysis, a general statement about the method’s performance can be made.

5.1 Experimental Setup

Database The image database consisted of a total of N = 25000 color JPEG images
in screen preview quality (approximate size 300 � 200). The images were taken
from CD image catalogues with a variety of topics, e.g. people, sports, art, travel,
animals, nature, industry, and business. Thus, the visual content of the database was
quite heterogeneous and can be considered domain independent.

Feature Space The feature domain was generated by extracting the color histogram
with a total of 116 distinct color bins obtained by fuzzy quantization of the cylindri-
cal HSL colorspace. The L1-metric was used for comparing the color histograms
in terms of similarity.

Clustering The feature dataset was clustered into k = 500 clusters. The expected
average cluster size is jSij = N

k
= 50. The influence of the number of clusters on

the retrieval accuracy is not investigated in this paper.
Queries A total sample of 500 query images that were not part of the image database

itself were submitted as requests to the query engine in order to collect the experi-
mental results.



5.2 Retrieval Accuracy

A total of 3 different indices were evaluated in order to depict the influence of the
size constraint on the k-medians clustering algorithm. Table 1 shows the corresponding
parameters used for the generation of the single indices along with the final global cost.
The resulting destribution of cluster sizes is depicted in graph (I) of Fig. 2. Clearly,
the unconstrained index (IIa) tends to produce many small and few large clusters. This
undesired effect is eliminated by introducing minimum and maximum size constraints
on indices (IIb) and (IIc).

Table 1. Evaluated Indices

Index k Smin Smax c(S)

(IIa) 500 — — 6580:0022

(IIb) 500 10 100 5976:8084

(IIc) 500 25 75 5879:8690

The retrieval accuracy P (!Q;K; k0) for the experimental setup was determined by
comparing the correct result SNN (!Q;K) of the non-indexed K-NN query with the
approximate result SANN (!Q;K; k0) of the indexedK-NN query according to

P (!Q;K; k
0) =

jSANN (!Q;K; k0) \ SNN (!Q;K)j

K
(16)

The graphs (IIa) through (IIc) in Fig. 2 show the retrieval accuracy’s dependency on
the number of clusters k 0 that were included in the approximate NN-query. It can be
seen that the retrieval accuracy quickly approaches 100% as k 0 increases. The lower
dashed line corresponds to the lower boundary with 90% confidence in the experimental
results, that is, 90% of all results are expected to be better than this boundary. The
same applies to the lower boundaries with 50% and 75% confidence respectively. In the
majority of cases a retrieval accurary of more than 95% can be achieved for k 0 = 30.
Furthermore, the retrieval accuracy for the constrained indices (IIb–c) is considerably
better in comparison to the unconstrained index (IIa) for larger values of k 0. This is due
to the fact that the distribution of clusters in feature space is more balanced in terms of
size.

5.3 Computational Cost

The computational cost of an NN-query with the proposed indexing scheme is

C(N; k; k0) � k0 � (jSij+ 1) � k0 � (
N

k
+ 1) (17)

C(N; k; k0) specifies the number of necessary computations of the metric distance be-
tween the query object and the indexed descriptors. In comparison, a linear search re-
quires exactlyN computations. A smart choice of the parameters k and k 0 can lead to a
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Fig. 2. Distribution of Cluster Sizes for Different Indices (I) and Retrieval Accuracy of Indexed
K-NN-Queries (IIa–c) for K = 100

significantly lower computational cost while still resulting in a high retrieval accuracy.
In the examined cases, the retrieval accuracy was almost 95% for most queries while
requiring only 10% of the computational effort of a sequential search.

In fact, with a suitable choice of the parameter k 0, any query request can be guar-
anteed to complete in a given time frame after submission (depending on the system’s
hardware). Of course, this is at the potential loss of some retrieval quality for small time
frames.

6 Future Research

The influence of the parameters, namely the number of cluster buoys k, the minimum
and maximum cluster constraints Smin and Smax, and the number of queried clusters k 0

during an approximate NN-query, has to be examined more thoroughly in order to fully
understand their relationship on retrieval accuracy and computational cost.

The generation of the index through the constrained k-medians clustering algorithm
needs considerable processing time that increases with the number of clusters k and the
number of feature descriptors N of the dataset. Although the generation is generally



computed off-line, there is a point where the load in terms of processing power and
memory resources has to be distributed on multiple computers.
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