
Scene Reconstruction
from Multi-Scale Input Data

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation
zur Erlangung des akademischen Grades

Doktor-Ingenieur

vorgelegt von

Simon Fuhrmann, M. Sc.
geboren in München

Referenten der Arbeit: Prof. Dr.-Ing. Michael Goesele
Technische Universität Darmstadt
Prof. Brian L. Curless, Ph.D.
University of Washington
Prof. Dr.-Ing. Christian Theobalt
MPI Informatik, Saarbrücken

Tag der Einreichung: 23. März 2015
Tag der Disputation: 18. Juni 2015

Darmstädter Dissertation, 2015
D 17

Abstract

Geometry acquisition of real-world objects by means of 3D scanning or stereo recon-
struction constitutes a very important and challenging problem in computer vision.
3D scanners and stereo algorithms usually provide geometry from one viewpoint
only, and several of the these scans need to be merged into one consistent represen-
tation. Scanner data generally has lower noise levels than stereo methods and the
scanning scenario is more controlled. In image-based stereo approaches, the aim is
to reconstruct the 3D surface of an object solely from multiple photos of the object.
In many cases, the stereo geometry is contaminated with noise and outliers, and ex-
hibits large variations in scale. Approaches that fuse such data into one consistent
surface must be resilient to such imperfections.

In this thesis, we take a closer look at geometry reconstruction using both scan-
ner data and the more challenging image-based scene reconstruction approaches.
In particular, this work focuses on the uncontrolled setting where the input images
are not constrained, may be taken with di�erent camera models, under di�erent
lighting and weather conditions, and from vastly di�erent points of view. A typical
dataset contains many views that observe the scene from an overview perspective,
and relatively few views capture small details of the geometry. What results from
these datasets are surface samples of the scene with vastly di�erent resolution. As
we will show in this thesis, the multi-resolution, or, “multi-scale” nature of the in-
put is a relevant aspect for surface reconstruction, which has rarely been considered
in literature yet. Integrating scale as additional information in the reconstruction
process can make a substantial di�erence in surface quality.

We develop and study two di�erent approaches for surface reconstruction that
are able to cope with the challenges resulting from uncontrolled images. The �rst
approach implements surface reconstruction by fusion of depth maps using a multi-
scale hierarchical signed distance function. The hierarchical representation allows
fusion of multi-resolution depth maps without mixing geometric information at in-
compatible scales, which preserves detail in high-resolution regions. An incomplete
octree is constructed by incrementally adding triangulated depth maps to the hier-
archy, which leads to scattered samples of the multi-resolution signed distance func-
tion. A continuous representation of the scattered data is de�ned by constructing
a tetrahedral complex, and a �nal, highly-adaptive surface is extracted by applying
the Marching Tetrahedra algorithm.

III

Abstract

A second, point-based approach is based on a more abstract, multi-scale implicit
function de�ned as a sum of basis functions. Each input sample contributes a single
basis function which is parameterized solely by the sample’s attributes, e�ectively
yielding a parameter-free method. Because the scale of each sample controls the size
of the basis function, the method automatically adapts to data redundancy for noise
reduction and is highly resilient to the quality-degrading e�ects of low-resolution
samples, thus favoring high-resolution surfaces.

Furthermore, we present a robust, image-based reconstruction system for sur-
face modeling: MVE, the Multi-View Environment. The implementation provides
all steps involved in the pipeline: Calibration and registration of the input images,
dense geometry reconstruction by means of stereo, a surface reconstruction step
and post-processing, such as remeshing and texturing. In contrast to other software
solutions for image-based reconstruction, MVE handles large, uncontrolled, multi-
scale datasets as well as input from more controlled capture scenarios. The reason
lies in the particular choice of the multi-view stereo and surface reconstruction al-
gorithms.

The resulting surfaces are represented using a triangular mesh, which is a piece-
wise linear approximation to the real surface. The individual triangles are often so
small that they barely contribute any geometric information and can be ill-shaped,
which can cause numerical problems. A surface remeshing approach is introduced
which changes the surface discretization such that more favorable triangles are cre-
ated. It distributes the vertices of the mesh according to a density function, which is
derived from the curvature of the geometry. Such a mesh is better suited for further
processing and has reduced storage requirements.

We thoroughly compare the developed methods against the state-of-the art and
also perform a qualitative evaluation of the two surface reconstruction methods on
a wide range of datasets with di�erent properties. The usefulness of the remeshing
approach is demonstrated on both scanner and multi-view stereo data.

IV

Zusammenfassung

Die Erfassung der Geometrie von Objekten mit Hilfe von 3D-Scannern oder Ste-
reoverfahren ist ein sehr wichtiges und herausforderndes Problem im Bereich der
Computer Vision. 3D-Scanner und Stereoalgorithmen rekonstruieren typischerwei-
se Geometrie von nur einem Blickwinkel, und viele dieser Scans müssen zu einer
konsistenten Ober�äche zusammengeführt werden. Die Daten von 3D-Scannern ha-
ben generell ein niedrigeres Rauschverhalten als Stereomethoden und entstehen oft
unter kontrollierten Bedingungen. In bildbasierten Stereoverfahren ist das Ziel die
3D-Oberfäche eines Objektes nur mit Hilfe von Fotos des Objektes zu rekonstru-
ieren. In vielen Fällen ist die aus den Stereoverfahren gewonnene Geometrie mit
Rauschen und Fehlrekonstruktionen versehen und enthält große Au�ösungsunter-
schiede. Methoden, welche diese Art von Daten in ein konsistentes Ober�ächenmo-
dell zusammenführen, müssen robust gegenüber diesen Datenmängeln sein.

In dieser Doktorarbeit beschäftigen wir uns näher mit Ober�ächenrekonstruk-
tion aus 3D-Scannerdaten und aus bildbasierten Rekonstruktionsverfahren. Diese
Arbeit untersucht insbesondere die unkontrollierte Situation, bei welcher die Ein-
gabebilder keiner Beschränkung unterliegen, und mit unterschiedlichen Kameramo-
dellen unter beliebigen Licht- und Wetterverhältnissen aufgenommen sein können.
Ein typischer Datensatz enthält viele Bilder, welche die ganze Szene überblicken,
und nur relativ wenige Bilder, welche Details der Geometrie erfassen. Das Resultat
aus diesen Datensätzen sind Messpunkte der Ober�äche mit sehr unterschiedlichen
Au�ösungen. Wie wir in dieser Arbeit aufzeigen werden ist der Multiskalenaspekt
der Messpunkte äußerst relevant für die Ober�ächenrekonstruktion, hat allerdings
bisher in der Literatur kaum Beachtung gefunden. Die Integration des Multiskalen-
aspektes in die Ober�ächenrekonstruktion kann einen substanziellen Unterschied
in der Ober�ächenqualität ausmachen.

Wir entwickeln und studieren zwei unterschiedliche Ansätze zur Ober�ächenre-
konstruktion, welche mit den Herausforderungen von unkontrollierten Daten um-
gehen können. Der erste Ansatz setzt auf die Vereinigung von Tiefenkarten mit
Hilfe einer Multiskalendarstellung der vorzeichenbehafteten Distanzfunktion. Die
hierarchische Darstellung erlaubt die Vereinigung von Tiefenkarten ohne geometri-
sche Informationen auf inkompatiblen Skalen zu vermischen, was Details in hoch
aufgelösten Regionen besser erhält. Zunächst wird ein Octree durch inkrementelles
Hinzufügen von Tiefenkarten erstellt, was zu unstrukturierten Datenpunkten der

V

Zusammenfassung

Distanzfunktion führt. Eine kontinuierliche Darstellung der Daten wird durch die
Erzeugung eines tetraedrischen Netzes de�niert. Letztendlich wird eine hochgradig
adaptive Ober�äche mit Hilfe des Marching Tetrahedra Algorithmus extrahiert.

Ein zweiter, punktbasierter Ansatz basiert auf einer abstrakteren, impliziten Mul-
tiskalenfunktion, welche als Summe von einzelnen Basisfunktionen de�niert ist. Je-
der Eingabemesspunkt liefert eine einzelne Basisfunktion, welche lediglich durch
die Au�ösung des Messpunktes de�niert ist und somit eine parameterfreie Rekon-
struktionsmethode ermöglicht. Die Au�ösung eines jeden Messpunktes kontrolliert
die größe der Basisfunktion, wodurch die Methode sich automatisch automatisch an
die Datenredundanz zum Zweck der Rauschunterdrückung anpassen kann. Ferner
ist die Methode äußerst robust gegenüber den negativen E�ekten von niedrig auf-
gelösten Messpunkten auf die Ober�äche und bevorzugt somit die hoch aufgelöste
Messpunkte.

Des Weiteren stellen wir eine robuste, bildbasierte Ober�ächenrekonstruktions-
software vor: MVE, das Multi-View Environment. Diese Software implementiert alle
notwendigen Schritte der Rekonstruktion: Kalibrierung und Registrierung der Ein-
gabebilder, Geometrierekonstruktion mit Stereoverfahren, Ober�ächenrekonstruk-
tion und Nachbearbeitungsschritte, wie etwa Remeshing und Texturierung. Im Ge-
gensatz zu anderen Softwarelösungen für bildbasierte Rekonstruktion kann MVE
große, unkontrollierte Multiskalendatensätze sowie auch kontrollierte Datensätze
handhaben. Der Grund liegt in der speziellen Wahl der Multi-View Stereo und Ober-
�ächenrekonstruktionsalgorithmen.

Die resultierenden Ober�ächen werden durch Dreiecksnetze dargestellt, welche
eine stückweise lineare Annäherung an die unbekannten, originalen Ober�ächen
darstellen. Die einzelnen Dreiecke sind oft so klein, dass sie nur vernachlässigba-
re geometrische Information beisteuern. Die Dreiecke sind außerdem oft degene-
riert was zu numerischen Problemen führen kann. Ein Remeshing-Ansatz wird vor-
gestellt, welche die Ober�ächendiskretisierung verändert, so, dass besser geartete
Dreiecke entstehen. Die Punkte des Dreiecksnetz werden dabei anhand einer Dich-
tefunktion verteilt, welche aus der Krümmung der Geometrie berechnet wird. Das
resultierende Dreiecksnetz ist somit besser zur Weiterverarbeitung geeignet und
nimmt weniger Speicherplatz in Anspruch.

Die vorgestellten Methoden werden sorgfältig mit dem aktuellen Stand der Tech-
nik verglichen. Außerdem wird eine qualitative Evaluierung der beiden Ober�ä-
chenrekonstruktionsmethoden auf einer Vielfalt von Datensätzen mit unterschied-
lichen Eigenschaften durchgeführt. Die Zweckmäßigkeit des Remeshing-Ansatzes
wird sowohl auf 3D-Scannerdaten als auch auf bildbasierten Rekonstruktionen de-
monstriert.

VI

Acknowledgements

This dissertation would not have been possible without the help of many colleagues,
friends and family. Here I would like to thank those individuals for their friendly
support and the many technical advises I received.

I am very grateful for the opportunity to work with Michael Goesele in his
rapidly evolving research lab. His feedback on research directions, my career, and
his support in writing research papers are invaluable. Because I always had a pas-
sion for my research and the software engineering work, the four years in Michael’s
lab were quite an enjoyable experience. I also want to thank my external reviewers,
Christian Theobalt and Brian L. Curless, for their interest in my work.

My special thanks goes to all my colleagues in the lab for their technical sup-
port, inspiring discussions, proof-reading papers and my thesis, and for making the
research lab a friendly environment to work in. In particular, I enjoyed the years
sharing one o�ce with Jens �lled with many inspiring discussions. I am grateful
for Jens’ and Ronny’s support with many mathematical problems, and Fabian’s ex-
perience with Structure from Motion which he shared with me in lengthy coding
sessions. Many thanks go to Ursula, our secretary, who took care of various busi-
ness matters.

I am thankful for the scanner datasets provided by Gianpaolo Palma from the
CNR ISTI, and the high-quality scans provided by Peter Neugebauer from Polymetric
GmbH. The photos for three datasets in Chapter 7 have kindly been provided by
Stephan Richter and Stefan Roth at TU Darmstadt.

During my one-year long internship at Google in Seattle I met many great re-
searchers, teachers and advisors. I want to thank my managers, Steve Seitz and
Evan Rapoport, who always were an inspiration; Carlos Hernandez, who is a great
advisor and always knew how to proceed when research was stuck; Sameer Agar-
wal and Changchang Wu for many discussions about optimization and Structure
from Motion; and David Gallup and Yasutaka Furukawa for helpful conversations
about Multi-View Stereo. Many of my colleagues eventually became friends, and I
am grateful for my time at Google which I will certainly not forget.

Finally, I which to express my gratitude for my Mom and Dad’s unlimited support
during my education, and my wife for her understanding during paper deadlines and
late night work in busy times. Without the support of my family this work would
not have been possible.

VII

Acknowledgements

VIII

Contents

Abstract III

Zusammenfassung V

Acknowledgements VII

1 Introduction 1
1.1 Capturing Reality . 1
1.2 Geometry from Images . 2
1.3 Problem Statement . 4
1.4 Contributions . 5
1.5 Thesis Outline . 7

2 Background 9
2.1 Camera Model . 10
2.2 Structure from Motion . 16
2.3 Multi-View Stereo . 27
2.4 Surface Reconstruction . 34
2.5 Post-Processing . 41
2.6 Conclusion . 45

3 MVE – The Multi-View Environment 47
3.1 Introduction . 48
3.2 System Overview . 49
3.3 Reconstruction Guide . 53
3.4 Reconstruction Results . 57
3.5 Software . 60
3.6 Conclusion . 62

4 Fusion of Depth Maps with Multiple Scales 63
4.1 Introduction . 64
4.2 Related Work . 66
4.3 Concepts . 67

IX

Contents

4.4 Signed Distance Field . 69
4.5 Extracting the Isosurface . 73
4.6 Evaluation and Results . 75
4.7 Conclusion . 78

5 Floating Scale Surface Reconstruction 83
5.1 Introduction . 84
5.2 Related Work . 86
5.3 Floating Scale Implicit Function . 88
5.4 Analysis in 2D . 91
5.5 Sampling the Implicit Function . 93
5.6 Results . 97
5.7 Discussion and Conclusion . 108

6 Direct Resampling for Isotropic Surface Remeshing 111
6.1 Introduction . 112
6.2 Related Work . 114
6.3 Preliminaries . 115
6.4 Building the Initial Mesh . 116
6.5 Improving Vertex Positions . 120
6.6 Results . 122
6.7 Conclusion and Future Work . 125

7 Surface Reconstruction Evaluation 127
7.1 Scanner Data . 128
7.2 MVS Data . 132
7.3 Multi-Scale MVS Data . 135
7.4 Reconstruction Statistics . 138
7.5 Remeshing Results . 139
7.6 Conclusion . 146

8 Conclusion 149
8.1 Summary . 149
8.2 Discussion . 149
8.3 Future Work . 152

(Co-)Authored Publications 155

Bibliography 157

X

Chapter 1

Introduction

Contents
1.1 Capturing Reality . 1

1.2 Geometry from Images . 2

1.3 Problem Statement . 4

1.4 Contributions . 5

1.5 Thesis Outline . 7

1.1 Capturing Reality

Human vision (or sight), the capability to focus, perceive and interpret images of
visible light may be the most immersive of the human senses. Synthesis of real-
istic images in order to simulate visual aspects of the real-world is the domain of
computer graphics. The inception of computer graphics dates back several decades
when it has been used for information visualization. Up to the present day it has
developed into a vivid landscape of technologies that play a critical role in many
industries. The computer games and movie industry are prime examples. In recent
years the development of computer graphics has reached a level where digital ob-
jects and characters are almost indistinguishable from their real-life counterparts.
Computer generated landscapes and visual e�ects in movies and video games go far
beyond what exists in our real world.

Achieving a high level of realism in appearance is a challenging problem. Espe-
cially when designing realistic characters, small imperfections in the details, such as
skin materials, eyes or character behavior can quickly result in unaesthetic appear-
ance to the human perception. This is called the Uncanny Vally [Mori et al., 2012].
Achieving a fully realistic impression is often beyond what can be synthesised by
hand by an artist. To improve on realism, several aspects of the real world can be
digitally captured and used for modeling, rendering and animation. Examples in-
clude motion capturing, recovering re�ectance properties of materials, or digitizing
the geometry and appearance of objects and persons [Theobalt et al., 2007].

1

Chapter 1. Introduction

Capturing and digitizing the real world is a very relevant aspect of creating re-
alistic and detailed maps of our world. Maps have reached a level of quality where
precise information in terms of geometry and appearance of many parts of the world
is readily available. Example applications include Google Maps and Street View,
which o�er the user an immersive presentation of cities and navigation informa-
tion, often in 3D. Manually modelling a single building or a facade requires many
expert hours. Modelling thousands of streets by hand is infeasible and automated
ways of capturing the reality are required.

Capturing the reality and turning the data into a useful digital description falls
into the framework of inverse problems, which are generally hard to solve. Many
of these problems are computer vision tasks as we often have to deal with two-
dimensional sensor data, such as images.

1.2 Geometry from Images

In this thesis we develop new automated methods for image-based geometry mod-
eling. Our work excels in uncontrolled scenarios with unconstrained camera pa-
rameters and lighting conditions. The uncontrolled nature of the input data makes
reconstruction a challenging problem. Solving these problems is motivated by inex-
pensive and fast data acquisition. Instead of careful capture planning and execution
by an expert user with dedicated 3D scanners, a set of photos taken with a consumer-
grade camera in a simple but systematic fashion often results in very detailed and
accurate reconstructions.

For popular tourist sites and architecture, it may not even be required to capture
any photos. A plenitude of photos already exist on the Internet and can be harvested
from community photo collections. The amount of photos available in online ser-
vices such as Instagram, Flickr and Facebook is exponentially growing. To present
some numbers, in early 2013, Flickr reported a total of over 8 billion uploaded pho-
tos1. The largest photo collection to date may be on Facebook with a reported total
of over 250 billion photos and 350 million uploads every day in 20132. In mid 2014
Yahoo released a data set with 100 million images3 under the Creative Commons
license, a valuable resource free to use for research purposes.

Community photo collections in particular possess some fairly inhomogeneous
properties (Figure 1.1). Photos are taken with diverse camera models and lenses,
resulting in variable focal lengths and image resolutions. The photos show the sub-
ject at di�erent times of day and di�erent days of the year, which leads to a wide
spectrum of lighting conditions. The camera positions and orientations are uncon-
strained such that many photos usually show a broad overview of the scene while
others show close-up details of small scene elements. The latter aspect results in a
multi-scale sampling of the scene which is improperly handled in current state of the

1http://vrge.co/16JRRmJ
2http://mashable.com/2013/09/16/facebook-photo-uploads/
3http://labs.yahoo.com/news/yfcc100m/

2

http://vrge.co/16JRRmJ
http://mashable.com/2013/09/16/facebook-photo-uploads/
http://labs.yahoo.com/news/yfcc100m/

1.2. Geometry from Images

Figure 1.1: Four images of a Trevi Fountain photo collection with clutter (tourists),
di�erent lighting conditions and scene details at varying scale. Photo credits: Flickr
users Andy Hay, April, Hank Word, David Ohmer, Creative Commons License.

art reconstruction systems. This motivates the integration of the concept of sample
scale in the scene reconstruction approach. Such scale-aware approaches will be
developed in this thesis and shown to increase the quality of the results.

Turning the images of, e.g., architecture or a popular tourist site into an im-
mersive 3D experience is certainly an ambitious goal. However, recent advances in
the �eld of photogrammetry paved the way for automated geometry reconstruction
solely from uncontrolled images. Although the quality of passive reconstruction is
still outperformed by dedicated active scanning devices, image-based reconstruction
has many important applications. It recently gained attention in the archaeological
�eld as a tool to document excavation progress on-site by taking lots of photographs.
An excavation site is a dynamic environment and continuous surveying helps in
recording the progress. This task can be accomplished by, e.g., autonomous drones
that continuously survey and map topographic information. The resulting virtual
3D model of the site as well as its change over time can be useful for further planning
and cultural heritage preservation.

Another emerging �eld that makes heavy use of image-based reconstruction is
the digitization of real-world characters. In contrast to active 3D scanning, which
usually takes some time, multiple photos of an object or person can be captured at a
single instance in time using a multi-camera rig. This is a great advantage for cap-
turing moving or deforming objects such as humans and animals. A typical setup
consists of about 100 synchronized and calibrated cameras in a cylindrical con�gu-
ration around the subject. The resulting geometry is usually cleaned and remeshed
before it can be used in practice. An impressive demonstration of this technology is
maintained, e.g., by In�nite Realities4 and Ten24 3DScanStore5, see Figure 1.2.

In this thesis we study aspects of image-based geometry reconstruction. Given
a set of input images that observe an object, or more generally a scene, we are faced
with the problem of estimating the geometry of the original scene from the input
images alone. A typical pipeline for image-based geometry reconstruction involves

4http://www.ir-ltd.net
5http://www.3dscanstore.com/

3

https://www.flickr.com/photos/andyhay/10016220915/
https://www.flickr.com/photos/rottnapples/13821022685/
https://www.flickr.com/photos/hankword/2047121541/
https://www.flickr.com/photos/the-o/2174560733/
http://www.ir-ltd.net
http://www.3dscanstore.com/

Chapter 1. Introduction

Figure 1.2: In�nite Realities uses a 115 camera rig (left) for full-body scans. The
instantaneous capture of all cameras even allows to capture objects in motion. Photo
courtesy of Lee Perry-Smith. The 80 camera rig of Ten24 3DScanStore was used to
reconstruct the male model (right), followed by manual clean up. Images courtesy
of James Busby.

the following algorithmic steps:

• Structure from Motion (SfM), which recovers the cameras extrinsic parame-
ters (position and orientation) and intrinsic parameters (focal length and radial
distortion) given sparse initial correspondences between images. These cor-
respondences are usually established by matching features across images. A
sparse point-based 3D representation of the subject is created as a byproduct
of the SfM reconstruction.

• Multi-View Stereo (MVS), which, given the estimated camera parameters, re-
constructs geometry by �nding dense visual correspondences between the im-
ages. These correspondences are triangulated and yield a dense set of 3D sam-
ples that approximate the surface of the original scene.

• Surface Reconstruction, which takes as input all 3D samples and produces a
globally consistent, manifold surface. This surface is usually discretized into
a �nite number of triangular simplices, yielding a triangle mesh.

• Surface Remeshing, which optimizes the mesh triangles and vertex distribu-
tion according to certain criteria, producing an output mesh with improved
triangle shapes and sizes.

1.3 Problem Statement

Although a considerable amount of literature has been proposed in the area of image-
based reconstruction, many of the involved problems are not adequately solved yet.
For example, SfM su�ers from long matching and reconstruction times, has trou-
ble identifying and resolving repetitive scene structure, and the usual incremental

4

1.4. Contributions

approach can lead to drift and inaccuracies that accumulate over long camera tra-
jectories. MVS is mostly restricted to di�use scenes and high-quality algorithms
are computationally demanding, especially for large datasets. The task of surface
reconstruction is to generate a surface approximation that resembles the unknown
original surface as close as possible solely from imperfect measurements of the sur-
face. Surface reconstruction has mostly been applied to controlled scenes, and the
majority of the techniques cannot handle large datasets and samples with mixed
scale. In general, only a few image-based reconstruction algorithms are applicable
to real-world data sets captured outside a controlled lab environment. This thesis
has a focus on less controlled datasets and improves upon the state-of-the-art.

Large datasets

The number of surface samples in a dataset can range anywhere from a few thou-
sand to hundreds of millions of samples. Many methods are global in nature and
need to solve an optimization problem in order to obtain the �nal surface. These ap-
proaches are not only demanding in memory consumption, but processing time can
be a huge bottleneck. For this reason, many algorithms are unable to handle large
datasets. Other algorithms employ uniformly sampled volumetric representations
which limits the achievable resolution of the reconstructed surface.

Multi-scale data

The sample acquisition process is usually performed with 2D sensors which have a
point spread function. Any acquired sample is the result of an integration process
over a certain surface area depending on the resolution and imaging properties of the
device. As a consequence, samples are not ideal point samples but have an inherent
scale corresponding to the surface area on the object that gave rise to the measure-
ment. This information is often neglected and leads to problems, e.g., if samples at
drastically di�erent scales are treated equally.

Varying redundancy

Data redundancy can generally be considered a good thing. It allows consolida-
tion of measurements in order to distinguish between actual information and data
noise. While redundancy can be utilized by most reconstruction techniques, it of-
ten requires setting a parameter which globally a�ects the reconstruction operator.
Consequently, in the case of spatially varying redundancy, these operators will fail
and either smooth away the details or over�t to the data.

1.4 Contributions

In this thesis we make several contributions in the area of image-based geometry re-
construction. In particular, the development of new multi-scale methods for surface

5

Chapter 1. Introduction

reconstruction will receive greater attention. Although a wealth of surface recon-
struction techniques have been proposed in the literature, even recent state-of-the-
art methods have several limitations that make them impractical for image-based
modelling. Our focus is on uncontrolled data which raises several unsolved chal-
lenges.

The main contributions in the thesis have been published as papers at peer-
reviewing international conferences. Each published paper is represented as one
chapter in this thesis and has mostly been edited for layout. The remeshing ap-
proach in Chapter 6 is based on the master’s thesis [Fuhrmann, 2009].

• An end-to-end software for image-based geometry modelling is presented.
This software, The Multi-View Environment (MVE) is capable of performing all
major steps of the reconstruction pipeline, i.e., SfM, MVS and surface recon-
struction. In contrast to existing commercial software solutions, our software
is free and open source. It is targeted towards more uncontrolled scenarios
which is re�ected in a general-purpose SfM algorithm, a depthmap based MVS
implementation and scalable surface reconstruction algorithms.

Chapter 3, [Fuhrmann et al., 2014]

• A depth map fusion algorithm for surface reconstruction is developed, which
takes as input a set of registered depth maps with potentially drastically vary-
ing sampling rates of the surface. The method is based on the construction
of a novel hierarchical signed distance �eld represented in an octree. The �-
nal surface is extracted as the isosurface of the signed distance �eld using a
Marching Tetrahedra approach.

Chapter 4, [Fuhrmann and Goesele, 2011]

• A surface reconstruction algorithm is described, which constructs a �oating
scale implicit function from oriented input samples with scale information.
The implicit function is constructed as the sum of compactly supported basis
functions de�ned by the input samples. A �nal multi-resolution surface mesh
is extracted using a variant of the Marching Cubes algorithm over the domain
of an octree hierarchy.

Chapter 5, [Fuhrmann and Goesele, 2014]

• A new remeshing approach is introduced, which distributes a user-de�ned
number of samples according to a prescribed density �eld over the surface
mesh. This initial sample distribution is well suited for isotropic surface remesh-
ing and results in fast convergence behavior of the relaxation procedure.

Chapter 6, [Fuhrmann et al., 2010]

6

1.5. Thesis Outline

1.5 Thesis Outline

Chapter 2: Background

We introduce the reader to the area of image-based geometry reconstruction by re-
viewing some fundamentals in Chapter 2. In particular, we discuss Structure from
Motion, Multi-View Stereo, surface reconstruction, remeshing and texturing while
reviewing the related work in these areas.

Chapter 3: MVE – The Multi-View Reconstruction Environment

In Chapter 3 we showcase our open source software system for image-based ge-
ometry reconstruction. It has been developed at TU Darmstadt over the course of
several years in order to ease the work with multi-view datasets and to provide a
common software framework for the research group. The system covers the algo-
rithms necessary for high-quality image based reconstructions, i.e., a Structure from
Motion algorithm, Multi-View Stereo reconstruction, generation of very dense point
clouds, and the reconstruction of surfaces. We show the relevance of such a system
in cultural heritage scenarios and low-cost geometry acquisition projects.

Chapter 4: Fusion of Depth Maps with Multiple Scales

In Chapter 4 we introduce a surface reconstruction algorithm by fusing a set of
input depth maps. Fusion of depth maps into a globally consistent surface mesh is
a challenging problem especially if the depth maps are subject to vastly di�erent
sampling rates of the surface. The key ingredient is a hierarchical signed distance
�eld which is able to represent geometry at di�erent levels of detail. We use the
concept of the pixel footprint, which associates a scale value to every sample of the
depth map and drives the construction of the hierarchy. Extracting an isosurface
from this hierarchy turns out to be a di�cult problem because of missing data. We
employ a scattered data interpolation technique by means of a tetrahedralization to
extract an isosurface from scattered samples of the signed distance function.

Chapter 5: Floating Scale Surface Reconstruction

Despite the ability to generate high-quality multi-resolution reconstructions using
the depth map fusion approach, its memory demands and the long running times
led to further research. We develop a follow-up work in Chapter 5 which does not
rely on depth maps as input but instead resorts to a more general type of input,
namely oriented point samples. Our work distinguishes itself from other point-
based reconstruction algorithms in that it uses an additional per-sample scale value
as input. This allows identifying redundancy and distinguishing between low- and
high-resolution information, and thus avoids intermingling geometry at incompati-
ble scale. The novel formulation of the implicit function scales well to large datasets
and produces meshes with fewer holes and a drastically reduced triangle count.

7

Chapter 1. Introduction

Chapter 6: Direct Resampling for Isotropic Surface Remeshing

While surface reconstruction approaches are usually concerned with generating
high-quality geometry, the quality of the triangles as well as the triangle count is
usually not considered. In Chapter 6 we develop a remeshing algorithm that opti-
mizes the shapes of the triangles while achieving a pre-determined vertex budget.
The main contribution is a fast resampling approach that distributes the required
number of vertices over the surface. To avoid oversampling in �at regions, the re-
sampling procedure is guided by a density �eld to adapt to the geometric complexity
of the surface; this yields more sample points in regions with higher curvature.

Chapter 7: Surface Reconstruction Evaluation

We compare the reconstruction results of the presented surface reconstruction algo-
rithms in Chapter 7. In a qualitative comparison of the two approaches we showcase
the performance on several types of datasets. This includes controlled scanner data,
controlled MVS data as well as multi-scale MVS data. We also demonstrate the ef-
fectiveness of the remeshing approach on some datasets.

Chapter 8: Conclusion

Finally, we conclude the thesis in Chapter 8 with a summary of the contributions
and a discussion of the proposed techniques. We also identify important areas which
would bene�t from further research.

8

Chapter 2

Background

Abstract

In this section we give an introduction to the building blocks of image-
based geometry acquisition and review relevant related work in the ar-
eas. Given a set of input images, we aim at recovering the camera param-
eters for the images with respect to a global coordinate system. This pro-
cess is called Structure from Motion and explained in Section 2.2. Once
camera parameters for the images are known, stereo vision algorithms
are used to compute depth hypotheses from the image intensities. In
the case of multiple images, Multi-View Stereo is used, which we cover
in Section 2.3. The recovered depth hypotheses are then combined into
a globally consistent surface representation by means of a Surface Re-
construction, introduced in Section 2.4. As the reconstructed surface is
subject to discretization into small surface elements (usually triangles),
the shape, size and distribution of these elements may be improved by
Surface Remeshing algorithms. Finally, to make the purely geometric
representation visually appealing, Surface Texturing is used to color the
resulting meshes. We will brie�y introduce the concepts of Remeshing
and Texturing in Section 2.5 as post-processing operations.

Contents
2.1 Camera Model . 10

2.2 Structure from Motion . 16

2.3 Multi-View Stereo . 27

2.4 Surface Reconstruction . 34

2.5 Post-Processing . 41

2.6 Conclusion . 45

9

Chapter 2. Background

Figure 2.1: This chapter introduces the basics of image based reconstruction. Bottom:
5 of 871 input images of the Trevi Fountain dataset downloaded from Flickr, and the
corresponding depth maps computed with Multi-View Stereo. Top: Composition of
the Structure from Motion point cloud and the surface reconstruction result of the
Trevi Fountain. Image credits: Flickr users Chris Williamson, Andy Hay, Giovanna
Matarazzo, Federico Maccagni, Roaming Wab, Creative Commons License.

2.1 Camera Model

When light interacts with objects, a portion of the light is re�ected from the object
and scattered in certain directions. The process of taking a photo is to capture the
re�ected light rays from a single viewpoint onto an image plane using a visual sen-
sor. In order to interpret this visual information contained in images, we need to
understand how an image is formed. This formation process is usually formalized
using the standard pinhole camera model.

10

http://flickr.com
https://www.flickr.com/photos/chriswsn/10630069035
https://www.flickr.com/photos/andyhay/10015983064/
https://www.flickr.com/photos/giovannamatarazzo/181574683
https://www.flickr.com/photos/giovannamatarazzo/181574683
https://www.flickr.com/photos/faithrevenge/3070173147/
https://www.flickr.com/photos/roamingwab/2907570036

2.1. Camera Model

The pinhole camera is an idealized mathematical model that describes a camera
with an in�nitely small hole which gathers rays of light. In theory, the in�nitely
small hole implies that the whole scene will be in focus, but an in�nite exposure
is required to gather any light. If the size of the pinhole is increased, more light
passes through the hole, which decreases exposure at the expense of an increasingly
defocused image. In practice, however, a pinhole which is too small causes light
di�raction e�ects which leads to a blurred image.

F
Pinhole

Receptor

ObjectBlocks
Light

F

Receptor

FF

Lens
Object

Figure 2.2: Illustration of the pinhole camera model and a lens camera model.

For practical reasons, real camera systems use optical lenses to gather incom-
ing light more e�ciently. Figure 2.2 illustrates both concepts. Although these lens
systems are designed to mimic the behavior of the standard pinhole camera model,
there are certain di�erences that need to be considered. First, because the aperture
of a camera has a certain extent, the captured scene will be in focus only at exactly
one depth controlled by the focus settings of the lens. Second, a lens system intro-
duces various kinds of geometric and optical distortions. Such distortions include
Barrel distortion, Pincushion distortion and Mustache distortion, see Figure 2.3.

Figure 2.3: Illustrations of Barrel, Pincushion and Mustache distortion (adapted from
Wikipedia). Barrel distortion is often associated with wide-angle and �sheye lenses,
while Pincushion distortion occurs with telephoto lenses. The Mustache distortion
is a more complex combination of a Barrel and Pincushion distortion.

11

Chapter 2. Background

For the sake of simplicity, we mostly work with the assumption of a pinhole
camera model whenever we have to deal with geometric calibration of a camera.
The limited ability to focus the whole scene does not a�ect the geometric properties.
One source of errors, however, is the lens distortion, which does geometrically a�ect
the image contents in a non-linear way. The usual practice is to explicitly model the
distortion and estimate the distortion parameters during Structure from Motion. The
distortion is removed from the images for the subsequent steps of the pipeline.

2.1.1 The Pinhole Camera

In the following we introduce the notation of the pinhole camera model and follow
standard textbook notation [Hartley and Zisserman, 2004, p. 153] as closely as pos-
sible. The pinhole camera is a special case of the general projective camera, namely
one that performs a central projection. A general projective camera Pmaps 3D world
points X to points x on the image using the notation x = PX, see Figure 2.4. The
particular projection we are interested in is the central projection where every point
X in space forms a ray with the center of projection C. This ray intersects with the
image plane, or focal plane, at point x, and x is called the image of X. The center
of projection C is the camera center, and it follows that PC = 0. Further, the line
from the camera center perpendicular to the image plane is called the principal axis,
and the intersection between the principal axis and the image plane is the principal
point. The plane parallel to the image plane that passes through the camera center
is called the principal plane of the camera. Points on the principal plane, such as the
camera center C itself, are a singularity under the central projection as their image
is at in�nity.

X

x

Image Plane

Principal Axis

Center

Figure 2.4: Illustration of the camera coordinate frame.

Let the camera center C be the origin of the Euclidean coordinate system and
the focal plane orthogonal to the z-axis at z = f . Every point in space X = (x, y, z)
is now mapped onto the image plane at (fx/z, fy/z, f). Ignoring the last coordi-
nate f , we obtain a mapping from the 3D Euclidean space R3 to the 2D Euclidean

12

2.1. Camera Model

space R2. This may be written in terms of matrix multiplication using homogeneous
coordinates Ẋ as

ẋ = PẊ ⇔

fxfy
z

 =

f 0
f 0

1 0



x
y
z
1

 . (2.1)

Principal Point

The notation (2.1) assumes that the principal point (px, py) of the image plane lies
in the origin, which may not be the case in general. The principal point is easily
incorporated in the matrix representation as

ẋ = PẊ = K [I | 0] Ẋ with K =

f px
f py

1

 . (2.2)

where I is the 3× 3 identity matrix. The matrix K is called the calibration matrix of
the camera.

Coordinate Systems

Equation (2.2) assumes that the camera is located in the origin of the coordinate
system pointing straight down the z-axis. This is the camera coordinate frame. Since
points are generally de�ned in the world coordinate frame, a transformation from
world to camera coordinates will be applied. This transformation is described by a
rotation R and the camera center C such that

Xcam = R · (Xworld − C) = RXworld − RC = [R | −RC]Ẋworld (2.3)

and introduce the camera translation as t = −RC for convenience. Assuming from
now on that X is given in world coordinates, the overall transformation from world
coordinates to image coordinates is given by

ẋ = PẊ = K [R | t]Ẋ = K(RX + t). (2.4)

This notation separates the camera matrix P into the camera’s intrinsic parame-
ters (i.e., the focal length f and the principal point (px, py)) encoded in the calibration
matrix K and the camera’s extrinsic parameters (i.e., the rotation R and translation t)
in the transformation matrix [R | t]. The camera center is then given by C = −R−1t.
Because the rotation matrix R is orthogonal, R−1 = R>.

CCD Cameras

CCD cameras have the additional possibility of non-square pixels, which introduces
di�erent scale factors in x and y direction. Letmx andmy be the number of pixels per

13

Chapter 2. Background

unit distance in image coordinates in x and y direction, then the calibration matrix
K and inverse K−1 is

K =

fmx mxpx
fmy mypy

1

 K−1 =

 1
fmx

−mxpx
fmx

1
fmy

−mypy
fmy

1

 (2.5)

This camera has 10 degrees of freedom (DoF): 4 DoF for the calibration fmx, fmy,
mxpx and mypy, 3 DoF for the rotation R and 3 DoF for the translation t.

2.1.2 Inverse Projection and Reprojection

The inverse projection of a homogeneous 2D image coordinate ẋ to a 3D point in
world coordinates X with respect to a depth d is given by

X = R>(K−1ẋ · d− t). (2.6)

Here, the depth value d refers to the distance along the z-axis of point Xcam in
camera coordinates (i.e., the z-component of point Xcam). This stands in contrast to
another common convention where the depth value d̃ = ‖X − C‖2 is de�ned as
the distance of a 3D point X to the camera center C. If not noted otherwise we use
the former convention of depth, because it is mathematically more convenient as no
normalization of K−1ẋ is required before multiplying with the depth.

Reference
View

Neighbor
View

X

xrxn

Tn,r(xr,d)

Figure 2.5: Reprojection of a point xr in the reference camera to point xn in the
neighboring camera.

The reprojection of a point xr in a reference image Ir with respect to depth d into a
neighboring image In is a commonly required transformation in Multi-View Stereo,
and will thus be introduced here. It consists of chaining the inverse projection of
the point xr in image Ir with a back projection to a point xn in image In. Figure 2.5

14

2.1. Camera Model

Figure 2.6: Lenses can introduce a radial distortion of the incoming light rays, which
breaks the assumptions of the pinhole camera model. This distortion can be removed
from the original image (left) by creating an undistorted image (right). The distortion
parameters for this image are κ2 = −1.6 and κ4 = 2.1. Note how, in this example,
image information gets pushed out of the frame during undistortion. Other distor-
tions can introduces boundaries with unde�ned color. Photo credits: Flickr user
Patrick Subotkiewiez, Creative Commons CC BY 2.0 License.

illustrates the reprojection of a point in the reference view into the neighboring view.
The reprojection of ẋr with respect to depth d

ẋn = Kn(RnR
>
r (K−1r ẋr · d− tr) + tn) (2.7)

describes a relative transformation Tn,r(xr, d) from image Ir to image In and can
conveniently be written as

Tn,r(ẋr, d) = Tn,r · ẋr · d+ tn,r (2.8)
with Tn,r = KnRnR

>
r K
−1
r (2.9)

and tn,r = Kntn − KnRnR
>
r tr (2.10)

and the quantities Tn,r and tn,r can be pre-computed for the image pair Ir, In.

2.1.3 Distortion Model

Radial lens distortion is inconvenient to handle because it introduces a non-linear
image coordinate transformation and thus cannot be expressed using matrix nota-
tion. This transformation also constitutes computational overhead. For these rea-
sons, lens distortion is usually estimated once per image during Structure from Mo-
tion, and is then removed from the image, producing an undistorted image, see Fig-
ure 2.6. Subsequent steps in the pipeline, such as Multi-View Stereo, operate on the
undistorted images only.

There are several models for lens distortion. We will introduce the most common,
yet simple and powerful model. Consider image coordinates x obtained by central

15

https://www.flickr.com/photos/28781447@N04/14296945360
https://creativecommons.org/licenses/by/2.0/

Chapter 2. Background

projection of 3D points Xcam in camera coordinatesxy
z

 = Xcam = [R | t]Xworld (2.11)

and denote x = (x/z, y/z)> the central projection of Xcam. The radial lens distortion
is then applied, yielding distorted image coordinates (xd, yd)

>.(
xd
yd

)
= L(r) · x (2.12)

The distortion L(r) is a function only of the radius (distance from the image center)
r = ‖x‖2. An approximation to an arbitrary distortion function is given by the
Taylor expansion [Hartley and Zisserman, 2004, p. 189]

L(r) = 1 + κ1r
1 + κ2r

2 + κ3r
3 + κ4r

4 + . . . (2.13)

It is common in literature to only consider even exponents [Szeliski, 2010]. The
reason is that Barrel and Pincushion distortions both increase quadratically from
the image center and are well modeled using κ2 only. For the Mustache distortion
the quartic term κ4 becomes signi�cant as well; the quadratic term κ2r

2 dominates
in the image center and the quartic term κ4r

4 dominates at the image boundaries.

L(r) = 1 + κ2r
2 + κ4r

4 + κ6r
6 + . . . (2.14)

Because radial distortion is often estimated as part of a larger optimization problem
(such as in Bundle Adjustment during Structure from Motion) it is useful to keep the
number of parameters at a minimum. Thus, in practice, usually only the parameters
κ2 and κ4 are considered.

2.2 Structure from Motion

Structure from Motion (SfM) refers to the process of recovering the 3D structure of
the scene from a set of images together with the camera parameters of the images.
The term Structure from Motion is misleading in the sense that it does not refer to
moving objects in the scene, but rather to a moving camera, taking photos or video
frames. Just as humans perceive many depth cues by moving through their environ-
ment, Structure from Motion performs three dimensional reasoning by observing
points in space from di�erent points of view.

Although SfM is often referred to as a technique to recover camera poses from
2D visual information, SfM actually does not require any visual information as input.
Instead, SfM solely relies on 2D correspondences between images. A pairwise corre-
spondence (or just correspondence for short) is essentially the information that a point
in space X has been imaged by two cameras, resulting in two observations x1 = P1X
and x2 = P2X in two images. In order to recover the relative pose between images,

16

2.2. Structure from Motion

several correspondences are required. Obtaining these image correspondences is
one of the fundamental problems in computer vision. We �rst detail the process of
�nding pairwise image correspondences in Section 2.2.1. Given correspondences,
we then describe how the scene is reconstructed using SfM techniques. SfM meth-
ods can be divided into two classes: Incremental SfM is introduced in Section 2.2.2,
and Global SfM is brie�y covered in Section 2.2.3.

2.2.1 Finding Correspondences

Many techniques rely on image correspondences, such as two-view and multi-view
stereo, optical �ow, and also SfM. Establishing image correspondences is one of the
fundamental problems in computer vision. While stereo and �ow methods try to
estimate dense correspondences, i.e., to �nd correspondences for all or the majority
of the image pixels, SfM, on the other hand, only requires a sparse set of correspon-
dences. Establishing sparse correspondences can be done by hand, e.g., by clicking
on locations in images that correspond to the same 3D point. However, this pro-
cedure is not feasible for datasets with many images and an automatic procedure
is required. Such a procedure �rst �nds “interesting” points in a single image, and
then searches for corresponding points in a second image.

Image Features

Just as humans pick visually unique points in the images to identify correspondences
across images, feature detection algorithms �nd visually distinctive regions in the
images such as blobs or edges. Once features have been detected, a local image
region around each feature is represented by forming a high-dimensional numeric
vector, called a feature descriptor. Descriptors can then reliably be compared across
images in order to �nd correspondences. Popular image features include SIFT [Lowe,
1999, 2004], SURF [Bay et al., 2008], ORB [Rublee et al., 2011], BRISK [Leutenegger
et al., 2011] and DAISY [Tola et al., 2008, 2010].

SIFT features [Lowe, 2004] are probably the most well-known and reliable im-
ages features reported in the literature to date. SIFT uses a Di�erence of Gaussian
approach to �nd distinctive blobs in the image. Because corresponding regions in
two images can appear quite di�erent, most feature descriptors are robust against
certain changes in appearance. This includes invariance to image rotation, which is
achieved by computing the descriptor relative to a dominant orientation of the fea-
ture. Further, the size (or scale) of the feature may change, and scale-invariance is
achieved by searching for features not only spatially but in scale-space. Invariance
to image brightness is achieved by encoding gradients instead of intensity values
in the descriptor. Last but not least, invariance to contrast changes is the result of
normalizing the descriptors to unit-length. Further, blurring the input images to
some degree results in a certain resilience to image noise. See Figure 2.7 for visual
representation of SIFT and SURF features on an example image.

17

Chapter 2. Background

Figure 2.7: The detection of SIFT features [Lowe, 2004] (left, in yellow) and SURF
features [Bay et al., 2008] (right, in green) in a photo of the Trevi Fountain. Di�erently
sized detections correspond to features at di�erent scale. Photo credits: Flickr user
Nicolas Grevet, Creative Commons CC BY-NC-SA 2.0 License.

Pairwise Matching

The resulting feature descriptors are essentially high dimensional numeric vectors
and can be matched to each other by comparing their Euclidean or angular distances
in high dimensional space. The simplest and slowest but most exact procedure to es-
tablish correspondences between two images is to match every descriptor of image
I1 to all descriptors of the other image I2: For every descriptor d of I1 the nearest
neighbor d1st and second nearest neighbor d2nd in the second image I2 are found.
In order to eliminate ambiguous nearest neighbors, two thresholds are usually ap-
plied. First, a distance threshold tdist between the query descriptor d and the nearest
neighbor d1st is checked by

‖d− d1st‖2 < tdist. (2.15)

The choice of tdist depends on the maximum Euclidean distance between two de-
scriptors, which is 2 for a signed descriptor (e.g., SURF), and

√
2 in the unsigned

case (e.g., SIFT). The second threshold is called the Lowe threshold, tlowe, which uses
the ratio of the nearest and second nearest neighbor distance and has initially been
introduced by Lowe [2004] in the context of object recognition:

‖d− d1st‖2
‖d− d2nd‖2

< tlowe (2.16)

It turns out that setting a global threshold on the nearest neighbor distance tdist does
not perform well because some descriptors are more discriminative than others. In
practice it is often su�cient to only use the Lowe ratio threshold tlowe. Depending
on whether descriptors are signed or unsigned, tlowe is set to a value of 0.7 and
0.8, respectively. Choosing a smaller ratio leads to fewer but more reliable image
correspondences.

18

https://www.flickr.com/photos/nyko18/14194278365
https://creativecommons.org/licenses/by-nc-sa/2.0/

2.2. Structure from Motion

Figure 2.8: Pairwise image correspondences. By enforcing mutual nearest neighbor
matches only, some false matches will be �ltered away (red lines). Photo credits:
Flickr users NMK Photography, and Tom Magliery, Creative Commons CC BY-NC-
SA 2.0 License.

To eliminate inconsistent nearest neighbors, a two-way matching is performed:
The matching is repeated but this time descriptors of image I2 are matched to de-
scriptors of image I1. Successful matches are kept if and only if the nearest neighbor
is mutual, i.e. if dI1 → dI2 and dI2 → dI1 . Figure 2.8 illustrates the e�ect of enforcing
mutual nearest neighbors.

Let m1 and m2 be the number of features in image I1 and I2. Two-way match-
ing performs a total of 2m1m2 comparisons and is thus computationally expensive.
The search for nearest neighbors can be accelerated to sub-linear time using search
trees. However, these space partitioning approaches su�er from diminishing returns
with increasing dimension, and in practice only approximate nearest neighbors are
considered [Muja and Lowe, 2009].

Geometric Filtering

The putative matches so far contain many false correspondences, i.e. correspon-
dences between image positions that belong to di�erent 3D points. Filtering of the
matches using the Lowe ratio test and enforcing mutual nearest neighbors is purely
based on the values of the descriptors. False putative matches at this stage are likely
because many image regions may appear similar although they are geometrically
unrelated. Because we assume that the visual information in the images is gen-
erated under a perspective camera model, corresponding points in the images are
geometrically related. This relationship is expressed in the fundamental matrix F, a
3× 3 matrix de�ned as

xI2FxI1 = 0. (2.17)

for any corresponding image points xI1 , xI2 in homogeneous coordinates between
images I1 and I2. If eight point correspondences are available, the fundamental ma-
trix can be determined (up to a scale ambiguity) with the 8-point algorithm [Hartley,
1997] as the solution of a linear system of equations. The fundamental matrix F is a
singular matrix of rank 2 and the left and right null spaces of F represent the epipoles

19

https://www.flickr.com/photos/fijian_scion/14417282637
https://www.flickr.com/photos/mag3737/4261104637
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://creativecommons.org/licenses/by-nc-sa/2.0/

Chapter 2. Background

Figure 2.9: Pairwise image correspondences. Geometric �ltering of correspondences
removes even more outliers (red). Some false matches can survive all �ltering steps
(yellow) and will either be removed during SfM reconstruction or remain as outlier
points in the �nal reconstruction. Photo credits as in Figure 2.8.

in the two images. In case of noisy image correspondences, the estimated F will have
a rank of 3, and the singularity constraint can be enforced by decomposing F using
the SVD and by setting the smallest eigenvalue to zero.

In practice the correspondences between two images are not only contaminated
with noise but also contain many outliers. In this case, F can be estimated using an
iterative RANSAC procedure [Fischler and Bolles, 1981]. In every iteration, eight
correspondences are randomly picked, F is computed using the normalized 8-point
algorithm, and the number of inliers among all correspondences is recorded. Finally,
the matrix F that leads to the most inliers is chosen as the best estimate for the set of
point correspondences and all correspondences that do not support the consensus
are rejected as outliers. Figure 2.9 illustrates the e�ect of geometric �ltering.

Note that a non-linear solution for F is available from 7 point correspondences
[Hartley and Zisserman, 2004, p. 281]. If the camera calibration K and K′ for both
images is known, the Essential matrix E = K′>FK can be computed from as few
as 5 point correspondences [Nistér, 2004]. It is worth considering algorithms that
require fewer correspondences because fewer RANSAC iterations are required to
�nd a good solution.

Exhaustive Matching

In order to �nd all correspondences across all images, every possible image pair has
to be matched. Given N input images, the total number of image pairs is N(N−1)/2.
Pairwise matching is thus clearly a quadratic algorithm in the number of input im-
ages and it constitutes the largest bottleneck of Structure from Motion in terms of
processing time. Unfortunately, no clear solution to this problem exists. There are
several attempts to mitigate this situation, which can broadly be classi�ed into two
strategies: One can either reduce the number of potential image pairs to be matched
at the cost of losing some matchable image pairs, or one can reduce the number of
feature descriptors per image at the cost of losing correct matches. These strategies

20

2.2. Structure from Motion

Figure 2.10: The pairwise matching matrices for three datasets: Die Badendewith 343
images (density 11.8%), Engel auf der Rosenhöhe with 453 images (density 9.8%) and
the Trevi Fountain with 871 images (density 19%). Each matrix entry corresponds
to an image pair and color indicates the number of correspondences between a pair.

are complementary and can be combined.
Reducing the number of image pairs is inspired by the fact that, especially in

large datasets, only few pairs match with each other. See Figure 2.10 for an illustra-
tion of a matching matrix. Quickly deciding if a given image pair matches without
performing the full matching procedure can considerably speed up the matching. A
common technique is to match a small number N of low-resolution features (e.g.
N = 100), and to perform a full matching only if the number of low-resolution
matches is above a threshold (e.g. 5% of N) [Wu, 2013]. Although this strategy
causes many image pairs being rejected that would otherwise match, the loss of qual-
ity is negligible as most images pairs will still be transitively linked. Another line
of work uses vocabulary trees [Nister and Stewenius, 2006] to construct a weighted
bag of words and assigns a single high dimensional vector to every image. Pairwise
comparison of these per-image vectors is still quadratic but orders of magnitudes
faster than a full matching and can quickly identify potentially matching image pairs
[Agarwal et al., 2009; Havlena and Schindler, 2014].

Similarly, reducing the number of descriptors per image before any pairwise
matching is performed can drastically reduce the overall matching time. Feature
detectors like SIFT or SURF produce many descriptors per image, most of which
will be eliminated by the Lowe ratio test and not lead to a successful match. The
time spent to �nd the nearest neighbors for these descriptors in the �rst place is
thus wasted. Learnt feature classi�ers [Hartmann et al., 2014] have been used with
some success in order to eliminate image descriptors that are unlikely to match later
on at the cost of losing many good matches.

Generating Tracks

The previous steps established correspondences of 2D image points between pairs of
images. These pairwise correspondences are now chained by transitively expanding
them across multiple images. A single connected component of linked 2D points in

21

Chapter 2. Background

No ID

No IDID 102

ID 114

No ID

ID 42

ID 82

…

ID 63

ID 115

No ID

No ID

ID 13

…

Track Mapping
View 1

Track Mapping
View 2

Create
Track

No ID

ID 102

ID 114

No ID

ID 42

ID 82

…

No ID

ID 63

ID 115

No ID

No ID

ID 13

…

Track Mapping
View 1

Track Mapping
View 2

Propagate
Track

Track Mapping
View 1

Track Mapping
View 2

No ID

ID 63

ID 115

No ID

No ID

ID 13

…

No ID

ID 102

ID 114

No ID

ID 42

ID 82

…

Merge
Tracks

Figure 2.11: Illustration of the three relevant cases when generating tracks.

Track with
Conflicts

Resolution
by Removing

Resolution
by Splitting

Figure 2.12: A track with two features in the same view is in con�ict. Resolution
strategies include removing a con�icting feature and splitting the track.

multiple images is called a feature track. Each track will eventually be triangulated
into a single 3D point once the parameters of at least two cameras in the track are
known. Algorithmically, each correspondence of every image pair is traversed, and
it is checked whether the two endpoints of a correspondence already have a track
ID assigned. Three di�erent situations can occur, see Figure 2.11. First, if both end-
points of a correspondence do not have a track ID assigned, a new track is created
and assigned. Second, if only one of the endpoints have a valid track ID assigned,
the ID is propagated to the other endpoint. Third, if both endpoints have a di�erent
track ID assigned, the two tracks are merged.

After track IDs have been propagated, con�icts are detected and resolved. A
con�ict is detected if a track contains two or more features in a single image. This
is an inconsistent situation because it suggests that a single 3D point projects to
two di�erent 2D points in the image, see Figure 2.12. There are several resolution
strategies such as splitting the track into two tracks or removing con�icting features
from the track. A more conservative strategy, however, is to delete the whole track.
Once all tracks are generated, the pairwise matching result is not required anymore.

2.2.2 Incremental Reconstruction

After correspondences have been established and linked between pairs of images
the parameters of the camera model (see Section 2.1) can be recovered. The incre-

22

2.2. Structure from Motion

Initial Pair Triangulate Bundle Adjustment

Next View Triangulate Bundle Adjustment

Σ ‧‧‧

Σ ‧‧‧

Figure 2.13: The incremental Structure from Motion reconstruction pipeline.

mental approach starts from a suitable initial pair and incrementally adds new cam-
eras to the reconstruction until all cameras are part of the scene. The incremental
strategy is still predominant in literature and has been implemented in, e.g., Pho-
toTourism [Snavely et al., 2006], VisualSfM [Wu, 2013] and MVE [Fuhrmann et al.,
2014] for images and also for video [Tompkin et al., 2012]. However, global SfM ap-
proaches are becoming more popular. We describe the basics of the global technique
in Section 2.2.3. The individual steps of the incremental reconstruction approach are
illustrated in Figure 2.13. These steps are now described in more detail.

Initial Pair Selection

The reconstruction of the scene is initiated by computing the relative pose between a
suitable image pair. A good initial pair has many correspondences (xi, x′i) such that
many tracks can be triangulated. However, for a robust relative pose and for a well
conditioned bundle adjustment optimization the unknown 3D points Xi leading to
the correspondences (xi, x′i) must not be in a degenerate con�guration. In particular,
two degenerate cases where all points Xi lie on a single plane, and where the two
cameras have no or little parallax, must be avoided.

In both cases, i.e., if points Xi are located on a plane, or the cameras do not have
enough parallax, then there exists a homography H that relates the images xi and x′i
of Xi by a homography transformation x′i = Hxi. H can be determined using the di-
rect linear transformation (DLT) algorithm [Hartley and Zisserman, 2004, p. 88]. In
order to avoid a badly conditioned initial pair, we seek a pair where the correspon-
dences cannot be explained well with a homography. To this end, a homography
H is determined for the correspondences of a candidate initial pair using RANSAC,

23

Chapter 2. Background

X

x3x1 x2

Least Squares
Solution

Figure 2.14: Triangulation of tracks. Because the measurements xi are not precise,
the corresponding rays will not intersect in 3D space and a least squares solution X
is found that minimizes the squared distance to all rays.

and if the number of inliers is above a threshold, e.g., 50%, the initial pair is rejected.
A popular initial pair selection approach is to iteratively try candidate initial pairs
ordered by the number of correspondences, and pick the �rst pair where the number
of homography inliers is below the threshold.

Once an initial pair has been found, the relative orientation of the initial pair
is extracted. Given the fundamental matrix F computed from the correspondences,
x′iFxi = 0, and given the intrinsic calibration of the two cameras K and K′ (e.g.,
from camera EXIF tags), the essential matrix E is given by E = K′>FK [Hartley and
Zisserman, 2004, p. 257]. If we now assume that the �rst camera is in canonical
form, i.e. [R | t] = [I | 0], then four possible solutions for the second camera [R′ | t′]
can be obtained from E using the SVD [Hartley and Zisserman, 2004, p. 259]. There
exists only one correct pose, and it is su�cient to triangulate a single point and test
if it is in front of both cameras to identify the correct solution.

Triangulating Tracks

Each track with at least two reconstructed cameras can now be triangulated in order
to obtain a 3D point X. In each camera we have the images of X given as x = PX,
x′ = P′X. These measurements can be combined into a linear system of equations
and solved for the unknown X. If more than two cameras are given one obtains an
overdetermined system of equations and the least-squares solution can be found via
SVD (see Figure 2.14). This is the DLT triangulation method [Hartley and Zisserman,
2004, p. 312], which is simple but not optimal in terms of the reprojection error in
the images. However, the obtained 3D point is usually a good initialization and can
further be optimized by bundle adjustment, which is explained next.

24

2.2. Structure from Motion

Bundle Adjustment

Given a set of 3D points Xi and reprojections of point i in camera j, xi,j = PjXi, the
reprojection error is the squared Euclidean distance from the projection xi,j to the
original feature detection x̂i,j in image space

di,j = ‖PjXi − x̂i,j‖22 (2.18)

The goal of bundle adjustment is to optimize 3D point positions and certain camera
parameters such that the reprojection error of the 3D features into the images is
minimized. Let x be a vector of parameters, i.e. a vector of 3D point positions and
camera parameters, and let f(x) be the vector of residuals, i.e. the reprojection errors
di,j , then bundle adjustment tries to obtain optimal parameters x∗ that minimize the
non-linear least-squares problem [Lourakis and Argyros, 2009; Wu et al., 2011]:

x∗ = arg min
x

∑
i

‖fi(x)‖2. (2.19)

The results of the optimization procedure are new 3D point positions and camera
parameters. What makes bundle adjustment so important is that most initial pa-
rameters are usually quite imprecise. The triangulated 3D points are optimal in the
sense that they minimize the intersection distance in 3D, not the reprojection er-
ror. Furthermore, the camera’s focal length is in�uenced by focus settings, which
is not re�ected in the image EXIF information. Additionally, the input photos are
often distorted and violate the assumptions of the pinhole camera model. To this
end, bundle adjustment also estimates the distortion parameters which drastically
reduces the overall error. Without bundle adjustment, the incremental addition of
new cameras quickly accumulates large errors and is likely to fail.

Next View Selection

Once 3D points have been estimated, new cameras can be added. In contrast to the
relative pose estimation used for the initial pair, all other cameras are reconstructed
using perspective absolute pose estimation by considering 2D-3D image-to-point
correspondences. The most suitable next camera is the one that observes the most
3D points, i.e. the one with the most 2D-3D correspondences.

Given su�ciently many 2D-3D correspondences Xi ↔ xi for a new camera, the
camera matrix P can be determined such that xi = PXi. The minimum number of 2D-
3D correspondences in order to obtain a unique solution is 6, and this algorithm is
called the absolute 6-point algorithm [Hartley and Zisserman, 2004, p. 182]. Because
the calibration matrix K is assumed to be known, it is not necessary to compute
P = K[R | t] as we are only interested in [R | t]. Knowing K, it is possible to obtain
a solution for [R | t] with a minimum of three 3D-2D correspondences [Haralick
et al., 1994], leading to the perspective 3-point problem [Kneip et al., 2011]. These
algorithms return up to four solutions which can be disambiguated using a fourth
point.

25

Chapter 2. Background

Once the parameters of the new camera are known, new tracks become available
for triangulation. It is good practice to run bundle adjustment after every newly
added camera. However, bundle adjustment is an expensive operation. For large
datasets it is common practice to add multiple cameras at a time before a full bundle
adjustment is performed. The last steps, i.e. reconstructing a new camera, triangu-
lating new tracks, and regularly performing bundle adjustment, are repeated until
all images are part of the scene.

2.2.3 Global Reconstruction

While the incremental reconstruction strategy (see Figure 2.13) is still most widely
used, there are certain issues with pose drift due to camera calibration error accu-
mulation, especially in datasets with long camera trajectories. The drift in camera
poses leads to a “bending” of the geometry, and returning to a past location might
not be re�ected in the reconstructed geometry. This issue is known as the loop clo-
sure problem, and is well studied in the literature [Estrada and Tard, 2005; Williams
et al., 2009]. Even though the (exhaustive) pairwise matching clearly indicates that
a previously visited area re-appears in the images (loop detection), loops may not
be closed because the cameras are incrementally placed at either end of the loop,
rejecting good matches as geometric outliers.

In contrast, global SfM methods distribute the residual errors evenly across the
dataset, e�ectively avoiding drift [Moulon et al., 2013; Wilson and Snavely, 2014].
Global methods are a promising direction for future SfM, and will brie�y be treated
here. The basic idea of global SfM methods is to globally optimize the pose graph,
which consists of pairwise relative transformation between the views [Kummerle
et al., 2011; Engel et al., 2014]. Contrary to incremental methods, which perform
multiple bundle adjustments after adding new cameras to the scene, global methods
fuse all relative motions in a single optimization step.

The main challenges in global SfM are two-fold: First, some pairwise relations,
even though they share many correspondences, are mismatches due to repetitive
patterns. These outliers cause problems during least-squares optimization. Second,
although the relative rotation between two views can precisely be estimated [Hart-
ley and Zisserman, 2004, p. 258], the relative translation is often unstable and can
only be recovered up to scale. For this reason some global approaches work with
relative rotations and directions (rather than with the full relative transformation)
and concentrate on outlier removal [Wilson and Snavely, 2014]. Other approaches
try to remove the translation scale ambiguity [Moulon et al., 2013; Jiang et al., 2013].
The individual steps of the global SfM procedure are summarized as follows:

• Pairwise relative rotations Rij and translation directions tij between views i, j
are computed from the Essential matrix. The relative translations turn into
translation directions due to the scale ambiguity.

• The epipolar graph is built whose nodes represent the cameras and the edges
represent the pairwise relationship (Rij, tij) between the cameras.

26

2.3. Multi-View Stereo

• Global rotations Ri are estimated using rotation averaging [Hartley et al., 2013]
while identifying and rejecting outlier pairs.

• Relative translation scales λij are estimated from the directions tij and the
global rotations Ri and lead to absolute translations Ti.

• Finally, a global model is created by linking feature tracks across images, tri-
angulating track positions and running a �nal bundle adjustment.

2.2.4 Reconstruction Ambiguity

It is worth noting that any Structure from Motion reconstruction is ambiguous. It
is generally not possible, with any number of views, to recover the absolute posi-
tion, orientation or scale of the scene. The reconstruction is thus unique up to a
7-dimensional ambiguity described by a similarity transformation that allows for
scaling, translation and rotation.

In fact, during reconstruction of the initial pair, these ambiguities are resolved
by setting the �rst camera to the canonical form [I | 0] (determining the absolute
position and orientation of the scene) and by constraining the translation between
the initial pair to ‖t′‖ = 1 (determining the scale of the scene).

2.3 Multi-View Stereo

From the human visual system we know that perception of depth and three dimen-
sional structure of the surroundings is mostly a result of binocular vision (i.e., seeing
with two eyes). The process of inferring three dimensional structure from images
is called binocular stereopsis, or simply stereo. The remarkable performance of the
human vision apparatus to identify and correctly interpret three dimensional struc-
ture can be attributed to several clues such as the interpretation of occlusions, the
size of objects, scene haze and desaturation, linear perspective, etc. In computer vi-
sion algorithms, these clues are very di�cult to exploit as high-level knowledge of
the scene is required. Thus most techniques rely purely on visual information from
di�erent viewpoints, i.e., basically exploiting motion clues for stereo reconstruction.
This is somewhat similar to Structure from Motion: Visual information from di�er-
ent points of view is used to reason about the structure of the scene. But while SfM
requires sparse correspondences as input to reconstruct camera parameters, MVS
requires camera parameters as input to establish dense correspondences.

The basic problem statement for Multi-View Stereo is as follows: Given several
images of an object or a scene, compute a 3D shape representation. This is a very
generic statement, and the usual assumption is that camera parameters for the im-
ages are given. An image with associated camera parameters is called a view. The
number of views can range from just two up to thousands, and both of these ex-
tremes are usually treated as special cases: Many specialized binocular stereo algo-
rithms exist for the case of two views [Scharstein and Szeliski, 2002]. Video-based
MVS approaches utilize the massive amount of small baseline views, can rely on

27

Chapter 2. Background

a simple view selection and small matching windows [Newcombe et al., 2011; Vo-
giatzis and Hernandez, 2011]. Most MVS algorithms, however, focus on a sparse
set of input images with tens, sometimes hundreds of views, depending on the size
and complexity of the scene [Seitz et al., 2006]. The object or scene itself is usually
assumed to be di�use, i.e., the appearance of the scene is assumed to be indepen-
dent of the viewpoints (which is not true for specular surfaces). Finally, there are
many possible shape representations, such as individual depth maps, point clouds,
meshes, and volumetric representations. Because so many fundamentally di�erent
approaches exist, it is di�cult to provide a generic description for MVS algorithms.
In the following we describe some common steps that most MVS algorithms per-
form.

2.3.1 View Selection

Given a reference view for which geometry is to be reconstructed, a set of neigh-
boring views is required for stereo matching. Clearly, this selection depends on the
stereo algorithm at hand, e.g., in a video-based system, the structured nature of the
views can be exploited by selecting a couple of previous and next frames in the video
sequence [Newcombe et al., 2011]. In general, the selection of suitable neighboring
views involves a trade-o�. As the triangulation angle of a 3D point in space between
the two views increases, the corresponding image regions become increasingly dis-
similar and occlusions become more likely, thus reliable matching becomes harder.
A small triangulation angle restricts the search for a correspondence to a smaller
search window, but leads to an unstable 3D position with a large depth uncertainty.
This is illustrated in Figure 2.15. The view selection makes this compromise be-
tween using wide and small baseline views, so that matching is possible while depth
estimation is still well conditioned.

Although the view selection can be based purely on the angle between the prin-
cipal axis of the views, the triangulation angle ultimately depends on the 3D position
of the triangulated point. Thus, utilizing the 3D feature points from SfM, if available,
will yield more accurate results. A successful view selection has been introduced by
Goesele et al. [2007]. It greedily selects neighboring views that share many SfM
features with the reference view, encouraging large triangulation angles and a sim-
ilarity in scale, discouraging neighboring views with insu�cient resolution.

2.3.2 Measuring Similarity

Given a carefully selected set of neighboring views, the next step in MVS recon-
struction is to establish dense correspondences between the pixels in the master
view and the neighboring views. The search for a correspondence can be restricted
to the epipolar line, which is essentially the viewing ray associated with a pixel in
the master view reprojected in the neighboring view, see Figure 2.16. The search
is performed over a depth range for a given pixel in the master view, and the re-
spective 3D position is reprojected in the neighboring views in order to evaluate

28

2.3. Multi-View Stereo

Depth
Uncertainty

Figure 2.15: Illustration of depth uncertainty depending on the triangulation angle.
The left image shows a large depth uncertainty due to a small triangulation angle,
however, a small amount of parallax leads to more stable correspondences. A larger
triangulation angle leads to less depth uncertainty but increased di�culty in �nding
visual correspondences.

similarity. Because this similarity is purely based on photometric information, it is
often referred to as photometric consistency, or photo-consistency.

Photometric consistency can be measured in several ways. A common approach
is to consider a planar, fronto-parallel patch of a certain size (e.g., 5 × 5 pixels) in
the master view pm and to reproject the sampling points into the neighboring view,
yielding a transformed patch pn. The rationale behind this is that small regions on
the surface can be approximated by a plane. The color values in patches pm and pn
can then be compared using a similarity measure S(pm, pn).

The simplest possible similarity metric is to compare the color values i for ev-
ery sampling point of the patches pm and pn, and measure the error as the sum of
absolute di�erences (SAD):

SSAD(pm, pn) =
∑
i

|pm(i)− pn(i)| (2.20)

This metric is an error measure and small values correspond to more similar patches.
A related similarity measure is to compute the sum of squared di�erences (SSD),
which penalizes larger errors even more, see Figure 2.17:

SSSD(pm, pn) =
∑
i

(pm(i)− pn(i))2 (2.21)

Both SAD and SSD are sensitive to exposure di�erences in the images, which leads
to an multiplicative intensity change in the patch. False correspondences become
more likely because structural similarity becomes less important. To this end, the

29

Chapter 2. Background

Epipolar
Line

Reference
View

Neighbor
View

Figure 2.16: The ray corresponding to a pixel in the master view reprojects as the
epipolar line into the neighbor view.

2 2

Figure 2.17: Similarity is measured along the epipolar line by comparing patches,
e.g. using the sum of squared di�erences (SSD).

mean intensity of the patch can be removed, which leads to the mean-removed sum
of squared di�erences (MR-SSR):

SMR-SSD(pm, pn) =
∑
i

((pm(i)− p̄m)− (pn(i)− p̄n))2 (2.22)

Here, p̄ is the mean of patch p. Contrast di�erences are another common artifact in
photographs, therefore the above similarity metrics can report large errors at true
correspondences. This is especially true with uncontrolled photos taken under non-
uniform lighting conditions. The normalized cross-correlation (NCC) is a popular
measure in signal processing and function analysis, which is invariant to both the
level (additive di�erence) and strength (multiplicative di�erence) of the correlated
signals. NCC is de�ned as

SNCC(pm, pn) =
1

N

∑
i

(pm(i)− p̄m) · (pn(i)− p̄n)

σmσn
(2.23)

where σx is the standard deviation of the patch px. In contrast to the other similar-
ity measures, NCC is a correlation, thus larger values correspond to more similar

30

2.3. Multi-View Stereo

patches, with the minimum and maximum score being −1 and 1, respectively. If
one patch has uniform color, its standard deviation is zero and the SNCC is unde-
�ned. In case of a uniform but noisy image patch, NCC is basically correlating the
image noise, which is usually dissimilar and results in a small NCC score.

A conceptually di�erent measure has recently gained renewed interest. The non-
parametric local Census transform [Zabih and Wood, 1994] summarizes local image
structure in a bit-vector. Instead of relying on absolute intensity values, Census
encodes the relative intensities of patch pixels p(i) with respect to the central pixel
p(c) in the patch. The Census bit-vector b(p) of a patch p is given by

b(p) =
⊗

i s.t. i 6=c

ξ(p(c), p(i)) with ξ(x, y) =

{
0 if x < y

1 if x ≥ y
(2.24)

where⊗ denotes bit-wise concatenation. The dissimilarity between two patches can
then be computed using the Hamming distance between the bit-vectors.

SCensus(pm, pn) = ‖ b(pm)− b(pn)‖Hamming (2.25)

This transform is invariant to exposure and contrast changes and only bit-wise op-
erations are needed for comparison. The binary representation, however, is less
discriminative and the dissimilarity can only take a small number of discrete states.

2.3.3 Geometry Estimation
Now that the basic ingredients of Multi-View Stereo have been covered, di�erent
strategies for geometry estimation are discussed.

Probably the most straightforward approach is the computation of depth maps
in a brute-force fashion [Goesele et al., 2006]. Given a central view and a selection
of neighboring views, the samples of a patch p in the central view are reprojected
into the neighboring views with respect to a depth d, and the similarity is evaluated
using one of the photo-consistency measures presented in Section 2.3.2. In order to
�nd a good depth value dwhere photometric error is low, the depth range [dmin, dmax]
with depth increments ∆d is exhaustively evaluated. These brute force approaches
usually employ a winner take all strategy by choosing the depth value that resulted
in the best photo-consistency score for each pixel, which leads to noisy depth maps.

Such a brute-force approach is computationally very expensive. In particular,
reprojecting every pixel of a patch with respect to a depth dwill do a lot of redundant
computations as pixels of neighboring patches overlap. A conceptually equivalent
but more e�cient strategy is to warp the whole neighboring view with respect to a
fronto-parallel plane induced by depth d. Photo-consistency can then be evaluated
on the central image and the warped neighboring image for all pixels at once without
additional reprojection overhead. Furthermore, if the photo-consistency measure
performs per-pixel operations only (e.g., SAD and SSD), the patch-based operations
can be cast as a per-pixel operation followed by a box-shaped low-pass �ltering
step on the resulting image. A convolution with a Gaussian corresponds to circular

31

Chapter 2. Background

Figure 2.18: Depth map reconstruction using [Goesele et al., 2007]. The input pho-
tograph (left), the reconstructed depth map (middle) and a rendering of the trian-
gulated depth map (right). Photo credits: Flickr user Nathan Laurell, Creative Com-
mons CC BY 2.0 License.

patches with spatially varying weights, which can improve quality. Because this
approach processes one plane at a time that is swept along depth, this algorithm is
called plane sweeping stereo [Yang and Pollefeys, 2003]. Traditionally these planes are
fronto-parallel to the central view and tend to perform badly on slanted surfaces. In
order to improve the reconstruction, slanted planes can be used [Gallup et al., 2007].

Because geometry is smooth in the sense that neighboring pixels often have
a similar depth value, regularization is employed by more sophisticated MVS ap-
proaches. One mild form of regularization is implemented by Goesele et al. [2007],
which uses a region-growing approach. Starting from initial sparse depth estimates
obtained from SfM feature points, these depth values are propagated to neighboring
pixels and used as initialization for depth and normal optimization using NCC photo-
consistency scores. A master image and the reconstructed depth map is shown in
Figure 2.18. In a similar fashion, Furukawa and Ponce [2010] employ amatch, expand
and �lter procedure. An initial set of patches is determined by �nding Harris and
Di�erence-of-Gaussian features in each image, and generating candidate patches
by searching corresponding features along the epipolar line in the neighboring im-
ages, and triangulating the features. The candidate patches are optimized using NCC
photo-consistency measures and new patches are created by spatial expansion. Er-
roneous patches are eliminated in a �ltering step by identifying occluding patches
(outside the true surface) and occluded patches (inside the true surface).

Algorithms for video data can use many small-baseline neighboring views for
more robust Multi-View Stereo matching. Gallup et al. [2007] use SAD photo-con-
sistency on small patches with per-frame gain compensation and simple occlusion
handling in a plane-sweep framework. Newcombe et al. [2011] use a large number
of neighboring frames and pixel-wise absolute di�erences (SAD with 1×1 windows)
with a GPU friendly regularization, see Figure 2.19.

Another line of work is based on variational mesh re�nement driven by photo-
consistency optimization [Vu et al., 2009, 2012]. First, a dense set of points is ex-
tracted using guided matching, e.g., by detecting Harris corners or Laplacian-of-
Gaussians blobs, and �ltered using multi-scale NCC with several window sizes. Sec-
ond, an initial surface is extracted from the point cloud by building a global Delaunay

32

https://www.flickr.com/photos/nglklm/2651615976/
https://creativecommons.org/licenses/by/2.0/

2.3. Multi-View Stereo

Figure 2.19: Multi-View Stereo matching on many small-baseline frames. The illus-
tration shows the cost curves for three example pixels in the image. While texture-
less and repetitive regions are di�cult to reconstruct, the total cost shows a clear
minimum in textured regions. Figure adapted from [Newcombe et al., 2011].

Figure 2.20: From left to right: Two of the input images, the intial visibility-
consistent mesh, the re�ned �nal reconstruction, and the texture mapped recon-
struction. Figure adapted from [Vu et al., 2009].

Tetrahedralization and extracing the surface between inside/outside labelled tetra-
hedra [Labatut et al., 2007]. The resulting surface interpolates the initial noisy point
cloud and is re�ned [Faugeras and Keriven, 2006] in a variational multi-view stereo
framework by means of a gradient descent energy minimization. See Figure 2.20.

2.3.4 Scene Representation

MVS approaches use di�erent scene representations, and it is often desirable to com-
pute a globally consistent surface representation from the Multi-View Stereo output.
Some algorithms directly produce a surface mesh [Hernandez and Schmitt, 2004; Vu
et al., 2009, 2012] and use mesh evolution approaches, which are di�cult to imple-
ment. Many approaches use discrete volumes that encode either some kind of occu-
pancy function or level-sets, such as the signed distance function. A surface can then
easily be obtained using the Marching Cubes algorithm [Lorensen and Cline, 1987],
or variants thereof [Kazhdan et al., 2007]. Uniform representations do not scale well
to large or high-resolution datasets and hierarchical space partitioning is often em-
ployed. Furukawa and Ponce [2010] use a patch-based representation, which is often
treated as a simple point cloud for further processing. This representation is conve-
nient to handle and e�cient to store, however, neighborhood queries are di�cult to

33

Chapter 2. Background

implement. Producing depth maps for each input image [Goesele et al., 2006, 2007]
is a local and memory-e�cient approach, but causes vast computational overhead as
overlapping surface parts are computed multiple times. For both, points and depth
maps, the construction of a �nal surface is a challenging problem.

2.4 Surface Reconstruction

The problem addressed by surface reconstruction approaches is to recover the un-
known original surface of a shape from imperfect measurements of a surface. These
measurements almost always take the form of a point cloud, sometimes with con-
nectivity information. The sampling of the original surface is at discrete positions
and intermediate positions are a priori unknown. Furthermore, the samples are sub-
ject to various imperfections such as noise and outliers, and the formation of the
samples is usually unknown or not well understood.

Reconstructing surfaces from unorganized points, overlapping range scans and
depth maps are important problems in computer graphics and occur in various appli-
cation domains. Geometry acquisition appears in cultural heritage for the purpose
of digitally preserving artifacts of cultural value. Mesh-based representations of ur-
ban street-level geometry and famous landmarks recently gained signi�cant interest
for creating 3D maps of our world. Digitized real-world objects are also commonly
used as blueprints for modeling assets for movies and games.

2.4.1 Surface Representation
The goal of surface reconstruction is to produce an explicit surface representation.
Because surfaces must be discretized in one form or the other, we usually consider
polygonal surface meshes. The most common special case of a polygonal mesh is the
triangle mesh M = (V, T), which consists of vertices vi ∈ V and triangular poly-
gons ti ∈ T spanned by three vertices each. The edges ei ∈ E between two vertices
are induced by the triangulation. Such a surface meshM de�nes a two-dimensional
subspace {x | x ∈ M} ⊂ R3 embedded in 3D space. The triangle mesh itself is a
piecewise linear polynomial approximation to the real surface, but others are pos-
sible [Vlachos et al., 2001]. The triangle is a 2-simplex and thus the simplest choice
for a planar approximation, because all three vertices of a triangle are guaranteed
to lie on a plane. More general polygonizations (such as quadrangulations) are less
often used and will not be discussed here.

Since we usually seek to generate digital representations of real-world objects,
the resulting triangulations are subject to constraints. In particular, real-word ob-
jects are closed, two-dimensional manifolds, or just 2-manifold. As an exception to
the rule, we also allow open 2-manifolds with boundaries, which is convenient in
open scenes that cannot be reconstructed in a closed manner. A 2-manifold is a 2D
topological space which resembles a 2D Euclidean space in a �nite region around
every point. A triangle mesh M is clearly a 2-manifold inside each triangle ti, but
may not be at vertices vi and edges ei. A triangle meshM is a 2-manifold if and only

34

2.4. Surface Reconstruction

v1

v2

v3

n

ccw

Triangle Regular Vertex Boundary Vertex Complex Vertex

Figure 2.21: Triangles are de�ned in counter-clockwise order (ccw) and the normal
n is de�ned as n = (v2−v1)× (v3−v1). Each vertex can be classi�ed into a regular,
border, complex, and unreferenced. Unreferenced vertices are not part of any triangle.

if all triangles adjacent to a vertex vi form a (possibly open) triangle fan. This also
implies that every edge ei has exactly one or two adjacent triangles. The set of all
edges with only one adjacent triangle represents the boundary of the manifold. See
Figure 2.21 for an illustration.

2.4.2 Reconstruction Input

Surface reconstruction approaches can broadly be classi�ed into point-based and
depth map fusion approaches, see Figure 2.22. Where point based approaches take
as input a set of points with additional attributes, depth map fusion approaches pro-
cess triangulated depth maps and usually require the scanner position, and are thus
less generic. Typical surface reconstruction algorithms take some of the following
attributes as input:

• Surface sample positions P = {p1, . . . , pm} ⊂ R3

• Surface normals N = {n1, . . . , nm} ⊂ R3 s.t. ‖ni‖2 = 1

• Con�dence values C = {c1, . . . , cm} ⊂ [0, 1]

• Scale values S = {s1, . . . , sm} ⊂ R

Few algorithms solely take unorganized points P as input [Hoppe et al., 1992;
Alliez et al., 2007]. However, a normal estimation is part of these methods, and
the core reconstruction approach makes use of normals. Oriented points are used
by RBF-based methods [Carr et al., 2001], the variational method by Calakli and
Taubin [2011] and Kazhdan’s work based on the characteristic function [Kazhdan,
2005]. Various approaches allow specifying a con�dence value per surface point
[Kazhdan et al., 2006; Klowsky et al., 2012; Kazhdan and Hoppe, 2013; Fuhrmann
and Goesele, 2014], which is useful if uncertainty information is provided by the
acquisition system. Recently, the use of additional per-vertex scale values S proved
to be a useful information for less controlled data and in the presence of surface
samples at di�erent scales [Klowsky et al., 2012; Fuhrmann and Goesele, 2011, 2014].

35

Chapter 2. Background

Figure 2.22: Left: A single triangulated range image only covers parts of the surface
and multiple range images need to be fused to model an object. Middle: Surface
samples are used as input for point-based reconstruction algorithms. Right: A re-
constructed surface mesh.

Another more structured type of input is range scanner data, or depthmaps. Here,
the samples are essentially stored in a rectangular grid where each element measures
the distance from the sensor position to the surface. Having direct access to this
input has several advantages: Because the samples are structured in a grid, connec-
tivity information between the samples can be inferred and the depth maps can be
triangulated. NormalsN for the samples P can be computed from the triangulation.
Curless and Levoy [1996] describe a simple method to generate con�dence values C
from triangulated scans, which improves reconstruction quality. Additionally, since
the size of a sample can be inferred from neighboring samples, scale values S can
easily be computed [Fuhrmann and Goesele, 2014]. This type of input can therefore
be converted to point samples with a rich set of attributes.

Some algorithms directly take range scanner data as input for depth map fusion,
or range image integration. They usually rely on the position of the sensor as ad-
ditional information. Examples include the classical and popular VRIP method by
Curless and Levoy [1996], range image integration by energy minimization [Zach
et al., 2007], an improved version of VRIP [Vrubel et al., 2009], and a multi-scale
approach for depth map fusion [Fuhrmann and Goesele, 2011]. All of these meth-
ods fuse depth maps by averaging individual signed distance �elds in a volumetric
representation. A notable exception are the surface-based approaches such as Mesh
Zippering [Turk and Levoy, 1994], which are, however, unreliable in the presence of
noise and outliers.

It is debatable whether it is useful to strip away the connectivity information
from the triangulated depth maps and process the resulting point cloud with point-
based approaches. Clearly, algorithms speci�cally designed for depth maps are less
versatile because they rely on additional input, such as the sensor position, which
might not be available for the dataset at hand. In this thesis we will demonstrate that
state-of-the-art techniques for depth map fusion do not, and likely will not in the
near future, outperform the more general point based approaches. The reason lies
in the demand to process increasingly more uncontrolled input that is contaminated

36

2.4. Surface Reconstruction

with various artifacts. This demand is driven by the growing number of commodity
sensors, such as consumer depth cameras (e.g., the Kinect) or passive image-based
reconstruction systems (e.g., smart phone cameras). These sensors produce data
with various properties including non-uniform sampling rate, noise, outliers, mis-
alignments, missing data, and multi-scale samples.

2.4.3 Implicit Function
Few methods directly merge surface meshes [Turk and Levoy, 1994; Soucy and Lau-
rendeau, 1995] and only work on very clean input data. Point interpolation tech-
niques [Bernardini et al., 1999; Edelsbrunner and Mücke, 1994] use (a subset of) the
original input points and reconstruct the missing connectivity information, hence
lack approximation capabilities and are thus unsuitable for noisy input. The vast ma-
jority of surface reconstruction methods construct an implicit function from which
the surface is extracted afterwards. The reason is the fundamental di�culty in di-
rectly working with the explicit representation. Instead of explicitly handling geo-
metric and topological changes by evolving the surface, an implicit function implic-
itly handles these changes.

An explicit function G : R2 7→ R de�nes an explicit surface embedded in 3D
space. For example, consider a height-�eld approach,G(x, y) = z, which is parame-
terized over the (x, y)-plane and yields a height value z. The surface is thus de�ned
by {(x, y,G(x, y))>}. In contrast, an implicit function F : R3 7→ R is parametrized
over 3D-space and yields a scalar whose interpretation is application-speci�c. An
implicit surface, or isosurface with respect to an isovalue c is then given by the c-level
set of F , i.e., {x | F (x) = c}.

Consider the intuitive example of the signed distance function F (x), which de-
�nes for every point in space x ∈ R3 the signed distance to the surface. The isosur-
face of interest is then given by the zero-level set of F : {x | F (x) = 0}. The sign of
the distance values indicates whether a point is in front of or behind the surface and
de�nes the surface orientation.

Consider the surface of a sphere as an example. Such a shape is conveniently
expressed using an isosurface {x | √x · x = r} with the radius r of the sphere as
isovalue. Here, the surface corresponds to the r-level set of the implicit function.

The use of an implicit function for surface reconstruction was pioneered by
Hoppe et al. [1992]. Given points pi with normals ni, a set of tangent planes Ti
with centers p̂i and normals n̂i are associated with every input point pi. The im-
plicit function is then de�ned by

F (x) = (x− p̂i) · n̂i. (2.26)
This formulation computes the orthogonal distance from x to plane i whose center
p̂i is closest to x. Because small changes in the query x can result in a di�erent
nearest plane center, the implicit function is clearly discontinuous which can lead
to reconstruction artifacts. Notably, this implicit function is de�ned everywhere
without the need for interpolation, which stands in contrast to many approaches
which discretize the implicit function.

37

Chapter 2. Background

A discretized implicit function has been successfully used for range image inte-
gration by Curless and Levoy [1996] in a method called VRIP. It is based on a volu-
metric approximation of the signed distance function. The approach is di�erent in
that the implicit function F is constructed as the weighted sum of individual signed
distance functions di and weight functions wi, each generated by one range image.
The total implicit function is given by

F (x) =

∑
iwi(x)di(x)∑

iwi(x)
(2.27)

W (x) =
∑

i
wi(x). (2.28)

A discretization of the function is motivated by the ability to incrementally update
the implicit function, by adding one range image at a time. Although this func-
tion is continuous because both di and wi are continuous, wi has compact support
which leads to unde�ned regions of F with zero weight. In this regard the method
presented in Chapter 5 shares many similarities with VRIP.

A variational formulation is presented by Calakli and Taubin [2011]. They recon-
struct an approximation to the signed distance function F by minimizing an energy
functional E(F) which drivesF to be zero at the sample positions, and the derivative
∇F to coincide with the sample normals. A well-conditioned solution is found by
regularization of the second order derivatives and forcing the norm of the Hessian
matrix H(F) to be close to zero.

Most approaches reconstruct the signed distance function F and extract the iso-
surface as the zero-level set of F . In contrast, Kazhdan et al. approximate the indi-
cator function, which is one inside, and zero outside the solid. Using a Monto-Carlo
approximation to Stokes’ Theorem they compute the Fourier coe�cients from ori-
ented surface samples and solve for the surface using the inverse Fast Fourier Trans-
formation [Kazhdan, 2005]. In a more recent method, Kazhdan et al. formulate the
reconstruction of the indicator function as a Poisson problem [Kazhdan et al., 2006;
Kazhdan and Hoppe, 2013], which translates into solving a sparse linear system of
equations. At least in theory, since the indicator function is discontinuous at the sur-
face, �nding an isovalue for surface extraction is an ill-posed problem. In practice,
the implicit function is evaluated at the input samples to �nd a suitable isovalue.

2.4.4 Isosurface Extraction
Given an implicit functionF , the isosurface corresponding to the c-level set ofF can
be extracted using various algorithms. This process is often called contouring the
volumetric data into a polygonal representation. In the case of a regular sampling
of the implicit function, Marching Cubes [Lorensen and Cline, 1987] is probably the
most well-known algorithm. The algorithm inspects eight voxels vi in “cube con�g-
uration” and determines for each voxel whether it is inside the surface (vi < 0) or
outside the surface (vi ≥ 0). Because there are 8 voxels in each cube with 2 states
(inside or outside), there are 28 = 256 cube con�gurations which can be enumer-
ated in a look-up table. Each con�guration corresponds to a triangulation within

38

2.4. Surface Reconstruction

Figure 2.23: Left: An implicit function reconstructed from the input samples. Mid-
dle: The implicit function is regularly sampled for isosurface extraction. Right: The
resulting piecewise linear isosurface is extracted with Marching Squares (the 2D ver-
sion of Marching Cubes).

the cube and the union of all per-cube triangulations yields the �nal surface. The
resulting surface is guaranteed to be a valid 2-manifold, possibly with boundaries.
The surface is also watertight if and only if the value of all voxels at the volume’s
boundary are on either side of c. See Figure 2.23 for a 2D surface reconstruction
example using the Marching Squares algorithm.

In a regular lattice, Marching Cubes can process each cube individually. In the
case of an octree, however, di�erent decisions are made on either side of a cube
face (because of depth disparity in the octree), which leaves cracks in the surface.
A standard solution is to perform conforming splits [Westermann et al., 1999] by
decomposing coarser nodes into tetrahedral elements until the depth disparities are
resolved. This, however, results in a large increase of triangles. Many approaches
focus on adapting the octree hierarchy, e.g. by restricting the depth disparity to one,
and patching cracks between nodes at di�erent depths [Westermann et al., 1999]. In
the dual setting, isovertex positions are de�ned inside the nodes and connected to
isovertices in adjacent nodes [Ju et al., 2002; Schaefer and Warren, 2005], which can
lead to non-manifold surfaces. A solution to this problem is presented by Kazhdan
et al. [2007]. This technique yields a crack-free and highly adaptive mesh directly
from the octree hierarchy and is applicable to many hierarchical surface reconstruc-
tion techniques [Kazhdan et al., 2006; Calakli and Taubin, 2011; Kazhdan and Hoppe,
2013; Fuhrmann and Goesele, 2014].

2.4.5 Sample Scale and Implications for Reconstruction
The vast majority of the surface reconstruction algorithms idealize the input samples
as in�nitely small points. In fact, every sample is the result of an integration process
over a certain surface area. See Figure 2.24 for an illustration of sample scale. The
speci�c properties of the sample scale depend on the scanning technology and the
sample formation process. Let us consider a few examples.

39

Chapter 2. Background

Sample
Scale

Scale increases
with Depth

Figure 2.24: Illustration of a sample in a depth map, projected into 3D space onto the
surface. The actual size of the sample depends on the acquisition process.

• Laser triangulation scanners project a laser point on the 3D object and deter-
mine the 3D position of the laser point by triangulation using a visual sensor.
Here, the laser point has a certain extent on the 3D object as the beam di-
ameter is not in�nitely small. Furthermore, the visual sensor uses a (usually
unknown) point spread function, which e�ectively blurs the incoming light
information.

• Structured light scanners project a pattern on the 3D object. Depending on the
projector resolution and potentially out-of-focus e�ects, a single pixel leads
to samples with a certain extent on the 3D object. The pattern is interpreted
by a visual sensor with a point spread function, which again blurs the visual
information, thus pixels are not in�nitesimal “point samples”.

• Mid- and long-range scanners use laser light pulses and measure the time until
the re�ection of the pulse arrives back at the sensor. These time-of-�ight sys-
tems also accumulate light information over the area of the laser point. Fur-
thermore, since the sample spacing in these systems is usually much larger
than the sample size aliasing artifacts can occur.

• Multi-View Stereo systems triangulate visual correspondences. The visual in-
formation in the images has been �ltered by a point spread function and is
subject to sensor discretization, so even accurate correspondences are based
on �ltered visual information. Additionally, the majority of MVS techniques
establish correspondences using patches, which have an additional low-pass
�ltering e�ect.

Treating point samples as idealized, in�nitely small samples discards valuable
information about the size (or scale) of a sample. This can have a negative e�ect on
the reconstruction and often leads to dramatic di�erences in quality. Obtaining a
very reasonable approximation of a sample’s scale is surprisingly simple: In most
cases this does not require internal knowledge of the scanning technology used. As

40

2.5. Post-Processing

described in Section 2.4.2, scale information is directly available from depth maps
and scans in triangulated form. The approximation of scale can often be improved
by using information about the scanning system. For example, compensating for the
patch size in Multi-View Stereo can be achieved by multiplying the scale value with
the radius of the patch.

The e�ects of disregarding sample scale are three-fold: First, depending on the
scale of the sample, the 3D position of the sample corresponds to a low-pass �ltered,
smoothed version of the surface. Hence, the reconstruction algorithm tends to re-
construct the �ltered version of the original surface [Klowsky et al., 2012]. Second,
although the true position of a sample is unknown and can likely not be recov-
ered, scale information indicates which samples should not be combined with each
other in order to avoid degrading higher resolution geometry with low-resolution
information [Mücke et al., 2011; Fuhrmann and Goesele, 2011]. Third and most im-
portantly, without scale it is impossible to distinguish between actual detail and
redundancy in the samples [Fuhrmann and Goesele, 2014]. A very dense set of sam-
ples can either be interpreted as a very detailed region at a high sampling rate, or a
region sampled with many but redundant low-resolution samples. The former case
justi�es a high-resolution reconstruction, while the latter case suggests to use the
redundancy for noise reduction. Without scale, these decisions need to be made
globally by means of setting parameters.

In Chapter 4 and 5 we present surface reconstruction algorithms which incor-
porate scale information in the reconstruction. Redundancy can automatically be
detected, and an appropriate reconstruction behaviour can automatically be deter-
mined from the sample scale without setting any parameters.

2.5 Post-Processing

In this section we cover some post-processing steps that can be applied to the global
surface mesh. In particular, the surface triangulation contains many small and ill-
shaped triangles, which is a typical artifact caused by the Marching Cubes algorithm
and variants thereof. The resolution of the surface is often adapted to the reconstruc-
tion scale, and not to the geometric properties of the surface, which results in many
small triangles even in planar regions. A global remeshing step can improve the dis-
tribution and shape of the triangles and signi�cantly reduce the amount of triangles
at a negligible loss of quality. Finally, a visually faithful geometric representation is
achieved by texturing the surface using high-resolution image information.

2.5.1 Mesh Cleanup
Because the Marching Cubes algorithm operates independently within each cube, it
introduces many unnecessarily small and degenerated triangles. Degenerated trian-
gles contains at least one very small angle and can be classi�ed in two types: Caps
and needles [Botsch and Kobbelt, 2001], see Figure 2.25. These triangles barely con-
tribute any geometric information because their surface area is close to zero, and

41

Chapter 2. Background

Cap & Needle Regular Edge Collapse

Figure 2.25: Left: Two types of ill-shaped triangles. Caps have two small angles
and no short edges, and Needles have one small angle and two long edges. Right:
The edge collapse is a fundamental operation in mesh processing. A regular edge
collapse removes one edge, one vertex and two triangles from the mesh. Collapsing
a boundary edge removes one edge, one vertex and one triangle only.

they should be removed to reduce memory consumption, to increase rendering per-
formance and to avoid numerical problems when processing the mesh.

Edge Collapse Operation

A very common mesh decimation operation is the edge collapse primitive, see Fig-
ure 2.25. In order to avoid topological changes by the collapse, it is useful to ensure
that the geometry does not change too much. To this end, the original normals ni of
all triangles adjacent to v1 and v2 (excluding the triangles which are to be removed)
are compared with the normals of the new triangles ñi after to collapse. If the angle
between the normals is above a threshold tangle, no collapse should be performed.
This can be expressed in terms of the dot product between the normals

ni · ñi < cos(tangle). (2.29)

A useful threshold is cos(tangle) = 0.95, which corresponds to tangle ≈ 18.2◦.

Removing Marching Cubes Artifacts

While needle triangles can be eliminated by collapsing their short edge, removing
cap triangles turns out to be a much harder problem. Collapsing any of their edges or
subdividing the long edge can produce new cap triangles. A procedure for removing
degenerated triangles is presented by Botsch and Kobbelt [2001]. In their approach,
a global mesh slicing operation is used. However, a much simpler procedure can
be applied that eliminates most degenerated triangles in a typical Marching Cubes
mesh and usually reduces the number of triangles in the mesh by about 40%.

In the �rst step, needle triangles are removed by collapsing their short edge. In
the second step, vertices with exactly three adjacent triangles are removed. This
particular con�guration is the main source for cap triangles and is easily removed

42

2.5. Post-Processing

in a local manner. Finally, another pass that removes needle triangles is performed,
as new needles may be introduced by the previous operation. This procedure is
illustrated in Figure 5.9 in Chapter 5.

Needle triangles can be identi�ed using a threshold tneedle, which is the ratio of
the shortest edge eshortest to the second shortest edge emiddle of the triangle

tneedle =
‖eshortest‖2
‖emiddle‖2

. (2.30)

For both equilateral triangles and Caps this ratio is close to 1 and decreases with
increasing amount of degeneration. A threshold value of tneedle ≤ 0.4 has been used
for all of our results.

2.5.2 Surface Remeshing

The mesh cleanup procedure removes a large number of degenerate triangles from
the mesh simply by considering trigonometric properties of the triangles. Surface
remeshing, on the other hand, globally creates a new surface discretization which
improves the triangle quality while maintaining the �delity to the original surface.
Figure 2.26 shows the original and the remeshed version of the Mannequin model. In
this atypical example the number of vertices has been increased using subdivision
techniques [Loop, 1987] to create a much smoother surface.

Usually, surface remeshing is concerned with triangle quality and global ver-
tex distribution. Locally, the shape of the triangles is to be improved to obtain
well-shaped, equilateral triangles. It has been shown that the (weighted) Centroidal
Voronoi Tessellation produces an isotropic vertex distribution that leads to very reg-
ular triangles [Alliez et al., 2003; Surazhsky et al., 2003; Yan et al., 2009]. Globally,
the vertex distribution is optimized either to be as uniform as possible, or according
to geometric properties such as surface curvature. In the latter case, the aim is to
distribute more vertices in regions of higher curvature to minimize the discretiza-
tion error and to reduce rendering artifacts. Obtaining a good initial global vertex
distribution is key to e�ciency. A bad initial vertex distribution leads to very slow
convergence behavior of the relaxation procedure that optimizes the vertex posi-
tions [Fuhrmann et al., 2010].

Triangle shapes are relevant for the numerical stability of mesh processing ap-
plications. On the other hand, a suitable vertex distribution can result in consider-
able vertex and triangle reduction. The vertex distribution in a mesh obtained by
a surface reconstruction algorithm is often controlled by the input sample resolu-
tion or density. This can lead to over-tessellation in almost planar regions with low
curvature, which can well be approximated with larger triangles while maintaining
�delity to the original mesh. Producing a mesh with fewer, larger elements is useful
to reduce storage requirements, and to improve rendering performance.

A popular method to colorize triangle meshes is to use per-vertex colors. The
color values are interpolated over the mesh triangles. Such a method relies on a
dense vertex sampling in order to faithfully represent the object appearance. Most

43

Chapter 2. Background

Figure 2.26: The original Mannequin model with 700 vertices and the remeshed sub-
division surface with 5k vertices [Fuhrmann et al., 2010]. Note the regular shape of
the triangles and the adaptive vertex sampling distributing more samples in regions
of higher curvature.

remeshing and simpli�cation algorithms only consider preservation of geometric
quantities and will thus destroy per-vertex attributes. Few simpli�cation methods
attempt to preserve the attributes of meshes [Cignoni et al., 1998; Hoppe, 1999].
While it is certainly possible to incorporate other per-vertex attributes in computa-
tion of a density �eld which guides the global distribution of vertices during remesh-
ing, it is appropriate to transfer these attributes to dedicated textures. Textures allow
more control over the degree of detail while keeping the pure geometry as small as
possible. Remeshing is the tool of choice to prepare the mesh and to provide a suit-
able input for surface texturing. The computation time of surface texturing falls
signi�cantly with fewer triangles and often leads to cleaner results.

2.5.3 Surface Texturing

Surface texturing can be seen as the last step in the reconstruction pipeline, which
generates a surface with associated textures ready for rendering. The input to this
process are the input images and the corresponding reconstructed camera parame-
ters, as well as a globally consistent surface mesh. The textures are then generated
by means of projecting the image information onto the geometry. The task of sur-
face texturing is faced with several challenges. Because camera parameters can be

44

2.6. Conclusion

Figure 2.27: Left: The input geometry with the individual regions each colored by
one view, the textured result before applying seam leveling, and the �nal textured
result. Right: The �nal texture atlas produced by Waechter et al. [2014].

slightly inaccurate and the images are subject to di�erent resolution, image blend-
ing leads to blurry results. A common approach is to select a single, suitable image
for a surface region [Lempitsky and Ivanov, 2007], which causes seams at the region
boundaries because of exposure and color di�erences in the images.

In order to obtain a sharp and high-resolution texture, a two-step approach is
usually applied [Arikan et al., 2014]. The �rst step is a view selection that �nds
suitable high-resolution, in-focus images that orthogonally observe the surface to
texture the surface regions. Also, in order to minimize the number of seams across
the mesh, it is favorable to maximize the size of the region that is textured from
one image. In the second step the remaining seams between the regions are elimi-
nated by employing a seam leveling, or color adjustment algorithm. Both steps can
be solved by minimizing a non-linear optimization problem [Waechter et al., 2014].
Figure 2.27 illustrates the view selection, seam leveling, and the resulting texture
atlas. In contrast, the Floating Texture approach [Eisemann et al., 2008] repositions
textures during runtime to compensate for inaccurate camera calibration and to ob-
tain crisp textures, and thus avoids costly pre-processing.

2.6 Conclusion

In this chapter we discussed the background of image-based reconstruction. In par-
ticular, the pinhole camera (Section 2.1) has been introduced as the prevailing cam-
era model. The extrinsic and intrinsic parameters of this camera model are recov-
ered using Structure from Motion (Section 2.2), either with incremental or global
techniques. A dense scene reconstruction is computed with Multi-View Stereo (Sec-
tion 2.3) by means of selecting suitable neighboring views, and estimating geom-
etry by establishing dense correspondences. Finally, a global surface is computed
(Section 2.4), cleaned and textured (Section 2.5) to obtain a mesh for presentation
purposes.

45

Chapter 2. Background

46

Chapter 3

MVE – The Multi-View Environment

Abstract

We present MVE, the Multi-View Environment. MVE is an end-to-end
multi-view geometry reconstruction software which takes photos of a
scene as input and produces a surface triangle mesh as the result. The
system covers a Structure from Motion algorithm, Multi-View Stereo
reconstruction, generation of extremely dense point clouds, and recon-
struction of surfaces from point clouds. In contrast to most image-based
geometry reconstruction approaches, our system is focused on recon-
struction of multi-scale scenes, an important aspect in many areas such
as cultural heritage. It allows to reconstruct large datasets containing
some detailed regions with much higher resolution than the rest of the
scene. Our system provides a graphical user interface for structure-
from-motion reconstruction, visual inspection of images, depth maps,
and rendering of scenes and meshes.

Contents
3.1 Introduction . 48

3.2 System Overview . 49

3.3 Reconstruction Guide . 53

3.4 Reconstruction Results . 57

3.5 Software . 60

3.6 Conclusion . 62

47

Chapter 3. MVE – The Multi-View Environment

Figure 3.1: Our multi-view reconstruction pipeline. Starting from input images,
Structure from Motion techniques are used to reconstruct camera parameters and a
sparse set of points. Depth maps are computed for every image using Multi-View
Stereo. Finally, a colored mesh is extracted from the union of all depth maps using
a surface reconstruction approach.

3.1 Introduction

Acquiring 3D geometric data from natural and man-made objects or scenes is a fun-
damental �eld of research in computer vision and graphics. 3D digitization is rele-
vant for designers, the entertainment industry, and for the preservation as well as
digital distribution of cultural heritage objects and sites. In this chapter, we intro-
duce MVE, the Multi-View Environment, a new, free software solution for low-cost
geometry acquisition from images. The system takes as input a set of photos and
provides the algorithmic steps necessary to obtain a high-quality surface mesh of the
captured object as �nal output. This includes Structure from Motion (SfM), Multi-
View Stereo (MVS) and surface reconstruction.

Geometric acquisition approaches are broadly classi�ed into active and passive
scanning. Active scanning technologies for 3D data acquisition exist in various �a-
vors. Time of �ight and structured light scanners are known to produce geometry
with remarkable detail and accuracy. But these systems require special hardware
and the elaborate capture setup is expensive. Real-time scanning systems such as
the Kinect primarily exist for the purpose of gaming, but are often used for real-
time geometry acquisition. These systems are based on structured light which is
emitted into the scene. They are often of moderate quality and limited to indoor
settings because of interference with sunlight. Finally, there is some concern that
active systems may damage objects of cultural value due to intense light emission.

Passive scanning systems do not emit light, are purely based on natural illu-
mination, and will not physically harm the subject matter. The main advantage of
these systems is the cheap capture setup which does not require special hardware: A
consumer-grade camera (or just a smartphone) is usually enough to capture datasets.
These systems are based on �nding visual correspondences in the input images; thus
the geometry is usually less complete, and scenes are limited to static, well-textured
surfaces. The inexpensive demands on the capture setup, however, come at the cost
of much more elaborate computer software to process the unstructured input. The

48

3.2. System Overview

standard pipeline for geometry reconstruction from images involves three major al-
gorithmic steps:

• Structure from Motion (SfM) reconstructs the extrinsic camera parameters
(position and orientation) and the camera calibration data (focal length and
radial distortion) by �nding sparse but stable correspondences between im-
ages. A sparse point-based 3D representation of the subject is created as a
byproduct of camera reconstruction.

• Multi-View Stereo (MVS), which reconstructs dense 3D geometry by �nding
visual correspondences in the images using the estimated camera parameters.
These correspondences are triangulated yielding 3D information.

• Surface Reconstruction, which takes as input a dense point cloud or individual
depth maps, and produces a globally consistent surface mesh.

It is not surprising that software solutions for end-to-end passive geometry re-
construction are rare. The reason lies in the technical complexity and the e�ort
required to create such integrated tools. Many projects cover parts of the pipeline,
such as VisualSfM [Wu, 2013] or Bundler [Snavely et al., 2006] for Structure from Mo-
tion, PMVS [Furukawa and Ponce, 2010] for Multi-View Stereo, and Poisson Surface
Reconstruction [Kazhdan and Hoppe, 2013] for mesh reconstruction. A few com-
mercial software projects o�er an end-to-end pipeline covering SfM, MVS, Surface
Reconstruction and Texturing. This includes Arc3D, Agisoft Photoscan and Acute3D
Smart3DCapture. We o�er a complete pipeline as an open source software system
free for personal use and research purposes.

Our system gracefully handles many kinds of scenes, such as closed objects or
open outdoor scenes. It avoids, however, �lling holes in regions with insu�cient
data for a reliable reconstruction. This may leave gaps in models but does not intro-
duce arti�cial geometry, common to many global reconstruction approaches. Our
software puts a special emphasis on multi-resolution datasets which contain both
detailed and less detailed regions, and it has been shown that inferior results are
produced if the multi-resolution nature of the input data is not considered properly
[Klowsky et al., 2012; Fuhrmann and Goesele, 2011, 2014].

In the remainder of this chapter, we will �rst give an overview of our system
(Section 3.2). The practical applicability of our system is demonstrated in a hands-
on guide in Section 3.3. We then show reconstruction results on several datasets
in Section 3.4 and demonstrate the superiority of our pipeline in comparison to al-
ternative state of the art software. We brie�y describe our software framework in
Section 3.5 and �nally conclude in Section 3.6.

3.2 System Overview

Our system consists of three main steps, namely Structure from Motion (SfM) which
reconstructs the parameters of the cameras, Multi-View Stereo (MVS) for establish-
ing dense visual correspondences, and a �nal meshing step which merges the MVS

49

Chapter 3. MVE – The Multi-View Environment

geometry into a globally consistent, colored mesh. In the following, we give a con-
cise overview of the process, using the dataset of Anton’s Memorial as an example
for a cultural heritage artifact, see Figure 3.1. For a more detailed explanation of the
approaches, we refer the interested reader to Szeliski’s textbook [Szeliski, 2010].

3.2.1 Structure from Motion

Structure from Motion is one of the crowning achievements of photogrammetry and
computer vision which started its roots in [Armstrong et al., 1994; Hartley, 1994;
Pollefeys et al., 1998] and opened up to a wider audience in [Pollefeys et al., 2003;
Snavely et al., 2006]. In essence, SfM reconstructs the parameters of cameras solely
from sparse correspondences in an otherwise unstructured image collection. The
recovered camera parameters consist of the extrinsic calibration (i.e. the orientation
and position of the camera), and the intrinsic calibration (i.e. the focal length and
radial distortion of the lens). Although, at least in theory, the focal length can be
fully recovered from the images for non-degenerate con�gurations, this process can
be unstable. However, a good initial guess for the focal length is usually su�cient
and can be optimized further.

Feature detection: First, machine-recognizable features are detected in the input
images (Figure 3.2, left) and matched in order to establish sparse correspondences
between images. Di�erences in the images require invariance of the features with
respect to certain transformations, such as image scale, rotation, noise and illumina-
tion changes. Our system implements and jointly uses both SIFT [Lowe, 2004] and
SURF [Bay et al., 2008] features which are amongst the top performing features in
the literature.

Feature matching: The detected features are matched between pairs of images
(Figure 3.2, right). Because corresponding points in two images are subject to the
epipolar constraints of a perspective camera model [Luong and Faugeras, 1995], en-
forcing these constraints removes many false correspondences. The pairwise match-
ing results are then combined and expanded over several views, yielding feature
tracks. Each track corresponds to a single 3D point after SfM. Depending on the
size of the scene, matching can take a long time, because every image is matched
to all other images, resulting in a quadratic algorithm. As an expedient, the state
after matching (containing the feature detections and the pairwise matching) can be
saved to �le and reloaded later in case the remaining procedure is to be repeated
under di�erent parameters. This state is called the prebundle.

We also investigated in accelerating the matching time of our system. Common
approaches include matching fewer features per image, reducing the number of pairs
in a pre-processing step, or accelerating the matching itself using parallelism. We
use a practical combination of the approaches: By matching a few low-resolution
features, one can identify image pairs that potentially do not match, and reject the
candidates before full-resolution matching is performed. Although low-resolution

50

3.2. System Overview

Figure 3.2: Feature detection (left) and feature matching between two views (right).
The horizontal lines are mostly good matches, and more slanted lines are outliers.
Enforcing two-view constraints will remove most outliers.

matching rejects some good image pairs, we could not observe any loss of quality
in the reconstruction. It has been shown by Wu [2013] that this can considerably
accelerate the matching time.

Incremental reconstruction: The relative pose of a good initial image pair is
estimated, and all feature tracks visible in both images are triangulated. What fol-
lows is the incremental SfM, where suitable next views are incrementally added to
the reconstruction, until all reconstructable views are part of the scene (Figure 3.3).
Lens distortion parameters are estimated during reconstruction. The performance
of subsequent algorithms is considerably improved by removing the distortion from
the original images.

Not many software solutions for SfM have been published, probably because the
theoretical concepts and algorithmic details are involved. Freely available software
for this purpose includes Bundler [Snavely et al., 2006] and VisualSfM [Wu, 2013].

3.2.2 Multi-View Stereo

Once the camera parameters are known, dense geometry reconstruction is per-
formed. MVS algorithms exist in various �avors [Seitz et al., 2006]. Some approaches
work with volumetric representations [Kolev et al., 2012] and usually do not scale
well to large datasets. Others reconstruct global point clouds, e.g. the popular PMVS
implementation by Furukawa and Ponce [2010]. Scalability issues further motivated
work that clusters the scene into smaller manageable pieces [Furukawa et al., 2010].
Although PMVS is widely used, we aim at creating much denser point clouds for
mesh reconstruction in order to preserve more details in the �nal result. A third line
of work directly reconstructs global meshes [Vu et al., 2012] and couples MVS and
surface reconstruction approaches in a mesh evolution framework.

51

Chapter 3. MVE – The Multi-View Environment

Figure 3.3: Structure from Motion reconstruction showing the sparse point cloud
and the camera frusta.

We use the Multi-View Stereo for Community Photo Collections approach by
Goesele et al. [2007] which reconstructs a depth map for every view (Figure 3.4).
Although depth map based approaches produce lots of redundancy because many
views are overlapping and see similar parts of the scene, it e�ortlessly scales to large
scenes as only a small set of neighboring views is required for reconstruction. In a
way, this can be seen as an out-of-core approach to MVS. Another advantage of
depth maps as intermediate representation is that the geometry is parameterized in
its natural domain, and per-view data (such as color) is directly available from the
images. The excessive redundancy in the depth maps can be a burden; not so much
in terms of storage but processing power required for depth maps computation. On
the positive side, this approach has proven to be capable of producing highly de-
tailed geometry, overcoming the noise in the individual depth maps [Fuhrmann and
Goesele, 2011, 2014].

3.2.3 Geometry Reconstruction

Merging the individual depth maps into a single, globally consistent representation
is a challenging problem. The input photos are usually subject to large variations in
viewing parameters. For example, some photos show a broad overview of the scene
while others show small surface details. The depth maps inherit these multi-scale
properties which leads to vastly di�erent sampling rates of the observed surfaces.

Many approaches for depth map fusion have been proposed. The pioneering
work by Curless and Levoy [1996] renders locally supported signed distance �elds
(SDF) of the depth maps into a volumetric representation. Overlapping SDFs are
averaged, which e�ectively reduces noise, but also quickly eliminates geometric de-
tails if depth maps with di�erent resolution are merged. To this end, Fuhrmann and
Goesele [2011] present a solution based on a hierarchical SDF which avoids aver-
aging geometry at di�erent resolutions. We use the follow-up work by Fuhrmann

52

3.3. Reconstruction Guide

Figure 3.4: An input image and the corresponding depth map reconstructed with
multi-view stereo. Each depth value encodes the distance from the camera.

and Goesele [2014]. They present a point-based reconstruction approach (Floating
Scale Surface Reconstruction, FSSR), which additionally takes per-sample scale values
as input. In contrast to point-based approaches that do not use scale, such as Poisson
Surface Reconstruction [Kazhdan and Hoppe, 2013], the method is able to automati-
cally adapt the interpolation and approximation behavior depending on sample scale
and redundancy without explicit parameter settings. An important aspect of FSSR
is that it does not interpolate regions with insu�cient geometric data. Instead, it
leaves these regions empty which is useful for incomplete or open (outdoor) scenes.
This stands in contrast to many global approaches that often hallucinate geometry,
requiring manual cleanup.

In order to generate the input samples for FSSR, all depth maps are triangulated
and colored using the input image. The connectivity information is used to com-
pute a normal for each vertex. Additionally, the lengths of all edges emanating from
a vertex are averaged and used as scale value for the vertex. The union of all vertices
from all depth maps is then used as input to FSSR. An hierarchical, signed implicit
function is constructed from the samples, and the �nal surface (Figure 3.5) is ex-
tracted as the zero-level set of the implicit function using a hierarchical variant of
the Marching Cubes algorithm [Kazhdan et al., 2007].

3.3 Reconstruction Guide

We now demonstrate a practical walk-through of a reconstruction session starting
with photo acquisition all the way to the �nal geometry. Speci�cally, we point out
best practices and explain how to avoid common pitfalls.

53

Chapter 3. MVE – The Multi-View Environment

Figure 3.5: The �nal surface reconstruction with color (left) and shaded (right). No-
tice how even the engraved text is visible in the geometry.

Capturing photos: A dataset reconstructs best if a few simple rules are observed.
First, in order to successfully reconstruct a surface region, it must be seen from at
least �ve views. This is a requirement of the MVS algorithm to reliably triangulate
any 3D position. Photos should thus be taken with a good amount of overlap. Usu-
ally, unless the dataset becomes really large, more photos will not hurt quality, but
there is a tradeo� between quality and performance. As a rule of thumb, taking twice
as many photos as one might think is a good idea. In order for triangulation to work,
parallax is required. The camera should be re-positioned for every photo. (This is
exactly opposite to how panoramas are captured, where parallax in the images must
be avoided.) This is also important for SfM: Triangulating a feature track with in-
su�cient parallax results in a small triangulation angle and a poorly conditioned 3D
position. Figure 3.6 shows some input images of our example dataset.

Figure 3.6: Five out of 161 input photos of the Anton’s Memorial dataset.

54

3.3. Reconstruction Guide

Creating a scene: A view is a container that contains per-viewpoint data (such
as images, depth maps and other data). A scene is a collection of views, which make
up the dataset. A new scene is created using either the graphical interface of our
software, UMVE, or the command line toolmakescene. Technically, the scene appears
as a directory in the �le system (with the name of the dataset). It contains another
directory views/ with all views stored as �les with the extension .mve. Creating a
new scene will solely create the views/ directory for now. Importing photos will
create a .mve �le for every photo. This process will also import meta information
from the images (EXIF tags), which is required to get a focal length estimate for
every photo. If EXIF tags are not available, a default focal length will be assumed.
This, however, can lead to SfM failures if the default value is a bad guess for the
actual focal length. Figure 3.7 shows our graphical interface UMVE after importing
images into a new scene.

Figure 3.7: UMVE after creating a new scene from images. The left pane contains
a list of views. A view appears in red if no camera parameters have (yet) been re-
constructed. The central part is the view inspector where the individual images of
the selected view can be inspected. The right-hand side contains various contextual
operations, such as UI elements to start the MVS reconstruction.

SfM reconstruction: The SfM reconstruction can be con�gured and started using
UMVE, or the command line tool sfmrecon. The UI guides through feature detection,
pairwise matching and incremental SfM. What follows is the SfM reconstruction
starting from an initial pair, and incrementally adding views to the reconstruction.
Finally, the original images are undistorted and stored in the views for the next step.
Figure 3.8 shows a rendering of the SfM reconstruction with the sparse point cloud
and the camera frusta. Note how dense the frusta are spaced around the object to
achieve a good reconstruction.

55

Chapter 3. MVE – The Multi-View Environment

Figure 3.8: UMVE rendering the SfM reconstruction. The central element is the 3D
scene inspector. The right hand side o�ers various rendering options.

MVS reconstruction: Given images with camera parameters, dense geometry is
reconstructed using MVS. This can be done with either UMVE or the command line
tool dmrecon. The most important parameter is the resolution level at which depth
maps are reconstructed. A level of 0, or L0, reconstructs at the original image size,
L1 corresponds to half the size (quarter the number of pixels), and so on. Looking at
the resolution of recent digital cameras, a full-size L0 reconstruction is rarely useful
as �nding dense correspondences gets more di�cult, often leading to sparser depth
maps at much higher computational cost. Using smaller images (we often use L2),
the process is faster and depth maps become more complete. See Figure 3.9 for a
depth map computed at L2.

Surface reconstruction: The scene2pset tool combines all depth maps in a sin-
gle, large point cloud. At this stage, a scale value is attached to every point which
indicates the actual size of the surface region the point has been measured from.
This additional information enables many bene�cial properties using the FSSR sur-
face reconstruction approach [Fuhrmann and Goesele, 2014]. Then, the FSSR tools
compute a multi-scale volumetric representation from the points (which does not
require setting any explicit parameters) and a �nal surface mesh is extracted. The
mesh can appear cluttered due to unreliable regions and isolated components caused
by inaccurate measurements. The mesh is thus cleaned by deleting small isolated
components, and removing unreliable regions from the surface. See Figure 3.10 for
the �nal reconstruction.

56

3.4. Reconstruction Results

Figure 3.9: UMVE displaying the reconstructed depth map. The mapping of depth
values to intensities can be controlled using the histogram in the upper right corner.
Purple pixels correspond the unreconstructed depth values.

3.4 Reconstruction Results

In the following, we show results on a few datasets we acquired over time. We report
reconstruction times for all datasets in Table 3.1. A complete reconstruction usually
takes several hours, depending on the size of the dataset and the available computing
resources.

Der Hass: The �rst dataset is called Der Hass and contains 79 images of a massive
stone sculpture, see Figure 3.11. This is a relatively compact dataset with uniform
scale as the images have the same resolution and are evenly spaced around the object.
Notice that although the individual depth maps contain many small holes, the �nal
geometry is quite complete. Here, redundancy is key as all of our algorithms are
completely local and no explicit hole �lling is performed.

Notre Dame: Next, we reconstruct the façade of Notre Dame in Paris from 131 im-
ages downloaded from the Internet. We demonstrate that our pipeline is well suited
even for Internet images: The features we use are invariant to many artifacts in the
images, such as changing illumination. The MVS algorithm [Goesele et al., 2007]
uses a color scale to compensate for changing image appearance and is well suited
for community photo collections. The surface reconstruction [Fuhrmann and Goe-
sele, 2014] handles the unstructured viewpoints well; it will, however, not produce
a particularly good model colorization. This is because the original images have
non-uniform appearance and color values are computed as per-vertex averages. In
Figure 3.12, e.g., the portal appears slightly brighter as it has been reconstructed
from brighter images.

57

Chapter 3. MVE – The Multi-View Environment

Figure 3.10: UMVE rendering the reconstructed surface. The reconstructed vegeta-
tion has been manually cropped from the geometry with a bounding box in order to
isolate the statue.

Citywall: We conclude our demonstration with theCitywall dataset in Figure 3.13.
The 363 input images depict an old historic wall with a fountain. This dataset demon-
strates the multi-scale abilities of our system. While most of the views show an
overview of the wall, some photos cover small details of the fountain. These details
are preserved during reconstruction yielding a truly multi-resolution output mesh.

3.4.1 Runtime Performance

In Table 3.1, we present timings for all datasets in this chapter. The reconstruc-
tions have been computed on an Intel Xeon Dual CPU system with 6×2.53GHz per
CPU. Usually 4GB of main memory are su�cient for the smaller datasets. For large
datasets, we recommend at least 8 GB of main memory (such as for the Citywall
dataset, where surface reconstruction is quite demanding). Since most parts of the
pipeline are parallelized, multiple CPUs will considerably improve the computation
time. Currently we do not perform computations on the GPU as only few steps of
our pipeline would bene�t from GPU accelleration.

All datasets listed here use exhaustive matching; however, we investigated re-
ducing the time for feature matching. In order to quickly reject candidates that are
unlikely to match, we �rst match a few hundred low-resolution features instead of
the full set of featues. We evaluated this approach on the Citywall, the largest of our
datasets. As can be seen in Table 3.1, this reduces the matching time by about 2/3,
rejecting about 2/3 of all potential image pairs.

58

3.4. Reconstruction Results

Figure 3.11: The Der Hass dataset. The top row shows 4 out of 79 input images and
a depth map. The bottom row shows the reconstruction with and without color.

3.4.2 Limitations

A practical limitation in the presented system is the memory consumption in some
parts of the pipeline. For example, surface reconstruction keeps all points in mem-
ory for the evaluation of the implicit function. Since our algorithm is purely local,
we plan to implement out-of-core solutions to further scale the approach. Datasets
with many images pose a bottleneck in runtime performance of SfM. This is be-
cause every image is matched to all other images, resulting in a quadratic algorithm
in the number of images. Although low-resolution matching reduces runtime per-
formance, our system is not limited to, but suitable for a few hundred images.

59

Chapter 3. MVE – The Multi-View Environment

Figure 3.12: The Notre Dame dataset. The top row shows 3 images and 1 depth map
from a total of 131 input images. The bottom row shows the reconstruction with
color (left) and shaded (right). Images taken by Flickr users April Killingsworth, Alex
Indigo and Maria Boismain.

A general limitation of multi-view reconstruction approaches is the lack of tex-
ture on the geometry. Since stereo algorithms rely on variations in the images in
order to �nd correspondences, weakly textured surfaces are hard to reconstruct.
This is demonstrated in Figure 3.14. Although most of the depth map has been re-
constructed, Multi-View Stereo fails on the textureless forehead in the relief.

3.5 Software

The principles behind our software development make our code base a versatile and
unique resource for practitioners (use it) and for developers/researchers (extend it).

60

3.5. Software

Figure 3.13: The Citywall dataset. The top row shows 3 out of 363 input images
and one depth map. The middle row shows the full reconstruction in color, and the
bottom row shows the fountain and a small detail on the fountain.

One notable example of an extension (also relevant in the context of cultural her-
itage) is the texturing approach by Waechter et al. [2014]. The core functionality
of MVE is available as a small set of easy to use, cross-platform libraries. These
libraries solely build upon libjpeg, libtiff and libpng for reading and writing
image formats, and do not require any other external dependencies. We strive for a
user-friendly API and to keep the code size at a maintainable minimum. The correct-
ness of many components in our code is backed by unit tests. Our GUI application
requires (aside from our own libraries) the widely used QT framework for the user
interface. We ship with our libraries a few command line applications for the entire
pipeline to support computation on server machines without a graphical interface.
MVE is tested and operational under Linux, MacOS and Windows. The source code
is available from our website1.

1http://www.gris.informatik.tu-darmstadt.de/projects/multiview-environment/

61

http://www.gris.informatik.tu-darmstadt.de/projects/multiview-environment/

Chapter 3. MVE – The Multi-View Environment

SfM MVS FSSR
Dataset Images [min] [min] [min]
Der Hass 79 33+5 61 17
Notre Dame 131 109+8 32 26
Anton Memorial 161 180+10 121 88
Citywall 363 945+56 267 203
Citywall LRM 363 345+55 254 181

Table 3.1: Runtime performance for various datasets. The SfM timings are broken
down into feature detection with matching and incremental SfM. The bottom row
(Citywall LRM) shows the timing using low-resolution matching considerably re-
ducing matching time.

Figure 3.14: One image of a dataset with a weakly textured relief, and the corre-
sponding depth map. The depth map contains a big hole in the homogeneous region
as visual correspondences cannot reliably be established.

3.6 Conclusion

In this chapter we presented MVE, the Multi-View Environment, a free and open 3D
reconstruction application, relevant to the cultural heritage community. It is versa-
tile and can operate on a broad range of datasets. This includes the ability to handle
quite uncontrolled photos and is thus suitable for reconstruction amateurs. Our fo-
cus on multi-scale data enables to put an emphasis on interesting parts in larger
scenes with close-up photos. We belief that the e�ort and expert knowledge that
went into MVE is an important contribution to the community.

62

Chapter 4

Fusion of Depth Maps with Multiple
Scales

Abstract

Multi-view stereo systems can produce depth maps with large variations
in viewing parameters, yielding vastly di�erent sampling rates of the
observed surface. We present a new method for surface reconstruction
by integrating a set of registered depth maps with dramatically varying
sampling rate. The method is based on the construction of a hierarchi-
cal signed distance �eld represented in an incomplete primal octree by
incrementally adding triangulated depth maps. Due to the adaptive data
structure, our algorithm is able to handle depth maps with varying scale
and to consistently represent coarse, low-resolution regions as well as
small details contained in high-resolution depth maps. A �nal surface
mesh is extracted from the distance �eld by construction of a tetrahe-
dral complex from the scattered signed distance values and applying the
Marching Tetrahedra algorithm on the partition. The output is an adap-
tive triangle mesh that seamlessly connects coarse and highly detailed
regions while avoiding �lling areas without suitable input data.

Contents
4.1 Introduction . 64

4.2 Related Work . 66

4.3 Concepts . 67

4.4 Signed Distance Field . 69

4.5 Extracting the Isosurface . 73

4.6 Evaluation and Results . 75

4.7 Conclusion . 78

63

Chapter 4. Fusion of Depth Maps with Multiple Scales

Figure 4.1: Input photographs (top left) depicting objects at di�erent levels of detail.
Multi-view stereo yields depth maps (bottom left), which inherit these multi-scale
properties. Our system is able to fuse such depth maps and produce an adaptive
mesh (right) with coarse regions as well as �ne scale details (insets).

4.1 Introduction

Surface reconstruction is an important problem with huge practical applications and
a long history in computer graphics. The goal is to build high quality 3D surface
representations from captured real-word data. Important applications include the
preservation of cultural heritage, model reverse engineering, and prototyping in the
multi-media industry. Typical inputs to surface reconstruction algorithms are either
unorganized points or more structured data such as depth maps. In this work we
will focus on the latter kind of data, which is produced by range scanners and some
multi-view stereo algorithms. To fully capture an object of interest, multiple over-
lapping depth maps are necessary, each covering parts of the object surface. In a
general acquisition framework, these depth maps need to be aligned into a common
coordinate system and fused into a single, non-redundant surface representation.
This process is called integration or fusion of depth maps.

One source of depth maps are multi-view stereo (MVS) systems, which recently
attained renewed interest [Seitz et al., 2006]. These algorithms reconstruct the scene
geometry from photographs of the scene by regaining the 3D information lost dur-
ing capture. Current structure-from-motion systems [Snavely et al., 2006, 2008] are
able to recover the camera parameters of thousands of photographs under very un-
controlled conditions. This enables modern MVS algorithms to make use of the mas-
sive amount of Internet imagery for geometry reconstruction [Goesele et al., 2007;
Furukawa and Ponce, 2010].

We desire to construct surface representations from the depth maps delivered
by these acquisition systems, which is still an unsolved problem and di�cult for
various reasons. In particular, the photographs may be at di�erent resolutions and
show large variations in viewing parameters. The resulting depth maps inherit these
properties and imply vastly di�erent sampling rates of the surface. As in almost all
acquisition processes, individual depth map samples are not ideal point samples. In-
stead, they represent the surface at a particular scale depending on viewing distance,
focal length and image resolution. The extent of individual pixels when projected

64

4.1. Introduction

into 3D space can therefore dramatically vary in size. We call this the pixel foot-
print. The issue of scale and pixel footprints is crucial and requires particular care
when mixing samples at di�erent scales. To our knowledge, this has not been solved
convincingly in the surface reconstruction literature.

Apart from the scale issue, each depth map may be locally incomplete, i.e., contain
regions without reconstructed depth values, a common artifact of depth maps pro-
duced by multi-view stereo (see Figure 4.1). Additionally, the individual depth values
possess errors and deviate from the ground truth surface. These errors depend on
the technology used to create the depth maps. Naturally, MVS approaches generate
a di�erent kind of (and much larger) error than most active range scanning systems.
Given a set of depth maps of an object, some regions of the surface are typically
seen by more than one depth map. We want to make use of the redundancy to sup-
press, or average out noise in the individual depth samples. In contrast to techniques
that produce water-tight surfaces, we want to support incomplete representations
and leave unobserved regions empty while closing small holes. One well known ap-
proach that handles these issues but does not take scale information into account, is
volumetric range image integration (VRIP) [Curless and Levoy, 1996]. Our proposed
approach is volumetric, builds on some ideas developed in VRIP but solves the scale
issue while sharing advantageous properties. In particular, our contributions are

• a method to construct a discrete, multi-scale signed distance �eld capable of
representing surfaces at multiple levels of detail, yielding a hierarchical signed
distance �eld,

• a processing approach that supplements uncertain signed distance values at
high resolution with data from a coarser scale, regularizing the distance �eld,

• de�ning a continuous signed distance �eld from the hierarchical, incomplete
and scattered signed distance values by building a bounded tetrahedral com-
plex, and

• a surface extraction approach based on Marching Tetrahedra [Doi and Koide,
1991] to produce output surfaces that are adaptive to the scale of the input
data.

The remainder of this chapter is organized as follows: We �rst give an overview
of previous work (Section 4.2) before we describe our main concept in Section 4.3.
We show how to construct the hierarchical signed distance �eld and present a reg-
ularization technique by combining data at di�erent resolutions in Section 4.4. Our
approach for surface extraction is described in Section 4.5. We evaluate the pro-
posed algorithm and present results in Section 4.6. Finally we conclude our work in
Section 4.7.

65

Chapter 4. Fusion of Depth Maps with Multiple Scales

4.2 Related Work

Surface reconstruction is an important topic for which a large variety of techniques
have been proposed over the last decades. Most reconstruction techniques aim at
generating a piecewise linear surface representation (such as a triangle mesh) from
the input data. Methods can be classi�ed into reconstruction from unorganized
points and techniques that use the underlying structure of the data. Examples of the
former class include the classical work by Hoppe et al. [1992], Moving Least Squares
surfaces [Levin, 1998], RBF-based techniques [Carr et al., 2001; Ohtake et al., 2006],
Poisson surface reconstruction (PSR) [Kazhdan et al., 2006], and Voronoi-based re-
construction [Alliez et al., 2007]. These methods operate in the most general setting
and do not make any assumptions about the spatial structure of the data. The mo-
tivation to deal with a more speci�c type of input, namely depth maps, is that the
acquisition process often provides us with additional information such as connec-
tivity. Although we can always fall back to unorganized point-based reconstruction
techniques by projecting all pixels of the depth maps in 3D space to produce unor-
ganized point samples, intuition suggests that we should make use of the additional
information to improve upon the results.

In fact, most methods that deal with depth map integration apply a depth map
triangulation step �rst, where depth samples are connected in image space to form
a triangulated surface, which is then lifted to 3D space. We can classify these meth-
ods into parametric surface representations, surface-based methods, and volumetric
methods.

Early work in the �eld of depth map fusion impose an object-centered coordi-
nate system for surface integration. Chen and Medioni [1991] apply a global re-
parametrization of the depth maps into a uni�ed parameter space. Integration is
then simply a matter of averaging in the overlapping areas. Similarly, Higuchi et al.
[1994] integrate all data points into an object-centered parametric representation
and �t a deformable mesh in order to obtain a smooth model. These techniques as-
sume a simple topology such as a cylinder or a sphere, are therefore parametric, and
restrict the input to very simple and compact models.

Surface-based methods such as Mesh Zippering [Turk and Levoy, 1994] or the
co-measurements approach by Pito [1996] select one depth map for each surface
region, remove redundant triangles in overlapping regions, and glue the remaining
meshes together by connecting the boundaries. These methods can handle noise by
local surface averaging of positions, but are very fragile in the presence of outliers
and typically fail in regions of high curvature. Interestingly, these methods can, at
least in theory, handle arbitrary scales since they attempt to fuse triangulated depth
maps directly, and do not re-parameterize the data. Thus these methods work with
natural pixel resolution.

Hilton et al. [1996] introduced the idea of representing the surface implicitly us-
ing a signed distance �eld computed from the individual depth maps. Curless and
Levoy [1996] took this idea further by taking into account the direction of the sen-
sor uncertainty to model the anisotropic behavior of sensor noise of the acquisition

66

4.3. Concepts

device. As in most volumetric methods, the �nal surface can then be extracted as
zero-level set of the implicit function using standard techniques such as Marching
Cubes [Lorensen and Cline, 1987]. Hilton and Illingworth [1997] propose a method
to reduce memory consumption of implicit functions by constructing an adaptive
signed distance �eld stored in an octree. The octree level is adapted to surface cur-
vature bounding the approximation error. This approach still expects depth maps
with similar scale and adapts the octree with respect to geometric properties only.

Zach et al. [2007] cast the problem of depth map integration as a global opti-
mization problem, minimizing an energy functional consisting of a total variation
regularization with an L1 data �delity term. L1 is more robust than L2 data �delity
in the presence of noise and outliers, but is also very expensive: Although their
method produces impressive results, it is restricted to small and compact objects
sampled over regular volumes because computation time and memory consumption
quickly become prohibitive.

It is worth noting that Point Set Surfaces [Alexa et al., 2001] based on Moving
Least Squares [Levin, 1998] can produce implicit functions, which can be evaluated
over a hierarchy with respect to approximation error, the local feature size, or even
local scale information. Such a technique, however, requires that all sample points
(from all depth maps) are located in memory. Another disadvantage is that a Point
Set Surface can only de�ne a smooth closed surface. Guennebaud and Gross [2007]
describe a technique to de�ne object boundaries but this requires an additional clip-
ping normal for each boundary input point. Similar drawbacks also apply to most
other point-based reconstruction techniques.

In this work, we address both multi-resolution input depth maps as well as cre-
ating a �nal surface that is adaptive with respect to the scale of the input data. While
most volumetric methods operate on regular grids, some techniques use hierarchi-
cal data structures, including [Kazhdan et al., 2006; Hilton and Illingworth, 1997;
Soucy and Laurendeau, 1992]. Sometimes these (and similar) methods are said to
be “multi-resolution approaches”, which typically means that the resulting mesh is
adaptive. However, input data at various scales is not addressed. Further, we show
why methods such as VRIP [Curless and Levoy, 1996], Poisson Surface Reconstruc-
tion [Kazhdan et al., 2006] and Point Set Surfaces [Guennebaud and Gross, 2007]
cannot be modi�ed in an obvious way to handle multi-scale input.

4.3 Concepts

In the noise-free case, i.e., if all samples are perfect, we would like to reconstruct a
surface from the samples corresponding to the highest resolution information avail-
able at that location. Thus, adding in�nitely many depth maps with lower resolution
should not change the reconstruction. In contrast, many existing techniques con-
verge towards the lower resolution surface if more and more low resolution depth
maps are added. This issue is illustrated in Figure 4.2.

In VRIP, this behavior is very pronounced because the surfaces (obtained by tri-
angulating the individual depth maps) are resampled into the volume without taking

67

Chapter 4. Fusion of Depth Maps with Multiple Scales

Figure 4.2: Top: Point samples (red) with normals for a surface sampled at low and
high resolution (black curves). The reconstructed surface (green) degenerates only
slightly because the density of high resolution samples dominates. Bottom: Adding
more and more low resolution samples causes the surface to converge towards the
coarse geometry.

the scale into consideration. Combining a single low resolution depth map with a
high resolution depth map considerably in�uences the high-resolution geometry. In
PSR, this issue is much less apparent because PSR considers the density of the sam-
ples, and the amount of samples contained in a depth map varies with the scale of
the depth map. However, the same behavior can be observed when adding the same
density of low resolution samples and high resolution samples. Thus, in general, PSR
has the same convergence behavior for n low resolution depth maps with n→∞.

A weighting scheme that leaves out the contribution of coarse information is
hard to realize: In a regular volume like in VRIP, the required information is sim-
ply not present because the implicit surface is not represented at di�erent scales. In
point-based techniques, a single unreliable high-resolution sample potentially pro-
hibits the use of coarser information essential for reliable reconstruction.

A more formal view on the issue of scale is given by scale space theory [Lin-
deberg, 1998]. Given an image, the scale space of the image is constructed by in-
troducing a parameter t of scale and convolving the image signal with a Gaussian
�lter with variance t = σ2, thus representing the image as a one-parameter family
of smoothed images, which is called the scale-space representation of the image. This
theory also applies to 3D images such as signed distance �elds (SDF). We assume
that the SDF of a surface at a given resolution can be approximated by a low-pass
�ltered SDF of the same surface at higher resolution. The scale space parameter t has
the interpretation that image structures of size t ≥ 1 (in pixels) have largely been
eliminated at scale t2. This interpretation suggests that we should be careful when
combining depth maps at di�erent scales. In particular, if we want to keep structures
of a speci�c size in a depth map, say size t, we should avoid naïvly combining it with
another depth map at scale t2.

Another important aspect of our work is that noise in the depth maps is typi-
cally coherent between samples from a single depth map, but di�ers between sam-
ples from di�erent depth maps at a di�erent scale. In particular, this is di�cult for
point-based reconstruction techniques, since they can no longer exploit the fact that
the consistency in noise is tied to proximity. In fact, points that are spatially close

68

4.4. Signed Distance Field

together may have very di�erent amount of noise and should therefore be processed
independently. In our system, we assume a linear correlation between the scale and
the expected noise of a sample: For example, if the scale of two samples di�ers by a
factor of two, the depth uncertainty also doubles.

We assume that the input depth maps to our system are band-limited such that
they can be triangulated without signi�cant aliasing artifacts. While this is the case
for depth maps from most acquisition systems (such as multi-view stereo and struc-
tured light scanners), some technologies produce depth maps with di�erent char-
acteristics. For example, LIDAR scanners typically produce samples with a sample
spacing that is substantially larger than their footprint. This is due to the very small
point spread function of the LIDAR beam and these samples need additional �ltering
to suppress aliasing artifacts in the triangulated surface.

In the next section we describe the underlying ideas and properties of our tech-
nique. We decided to approach the reconstruction problem using a volumetric rep-
resentation of the input data. Note, however, that the principle behind our solution
applies to other representations as well.

4.4 Signed Distance Field

One of our key ideas is to separately aggregate the contributions of the individual
depth samples at their corresponding scale. We are therefore able to select a suitable
scale for �nal surface extraction and avoid mixing up di�erent scales. In order to do
this, we aggregate geometric information in the form of a signed distance �eld (SDF)
in scale space, i.e., the 3D Euclidean space plus one dimension of scale. We associate
a scale with each depth sample, which then only contributes at that speci�c scale
parameter in scale space at its 3D position. We explain how we de�ne the scale of a
sample in the next section.

So far averaging of information would not be possible because overlapping re-
gions in the depth maps rarely have exactly the same scale. A common solution is
to discretize the scale space into octaves, which yields a hierarchical representation.
The levels of the octaves correspond to a doubling of scale, and all samples within a
single octave are combined to produce average surfaces. In the (unlikely) case that
all depth maps contribute to a single octave only, the dataset has uniform scale, and
our technique gracefully degrades to the VRIP algorithm.

Assigning each sample to exactly one scale can lead to artifacts near the bound-
aries of the octaves, because contributions are distributed between two neighboring
octaves. We therefore transfer geometric information from the coarser octaves to
the �ner octaves, thus regularizing the �ne geometry using the coarser one. Un-
reliable measurements, such as a surface seen at a grazing angle, are pruned from
the hierarchical SDF (hSDF). Finally, we extract the isosurface from the hSDF by
triangulating the zero-crossing corresponding to the �nest geometric information
available.

69

Chapter 4. Fusion of Depth Maps with Multiple Scales

4.4.1 Construction

We take as input a set of registered depth maps, generated, e.g., by a range scanner
or a multi-view stereo approach, optionally with con�dence values and colors. The
depth maps are triangulated in image space and the triangulation is lifted to 3D. If
the depth disparity between two vertices of a generated triangle is above a threshold,
we assume a depth discontinuity and discard the triangle. To dynamically choose
the disparity threshold, we use our notion of the pixel footprint. The pixel footprint
F◦ is the width (or height) of a fronto-parallel square corresponding to the pixel
(u, v) in the image, projected to its 3D location ~x(u, v) on the object. We detect a
depth discontinuity between two neighboring pixels if the depth disparity is above
a threshold ρ · F◦, where F◦ is the footprint of the pixel closer to the camera, and
ρ is a user-de�ned constant. Triangles where at least one edge contains a detected
depth discontinuity are discarded. We achieve overall good results with ρ = 5.

The next step of our algorithm inserts the triangulated depth maps into the hier-
archical signed distance �eld. Our hierarchy corresponds to a primal octree, where
each cube has eight voxels in the corners and is subdivided into eight sub-cubes.
These sub-cubes create 27 new voxels, eight of these voxels coincide with voxels
of the parent node. We explicitly keep these duplicated voxels to represent infor-
mation at di�erent levels of the hierarchy. Technically, we do not explicitly store
the octree hierarchy, but insert all voxels into a map data structure, which maps the
voxel index (l, Il) to the voxel data. The index is composed of the level l and the
index Il ∈ {0, . . . , 23l−1}within that level and uniquely determines the position of
a voxel with respect to the root node’s axis aligned bounding box. Initially, the data
structure is empty and voxels are created as they are requested for the �rst time.

The triangles of each depth map are inserted one after another. For each triangle
a decision is made which octree level it a�ects. Again, we use our notion of the pixel
footprint to make that decision. Each vertex of the triangle carries an associated
footprint size from the depth map pixel that generated the vertex, and we declare
the smallest footprint F◦ of the three triangle vertices as the representative footprint
of the triangle F4. To sample the triangle, we enforce that the footprint F� of octree
cells is smaller or equal toF4·λ−1, where λ is the sampling rate. We typically set λ =
1 and de�neF� as the edge length of the octree cell (i.e., the spacing between voxels).
The appropriate octree level lT for triangle T is e�ciently found by taking the binary
logarithm of the root node’s footprint FR

� divided by the maximum sample spacing
F4 · λ−1:

lT = d log2

(
FR
� · λ
F4

)
e (4.1)

Once we computed the level lT of triangle T , we need to identify all a�ected voxels,
i.e., those voxels that fall in a band around the triangle. This is controlled by the
ramp length, see Curless and Levoy [1996] for details. The ramp length γ · F� is
calculated by multiplying the footprintF� of the octree cell with the ramp size factor
γ; thus the ramp length is constant for each octree level. The ramp length factor
should be chosen according to the expected maximum noise of the data set and the

70

4.4. Signed Distance Field

Figure 4.3: Truncated tetrahedron created by shooting rays from the sensor center
c through the vertices of triangle T . The ramp length is denoted by r.

scanning technology; reasonable parameter values are between γ = 2 for clean,
range scanned data and γ = 8 for MVS datasets with heavy noise.

To identify a�ected voxels, we extrude the triangle T by following the rays from
the sensor center through the triangle vertices. We bound the resulting cone and
limit the volume to the ramp length around the triangle; this yields a tetrahedron
with one corner truncated, see Figure 4.3. To simplify things, we create the bounding
box of the truncated tetrahedron and analytically identify the indices of all voxels,
yet created or not, inside the bounding box. We calculate the signed distance from
each voxel to the triangle by shooting a ray from the camera center through the
voxel and either create or update the voxel on hitting the triangle. When creating
a new voxel, we assign a weight value in addition to the distance to the voxel. Our
weight value is calculated similar to VRIP [Curless and Levoy, 1996]: We multiply
individual weights for angle deviation (the dot product between the ray and the
hit point normal), a truncated tent weight function of the absolute distance, and the
con�dence value at the hit point, linearly interpolated from the mesh vertices. When
updating a voxel x, we use the following cumulative rules [Curless and Levoy, 1996]:

Wi+1(x) = Wi(x) + wi+1(x) (4.2)

Di+1(x) =
Wi(x)Di(x) + wi+1(x)di+1(x)

Wi+1(x)
(4.3)

where di(x) and wi(x) are the signed distance and weight values from the ith range
image, and Di(x) and Wi(x) are the cumulative signed distance and weight values
after inserting the ith range image. For the rest of this chapter, we interchangeably
use the terms weight of a voxel and con�dence of a voxel.

A particular surface structure can appear quite di�erently depending on the scale
of the image (or depth map) representing the surface. Thus di�erent geometric rep-
resentations of the same surface may deviate from each other. This deviation can
potentially lead to duplicated surfaces in the output mesh, see Figure 4.4 for an il-

71

Chapter 4. Fusion of Depth Maps with Multiple Scales

Figure 4.4: Left: A high-resolution and a low-resolution depth map of the same sur-
face and the voxels that sample the depth maps at di�erent scales. Green and red
voxels are in front of and behind the surface, respectively. Right: The isosurface ex-
tracted from the distance �eld yields artifacts, which we avoid by inserting at coarser
scales.

lustration. To avoid duplicated surfaces, one could use in�nitely large ramps, such
that voxels at coarser levels are overridden, but this is not feasible in practice. If
the deviating surface at level l is, however, within the ramp of the surface of level
l + 1, the duplication is detected and overridden. To make this mechanism work
over several scales, we additionally insert the depth maps into a few coarser levels.
In our experiments, we always use four coarser levels.

4.4.2 Regularization

The hierarchical signed distance �eld now contains a sampled representation of all
input depth maps at various scales, depending on the footprints of the inserted tri-
angles. The representation is incomplete, i.e., contains holes in unseen or unrecon-
structed regions. But even in areas where data is available, it might be very unre-
liable, having a low con�dence value caused by, e.g., uncertain reconstruction or
surfaces seen at grazing angles. Our goal is to improve these unreliable samples by
transferring distance and con�dence measures from coarser levels where available.

We make a pass through the hSDF in coarse-to-�ne order, searching for occupied
voxels with con�dence wl below a threshold τ0. For each of these sub-con�dent
voxels at level l, we interpolate its distance value from distance values at coarser
level l − 1 if all required voxels at that level are occupied. The number of required
voxels varies, depending on the voxel position in the hierarchy: If a voxel at level
l coincides with a voxel at level l − 1, only the coinciding voxel is required for
“interpolation”. The other possible con�gurations require two, four, or eight voxels
at the coarser level for interpolation.

We perform a weighted blend of the distance and weight values. Since the weight
at the coarser level l − 1 can be arbitrary high, we adapt the reasoning of Mitchell
[1987] to this case (similar to Gortler et al. [1996]) and clamp the con�dence values
to τ0 to avoid oversmoothing. τ0 can be seen as a saturation threshold. The blended

72

4.5. Extracting the Isosurface

voxel x with distance d̃l and weight w̃l at level l then becomes:

d̃l =
dl · wl + dl−1 · (τ0 − wl) ·min(1, wl−1

τ0
)

wl + (τ0 − wl) ·min(1, wl−1

τ0
)

(4.4)

w̃l = wl + (τ0 − wl) ·min(1,
wl−1
τ0

) (4.5)

If the blended con�dence w̃l remains below a second threshold τ1 ≤ τ0, we delete
the voxel from the octree since it is not reliable enough for reconstruction. Voxels
that could not be updated due to missing information at level l− 1 with con�dence
wl < τ1 are deleted.

The saturation threshold τ0 as well as the con�dence threshold τ1 need to be chosen
according to the dataset. The con�dence threshold is similar to the one in VRIP,
that is often used to remove clutter in the reconstruction. If the dataset contains
little redundancy, i.e., most regions are observed by one or two depth maps only,
reasonable values are τ0 = 0.5 and τ1 = 0.1. For scenes with higher redundancy
where regions are seen by more depth maps, the thresholds can be increased.

After all voxels have been processed, there are still duplicated voxels at di�erent
levels in the hierarchy. Since all uncon�dent voxels have been deleted, we ultimately
trust in the remaining voxels at the highest resolution. Hence we take another pass
through the octree in �ne-to-coarse order and delete for each occupied voxel at level
l all coinciding voxels at coarser levels {l − i | 1 ≤ i ≤ l}.

4.5 Extracting the Isosurface

In the previous step we converted the hierarchical signed distance �eld to a scattered
signed distance �eld by deleting uncon�dent and duplicated voxels. Each voxel has
an associated distance value as well as optional per-voxel attributes. Although the
3D positions of the voxels are structured as they are derived from a primal octree,
isosurfacing turns out to be a di�cult problem.

Most prior methods apply the Marching Cubes (MC) algorithm [Lorensen and
Cline, 1987] to the implicit function, but this only works for regular samplings. Sev-
eral approaches have been developed to get around this limitation, some of them
require knowledge of the original signed distance function, others demand restric-
tions on the octree topology, i.e., require that the level di�erence between adjacent
leaf nodes must not be greater than one. Dual methods pose less restrictions but
require hermite data [Ju et al., 2002] or can introduce topological artifacts [Schae-
fer and Warren, 2005]. A more recent technique [Kazhdan et al., 2007] solves these
issues but requires an octree where each non-leaf node has all eight children allo-
cated. Schroeder et al. [2004] use a unique global point numbering (vertex indices)
to produce compatible triangulations across cell boundaries. We are, however, not
aware of a suitable modi�cation that generalizes the method to incomplete octrees.
So none of the direct methods we know of applies to our case.

73

Chapter 4. Fusion of Depth Maps with Multiple Scales

4.5.1 Creating the Complex

We therefore use a more general approach and consider our voxels as scattered sam-
ples of the signed distance �eld. We apply a global Delaunay tetrahedralization [Doi
and Koide, 1991] to all voxel positions. This yields a tetrahedral complex that covers
the convex hull of all voxels. The downside of this approach is that the shape of
the data domain (which is typically not convex) is not taken into account, and some
tetrahedra connect unrelated parts of the distance �eld with each other. Thus erro-
neous interpolation between unrelated regions becomes possible, creating phantom
surfaces.

To remove these tetrahedra, we de�ne a neighborhood relation on the voxels. We
then delete all tetrahedra that contain at least one edge between non-neighboring
voxels. When this relation is carefully designed, we can not only detect those tetra-
hedra that bridge unrelated parts of the implicit function but also exploit the generic
Delaunay tetrahedralization to �ll small holes in the surface, by keeping some tetra-
hedra that would have been removed otherwise.

Consider two voxels A and B at di�erent levels L(A), L(B). Without loss of
generality, assume A is the voxel at a coarser level. We de�ne voxels A and B as
neighboring ifB is contained in the cube that is spanned by the 27-neighborhood of
voxelA. Additionally, we enlarge this neighborhood by n voxels in each direction at
the �ner level of B. Thus, we can express the maximum extent of the neighborhood
in each direction at the level of B as 2L(B)−L(A) + n. The same rule applies for
voxels at the same level, which yields a neighborhood distance of 20 + n = n + 1.
We typically use n = 2 for very conservative hole �lling. See Figure 4.5 for an
illustration of the neighborhood relation in 2D.

Figure 4.5: The voxel neighborhood in 2D. The neighborhood of the center voxel
(red) at level l consists of all voxels at levels ≥ l within the blue square (the 9-
neighborhood at level l). In addition, the n-ring (here: 1-ring) around the blue square
at each level ≥ l is also part of the neighborhood of the red voxel.

74

4.6. Evaluation and Results

4.5.2 Extracting the Surface

We now apply the Marching Tetrahedra algorithm [Doi and Koide, 1991] to the re-
sulting tetrahedral mesh. The extracted surface mesh is adaptive, with fewer tri-
angles in regions where only coarse information is present and more triangles in
detailed regions modeled by high-resolution depth maps.

Applying Marching Tetrahedra is an attractive choice for isosurface extraction
because of its stability, simplicity and performance. The downside of this simple ap-
proach, however, is the vast amount of poorly shaped triangles that do not contribute
much to the accuracy of the surface. To address this, we optimize the tetrahedral-
ization for surface extraction similar to Schaefer and Warren [2005]. For each edge
in the tetrahedral mesh with a zero crossing that is located very close to one of the
edge vertices, we pull the vertex along the edge onto the crossing and set its distance
value to zero. In combination with a simple modi�cation of the Marching Tetrahedra
algorithm to prevent zero-area faces, this results in signi�cantly fewer degenerate
triangles, see Figure 4.6.

Figure 4.6: Optimized isosurface extraction. The original MT triangulation (left) and
the optimized triangulation (right) obtained by pulling vertices of the tetrahedral
mesh to the zero crossing.

4.6 Evaluation and Results

We now present some results on various datasets. Figure 4.7 shows a reconstruc-
tion of the Bunny dataset from laser scanned range images provided by the Stanford
Scanning Repository. This dataset has negligible scale variations, thus triangles are
typically inserted at a constant level. In this case, our algorithm gracefully degrades
to the behavior of and produces very similar results to VRIP. One di�erence, how-
ever, is that the parameters of our method are more intuitive. We simply set the
sampling rate λ = 1 and the ramp size factor γ = 4, and our algorithm determines
the appropriate voxel spacing, which needs to be explicitly speci�ed in VRIP. Since

75

Chapter 4. Fusion of Depth Maps with Multiple Scales

Figure 4.7: The Stanford Bunny dataset reconstructed from 10 range images provided
by the Stanford Scanning Repository.

Figure 4.8: The Temple data set from the multi-view stereo evaluation e�ort by Seitz
et al. [2006].

all depth values have more or less the same footprint, we can omit the regularization
step, setting τ0 = 0.

Figure 4.8 (right) shows a reconstruction of the Temple data set from the Mid-
dlebury MVS evaluation e�ort [Seitz et al., 2006]. We �rst recovered the depth maps
from the 312 input images using the MVS system by Goesele et al. [2007], and fused
all depth maps using ramp size factor γ = 8 and sampling rate λ = 1. Note that we
used the same MVS system for all reconstructions.

Our next dataset consists of over 700 photographs of the Cathedral of Notre
Dame de Paris downloaded from Flickr with vastly di�erent resolutions and view-
ing parameters. This dataset is challenging, contains very uncontrolled images taken
with di�erent cameras, thus the depth maps are tainted with a lot of noise (see Fig-
ure 4.9 for our surface reconstruction result). Since people tend to make most pho-

76

4.6. Evaluation and Results

Figure 4.9: Some input photographs of the facade of Notre Dame de Paris that show
the variations in scale (top row), and a surface reconstruction from about 700 depth
maps (bottom row). We want to thank the following Flickr users for permission to
use their images, ordered by appearance: Brian Je�ery Beggerly, Eric Wilcox, Yvonne
Yuen, Sara Hopkins, and Brian Beaver.

tos of the center portal, we focused our attention on that region for a comparison
with VRIP and Poisson, see Figure 4.10. To make the comparison fair, we speci�ed
a bounding box around the center portal for VRIP and Poisson, and reconstructed
only within this region. Even though VRIP and Poisson operated on a subset of the
data, our reconstruction shows more detail and yields a more crisp result, but also
more noise. The in�uence of coarse depth maps on the VRIP reconstruction quality
is clearly visible; for Poisson this e�ect is less visible but still noticeable.

We captured a dataset called Stones (118 photographs) that shows a metal door
next to a wall built of stones. Each image represents the geometry at a di�erent scale
as we moved closer to the wall while taking the images. The reconstruction consists
of various, seamlessly connected scales, from coarse regions to highly accurate ge-
ometry on the order of millimeters (see Figure 4.11).

Finally, we evaluate our reconstruction pipeline with a large MVS dataset called
Citywall (see Figure 4.1) consisting of 561 photographs and corresponding depth
maps. We reconstructed each depth map with resolution 500 × 375. In this scene,
the footprint of the individual depth samples varies dramatically. A focus in this
scene was the detailed reconstruction of the fountain with its two lion heads and

77

Chapter 4. Fusion of Depth Maps with Multiple Scales

Figure 4.10: A comparison of VRIP (left), Poisson surface reconstruction (middle) and
our reconstruction (right). Both VRIP and Poisson reconstructions are smoother but
also less detailed.

Name DMs Resolution Time Voxel
Notre Dame 715 mixed 7h + 1h + 4m 103 · 106

Stones 118 1000×750 px 2h + 23m + 2m 41 · 106

Citywall 564 500×375 px 6h + 1h + 4m 49 · 106

Table 4.1: Statistics of the reconstruction results. The individual timings are for
constructing the octree, building the tetrahedral mesh and extracting the isosurface,
respectively.

the replica of the historic city, see Figures 4.12 and 4.13.
We compare our full reconstruction with a Poisson surface reconstruction of

the fountain. To do this, we clipped all samples with a bounding box around the
fountain and provided the clipped point set to PSR. The reconstruction clearly shows
an overly smooth result, caused by many low-resolution samples from depth maps
taken further away from the surface (see Figure 4.14).

The running time and memory consumption of our algorithm is dependent on
the amount, resolution, and scale of the input depth maps. Reconstruction details
are given in the Table 4.1. The table shows the name of the dataset, the number of
fused depth maps, the resolution of the depth maps (if uniform), the time required
for reconstruction, and the number of generated voxels.

4.7 Conclusion

We presented a hierarchical, volumetric approach for depth map fusion that takes
into account the scale (or footprint) of the individual depth samples to extract adap-
tive, high-quality surfaces. Although the basic principle of our algorithm is inspired
by VRIP [Curless and Levoy, 1996], the new algorithm is, to our knowledge, the
�rst successful attempt to handle multi-resolution data. Our results show a clear
improvement over traditional depth map fusion techniques.

78

4.7. Conclusion

Figure 4.11: The top row shows some input images from the Stones dataset, and the
middle row shows the reconstructed scene. The bottom row shows a close-up view
of our reconstruction with and without texture (left, middle), and the corresponding
VRIP reconstruction (right).

79

Chapter 4. Fusion of Depth Maps with Multiple Scales

Figure 4.12: A detailed view on the fountain of the Citywall dataset.

Figure 4.13: A detailed view on a miniature replica of a historic city contained in the
Citywall dataset.

80

4.7. Conclusion

Figure 4.14: Poisson Surface Reconstruction on a small bounding box around the
fountain (left). The reconstruction yields a smooth and �at result whereas our result
(right) features more detailed geometry (e.g., compare the spout at the mouth).

81

Chapter 4. Fusion of Depth Maps with Multiple Scales

82

Chapter 5

Floating Scale Surface Reconstruction

Abstract

Any sampled point acquired from a real-world geometric object or scene
represents a �nite surface area and not just a single surface point. Sam-
ples therefore have an inherent scale, very valuable information that
has been crucial for high quality reconstructions. We introduce a new
method for surface reconstruction from oriented, scale-enabled sample
points which operates on large, redundant and potentially noisy point
sets. The approach draws upon a simple yet e�cient mathematical for-
mulation to construct an implicit function as the sum of compactly sup-
ported basis functions. The implicit function has spatially continuous
“�oating” scale and can be readily evaluated without any preprocess-
ing. The �nal surface is extracted as the zero-level set of the implicit
function. One of the key properties of the approach is that it is virtually
parameter-free even for complex, mixed-scale datasets. In addition, our
method is easy to implement, scalable and does not require any global
operations. We evaluate our method on a wide range of datasets for
which it compares favorably to popular classic and current methods.

Contents
5.1 Introduction . 84

5.2 Related Work . 86

5.3 Floating Scale Implicit Function 88

5.4 Analysis in 2D . 91

5.5 Sampling the Implicit Function 93

5.6 Results . 97

5.7 Discussion and Conclusion 108

83

Chapter 5. Floating Scale Surface Reconstruction

Figure 5.1: Input photographs (top left) depicting objects at di�erent levels of detail.
Multi-view stereo yields depth maps (bottom left), which inherit these multi-scale
properties. Our system is able to fuse such depth maps and produce an adaptive
mesh (right) with coarse regions as well as �ne scale details (insets).

5.1 Introduction

Surface reconstruction from sampled data is a long-standing and extensively studied
topic in computer graphics. Consequently, there exists a broad and diverse range
of methods with various strengths and weaknesses. One well-known example is
VRIP [Curless and Levoy, 1996], an e�cient and scalable method able to create high
quality models. Due to these properties, it was extensively used in the context of
the Digital Michelangelo project [Levoy et al., 2000] to merge the captured range
images. Since then many new techniques were developed that, e.g., use more ad-
vanced mathematical concepts, are able to smoothly interpolate holes, or employ
hierarchical techniques. These approaches come, however, often at the cost of lim-
ited e�ciency, scalability or certain quality issues. Moreover, they frequently treat
reconstruction as completely separate from the actual sample acquisition process.

Our goal in this chapter is to present a method that is able to e�ciently re-
construct high quality meshes from acquired sample data even for large and noisy
datasets using a virtually parameter-free method. Examples of such reconstructions
from hundreds of millions of samples are the Fountain dataset (Figure 5.1) and the
full-sized David statue (Figure 5.12) from the Digital Michelangelo project [Levoy
et al., 2000]. Following on earlier work, we attach a scale value to each sample
which provides valuable information about the surface area each sample was ac-
quired from.

The sample scale can in general be easily derived from the acquisition process
(e.g., from the sample footprint in a structured light scan or the patch size in a multi-
view stereo algorithm). This de�nition of scale that has been used in prior work
[Mücke et al., 2011; Fuhrmann and Goesele, 2011; Klowsky et al., 2012]. Knowing
scale allows us to reliably identify redundancy in the samples and avoid intermin-
gling data captured at di�erent scales (such as in multi-view stereo depth maps
reconstructed from images at various distances to the geometry, as shown in Fig-
ure 5.1). Without scale information, datasets containing non-uniform redundancy,
sample resolution or noise characteristics will, in general, lead to poor reconstruc-

84

5.1. Introduction

Figure 5.2: Sample density versus sample scale. Noisy input samples from four syn-
thetic, overlapping scans (left). Reconstructed surface with proper scale values (mid-
dle left) and with scale values estimated from the sample density (middle right). In
the former case, redundancy is properly exploited for noise reduction. In the latter
case, however, higher sample density leads to higher frequency noise in the recon-
struction. Similarly, the Poisson Surface Reconstruction [Kazhdan and Hoppe, 2013]
(right) also su�ers from higher frequency noise.

tions. Many methods do adapt the reconstruction resolution to the input data in
some way. These decisions, however, are often based on the density of the input
data. Figure 5.2 shows a common case that demonstrates why density and scale
are not always related: An increased sample density is often caused by data redun-
dancy. Being able to detect this redundancy makes the di�erence between proper
noise reduction and reconstructing higher frequency noise.

Conceptually, our method is based on reconstructing an implicit functionF from
the input samples. F has spatially continuous scale (�oating scale), i.e., the scale at
which surface details are represented by F varies continuously as de�ned by the
scale of the input samples. We then de�ne a discrete, scale-adaptive sampling of
F and extract an isosurface corresponding to the zero-level set of F . The implicit
function F is constructed as the sum of compactly supported basis functions. But
unlike, e.g., Radial Basis Functions [Carr et al., 2001] or Smooth Signed Distance Re-
construction [Calakli and Taubin, 2011] our method does not require the solution of
a global problem, is computationally tractable, and the implicit function can, given
the samples, readily be evaluated. The compact support leads to an approach that
reconstructs open meshes and leaves holes in regions where data is too sparse for
reliable reconstruction. This is useful for scenes which cannot be completely cap-
tured, such as outdoor scenes. This stands in contrast to methods such as Kazhdan
and Hoppe [2013], which perform excellent hole-�lling but often hallucinate geom-
etry in incomplete regions, requiring manual intervention.

Our contributions are:

• The reconstruction of a continuous, signed implicit function with spatially
continuous scale (�oating scale) using a simple mathematical formulation,

• a virtually parameter-free approach that selects the appropriate reconstruc-
tion scale and automatically adapts the interpolation and approximation be-
havior depending on the redundancy in the data,

85

Chapter 5. Floating Scale Surface Reconstruction

• no costly aggregation of samples in a pre-processing step so that the implicit
function can, given the input samples, readily and rapidly be evaluated, and

• an e�cient and scalable method that does not require any global operations
(such as applying graph cuts or solving large systems of equations).

In the remainder of this chapter we �rst review related work (Section 5.2). We
then formally introduce our surface reconstruction approach (Section 5.3) and per-
form experiments on synthetic and real-world data (Section 5.4). Next, we describe
the isosurface extraction (Section 5.5) and evaluate our approach (Section 5.6). We �-
nally discuss the limitations of our approach and conclude with an outlook on future
work (Section 5.7).

5.2 Related Work

We give an overview of closely related surface reconstruction algorithms with a
focus on how they handle scale, whether and which parameters they require, and to
what extent they use costly global optimizations to reconstruct the �nal mesh.

Volumetric Range Image Processing (VRIP) [Curless and Levoy, 1996] averages
surfaces (regardless of scale) in a regular grid using a volumetric approach based on
the signed distance function. Averaging a high resolution and a low resolution sur-
face yields an average surface quickly blurring the high resolution information. Our
method is similar in that it also uses the weighted average of locally estimated func-
tions to de�ne the implicit surface compactly around the input data. While VRIP’s
implicit function is approximately a signed distance function, the interpretation of
our function is more abstract and values do not represent distances. In contrast to
VRIP, (Screened) Poisson Surface Reconstruction [Kazhdan et al., 2006; Kazhdan and
Hoppe, 2013] uses the density of the samples as indicator for scale. Thus a denser
set of samples is assumed to originate from a surface sampled at a higher resolu-
tion. However, the sampling rate is not necessarily related to the sample resolution,
and an increased sampling rate may simply be caused by data redundancy (see Fig-
ure 5.2). As a consequence, Poisson Surface Reconstruction starts �tting to the sam-
ple noise and hallucinates geometric detail. Mesh Zippering [Turk and Levoy, 1994]
selects a triangulated depth map for each surface region, eroding redundant trian-
gles. It is worth noting that such an approach works with meshes at pixel resolution
and is thus, at least in theory, able to select high resolution surface parts and could
avoid averaging with low resolution surfaces. In practice Mesh Zippering is fragile
and fails in the presence of noise and outliers.

Using basis functions for surface reconstruction is a common approach, e.g., for
rendering of atomic structures [Blinn, 1982] or in the area of mesh-free particle-
based simulation [Yu and Turk, 2013]. A scalar �eld is de�ned as the sum of radially
symmetric or anisotropic basis functions, possibly with �nite support, and triangu-
lated or rendered at a �xed isovalue. Radial Basis Functions (RBFs) have been used
for surface reconstruction from (oriented) point clouds [Turk and O’Brien, 1999] but

86

5.2. Related Work

their work is limited to small problems and closed surfaces. Another inherent di�-
culty lies in de�ning o�-surface constraints to avoid the trivial solution. Although
advances made RBFs much more tractable to real world data in terms of size and
handling of noise [Carr et al., 2001], RBF �tting is global in nature and a large linear
system of equations must be solved to obtain the parameters of the basis functions.
Similarly, Calakli and Taubin [2011] present a variational approach to reconstruct
a smooth signed distance function which requires the global solution of a linear
system of equations.

A local approach is presented by Ohtake et al. [2003] who �t local shape func-
tions to oriented points and employ weighting functions to blend together the local
representations. The approach requires parameters such as the support radius for
�tting the local shape functions and an error threshold that controls the re�nement
of the hierarchal decomposition. All of these parameters, as well as the choice of
the local shape functions, depend on the density, redundancy and noise characteris-
tics of the input samples. Their approach is “multi-scale” in the sense that features
are reconstructed at di�erent resolution, however, multi-scale input samples are not
considered. The method is related to ours in that it constructs the implicit func-
tion as a weighted sum of local functions. In contrast, their functions �t multiple
points using local shape priors over an octree hierarchy, whereas our functions are
de�ned on a per-sample basis. Shen et al. [2004] present an approach based on an
implicit moving least-squares formulation. One key distinction of [Ohtake et al.,
2003] is that not only point constraints are considered when �tting the input data:
Integrated constraints are used over the polygons which allows the method to either
interpolate or approximate polygonal data.

Mixed-Scale: Although there exists a wealth of surface reconstruction literature,
few authors consider samples at di�erent scales as input. Integrating scale in the
reconstruction process allows us to identify and use redundancy to suppress noise,
and to distinguish between high and low resolution samples. Given su�cient high
resolution information, any amount of additional low resolution information should
not degrade the high resolution reconstruction.

Mücke et al. [2011] splat Gaussians for every input sample into a grid to produce
a 3D con�dence map. They use normalized Gaussians so that every sample con-
tributes the same con�dence but, depending on the scale of the sample, distribute
the con�dence over di�erently sized regions. The �nal surface is extracted as the
maximum con�dence cut through a graph de�ned by the grid. The downside of this
approach is the unsignedness of the map, and the exact maximum of the function
cannot be obtained by interpolation. The global graph cut optimization is also a
limiting factor. We draw inspiration from this approach in that we also use basis
functions whose size change with the sample scale. In contrast, our implicit func-
tion is signed, the zero level-set can be triangulated with sub-voxel accuracy, and
we do not require any global optimization.

Fuhrmann and Goesele [2011] present a multi-scale depth map fusion method.
The distance �elds of triangulated depth maps are rendered into a hierarchical signed

87

Chapter 5. Floating Scale Surface Reconstruction

distance �eld and, in contrast to VRIP, only surfaces at compatible scales are av-
eraged. Low resolution information is discarded in regions with su�ciently high
resolution information. The �nal surface is extracted as the zero level-set of the
implicit function. Although our work is inspired by the same basic idea of recon-
structing multi-resolution data, the approaches are quite di�erent. Where Fuhrmann
and Goesele [2011] assume triangulated depth maps with known sensor positions
as input, we rely on oriented, scale-enabled surface samples. Instead of a discretized
representation of the implicit function both spatially and in scale, our implicit func-
tion can be evaluated anywhere without interpolation in scale and space, solely from
the input samples. Thus scale selection becomes more �exible and is not limited to
neighboring octree levels. Like VRIP, Fuhrmann and Goesele [2011] cannot extract
surfaces in regions without data. Our implicit function extends beyond the input
samples to some degree, which enables us to �ll small holes and obtain more com-
plete reconstructions. Finally, our isosurface extraction does not require a global
Delaunay tetrahedralization, and is thus more e�cient and produces meshes with
fewer output triangles.

5.3 Floating Scale Implicit Function

In this section we describe the choice of our implicit function. We assume that N
input samples are given and equipped with a position pi ∈ R3, a normal ni ∈ R3,
‖ni‖ = 1, and a scale value si ∈ R. Optional attributes are the sample’s con�dence
ci ∈ R and a color Ci ∈ R3. We will treat color reconstruction only as subordinate
aspect of our work.

In the �rst step an implicit function F (x) : R3 7→ R is de�ned as the weighted
sum of basis functions fi. Every sample in the input set contributes a single basis
function which is parameterized by the sample’s position and normal, as well as its
scale value. This step does not require any preprocessing and F can readily be eval-
uated. The �nal surface is then given as the zero level set of F . In order to make
the approach computationally tractable, the basis function weightswi are compactly
supported such that only a small subset of all samples need to be evaluated to recon-
struct F at a position x ∈ R3. Due to the compact support of the basis functions, the
set {x | F (x) = 0} essentially de�nes a surface everywhere beyond the support of
the samples. We therefore only consider the zero level set inside the support where
the weight function W is strictly positive, i.e.

{x | F (x) = 0 ∧W (x) > 0}. (5.1)

5.3.1 Implicit Function

Like many approaches in literature, we reconstruct a signed implicit function which
is positive in front of and negative behind the surface (similar to a signed distance

88

5.3. Floating Scale Implicit Function

−3σ 0 3σ
−a

0

a

−3σ 0 3σ
0

b

−3σ 0 3σ
0

1

−3σ 0 3σ
0

1

Figure 5.3: The 1D components of the basis function fx, fy, and weight function wx
and wy. The peaks are a = 1/σe−0.5 and b = 1/σ

√
2π.

function). This function F is de�ned as a weighted sum of basis functions:

F (x) =

∑
i ciwi(x)fi(x)∑

i ciwi(x)
W (x) =

∑
i

ciwi(x) (5.2)

Function fi and weight wi are parameterized by the ith sample position pi, nor-
mal ni and scale si. The optional con�dence ci essentially scales the weight function
and can easily be omitted by setting it uniformly to ci = 1. In the following, with-
out loss of generality, we de�ne fi and wi as a one parameter family of functions
depending only on the scale si of the sample. The position pi and normal ni are
considered by translating and rotating the input coordinate x

xi = Ri · (x− pi) (5.3)

with rotation matrix Ri = R(ni) such that x is transformed into the local coordinate
system (LCS) of sample i. The LCS is de�ned such that the sample’s position is
located in the origin and the normal coincides with the positive x-axis. Because the
normal de�nes the LCS only up to a one dimensional ambiguity it is important that
the basis and weight functions fi and wi are de�ned in a rotation invariant manner,
such that the reconstruction is invariant to the choice of the LCS orthogonal to the
normal. Given a rigid transformation T and reconstruction operator R acting on a
point set P , this property ensures that T (R(P)) = R(T (P)).

5.3.2 Basis Function

Similar to Mücke et al. [2011], we use basis functions that, for every sample, con-
tribute the same “con�dence”, or volume, to the implicit function. Depending on the
scale of a sample, the volume is distributed over di�erently sized regions. As basis
function f we use the derivative of the Gaussian fx in the direction of the normal
with σ = si set to the scale of the sample. (We �ip the sign of the function because
it is de�ned to be positive in front of the surface, i.e. in the direction of the positive
x-axis.) Normalized Gaussians fy, fz are used orthogonal to the normal in y and z
direction.

fx(x) =
x

σ2
e

−x2
2σ2 fy(x) = fz(x) =

1

σ
√

2π
e

−x2
2σ2 (5.4)

89

Chapter 5. Floating Scale Surface Reconstruction

Figure 5.3 illustrates the function components in 1D. This yields the basis func-
tion

f(xi) = fx(x)fy(y)fz(z) =
x

σ42π
· e −1

2σ2
(x2+y2+z2) (5.5)

The function is rotation invariant around the normal because fyfz can be rewrit-
ten in terms of the distance

√
y2 + z2 to the normal. The integral of the function’s

absolute value is 1 and thus every basis function contributes the same volume to the
implicit function:∫∫∫

|f(xi)|dxi =

∫
|fx(x)|dx

∫
fy(y)dy

∫
fz(z)dz = 1 (5.6)

Since fy and fz are normalized Gaussians, their integrals are 1 by de�nition. We
integrate the absolute function |fx| because the point-symmetric parts cancel each
other out. |fx| does not require explicit normalization and

∫
|fx| = 1. Figure 5.4

(left) illustrates the function in 2D.

5.3.3 Weighting Function
In the following we design a polynomial weighting function w that has compact
support, falls smoothly o� to zero and gives more weight to the regions in front
of the surface. The justi�cation behind this is related to free space constraints and
occlusions as discussed by Curless and Levoy [1996] and Vrubel et al. [2009]: If
a sample has been observed, the existence of a surface between the observer and
the sample is not possible. Behind the sample, however, we cannot be sure of the
existence of a surface and want to reduce the weight quickly. We observe that f(xi)
has negligible in�uence beyond 3σ, and thus we chose 3σ as the point beyond which
the weighting function vanishes. The weighting function

w(xi) = wx(x) · wyz(
√
y2 + z2) (5.7)

is composed of a non-symmetric component in x-direction

wx(x) =


1
9
x2

σ2 + 2
3
x
σ

+ 1 x ∈ [−3σ, 0)
2
27
x3

σ3 − 1
3
x2

σ2 + 1 x ∈ [0, 3σ)

0 otherwise
(5.8)

and a rotation invariant component in y- and z-direction

wyz(r) =

{
2
27

r3

σ3 − 1
3
r2

σ2 + 1 r < 3σ

0 otherwise
(5.9)

r =
√
y2 + z2. (5.10)

Note that the function wyz is the positive domain of wx where x is replaced with the
distance to the normal r. The individual 1D components of the weighting function
are illustrated in Figure 5.3, and a 2D illustration is shown in Figure 5.4 (right).

90

5.4. Analysis in 2D

Figure 5.4: The basis and weighting functions in 2D in the interval [−3σ, 3σ]2. Left:
f(x, y) = fx(x)fy(y). Right: w(x, y) = wx(x)wy(y).

5.4 Analysis in 2D

There are many possible choices for both basis and weighting function. We chose
the Gaussian family of functions as basis function which empirically provides ex-
cellent approximation and extrapolation behavior. We will now demonstrate these
properties of the implicit function on simple synthetic 2D datasets as well as real
world data. In Section 5.6 we discuss alternative choices for both the basis function
and weighting function.

We visualize the implicit function using a color mapping where positive values
are colored green and negative values are blue. Bright colors correspond to small
values of F (near and also far from the isosurface) and darker colors to large values,
such that the isosurface is directly visible in the images. A gray color is used outside
of the support, where W is zero. Samples are indicated in red.

5.4.1 Synthetic Data

When designing a reconstruction algorithm, we are concerned with the interpola-
tion, extrapolation and approximation characteristics of the reconstruction operator.
On the one hand the isosurface should pass through the input samples, in particular
if the points are sparse and accurate. The implicit function should gracefully �ll the
gaps between the samples using smooth extrapolation. On the other hand, if many
redundant and noisy point samples are available, it should approximate the samples
and average out the noise instead of over-�tting the data. The presented formula-
tion of the implicit function automatically adapts to the data as demonstrated by the
following 2D experiments.

We provide 2D point samples (of a curve) with normals. In the �rst experiment
the scale is computed for each sample as the average distance to the two nearest
neighbors of the sample. We then multiply the computed scale with several factors,
see Figure 5.5. With a small factor, the function interpolates the samples but ex-
trapolation becomes less smooth. With an increasing factor, the reconstruction will
approximate the points and provide a smoother extrapolation, but a less accurate

91

Chapter 5. Floating Scale Surface Reconstruction

Figure 5.5: Reconstructions with increasing scale factor. The larger the factor the
more approximative is the reconstruction. Scale factors are 0.5 (left), 1.0 (middle)
and 2.0 (right).

Figure 5.6: Reconstructions with increasing redundancy converging towards the
original function. The left image shows the original function and 150 noisy sam-
ples. The reconstructions have been computed from 50, 500 and 5000 noisy samples,
respectively.

interpolation.
In Figure 5.6 we consider the sampling of a function with added noise to positions

and normals. The noise is uniform and about 5% of the bounding box of the samples.
As we increase redundancy (adding more noisy samples while keeping the scale of
the samples constant), the technique starts to increasingly approximate the data,
reducing the noise, until the reconstruction converges towards the original function.

5.4.2 Real-World Data

In practical cases the noise characteristics of the input data change considerably
depending on how the samples have been acquired. Our intention is to demonstrate
the ability of our reconstruction operator to handle both clean and extremely noisy
datasets without tuning any parameters (such as noise characteristics or the octree
level).

In the following experiments we use the Stanford Bunny and the Middlebury
Temple dataset (see Section 5.6 for details how these datasets were created). For

92

5.5. Sampling the Implicit Function

Figure 5.7: Reconstruction with real world data. Top row: Slice of the Stanford
Bunny. Bottom row: Slice of the Middleburry Temple. Illustration of the slice and
the 2D input point set (left), normalized implicit function (middle) and the weighted
implicit function (right).

each dataset, we intersect the set of samples with a plane and select only samples
whose distance to the plane is below a threshold. This yields 2D datasets with 2690
samples for the Bunny, and 157275 samples for the Temple, see Figure 5.7. While
the Stanford Bunny contains clean, range scanned samples, the Middlebury Tem-
ple is a very noisy multi-view stereo (MVS) reconstruction with many outliers. The
presence of isolated outliers as well as noise in both normals and sample positions
lead to many isovalue crossings further away from the true surface. The weighting
function, however, indicates which parts of the implicit function are important. In
practice, only isosurfaces above a certain weight are extracted, which removes spu-
rious isolated components. Note that this weight threshold is not a parameter to our
reconstruction operator. In fact, we postpose cleaning the geometry until after the
surface mesh has been extracted.

5.5 Sampling the Implicit Function

In this section we detail how the implicit functionF is e�ciently evaluated to extract
the isosurface F (x) = 0. All input samples are �rst inserted into an octree data
structure according to their scale value. The resulting octree hierarchy prescribes a
sampling of F by considering the positions in the corners of the octree leaf nodes.
The implicit function is then evaluated at these positions. We call these sample

93

Chapter 5. Floating Scale Surface Reconstruction

positions voxels to distinguish from the input sample points. Finally, the isosurface
is extracted from the octree using a variant of the Marching Cubes algorithm.

5.5.1 Octree Generation
In order to avoid aliasing when sampling the implicit function or evaluating the
function too far from the isosurface, we set bounds on the voxel spacing according
to the samples’ scale values. Recall that sample i has scale value si and the radius of
the sample’s support is 3si. We impose

S` ≤ si < S`−1 ⇔ S` ≤ si < 2S` (5.11)

where ` is the octree level at which the sample will be inserted, and S` is the side
length of an octree node at level ` (i.e., the voxel spacing). This forces a sample to be
inserted into an octree node with a side length S` of at most si but usually smaller:

1/2 si < S` ≤ si. (5.12)

We start with an empty octree without nodes. The �rst sample i is inserted in a
newly created root node with a side length of si and centered around the sample’s
position pi. When inserting subsequent samples, three cases can occur:

1. The new sample is outside the octree. In this case the octree is iteratively
expanded in the direction of the new sample until the new sample is inside
the octree. The sample is then inserted using cases 2 or 3.

2. The new sample’s scale is larger than the scale of the root node. Again, octree
expansion is used to create new, larger root nodes until the root has a scale
according to (5.12).

3. The new sample’s scale is smaller than the scale of the root node. In this case
the tree is traversed, possibly creating new nodes, until a node with a scale
according to (5.12) is reached.

Once a node is determined, the sample is inserted into that node.

5.5.2 Evaluating the Implicit Function
After inserting all samples in the octree, the octree is prepared for evaluation of the
implicit function. We enforce that nodes can be classi�ed into either inner nodes or
leafs. Inner nodes have all eight children allocated, and leafs have no children allo-
cated. The current octree, however, hasmixed nodeswhere only some of the children
are allocated. We make the octree regular by allocating the remaining unallocated
children of nodes which are not leafs. This creates new leafs and eliminates mixed
nodes.

A list of voxels (points at which the implicit function is evaluated) is created by
iterating all leaf nodes. Each leaf node generates eight voxels in the corners of the

94

5.5. Sampling the Implicit Function

node. This is a primal sampling as opposed to a dual sampling where voxels are
positioned in the center of the node. Since neighboring leaf nodes share common
voxels, every voxel is identi�ed with a unique ID and inserted into a unique set. The
implicit function is then evaluated at the voxel positions.

In order to evaluate the implicit function at position x, we design an e�cient
query on the octree that selects only samples which in�uence the implicit function
at x: The octree is recursively traversed and for every node a check is performed if
the node can possibly contain a sample which in�uences x. From Equation (5.11) we
know that node N contains samples with a scale of at most 2SN , where SN is the
side-length of N . Thus, x cannot be in�uenced by any sample in N if

‖x− center(N)‖ −
√

3
SN
2
> 3 · 2SN . (5.13)

The left side of the inequality is the worst case (smallest) distance from x to any point
in the node, and the right side is the largest possible in�uence radius of a sample in
N , i.e. 3 times the largest sample scale 2SN . If the inequality holds, the node can be
skipped without descending into child nodes. Otherwise, all samples i in the node
are considered if ‖x− pi‖ < 3si. The implicit function F (x) can then be evaluated
according to Equation (5.2) using all selected samples that in�uence x.

Scale Selection: Limiting the number of samples for evaluating the implicit func-
tion will have two e�ects: It speeds up the algorithm, but more importantly, it can
actually improve the quality of the reconstruction. On the one hand, the error to
the ground truth geometry is decreased by exploiting redundancy to account for
the sample noise. On the other hand, the surface error is increased by mixing sam-
ples with di�erent scales: As the formation of a sample usually happens through
some kind of integration process over a surface area, every sample corresponds to a
low-pass �ltered version of the original surface depending on the scale of the sam-
ple [Klowsky et al., 2012]. Mixing high and low resolution samples will thus have
the e�ect of degrading the isosurface towards low-pass �ltered geometry. This is
demonstrated with the synthetic experiment in Figure 5.8 (see also the supplemen-
tal material).

Our approach to this problem is based on the idea of balancing the positive e�ect
of redundancy (Figure 5.6) with the negative e�ect of mixing high and low resolu-
tion samples (Figure 5.8). These two properties are orthogonal to each other: Noise
reduction improves precision along the surface normal whereas low resolution sam-
ples have an impact along the tangent of the surface. Making a tradeo� between the
two is not straightforward. Fuhrmann and Goesele [2011] discard low resolution
samples by locally selecting the highest supported resolution from the discretized
scale-space representation. Similarly, we also discard low resolution samples. We
do, however, not discretize scale and can therefore choose a continuous cut-o� scale
using the following heuristic.

To evaluate the implicit function at voxel x, consider the set of samples whose
(compact) support overlaps with x. We now determine a cut-o� scale value smax

95

Chapter 5. Floating Scale Surface Reconstruction

Figure 5.8: Synthetic experiment: The top row shows the high resolution (HR) sur-
face (left) and a low-pass �ltered version of the high resolution (LR) surface (right).
The bottom row shows the result of mixing 100 HR samples with 1000 LR samples
(left) and mixing 100 HR samples with 10000 LR samples (right), causing the isosur-
face to degrade towards the low-pass �ltered geometry.

and only consider samples i with si < smax to reconstruct the implicit function at x.
Conceptually, we de�ne smax = sx ·fnoise, where sx is a reference scale and fnoise can
be chosen according to the noise properties of the data. In our implementation, the
reference scale sx is chosen as a robust 10th percentile of those scale values a�ecting
x. (Finding the nth percentile is a linear operation and does not require sorting all
samples.) We set fnoise = 2 in all of our experiments.

5.5.3 Isosurface Extraction

At this point, the samples are no longer required and the isosurface can be extracted
from the implicit function de�ned at the octree voxels. This is, however, more com-
plicated than with a regular grid. In the regular case, each cube can be processed
individually using Marching Cubes [Lorensen and Cline, 1987] and the result is guar-
anteed to be watertight. In the case of an octree, however, di�erent decisions are
made on either side of a cube face (because of depth disparity in the octree), which
leaves cracks in the surface. We use the isosurface extraction algorithm proposed
by Kazhdan et al. [2007] which yields a crack-free and highly adaptive mesh directly
from the octree hierarchy.

The resulting surface contains many degenerate triangles, which is typical for
Marching Cubes-like algorithms. To obtain a well-behaved mesh we apply a sim-
ple cleanup procedure, see Figure 5.9. We �rst identify needle triangles, which are
erased by collapsing the short edge. A check that the normals of adjacent triangles
do not change too much prevents topological artifacts. Afterwards cap triangles are
removed by collapsing vertices with only three adjacent faces. A �nal pass of needle
removal is performed as new needles may be created by the previous operation. This
simple procedure usually reduces the number of triangles in the mesh by about 40%.

96

5.6. Results

Figure 5.9: Two types of degenerate triangles, caps and needles (left). The mesh
cleanup procedure (right) with the initial mesh, needles cleanup, caps cleanup, and
another needles cleanup. The edges to be collapsed are shown in red.

5.5.4 Color Reconstruction

We use a simple approach to evaluate a second implicit function that yields a color
value for every position x. The implicit function has form (5.2) but uses simpler basis
functions. fi is replaced with the constant sample color Ci and the weight function
wi is replaced with a narrow 3D Gaussian with σ = 1/5·si. Here, σ is chosen so small
to avoid blurring the color and to obtain a crisp texture. Although this weighting
function does not have compact support, the weight evaluated at ±3si away from
the sample is in the order of 10−10 and thus negligible.

5.6 Results

We perform a thorough evaluation of our approach on three types of datasets. In
Section 5.6.1 we compare our results on controlled data with Mesh Zippering [Turk
and Levoy, 1994] and VRIP [Curless and Levoy, 1996]. We use the Middlebury bench-
mark in Section 5.6.2 to rank our reconstruction on multi-view stereo data. Finally,
in Section 5.6.3, we show the performance of our algorithm on mixed-scale data.
For all datasets we also compare with the quasi-standard reconstruction algorithm,
(Screened) Poisson Surface Reconstruction (PSR) [Kazhdan and Hoppe, 2013]. In-
stead of comparing to an exhaustive number of algorithms, we limit ourselves to
PSR as one representative algorithm that uses point density to estimate per-sample
scale in the reconstruction process. Extensive comparison of PSR with other algo-
rithms has been performed by Kazhdan and Hoppe [2013].

5.6.1 Range Scanner Data

The availability of both range data and �nal reconstructions in the Stanford Scanning
Repository allow us to qualitatively compare our reconstructions with those from
the website performed with Mesh Zippering [Turk and Levoy, 1994] and VRIP [Cur-
less and Levoy, 1996]. We obtained the input point sets to our system by aligning
the range data using transformations provided by the Stanford Scanning Repository.
This yields one mesh per range scan in the global coordinate system. Normals are

97

Chapter 5. Floating Scale Surface Reconstruction

Figure 5.10: Reconstruction of the Stanford models. The left column shows the
Bunny reconstruction using Mesh Zippering [Turk and Levoy, 1994] (top) and our
reconstruction (bottom). The middle and right column show the Dragon and Ar-
madillo reconstructed with VRIP [Curless and Levoy, 1996] (top) and with our algo-
rithm (bottom). Our algorithm reveals more detail on all models.

computed for every vertex from the adjacent triangles. The per-vertex scale value
is set to the average length of all edges emanating from the vertex. Connectivity
information of the range scans is discarded afterwards.

StanfordModels: Figure 5.10 compares several reconstructions from the Stanford
Scanning Repository with our own reconstructions. The Stanford Bunny dataset
contains 10 range scans, the Dragon 71 and the Armadillo a total of 97 range scans.
Our algorithm is able to make use of the redundancy in the data without blurring the
result, which reveals details unavailable in the Mesh Zippering and VRIP reconstruc-
tions. The surfaces created with PSR look visually very close to our reconstruction,
so we omit a visual comparison here. Instead, we provide a quantitative evaluation in
Table 5.1. For this evaluation we split the input point set and use 90% of the samples
for reconstruction, and the remaining 10% of the samples to evaluate the RMS error
and mean distance to the reconstructed surface. Our method shows performance on
par with PSR on these datasets.

Incomplete Data: We now demonstrate the behavior of our method on data with
holes and boundaries. Due to the local nature of the basis functions, the implicit

98

5.6. Results

Figure 5.11: Reconstruction behavior with incomplete data. The input point set from
a single range image (left) and our reconstruction leaving holes in regions with in-
su�cient sampling (right).

function is unde�ned beyond the support of the samples. Although the implicit
function is able to close small gaps in the sampling of the surface, it does not close
larger holes. Figure 5.11 illustrates this behavior on a single range scan of the Stan-
ford Bunny.

Michelangelo’s David: To showcase the scalability of our approach, we recon-
struct Michelangelo’s David provided by the Stanford 3D Scanning Repository, see
Figure 5.12. The dataset is a VRIP reconstruction of non-rigidly aligned range scans
and contains a total of 472 million input samples. Although our reconstruction re-
quired a considerable amount of memory (114 GB RAM) and processing time (4
hours on a machine with 8 AMD Opteron Quad-Core processors), we were not able
to process the data with PSR within a memory limit of 250 GB at any octree level

Error comparison on Stanford Datasets
Bunny Dragon Armadillo

RMS (PSR) 1.419789 2.950294 5.527238
RMS (ours) 1.394920 2.930433 5.439365
Mean (PSR) 0.970039 1.560911 1.706402
Mean (ours) 0.911296 1.512578 1.676785

Table 5.1: Quantitative evaluation on Stanford datasets. 90% of the samples are used
for reconstruction, the remaining 10% for evaluating the mean and RMS distance to
the reconstructed surface. The measurements are in units of 10−4.

99

Chapter 5. Floating Scale Surface Reconstruction

Figure 5.12: Reconstruction of Michelangelo’s David from 472M input samples. The
dataset is kindly provided by the Stanford 3D Scanning Repository.

larger than 11. We succeeded in running Streaming PSR [Bolitho et al., 2007] at a
level of 14, which took about a day, but still resulted in a very low resolution output
mesh.

5.6.2 Multi-View Stereo Data

Next, we evaluate our approach on multi-view stereo (MVS) data. We produce the
input samples to our algorithm in the following way: A depth map is computed
for every input image using the freely available MVS implementation of Goesele
et al. [2007]. Similar to the range scanner data, scale is computed for every vertex in
the triangulated depth maps as the average length of all edges emanating from that
vertex. But in contrast to the scanner data, every pixel in the depth map actually

100

5.6. Results

Figure 5.13: Reconstruction of the Middlebury Temple. The Poisson Surface Recon-
struction (left), our colored (middle) and shaded reconstruction (right).

corresponds a surface region larger than the pixel: Every depth value is the result of
a photo-consistency optimization on patches of a certain extent, which has a (low-
pass) �ltering e�ect on the reconstructed surface [Klowsky et al., 2012]. We used a
patch size of 5x5 pixels and, empirically, found that multiplying the scale by 2.5 (i.e.
the “radius” of the patch) yields good results. Finally, the union of all vertices from
all depth maps is used as the input point set.

The Temple Full dataset from the Middlebury benchmark [Seitz et al., 2006] con-
tains 312 images. All MVS depth maps yield a total of 23 million input samples. Our
reconstruction is available as Fuhrmann-SG14 on the Middlebury evaluation page
for quantitative comparison. (Note that the �nal geometry does not only depend on
our reconstruction technique, but also on the MVS algorithm). We visually compare
our result with PSR at an octree depth of 10 in Figure 5.13. The PSR reconstruction
looks slightly sharper around the edges but also has some geometric artifacts. In
contrast to PSR, our algorithm does not require any parameter tuning.

5.6.3 Multi-Scale MVS Data

Our algorithm gracefully handles both clean and uniform scale datasets, but excels
in handling multi-resolution datasets. In the following we perform an evaluation on
a multi-scale multi-view stereo dataset where images are taken at various distances
to the subject. This yields depth maps with vastly di�erent sampling rates of the
surface. In contrast to algorithms using point density, our algorithm produces sharp
geometry even in the presence of many low resolution samples, and smooth results
in low resolution regions. We use PSR as a representative algorithm to demonstrate
the shortcomings of traditional methods on multi-scale data. We then compare our
results with other multi-scale approaches.

We �rst register the input images using Structure from Motion software. Similar

101

Chapter 5. Floating Scale Surface Reconstruction

Figure 5.14: Multi-scale reconstruction of the Elisabeth dataset. The top row shows
our reconstruction with color (left), with shading (middle) and with false coloring
of the scale (right). The bottom row shows 5 of 205 input images with varying scale.

to the Temple Full dataset, we reconstruct dense depth maps using the MVS imple-
mentation by Goesele et al. [2007] and use the samples of all depth maps as the input
to our algorithm.

Elisabeth Dataset: Due to technical limitations (memory consumption and pro-
cessing time) with PSR, we prepared a smaller dataset called Elisabeth to perform
the comparison. The dataset contains high resolution regions with detailed carvings
and reliefs, as well as regions captured at a much lower resolution, see Figure 5.14.
Although PSR at level 9 produces a smooth result in the low resolution region, it
cannot reconstruct the high resolution details. PSR at level 11 reconstructs the �ne
details but produces a poor result in low resolution regions: It cannot reliably detect
redundancy and, due to the too large octree level, reconstructs the noise in the data.
A visual comparison of the reconstruction can be found in Figure 5.15.

Fountain Dataset: We now compare our algorithm on an MVS dataset with a
much larger extent. We captured 384 photos of an old fountain yielding a total of
196 million input samples (about half the size of the David dataset). While most of
the scene is captured in lower resolution, one of the two lion heads is captured with
many close-up photos. Figure 5.16 shows some input images as well as an overview
of the whole reconstruction spanning more than two orders of magnitude di�erences
in scale. Figure 5.17 shows some geometric details on the fountain.

We compare our reconstruction with two other mixed-scale approaches, namely
the work by Mücke et al. [2011] (SurfMRS) and Fuhrmann and Goesele [2011] (DMFu-
sion) in Figure 5.18. Due to excessive use of memory with SurfMRS on the full point
set, we cropped and reconstructed only the detailed region around the fountain for

102

5.6. Results

Figure 5.15: Comparison with PSR on the Elisabeth dataset. Top row: Reconstruc-
tion with PSR at level 11, which reconstructs details (left) but produces noise in low
resolution regions (right). Middle row: PSR at level 9 smoothly reconstructs low res-
olution regions but fails on the details. Bottom row: Our method reproduces both
high- and low resolution regions appropriately.

the comparison. Many details are lost in the SurfMRS reconstruction because the
graph cut optimization often cuts through details, such as the teeth and the spout
at the mouth. While DMFusion leaves small holes in the surface, our algorithm is
able to deliver a watertight result. Although all algorithms managed to properly dis-
tinguish between low and high resolution regions, our algorithm achieves a more
detailed yet smoother reconstruction.

5.6.4 Alternative Basis and Weighting Functions

In the following we present alternative basis and the weighting functions. In par-
ticular, we replace our basis function with signed distance ramps similar to VRIP
[Curless and Levoy, 1996], and we evaluate the radially symmetric B-spline used in
the work of Ohtake et al. [2003] as weighting function.

103

Chapter 5. Floating Scale Surface Reconstruction

Figure 5.16: The Fountain dataset. The top row shows the full colored reconstruction
of the site. The bottom row shows 4 of 384 input images depicting the whole site,
the fountain and two details on the fountain.

Basis Function: An approximate signed distance function for sample pi with sur-
face normal ni is given by

fi(x) = 〈x− pi | ni〉. (5.14)

Because this function does not attenuate orthogonal to the surface normal, it results
in a smoother implicit function but less accurate sample interpolation. The integral
of the function is unbounded with a constant slope in the direction of the normal,
which results in large values if evaluated far away from the surface. This aspect
makes the function less useful in multi-scale scenarious because low-resolution sam-
ples tend to dominate the implicit function and degrade geometric details. This is
demonstrated in Figure 5.19, which shows a high-resolution region of a large multi-
scale dataset.

Weighting Function: While we advocate the use of a weighting function with
non-symmetric behavior in the direction of the normal, simpler choices are possi-
ble. Ohtake et al. [2003] use the compactly supported, radially symmetric, quadratic
B-spline B(3

2
‖xi‖
3σ

+ 1.5) with radius 3σ and centered around the origin. For most
datasets this weighting function produces very comparable results. However, sim-
ilar to Vrubel et al. [2009], the non-symmetric weighting function suppresses more

104

5.6. Results

Figure 5.17: Details in the Fountain dataset.

105

Chapter 5. Floating Scale Surface Reconstruction

Figure 5.18: Comparison of details in the Fountain dataset using SurfMRS (left), DM-
Fusion (middle) and our result (right).

artifacts caused by noise and outliers, as demonstrated on the Temple dataset in
Figure 5.20.

5.6.5 Runtime Performance

In this section we report runtime and memory performance of our system. Table
5.2 lists datasets with the number of input samples, and the time required for the
reconstruction. The reconstruction time is split into sampling the implicit function,
which consumes most of the time, and isosurface extraction. We also report the peak
memory usage of the system, which is measured as the maximum resident memory
size of the process. All benchmarks are performed on a Intel Xeon Dual CPU system
with 6×2.53GHz cores per CPU. The reported wall time for evaluating the implicit
function uses all cores. Isosurface extraction, however, is limited to a single core.

106

5.6. Results

Figure 5.19: Comparison of reconstructions using signed distance ramps (left) and
our basis function using Gaussians (right). The distance ramps are particularly
harmful in mixed-scale datasets.

Figure 5.20: Reconstruction using the radially symmetric B-Spline weighting func-
tion (left) and our non-symmetric weighting function (right). Our weighting func-
tion produces fewer artifacts caused by noise and outliers in the input data.

107

Chapter 5. Floating Scale Surface Reconstruction

Dataset Number Recon. Peak Output
Name of Samples Time Memory Vertices
Bunny 362 K 30s + 9s 320 MB 277 K
Dragon 2.3 M 83s + 17s 603 MB 455 K
Armadillo 2.4 M 63s + 13s 553 MB 293 K
David 472 M 247m + 38m 114 GB 81.9 M
Temple 22.8 M 5m + 5s 1.96 GB 176 K
Elisabeth 39.3 M 19m + 1m 4.39 GB 2.3 M
Fountain 196 M 178m + 6m 19.9 GB 10.2 M

Table 5.2: Runtime performance for various datasets. The timings are broken down
into implicit function evaluation and surface extraction. The peak memory is mea-
sured as the maximum resident memory size of the process.

5.7 Discussion and Conclusion

We presented a point-based surface reconstruction method that considers the scale
of every sample and enables an essentially parameter-free algorithm. It can handle
both very redundant and noisy as well as controlled datasets without any param-
eter tuning. This �exibility comes at the price of providing a scale value for every
input sample, which is typically easily obtained. The method has been shown to
compute highly detailed geometry, gracefully degrades given imperfect input data
such as noisy points and normals, outliers, large holes or varying point density. The
mathematical concept behind the approach is very simple and will likely inspire
more research in this direction. For example, studying the impact of various basis
functions on the reconstruction properties can lead to new reconstruction operators.

Our approach requires normals and scale information for every input sample.
Several approaches for estimating normals have been proposed, e.g. by Hoppe et al.
[1992] and Alliez et al. [2007]. Scale values, however, cannot reliably be inferred
without information about the formation of the samples. In the special (but unlikely)
case, where the sample density is globally related to the scale of samples (which is
assumed in many methods), the scale values can be computed from the sample spac-
ing, for example using the average distance to the k nearest neighbors. If this is not
the case, the estimation of scale will fail, and surface reconstruction can produce un-
desirable results. In particular, the algorithm loses the ability to exploit redundancy
for noise reduction and thus reconstructs high frequency noise, as demonstrated in
Figure 5.2.

Although our implementation scales well to huge datasets and the runtime per-
formance is competitive with state-of-the-art methods, sampling the implicit func-
tion is a time-consuming step because the Gaussians which we use as basis functions
are expensive to evaluate. Even though increasing redundancy does not consider-
ably increase memory consumption, it does increase computation time. The reason
is that more samples in�uence each voxel and more basis functions need to be eval-

108

5.7. Discussion and Conclusion

uated.
Due to the local nature of our algorithm, the implicit function is not de�ned be-

yond the support of the samples. Although our approach is able to close small gaps
in the surface sampling, it cannot close larger holes and leaves these regions empty.
This is suitable for open scenes or geometric objects which are only partially cap-
tured. On the other hand, this behavior stands in contrast to many global approaches
which perform excellent hole-�lling but often hallucinate low resolution geometry
in incomplete regions, requiring manual intervention.

We believe that the approach is particularly well suited for out-of-core imple-
mentation and distributed reconstruction because of the local nature of our formu-
lation. We would like to investigate this direction in future work. This opens the
door for high-quality city-scale surface reconstruction projects, impossible with cur-
rent state-of-the-art approaches.

109

Chapter 5. Floating Scale Surface Reconstruction

110

Chapter 6

Direct Resampling for Isotropic Sur-
face Remeshing

Abstract
We present a feature-sensitive remeshing algorithm for relaxation-based
methods. The algorithm �rst resamples the reference mesh with an ex-
act vertex budget. The vertex distribution can be either uniform or non-
uniform according to a density function. The newly created samples
on the mesh surface are triangulated by constructing a mutual tessella-
tion. The algorithm then optimizes the positions of the mesh vertices by
building weighted centroidal Voronoi tessellation. We achieve a precise
isotropic placement of the samples using Lloyd’s relaxation method, but
other relaxation schemes are applicable.
The proposed algorithm handles diverse meshes of arbitrary genus and
guarantees that the remeshed model has the same topology as the in-
put mesh. The density function can be de�ned by the user or derived
automatically from the estimated mesh curvature. A subset of the mesh
edges may be tagged as sharp features to preserve the characteristic ap-
pearance of technical models. The new method can be applied to large
meshes and produces results faster than previously achievable.

Contents
6.1 Introduction . 112

6.2 Related Work . 114

6.3 Preliminaries . 115

6.4 Building the Initial Mesh . 116

6.5 Improving Vertex Positions 120

6.6 Results . 122

6.7 Conclusion and Future Work 125

111

Chapter 6. Direct Resampling for Isotropic Surface Remeshing

Figure 6.1: Stages of the remeshing algorithm: The �nal vertex distribution is con-
trolled by a density function de�ned over the original mesh (top left). The mesh is
resampled and meshed using a mutual tessellation (top right) that contains both, old
vertices (red) and the new vertices (blue). Old vertices are deleted (bottom left) and
Lloyd relaxation is applied to achieve a precise isotropic sample placement (bottom
right), which results in well-shaped triangles.

6.1 Introduction

A very popular discrete surface representation is the triangle mesh which is sim-
ple to handle and can be rendered e�ciently by modern graphics hardware. Mod-
elling a surface in CAD applications as well as digitizing real-world objects typically
results in a triangle mesh at some point. These di�erent sources lead to meshes
with strongly varying characteristics. For example CAD meshes often have few and
skinny triangles to represent a certain surface as exactly as possible, whereas meshes
from an acquisition pipeline usually contain many small triangles as a result of the
scanning process. Depending on the target application such as rendering, numerical
simulation, transmission, or compression, meshes often need to undergo complete
remeshing prior to usage. Important desired properties are, e.g., the complexity of

112

6.1. Introduction

the mesh in terms of number of vertices, the regularity of the connectivity, the qual-
ity of the triangle shape, and the sample distribution on the surface.

The goal of this work is to provide a simple but �exible remeshing framework
that is capable of handling input meshes with diverse characteristics and produces
remeshes with high-quality triangles shapes. The output of our remeshing algorithm
is a new triangle mesh with either uniform or adaptive vertex distribution and almost
equilateral triangles; thus, our method excels in the area of high-quality remeshing.
The process is controlled by various parameters, for example the number of vertices
in the remesh, the degree of adaptiveness to surface curvature, and whether remesh-
ing should preserve surface features such as creases and sharp corners. We argue
that an optimal remeshing approach should be

• fast and e�cient to be able to handle large meshes,

• simple but e�ective for ease of implementation,

• general and robust to handle meshes with arbitrary genus and boundaries, and

• accurate so that the resulting mesh is as close as possible to the input mesh
and the vertex sampling follows the prescribed density function.

As shown in the following section, none of the currently available remeshing
approaches ful�ll all of these criteria. We therefore introduce a novel remeshing
algorithm that is designed to meets these criteria. In particular,

• it employs a direct resampling strategy and does not rely on global parametriza-
tion for meshing,

• it is applicable to large meshes since resampling provides a bene�cial initial
vertex distribution,

• it is fast because we use e�cient algorithms and CPU parallelization in the
relaxation framework, and

• it is accurate because it refers to the input mesh geometry during remeshing.

The algorithm can be roughly divided into three stages: Preprocessing, resam-
pling, and precise vertex placement (see Figure 6.1). In the �rst stage, the mesh cur-
vature is estimated and features are extracted. The second stage creates a new mesh
with an exact vertex budget and proper sample distribution. The algorithm proceeds
with the third stage that produces a precise isotropic placement of the samples by
constructing a weighted centroidal Voronoi tessellation (WCVT).

This chapter is organized as follows: Section 6.2 gives an overview of related
work. Section 6.3 discusses preliminaries and shortly explains the pre-processing
step. Section 6.4 describes how the reference mesh is resampled and robustly meshed
to build an initial mesh. The new vertices are then re-distributed to achieve a precise
isotropic placement as explained in Section 6.5. We present results in Section 6.6 and
conclude with a discussion and thoughts about future work in Section 6.7.

113

Chapter 6. Direct Resampling for Isotropic Surface Remeshing

6.2 Related Work

Remeshing of surfaces is an evolving �eld with a long history. It is used in many
applications, e.g., in mesh editing, animation, simulation, compression, or for the
generation of progressive meshes with levels of detail. Creating high-quality meshes
strives to achieve two goals: isotropy, i.e., almost equilateral triangles and an overall
good vertex distribution, typically adapted to surface curvature. High-quality meshes
can be created by constructing the centroidal Voronoi tessellation (CVT) on the sur-
face of the mesh. The CVT is a Voronoi tessellation whose vertices, or sites, are
centroids of their corresponding Voronoi cells [Du et al., 1999]. In a weighted CVT
(WCVT) the sites coincide with the center of mass rather than the geometric cen-
troid. Such a tessellation can be constructed by applying Lloyd’s relaxation method
[Lloyd, 1982] to the sites. Due to its slow convergence, it requires, however, a good
initial placement of the samples.

Alliez et al. [2003] proposed an isotropic remeshing algorithm that �rst dis-
tributes a given number of vertices over the mesh surface. Meshing and relaxation,
however, is performed in a global parameter domain. Such a global parametriza-
tion may not exist in general and involves many delicate problems, such as cutting
closed and high-genus meshes, numerical instabilities, and the �nal lifting phase
which brings the results back to the 3D domain.

To avoid the global parametrization of the input mesh, Surazhsky et al. [2003]
proposed an isotropic remeshing algorithm based on a local parametrization ap-
proach [Surazhsky and Gotsman, 2003]. The method �rst brings the mesh to the
required amount of vertices using edge-collapse and vertex-split operations. Lloyd
relaxation is then applied in a framework that parametrizes only a small part of the
reference mesh required to relocate a vertex to the centroid of its associated Voronoi
cell. One drawback is that the mesh, once at the exact vertex budget, may not nec-
essarily exhibit a sample distribution that complies with the density function. Since
this makes Lloyd’s iteration practically infeasible, Surazhsky et al. propose an area-
equalization procedure with much faster convergence to approximate the required
sample distribution. However, this approximation still uses local vertex relocations,
may get stuck in local optima and does not give any guarantees on the produced
sampling.

To alleviate the problems with these two approaches, Fu and Zhou [2009] pro-
pose to �rst apply a Poisson disc sampling on the input mesh and then apply the
relaxation framework from Surazhsky et al. [2003]. While this approach achieves
excellent local distribution after sampling, it is computationally extremely costly
even for meshes with only a few thousand vertices. Yan et al. [2009] avoid ex-
plicit 2D parametrization. Instead, they repeatedly build the Restricted Voronoi Di-
agram for the mesh surface and apply a quasi-Newton optimization method which
achieves faster convergence than Lloyd relaxation alone. The approach tolerates
input meshes with degenerate triangles which is problematic for parametrization-
based methods; they back-project samples to the surface but consequently need to
obey sampling theorems to preserve homeomorphism. The proposed method is

114

6.3. Preliminaries

strictly tailored towards building the CVT and does not support other relaxation
schemes.

Similar to Fu and Zhou [2009], we aim at combining the advantages of Alliez
et al. [2003] with the local parametrization framework as proposed by Surazhsky
et al. [2003] to construct the CVT directly on the mesh. We argue, however, that the
precise initial local sample distribution provided by the Poisson disc sampling is not
necessary. Similar distributions can quickly be achieved using a few Lloyd iterations.
Our algorithm is signi�cantly faster and therefore applicable to much larger meshes
than the approach by Fu and Zhou [2009].

6.3 Preliminaries

The input to the remeshing framework is an orientable 2-manifold triangle meshMo

of arbitrary genus, any number of boundaries and possibly multiple connected com-
ponents. Unless normals are provided with the input data, we estimate them using
tessellation invariant angle-weighted pseudo-normals [Thuermer and Wuethrich,
1998]. We consider the input mesh to approach a C1-continuous surface every-
where except at boundaries and feature-tagged edges. Feature edges receive special
treatment during remeshing and will be preserved in the �nal meshMf . The vertex
distribution ofMf will be either uniform or comply with a density function de�ned
over the reference meshMo.

To maintain �delity to the reference mesh during relaxation, the vertices of
Mf are restricted to the surface ofMo at all times: A barycentric coordinate bT =
(b1, b2, b3), bi ≥ 0,

∑
bi = 1 with respect to a triangle T = 4v1,v2,v3 uniquely de�nes

a position v =
∑
bivi on T . We use the notation (b, T)M to refer to any position

on meshM and call that pair a barycentric reference ontoM.

6.3.1 Pre-Processing

To make the method applicable to technical data sets, e.g. models of mechanical parts
which typically contain sharp edges, a set of features may either be speci�ed by the
user or procedurally extracted. We use a naive thresholding of the dihedral angle and
manual tagging but more robust techniques can be applied [Jiao and Heath, 2002].
We also consider boundary edges (with only one adjacent face) as feature edges
and handle this case equally. A feature skeleton is built by chaining all these edges
together; such a skeleton may contain both open and closed backbones, where open
backbones are terminated by corner vertices and edges of closed backbones form a
loop.

A density function can be speci�ed or estimated from the mesh geometry. We
use simple formulas from Dyn et al. [2001] to approximate the Gaussian and absolute
mean curvature at the mesh vertices, combine and clamp them to remove outliers
and apply a contrast exponent γ to control the degree of adaptiveness. Gradation
of the density function is in�uenced by iteratively applying a weighted Laplacian

115

Chapter 6. Direct Resampling for Isotropic Surface Remeshing

smoothing operator on the density values. See Alliez et al. [2003] for more details
on how density gradation in�uences the �nal mesh.

The mesh is then prepared for resampling by applying a simple and fast algo-
rithm by Sander et al. [2007] which re-arranges the triangles of the mesh to improve
vertex cache e�ciency. We will show later why this is a useful property for our re-
sampling procedure. Finally, the input meshMo is taken as reference mesh for the
remeshing algorithm and remains unchanged for the rest of the pipeline.

6.4 Building the Initial Mesh

We aim at distributing a user-de�ned number of samples over the mesh surface such
that the sample distribution complies with the prescribed density function. The sam-
ples are �rst partitioned between the surface and the feature skeleton. Both parts
are then processed separately: The surface is sampled by drawing random barycen-
tric coordinates for each triangle. The feature skeleton is rebuilt from scratch by
accurately sampling the backbones according to the density function. The vertex
positions of the new skeleton are exact and remain unchanged during remeshing.
The new samples from both the smooth parts and the skeleton are �nally meshed
together using a mutual tessellation [Turk, 1992].

6.4.1 Sample Partitioning
We �rst integrate the density function over the surface and the feature edges and
obtain two mass quantities Ds and Df . In the uniform case, this corresponds to the
area and length of the surface and the features, respectively. To partition the vertex
budget S between the surface and the features, we apply formulas from Alliez et al.
[2003] and obtain the number of samples Ss and Sf to distribute on the surface and
the feature skeleton.

6.4.2 Triangle Sampling
To sample the surface, we traverse the triangles and deduce the number of samples
ST for each triangle T , ST = Ss

Ds
·DT , where DT is the mass of T . We round ST to

the nearest integer. This creates a signed quantization error, which is propagated to
the next unprocessed face in order.

The task of traversing all triangles for sampling raises the question of a suitable
processing path over the mesh. One could use a random ordering of the triangles
which produces reasonable results with minimal e�ort, but teleports the local quan-
tization residual to arbitrary locations. Alliez et al. [2003] generalized the concept
of error di�usion to obtain a connected processing path over the mesh triangles. In
this method, the local quantization error is di�used to adjacent faces which keeps
the error local. In contrast, we decided to take advantage of the fast reordering algo-
rithm from Sander et al. [2007] to optimize the triangle ordering for spatial locality
in the pre-processing step. This creates an adequate �ow over the mesh triangles

116

6.4. Building the Initial Mesh

and delegates the local quantization residual to the next face in processing order.
In contrast to the error di�usion approach, we do not need to store the propagated
error for multiple unprocessed triangles at the processing boundary.

For e�ciency we distinguish between non-uniform and uniform triangle sam-
pling, see Figure 6.2.

Non-uniform triangle sampling

Given the density values d1, d2, d3 > 0 at the corresponding vertices of T , we inter-
polate the density d(b) = d1b1 + d2b2 + d3b3. Without loss of generality, we assume
that T lies in the xy-plane. We normalize the density g̃ := d/

∫
T
d and use g̃ as

joint distribution of b1, b2. We compute the marginal density g1 and the cumulative
density function (CDF) F1

g1(b1) =

∫
T

g̃(b1, b2)db2 F1(x1) =

∫ x1

0

g1(b1)db1. (6.1)

The CDF is inverted by solving a cubic equation. We then draw a sample from a
uniform distribution on [0, 1] and transform it into a sample b1 with distribution g1.
With this sample, the conditional distribution of b2 is given as g2(b2 | b1) = g̃(b1,b2)

g1(b1)
.

We compute the CDF

F2(x2 | b1) =

∫ min(x2,1−b1)

0

g2(b2)db2 (6.2)

and solve the resulting quadratic equation to invert it. Again, a uniformly distributed
sample is transformed into a sample b2 with distribution g2(· | b1), see [Hormann
et al., 2004] for details.

Uniform triangle sampling

To generate uniform random barycentric coordinates we draw two uniformly dis-
tributed random numbers x̃1, x̃2 in [0, 1]. We reorder these values by assigning
x1 = min(x̃1, x̃2), x2 = max(x̃1, x̃2), which leads to distributions with expected
values 1/3 and 2/3 for x1 and x2, respectively. The lengths of the three intervals be-
tween 0, x1, x2, 1 are then taken as barycentric coordinate b = (x1, x2−x1, 1−x2).
This yields samples with a uniform distribution over any triangle.

6.4.3 Skeleton Sampling
Instead of randomly sampling the feature skeleton and applying Lloyd relaxation in
1D to feature samples, we calculate the exact sample positions analytically. To emu-
late the WCVT for the 1D case, we place samples such that each sample is associated
with the same amount of mass.

Once the total massDf (integrated density) of the feature skeleton and the num-
ber of samples Sf to distribute on the skeleton is known, we calculate the optimal

117

Chapter 6. Direct Resampling for Isotropic Surface Remeshing

Figure 6.2: Triangle sampling: Uniform (left), adaptive with increasing density from
top to bottom (middle) and adaptive sampling after Lloyd relaxation (right).

a) b)

c) d)

Figure 6.3: Mutual tessellation with features: a) A Delaunay triangulation is con-
structed locally in each triangle of the original mesh. b) Feature edges are then
resampled while inserting new triangles. c) Degeneracies are eliminated by �ipping
edges afterwards. d) Features remain stable during relaxation.

118

6.4. Building the Initial Mesh

sample spacingR−1f (or more formally the inverse sampling rate) for the whole skele-
ton, expressed in mass per sample. The optimal mass for the samples of the skeleton
are calculated as follows, whereBo is the number of open backbones, Sf the number
of samples to distribute and C the number of corner vertices in the skeleton:

R−1f =
Df

Bo + Sf − C
(6.3)

To proceed, we derive similar quantities for each backbone: To calculate the op-
timal number of samples SB for a backbone we divide the backbone mass by the
sample spacing R−1f , round to the nearest integer, and obtain a non-fractional num-
ber of samples to distribute on the backbone. This rounding creates a signed quan-
tization error which is delegated to the next backbone in order. The optimal sample
spacing per backbone R−1fb is then derived by dividing the backbone mass by the
non-fractional sample amount.

We now aim at placing a sample every R−1fb mass on the backbone. We traverse
the edges of the backbone in order, cumulate the mass and place a sample whenR−1fb
mass has been collected. The exact position of a sample within an edge of length
l is then calculated by solving the following equation for x2 ∈ [0, l], where Dleft is
the remaining mass to collect from a known position x1 to a yet unknown position
x2 (Dleft is equal to R−1fb if the last sample was inserted on the same edge, otherwise
Dleft is the remainder from previous edges):∫ x2

x1

d(x) dx = Dleft with d(x) = (1− x

l
)d1 +

x

l
d2 (6.4)

Note that d(x) is the density function with density values d1 and d2 at the edge
vertices, linearly interpolated over the edge with length l. The new sample is placed
on the current edge at position x2 and the process is repeated for the same edge but
starting from x2, possibly passing edge boundaries until all edges of the backbone
are processed.

6.4.4 Meshing the Samples
The sampling process provides a set of surface and feature samples on the reference
mesh surfaceMo. We must connect these samples to obtain a valid triangle mesh
consisting of the new samples only. Several surface reconstruction algorithms can
generate connectivity information for a set of points. These techniques, however,
do not incorporate the underlying connectivity information ofMo and cannot guar-
antee a topologically equivalent surface. Peyré and Cohen [2006] exploit geodesic
information to build a Voronoi diagram directly on the mesh and connect samples of
neighboring Voronoi cells, but this is computationally expensive. We follow a more
e�cient approach and create a mutual tessellation [Turk, 1992] of both, the original
and the new vertices. The original vertices are deleted afterwards.

We start constructing the mutual tessellation by inserting samples into the tri-
angles of the original mesh. An incremental Delaunay triangulation [Guibas et al.,

119

Chapter 6. Direct Resampling for Isotropic Surface Remeshing

1992] is employed using the mesh triangle as dummy triangle at in�nity. New sam-
ples are generated by drawing random barycentric coordinates, as described in Sec-
tion 6.4.2, until the desired number of samples has been inserted. Each new sample is
equipped with a barycentric reference (b, T)Mo that tracks the exact position on the
reference surface. To improve numerical stability, we bound new samples away from
already existing samples and edges using ε-checks on the barycentric coordinates. If
a sample violates the ε-condition, a new sample is drawn. Note that these checks are
independent of the triangle size and thus do not a�ect the sampling density in re-
gions with smaller triangles. This procedure creates a Delaunay triangulation within
each triangle, preserves the edges of the original mesh, but introduces degenerate
triangles around these edges, see Figure 6.3.

After merging the surface samples with the mesh, the feature samples are in-
serted by splitting the skeleton edges of the original mesh at the positions calculated
in Section 6.4.3. This is possible because no original edges have been modi�ed in the
previous step. Splitting edges may create additional degenerate triangles but is nu-
merically stable: All operations are performed on the vertex positions only and not
on possibly degenerate quantities such as triangle areas. Finally, after both surface
and feature samples have been inserted into the mesh, a global constrained Delaunay
triangulation is restored by �ipping edges of the mesh if the angles opposite to the
edge sum to more than 180◦. This eliminates all degenerate triangles, see Figure 6.3.

The mutual tessellation is then cleaned by deleting the original vertices. When
deleting a vertex, all adjacent triangles are also removed from the mesh, which leaves
a hole in the triangulation. This hole is re-triangulated directly in 3D using a pro-
cedure similar to Schroeder et al. [1992], and we merely check that newly intro-
duced edges are not already present in the mesh. This guarantees that the mesh
topology is preserved. It happens that some original vertices cannot be deleted if
re-triangulation fails, thus the exact vertex budget is slightly o�. Although this is
typically not a big problem in practice, we address this issue by randomly deleting
newly introduced vertices (but no feature vertices) until the vertex budget is reached.

Overall, the resampling procedure results in a new mesh with a sampling density
that globally complies with the prescribed density function. The new vertices are
equipped with vertex references that point to positions on Mo. This information
will be used as initialization for vertex relaxation to optimize the mesh.

6.5 Improving Vertex Positions

To improve the sampling of the new mesh, we construct a weighted centroidal
Voronoi tessellation (WCVT). One way to do this is Lloyd’s algorithm [Lloyd, 1982].
The Lloyd relaxation is a simple iterative method that consists of three basic steps:

• Build the Voronoi diagram of the samples,

• move each sample to the centroid of its Voronoi cell,

• iterate the procedure until convergence.

120

6.5. Improving Vertex Positions

Lloyd’s algorithm is a particularly slow process with bad convergence behaviour,
i.e., the main improvement is achieved in the �rst few Lloyd iterations and perfor-
mance of convergence quickly decelerates. However, the initial vertex distribution
obtained from the sampling process is globally correct and locally already a good
approximation of the density function. This allows for e�ective, progressive im-
provement of the mesh with fast convergence.

Building the WCVT

To construct the WCVT, we closely follow the approach of Surazhsky et al. [2003]:
Instead of constructing the Voronoi diagram for the whole mesh at once, a Voronoi
cell is created locally for each vertex, which is easily derived from the local Delaunay
property. A single vertex v and the adjacent triangles are �attened and the Voronoi
cell for v is constructed. A density value is assigned to v and to each vertex of the
Voronoi cell polygon. The Voronoi cell is triangulated by connecting the polygon
vertices with v, and the cell’s centroid is calculated by summing the centroids of the
individual triangles, weighted with the triangle mass. This yields a new position v∗
in the planar domain and v is relocated to that position.

Vertex Relocation

The task of relocating vertex v to v∗ boils down to calculating a new barycentric
reference (b∗, T ∗)Mo for v∗. To perform the relocation, a patch ofMo is created that
contains a small region required to relocate the vertex, yet large enough to be reused
for spatially close relocations. The method in [Surazhsky and Gotsman, 2003] �rst
gathers triangles of the reference mesh in a breadth-�rst search to create a roundish
patch in 3D. The patch is then �attened using a conformal parametrization with
�xed circular boundary using Floater’s Mean Value Coordinates [Floater, 2003].

Optimizations

Surazhsky also proposed a caching scheme with fast patch lookup that keeps patches
for a small amount of time, which drastically improves the performance of the ap-
proach. To make e�ective use of the caching system, we reorder the vertices of the
mesh prior to relaxation. We extend the e�cient triangle reordering algorithm from
Sander et al. [2007] in the following way: Once triangles have been reordered, we
traverse the triangles and issue the vertices in order of their �rst appearance. This
creates a processing path over the mesh vertices with spatially low variance. The
path allows subsequent relocations to reuse patches that have recently been cre-
ated and reduces the average cache miss ratio for large meshes that require cache
cleanups.

Another observation is that Lloyd relaxation is easily parallelizable on the CPU
by partitioning the vertices into equally large sets for processing in separate threads.
Due to thread locking mechanisms, performance is not linear with the amount of
threads and we achieved best results with 8 threads. We do not delete patches after

121

Chapter 6. Direct Resampling for Isotropic Surface Remeshing

Figure 6.4: The horse model with about 50k vertices and the remeshed model with
6k vertices.

time but threshold memory consumption to trigger cleanups, which is a more thread
friendly approach. For each cleanup, cached patches are sorted by access time and a
�xed portion of patches (20% in our experiments) with earliest access time is deleted
from the cache. Experiments show that a cache of 256 MB is su�cient to handle
meshes with about a million vertices without deleting any patch from the cache.

6.6 Results

Figure 6.4 shows an adaptive remesh of the horse model and a visualization of the
mesh curvature used as density function for remeshing. The original model has
about 50k vertices and was downsampled to 6k vertices. The algorithm took about
2 seconds for resampling and 5 seconds for 100 Lloyd iterations with 8 threads. Fig-
ure 6.5 shows an example where the Hygieia model was upsampled from 8k to 10k
vertices. Figure 6.6 shows several more models where remeshing to 5k vertices was
performed with almost interactive speed.

We also demonstrate our technique on mechanical models. Figure 6.7 shows a
remeshing result of the Fandisk mesh that has been resampled to 4k vertices and
improved with 100 Lloyd iterations. The �nal sampling of the skeleton, which only
contains open backbones, is a direct result of the resampling procedure and accu-
rately matches with the triangles around the feature creases. Remeshing took 500ms
for resampling and 3 seconds for Lloyd relaxation.

122

6.6. Results

Figure 6.5: The Hygieia model with about 8k vertices and visualized density function
(left) has been upsampled to 10k vertices (right).

Figure 6.6: More remeshing results: The Mannequin model (left) with resampled
subdivision surface (top) and the remeshed model (bottom), the remeshed Bumpy
Torus model (middle) with Voronoi regions (top) and triangulation (bottom), and the
Joint model (right). All meshes are remeshed with 5k vertices at almost interactive
speed.

123

Chapter 6. Direct Resampling for Isotropic Surface Remeshing

Figure 6.7: The Fandisk model with highlighted feature skeleton (left), remeshed
with 4k vertices (right).

Figure 6.8: A typical CAD model with many degenerated triangles and feature skele-
ton (left) and the remeshed model with 5k vertices (right).

A model with typical CAD tessellation is presented in Figure 6.8. The degenerate
triangles are a major issue for parametrization-based methods such as [Surazhsky
and Gotsman, 2003], which is mainly caused by distortion in the patches and may
lead to erroneous vertex relocations. We applied a simple mesh slicing procedure
[Botsch and Kobbelt, 2001] with a regular grid to aid patch construction with more
well-shaped triangles.

Table 6.1 presents a statistical analysis and comparison of the remeshing results.

124

6.7. Conclusion and Future Work

Figure 6.9: The Beethoven model remeshed from 1.5M vertices to 500k vertices. Re-
sampling and Lloyd relaxation took less than 5 minutes with 8 threads.

The Avg∠ and Min∠ are the average of the minimum angle in each triangle and
the smallest angle in the triangulation, respectively. The error is the Hausdor� dis-
tance w.r.t. the bounding box diagonal as calculated by Metro [Cignoni et al., 1998].
All comparisons are taken from the results of related work and have not been re-
evaluated for normalization. Note that we achieve a low error while keeping an
exact vertex budget.

For all timings we used an AMD Opteron multicore system with 2.7GHz per CPU.
We limited the memory consumption for the patch cache to 1GB but this limit was
never reached, not even for the Beethoven model (Figure 6.9), which used 630MB
RAM for 84k patches.

6.7 Conclusion and Future Work

We presented an e�cient remeshing framework for relaxation-based methods. In
particular, we used Lloyd’s algorithm to build a WCVT on the mesh to obtain an
isotropic sample distribution. The key to performance is the initial sampling pro-
cedure which is itself e�cient and simple, and provides the means for fast conver-
gence of Lloyd’s relaxation method. The mesh topology is preserved because both,
the edge �ip algorithm and hole re-triangulation do not introduce edges that are
already present in the mesh. In theory, nothing prevents the algorithm from cre-
ating surface self-intersections, but we never observed this in practice. Our results
compare favorably to state-of-the-art techniques in both processing time and mesh
quality and ful�ll the desired criteria listed in Section 6.1.

125

Chapter 6. Direct Resampling for Isotropic Surface Remeshing

Model Vertices Time ∠ (deg) Error
(sec) Avg Min (10−3)

Hygieia (original) 8 268 – 34.7 0.25 –
Hygieia (our) 10 000 9 / 3.5 52.9 30.1 3.5
Hygieia [Surazhsky and Gotsman, 2003] 8 750 17 52.4 25.9 2.7
Hygieia [Fu and Zhou, 2009] 6 529 113 51.9 35.4 n/a
Horse (original) 48 485 – 37.1 1.27 –
Horse (our) 6 000 16 / 7 51.9 29.8 4.9
Horse [Surazhsky and Gotsman, 2003] 5 695 28 50.1 9.1 6.1
Horse [Fu and Zhou, 2009] 3 017 103 51.9 35.7 n/a
Fandisk (original) 6 475 – 43.5 17.0 –
Fandisk (our) 4 000 3 / 1.4 53.3 20.6 1.7
Fandisk [Surazhsky and Gotsman, 2003] 5 135 17 49.1 16.8 0.4
Beethoven (original) 1.5M – 34.2 0.01 –
Beethoven (our) 500k 676 / 280 52.7 28.0 1.4

Table 6.1: Analysis and comparison of the remeshing results. We always applied 100
Lloyd iterations. The timings are for the full pipeline with 1 and 8 threads, respec-
tively. Note that total times are not normalized across publications. [Surazhsky and
Gotsman, 2003] used P4 with 2.4GHz; [Fu and Zhou, 2009] used P4 with 2.8GHz, we
used AMD Opteron with 2.7GHz.

In the future, we would like to investigate di�erent data structures for patch
caching that may be more suitable for parallelization and will probably reduce the
drop in performance for a larger number of threads. We would also like to improve
the parametrization strategy to handle complicated regions of the mesh in a con-
sistent way. For example non-manifold connectivity is problematic and the system
fails to create patches in these regions. Meshes with highly degenerate triangles
prevent the parametrization strategy from creating roundish patches, which causes
large distortions and harms the accuracy of vertex relocations.

126

Chapter 7

Surface Reconstruction Evaluation

Abstract

In this chapter we compare and discuss the results of the surface recon-
struction approaches presented in Chapter 4, DMFusion [Fuhrmann and
Goesele, 2011] and Chapter 5, FSSR [Fuhrmann and Goesele, 2014]. We
are interested in the performance on several types of datasets.

• Scanner data: We investigate how both algorithms perform with
relatively clean scans obtained with 3D scanners.

• Multi-View Stereo data: The impact of noise and outliers in MVS
data on the reconstruction algorithms will be examined.

• Multi-scale MVS data: A visual comparison on how these algo-
rithms perform in the presence of multi-scale data will be analyzed.

Although both approaches have strengths and weaknesses, FSSR turns
out to be superior in quality while consuming fewer resources. In par-
ticular, the more e�cient surface extraction and the capability to close
small holes are useful in both controlled scanning and di�cult MVS sce-
narios. We also present remeshing results on some reconstructions.

Contents
7.1 Scanner Data . 128

7.2 MVS Data . 132

7.3 Multi-Scale MVS Data . 135

7.4 Reconstruction Statistics . 138

7.5 Remeshing Results . 139

7.6 Conclusion . 146

127

Chapter 7. Surface Reconstruction Evaluation

7.1 Scanner Data

The data obtained from 3D scanners is usually much cleaner in terms of noise and
outliers than the geometry from stereo-vision algorithms. On the other hand, scan-
ner data is less redundant and thus mis-alignments of the individual scans can have
an adverse impact on the geometry. In this section we perform qualitative compar-
isons on a range of datasets from small, compact objects to larger, detailed scans.
Table 7.1 in Section 7.4 shows quantitative reconstruction statistics for all datasets.

Figure 7.1: The FSSR reconstruction of the Polymetric Dragon dataset.

Dragon Dataset
This dataset of a small dragon object is courtesy of Polymetric GmbH. It consists of 32
range images with a total of 3 091 786 samples. Overall, the meshes reconstructed
by the two approaches look visually very similar. The reconstruction using FSSR
is shown in Figure 7.1. On close inspection, the surface computed with DMFusion
shows some small artifacts (see Figure 7.2). We believe that this is due to fusion of
information at multiple scales, caused by the discretization of the scale space into
octaves. These artifacts disappear when performing the reconstruction on a uniform
scale. This makes the approach conceptually equivalent to the VRIP method [Curless
and Levoy, 1996]. The FSSR approach performs well on this dataset, producing a
smooth yet detailed surface.

The running time and peak memory usage for FSSR, DMFusion and DMFusion
on a single scale is listed in Table 7.1. It can be seen that the multi-scale DMFusion
reconstruction is by far the most expensive approach. The data structure used by
the global Delaunay tetrahedralization for isosurface extraction is the main bottle-
neck with a peak memory usage of 4601 MB and 216 seconds running time alone.
The single scale reconstruction is much more e�cient because the surface can be
extracted using the Marching Cubes algorithm [Lorensen and Cline, 1987].

128

http://polymetric.de

7.1. Scanner Data

Figure 7.2: Left: The reconstruction of the Polymetric Dragon with DMFusion shows
a few small artifacts. Middle: Performing the DMFusion reconstruction on a single
scale removes these artifacts. Right: The reconstruction using FSSR. Note: All images
are contrast enhanced.

CNR Laurana Dataset
The Laurana dataset has been reconstructed from 27 range images yielding 3 034 883
surface samples. The DMFusion result is slightly smoother mainly because of the
chosen reconstruction resolution. FSSR produces a cleaner result with slightly more
details, especially in the region around the ear, see Figure 7.3. Both approaches leave
a small hole inside the ear due to insu�cient data coverage and the lack of hole �lling
capabilities.

Polymetric Pumpkin Dataset
The Pumpkin dataset consists of 18 colored, high-resolution scans with a total of
10 955 857 samples. See Figure 7.4 for the reconstruction result. Similar to the
other datasets, reconstruction with DMFusion at a single level yields good results.
However, in regions with sparse sampling the reconstruction shows a few holes. In
contrast, the FSSR reconstruction yields a watertight result. Due to the clean and
round structures of the Pumpkin, some very subtle ringing artifacts become visible
at certain camera angles. This issue of the FSSR approach is further discussed in the
conclusion of this chapter.

129

Chapter 7. Surface Reconstruction Evaluation

Figure 7.3: The Laurana dataset reconstructed with FSSR, courtesy of CNR ISTI. Bot-
tom left: Reconstruction with DMFusion. Bottom right: Reconstruction with FSSR,
which is slightly less smooth but more detailed.

130

http://www.isti.cnr.it/

7.1. Scanner Data

Figure 7.4: The Pumpkin dataset courtesy of Polymetric GmbH, reconstructed with
FSSR [Fuhrmann and Goesele, 2014], rendered with color (left) and shading (right).
The bottom row shows occasional holes with DMFusion, while FSSR produces a wa-
tertight result (middle). The ringing artifacts produced by FSSR (right) are rare and
barely visible (the image is contrast enhanced).

131

http://polymetric.de

Chapter 7. Surface Reconstruction Evaluation

7.2 MVS Data

We are interested in the performance of the reconstruction algorithms on Multi-
View Stereo data. Controlled datasets with a dense camera coverage are the Middle-
bury Dino and Middlebury Temple dataset. We will further present Die Badende with
less controlled cameras but only moderate variations in scale. Note that, as with
all Multi-View Stereo datasets, the result of the surface reconstruction algorithm
heavily depends on the output geometry of the speci�c MVS algorithm.

Figure 7.5: Reconstruction of the Middlebury Temple with DMFusion (left) and FSSR
(right). Although the DMFusion reconstruction produces slightly sharper edges in
some regions, the FSSR reconstruction is very clean without spurious geometry.

Middlebury Temple

The Temple dataset contains 312 images at a resolution of 640 × 480. Individual
depth maps are reconstructed using the MVS approach by Goesele et al. [2007].
The 312 depth maps (22 849 326 samples) are then combined using both techniques,
DMFusion and FSSR. A rendering of the resulting surfaces is available in Figure 7.5.
A quantitative evaluation of the FSSR result is available on the Middlebury bench-
mark1 under the name Fuhrmann-SG14 (ranked 3rd with an accuracy of 0.39mm,
and ranked 9th with a completeness of 99.4%, retrieved March 2015).

1Middlebury Multi-View Stereo evaluation: http://vision.middlebury.edu/mview/eval/

132

http://vision.middlebury.edu/mview/eval/

7.2. MVS Data

Figure 7.6: Reconstruction of the Middlebury Dino with DMFusion (left) and FSSR
(right). The FSSR reconstruction is smoother, more detailed and produces less clutter.
Both results are incomplete and noisy due to the MVS algorithm.

Middlebury Dino
Similar to the Temple, the Dino dataset contains 312 images at a resolution of 640×
480 and yields a total of 29 872 435 samples. Although captured with a very con-
trolled setup, the absence of texture on the object makes this dataset very challenging
and causes extremely noisy depth maps. We argue that the MVS algorithm at hand
by Goesele et al. [2007] is not suited for this dataset due to the lack of explicit regu-
larization in weakly textured regions. The di�erences between the two approaches
become more obvious on this challenging dataset, see Figure 7.6 for a visual com-
parison. Here, DMFusion is used in multi-scale mode. A cleaner reconstruction can
be achieved by choosing a �xed resolution for DMFusion, but was avoided to make
the comparison fair.

Die Badende
This sculpture called Badende is a replica of Bernhard Hoetger’s original work from
1911. The 343 input photos in this dataset have been taken at various positions
around the statue with di�erent distances to the geometry, which results in moderate
variations in scale. The full reconstruction starting from images to �nal surface has
been performed with the MVE software presented in Chapter 3. A total of 52 970 450
samples have been obtained for surface reconstruction. Both surfaces show some
holes in occluded regions, such as under the arm and chin, and a few erroneous
surface parts are reconstructed due to MVS mismatches. Renderings of the resulting
meshes are presented in Figure 7.7, where FSSR produces more details and better
reconstructions especially in concavities.

133

Chapter 7. Surface Reconstruction Evaluation

Figure 7.7: Reconstruction comparison of Die Badende, an uncontrolled MVS dataset
with moderate scale di�erences. The bottom row shows 5 of the 343 input photos.
The FSSR reconstruction (right) shows more detail and more complete geometry
compared to the DMFusion reconstruction (left).

134

7.3. Multi-Scale MVS Data

7.3 Multi-Scale MVS Data

In this section we present a direct comparison of the two approaches on multi-scale
datasets. These datasets, namely the Citywall and the Goethe Fountain, are known
from Chapter 4 and 5.

Figure 7.8: The colored Citywall dataset. Most of the brick work is represented at
lower resolution while the fountain and the miniature city (not visible here) are
reconstructed at much higher resolution.

Citywall
The dataset contains a total of 564 photos from an historic wall in Darmstadt, Ger-
many (see Figure 7.8). Most of the wall is brick work, but a few interesting details
are part of the scene: A fountain with two small, detailed lion heads and a minia-
ture city model with challenging geometry. Both algorithms perform well on this
dataset. However, the FSSR reconstruction produces crisp and clean geometry with
more details while better suppressing the noise in the individual depth maps. The
DMFusion approach, on the other hand, shows small artifacts and less clean geome-
try. Figure 7.9 shows a comparison on a few details.

Goethe Fountain
The Goethe Fountain is located in Hochstädten near Bensheim, Germany. The whole
site is excavated a few meters in the ground and consists mostly of brick work,
but contains two interesting fountains. Because the fountains look similar to each
other, we concentrated on one of the fountains by taking many detailed photos. The
resulting reconstructions feature both coarse and very detailed geometry from the
multi-scale input.

135

Chapter 7. Surface Reconstruction Evaluation

Figure 7.9: Top row: The full Citywall dataset without color reconstructed with FSSR.
The fountain region is covered with more close-up input photos and a higher reso-
lution mesh is extracted in this region. Bottom rows: Comparison of details recon-
structed with DMFusion (left) and FSSR (right).

The two approaches perform similar and both produce a good reconstruction,
see Figure 7.10. We believe that the large amount of redundancy is mainly responsi-
ble for the clean geometry. However, the DMFusion approach delivers a result with
many small holes, and the Marching Tetrahedra algorithm creates many more un-
necessary triangles. FSSR produces a smoother geometry with less triangles and less
geometric artifacts while preserving more details.

136

7.3. Multi-Scale MVS Data

Figure 7.10: Comparison of the Goethe Fountain dataset. Top: The full reconstruction
using FSSR. Middle Row: Details reconstructed with DMFusion, Bottom row: Details
reconstructed with FSSR.

137

Chapter 7. Surface Reconstruction Evaluation

7.4 Reconstruction Statistics

The following table lists the reconstruction statistics for all datasets presented in
this chapter. The individual timings for each algorithm are split into computation
of the implicit function and surface extraction. The timings have been obtained on
a Intel Xeon Quad-Core computer with 8× 2.6 GHz per CPU and exclude the time
required for �le I/O.

Dataset Algorithm Memory Runtime Vertices

Polymetric Dragon FSSR 611 MB 116 + 7 sec 941 143
3 091 786 samples DMF-MS 4 601 MB 71 + 239 sec 1 541 663
32 range images DMF-SS-11 569 MB 47 + 16 sec 768 738

Polymetric Pumpkin FSSR 4 062 MB 1161 + 59 sec 5 263 482
10 955 857 samples DMF-MS 25 251 MB 321 + 1420 sec 8 578 361
18 range images DMF-SS-11 5 950 MB 365 + 189 sec 7 886 029

CNR Laurana FSSR 1 471 MB 375 + 20 sec 1 935 528
3 034 883 samples DMF-MS 10 478 MB 91 + 599 sec 3 670 876
27 range images DMF-SS-11 4 052 MB 175 + 137 sec 5 541 438

Middlebury Temple FSSR 2 085 MB 366 + 4 sec 266 465
22 849 326 samples DMF-MS 2 863 MB 548 + 162 sec 1 080 837
312 depth maps DMF-SS-10 1 748 MB 566 + 13 sec 824 659

Middlebury Dino FSSR 2 579 MB 726 + 10 sec 384 985
29 872 435 samples DMF-MS 6 073 MB 932 + 362 sec 2 410 996
312 depth maps DMF-SS-10 5 137 MB 1255 + 42 sec 2 817 702

Die Badende FSSR 5 203 MB 1678 + 34 sec 2 683 086
52 970 450 samples DMF-MS* 6 760 MB 544 + 255 sec 2 676 170
343 depth maps DMF-SS-11 4 801 MB 431 + 45 sec 3 542 891

Citywall FSSR 7 638 MB 2737 + 35 sec 2 624 613
77 086 356 samples DMF-MS* 7 823 MB 698 + 328 sec 2 500 367
564 depth maps

Goethe Fountain FSSR 16 559 MB 5863 + 114 sec 9 605 213
161 842 791 samples DMF-MS* 32 274 MB 1858 + 1284 sec 8 267 119
249 depth maps

Table 7.1: Statistics for all reconstructions presented in this chapter. FSSR refers to
the Floating Scale Surface Reconstruction presented in Chapter 5, DMF refers to Fusion
of DepthMaps withMultiple Scales presented in Chapter 4 using either multiple scales
(MS) or a single scale (SS) on a �xed octree level. For the DMF reconstructions marked
with a star (*), the depth maps have been sampled at half the normal sampling rate,
resulting in 1/8th of the octree voxels, to keep the memory and runtime in reasonable
bounds. This should be considered when comparing with FSSR.

138

7.5. Remeshing Results

7.5 Remeshing Results

In this section we show results of the remeshing technique presented in Chapter 6. In
particular, we demonstrate how the amount of triangles can be signi�cantly reduced
from the raw reconstruction output by either employing a new uniform or adaptive
sample distribution. While the adaptive sampling is suited for meshes with both,
uniform and highly varying curvature, the uniform vertex distribution is mainly ap-
plicable to compact, simple meshes. Remeshing of large multi-scale meshes requires
a suitable de�nition of the curvature �eld and a precise relationship between surface
curvature, triangle size and approximation error. Such a de�nition is out of scope
of this thesis, and large multi-scale datasets are not considered for remeshing here.
Figure 7.11 shows a few input images of multi-view stereo datasets that we use for
remeshing in this section.

Figure 7.11: From top to bottom: The Scared Owl dataset, the Snow Owl dataset, the
Squirrel dataset, and the Middlebury Temple dataset.

139

Chapter 7. Surface Reconstruction Evaluation

Scared Owl Dataset
The Scared Owl mesh in Figure 7.12 is an image-based reconstruction from 221 in-
put images. Although this object is compact and quite small, the large number of
input images leads to a very clean and noise-free reconstruction result. The FSSR re-
construction resulted in 284 211 vertices and has been remeshed to 10 000 vertices.
Here, the object details are uniformly distributed over the surface, and a uniform
vertex distribution is suitable. Because the �nal mesh contains less than 5% of the
original number of vertices, a certain loss of detail is inevitable at this level of re-
duction.

The running time of the remeshing procedure can be considered insigni�cant
compared to the time required for surface reconstruction. For the Scared Owl dataset,
the resampling of the original mesh took about 5 seconds, and performing 100 itera-
tions of Lloyd relaxation to obtain a precise isotropic vertex placement took about 10
seconds. The runtime for other models in this section are very comparable with the
exception of the slightly bigger CNR Laurana dataset, for which we report runtime
individually.

Snow Owl Dataset
Like the Scary Owl, the Snow Owl in Figure 7.13 is an image-based reconstruction
from 61 input images. Surface reconstruction with FSSR resulted in 280 727 ver-
tices. This mesh has many details and requires a denser sampling. In contrast to
the Scary Owl, some regions contain less detail, e.g., around the bird’s eyes. Here,
an curvature-adapted vertex distribution with 25 000 vertices has been employed,
which creates larger triangles in regions with less curvature.

The precise isotropic vertex distribution is achieved using Lloyd’s relaxation pro-
cedure by iteratively moving the vertices to the centroids of their Voronoi cells. To
obtain an adaptive vertex distribution with respect to a density function de�ned over
the mesh, vertices are instead moved to the centers of mass of their Voronoi cells.

140

7.5. Remeshing Results

Figure 7.12: The Scared Owl reconstruction with 284 211 vertices (top left, triangles
not shown) is remeshed to 10 000 vertices with a uniform vertex distribution (top
right). The drastic vertex reduction causes a loss of shading details (bottom left),
while a remesh with 50 000 vertices shows much more details (bottom right).

141

Chapter 7. Surface Reconstruction Evaluation

Figure 7.13: The Snow Owl reconstruction with 280 727 vertices (left, density �eld
shown) is remeshed to 25 000 vertices with an adaptive vertex distribution. Regions
with low curvature receive fewer triangles, such as the face region. Given a prede-
termined vertex budget, this leaves more triangles for regions of higher curvature
to increase �delity to the original surface.

142

7.5. Remeshing Results

CNR Laurana
TheCNRLaurana reconstruction using FSSRwith 1 935 208 vertices has been remeshed
to 50 000 vertices, which is less than 2.5% of the original number of vertices. Here
the vertex distribution has been chosen adaptively to better capture the details,
while maintaining smooth transitions between triangle sizes. Figure 7.14 shows the
remeshed model and a closeup view. (The original model is shown in Figure 7.3.)
The remeshing operation required about 40 seconds for resampling of the original
mesh, and 45 seconds for 50 Lloyd iterations.

Figure 7.14: TheCNR Laurana dataset adaptively remeshed with 50 000 vertices. The
bottom shows the nose region where the adaptive sampling is clearly visible.

143

Chapter 7. Surface Reconstruction Evaluation

Squirrel Dataset
The squirrel dataset has been reconstructed from 92 images and yields a total of
327 140 mesh vertices after surface reconstruction with FSSR. Because the surface
has many smooth parts with little curvature, not many triangles are required to
reproduce most of the details. In Figure 7.15 the original mesh has been adaptively
remeshed to 10 000 vertices.

Middlebury Temple Dataset
The reconstruction of the Middlebury Temple dataset using our pipeline described in
Chapter 3 is one of the top-performing results on the Middlebury Multi-View Stereo
benchmark. Here, the original reconstruction using FSSR with 233 674 vertices has
been uniformly remeshed to 50 000 vertices and adaptively remeshed to 25 000 ver-
tices, see Figure 7.16. The uniform remesh requires relatively many samples to avoid
considerable loss of detail.

Figure 7.15: Remeshing of the Squirrel mesh from 327 140 vertices to 10 000 vertices.
The vertex distribution is controlled by the density �eld visualized on the left.

144

7.5. Remeshing Results

Figure 7.16: Remeshing results on the Middlebury Temple. The original mesh (top
left, 233 663 vertices, triangles not shown) has been uniformly remeshed (bottom
left, 50 000 vertices) and adaptively remeshed (bottom right, 25 000 vertices) using
the density �eld (top right) computed according to mesh curvature.

145

Chapter 7. Surface Reconstruction Evaluation

7.6 Conclusion

From a surface quality point of view, we belief that a single scale approximation
to the signed distance �eld as proposed by Curless and Levoy [1996], namely VRIP,
produces excellent results with well studied quality guarantees on uniform datasets.
This is re�ected in the results obtained with DMFusion on a single octree level.
However, most real-world datasets are not uniform in scale. Due to the scale space
discretization performed by DMFusion, some visible artifacts can occur as demon-
strated, e.g., in Figure 7.2. These artifacts become less visible with an increasing
amount of redundancy. But nevertheless, this makes the DMFusion approach less
practical for very clean and controlled data. Empirically, FSSR produces better re-
sults in all cases, with uniform as well as multi-scale data.

The evaluation identi�ed an interesting issue of the FSSR approach. Because
the approach employs a sum of non-linear basis functions, the implicit function is
non-linear as well. This causes a potential issue with the particular isosurface ex-
traction technique, namely a variant of the Marching Cubes algorithm [Kazhdan
et al., 2007]. Because Marching Cubes performs a linear interpolation to �nd the
precise surface position, the implicit function is assumed to be linear as well. If this
is not the case, the interpolated surface position will be inaccurate. These inaccura-
cies are systematic and related to the surface orientation with respect to the chosen
octree discretization. This can sometimes be observed as mild waving or ringing
artifacts on the surface. Solving this issue is an interesting research direction and
relevant for many other methods. As the sampling density of the implicit function

Figure 7.17: Synthetically generated samples of a planar surface are used for recon-
struction. Depending on the orientation of the samples with respect to the global co-
ordinate system, wavy reconstruction artifacts can occur because Marching Cubes’
assumption of a linear basis function are not met. Left: The plane is aligned with
the global coordinate system axis, no artifacts are visible. Middle: A slight rotation
of the plane reveals mild artifacts. Right: A denser sampling of the implicit function
reduces the artifacts. Note: All images are contrast enhanced.

146

7.6. Conclusion

approaches in�nity, the implicit function becomes more linear within each octree
cell. This implies that the artifacts can be considerably reduced with a denser sam-
pling, which is demonstrated in Figure 7.17. One easy solution is to re�ne the octree
hierarchy at the cost of increased resource consumption. Another possible solution
is to make use of Hermite data, which allows for Hermite interpolation to improve
surface localization.

It has been shown that both DMFusion and FSSR scale well to large datasets.
Many other approaches require the solution of a global linear system of equations
and are therefore not applicable to very large datasets. In contrast, the FSSR approach
does not perform any global operations. The multi-scale reconstruction using DM-
Fusion requires the construction of a global Delaunay tetrahedralization, which is
clearly a bottleneck both in running time and memory consumption. The running
time of FSSR is usually between the single-scale and multi-scale reconstruction per-
formed with DMFusion. However, the single-scale reconstruction is only possible on
uniform data and thus impractical for multi-scale datasets. Overall, FSSR is the more
memory e�cient choice.

Because both approaches are not designed to reconstruct and extend surfaces
beyond the available data, holes can occur due to insu�cient sampling. Although
this is very useful in datasets with incomplete coverage such as outdoor scenes,
it often leaves small holes on objects that should instead be watertight. If this is
undesirable, hole-�lling algorithms must be applied as a post-processing step.

The remeshing approach presented in Chapter 6 is capable of creating trian-
gle meshes with improved triangle quality and drastically reduced triangle count if
desired. This remeshing step is often necessary before texturing, transmission or
even rendering of the reconstructed surfaces. Although the presented remeshing
approach is not yet capable of handling large-scale meshes or drastic scale di�er-
ences, it is clearly capable of improving the mesh quality on many scanner and MVS
datasets. The use of a multi-scale density function and modi�cations to handle large-
scale meshes are interesting future directions.

147

Chapter 7. Surface Reconstruction Evaluation

148

Chapter 8

Conclusion

Contents
8.1 Summary . 149

8.2 Discussion . 149

8.3 Future Work . 152

8.1 Summary

In this thesis we presented an image-based reconstruction system that is able to cope
with uncontrolled input images and enables non-expert users to quickly create new
datasets. In contrast to controlled datasets, the images exhibit varying resolution,
di�erent lighting conditions, and drastic changes in sample scale, which leads to
much more noise and outliers in the geometry. Figure 8.1 shows the Trevi Fountain
reconstructed solely from 871 images downloaded from Flickr, a popular community
photo collection.

The multi-scale capabilities of the system allow users to put an emphasis on cer-
tain details in the scene by providing more close-up photos of these regions. These
capabilities are a result of explicitly modeling the scale of every sample point and
utilizing this valuable information in the surface reconstruction step. As a result,
the �nal surface represents every region at the corresponding scale available from
the input data. Although both presented methods excel at handling multi-scale in-
put, controlled datasets are handled with ease and the results compare favorably to
state-of-the-art methods. Figure 8.2 shows some examples.

8.2 Discussion

The presented approaches shed some light on the aspect of scale in surface recon-
struction that has mostly been neglected in the literature so far. In particular, we
discuss sample scale, surface resolution and the relation to surface curvature.

149

http://flickr.com

Chapter 8. Conclusion

Figure 8.1: The Trevi Fountain dataset reconstructed from 871 uncontrolled images
downloaded from the community photo collection Flickr.

Figure 8.2: Several controlled datasets. Left: The Snow Owl dataset reconstructed
from 61 images. Middle: The Scared Owl dataset reconstructed from 212 images.
Right: The Squirrel dataset reconstructed from 92 images.

150

http://flickr.com

8.2. Discussion

Scale, Resolution and Curvature

The aspect of sample scale, i.e., the physical extent of the sample, can be modelled
as an additional scalar value per sample and is thus purely a property of the input
data. This information can e�ectively be used to identify redundancy and avoid mix-
ing samples at incompatible scale. We demonstrated that utilizing this information
produces superior results compared to most approaches that neglect scale.

The resolution of the output surface, i.e., the decision at what scale the output
surface should be represented, is not necessarily related to the input scale. The re-
construction approaches presented in Chapter 4 and 5 choose the highest resolution
available to accurately represent any geometric detail in the input data. However,
this often leads to over-tessellation in regions without geometric detail, and a simpli-
�cation of these regions is reasonable. The remeshing approach presented in Chap-
ter 6 is capable of producing a new tessellation that is more adapted to the actual
detail in the geometry. To this end, the notion of surface curvature seems �tting
and is inherently multi-scale. Intuitively, regions of higher curvature require a �ner
tessellation to represent detail. The precise connection between the estimated sur-
face curvature, the vertex distribution and density, and the corresponding surface
approximation error is, however, not well understood and left for future research.

The required resolution of the output surface is often determined from geometric
properties of the surface. Although geometry itself can often be drastically simpli-
�ed without a noticeable loss of accuracy, other per-vertex attributes (such as color)
cannot be faithfully represented using the coarse tessellation. If the preservation
of these attributes is desired, surface texturing algorithms can be used in order to
delegate these attributes to dedicated textures.

Redundancy

The image-based reconstruction pipeline presented in Chapter 3 computes a depth
map for every input image, and reconstructs the �nal surface from the union of all
depth maps. In typical image-based scenarios, the input images are densely sam-
pled around the surface, yielding many depth maps. The resulting redundancy can
mostly be considered positive as it leads to a noise reduction by averaging many
samples. On the negative side, a large amount of redundancy causes an increase
in storage requirements, and much longer computation times for Multi-View Stereo
and surface reconstruction. This becomes more problematic when working with
video data with many small-baseline frames. Here, computing a depth map for ev-
ery input frame and the resulting surface reconstruction task become prohibitively
expensive. It seems natural to employ specialized Multi-View Stereo algorithms that
exploit the special structure of video input, and we are interested in exploring these
approaches in future work. A common solution is to reconstruct only a subset of the
depth maps and use the visual redundancy to produce more accurate depth maps in
the �rst place. But ultimately, a per-view representation seems unsuitable for this
kind of input, and global representations such as meshes, volumes or point clouds
might be more suitable.

151

Chapter 8. Conclusion

Data Imperfections

One of the most di�cult aspects of the reconstruction task is to deal with all sorts
of imperfections in the data. The most obvious imperfections are noise and outliers.
However, mis-alignments in the input data that exceed a certain level are very di�-
cult to handle. Experience has shown that mis-alignments in multi-scale datasets are
particularly challenging. Imprecise camera calibration is a common issue, and input
photos that represent the surface at very di�erent scales are not well aligned to one
another. The resulting mis-alignments can lead to duplicate surfaces when merged.
We argue that these problems must be addressed at the camera calibration or scan
alignment stage. Brown and Rusinkiewicz [2007] attempt to solve these issues using
a non-rigid alignment of 3D scans. Furukawa and Ponce [2009] address the problem
of inaccurate camera calibration, but these attempts have not been evaluated in the
presence of multi-scale data.

Another common imperfection is incomplete coverage due to occlusions, which
often leads to small holes in the surface. Many global reconstruction approaches
provide excellent hole-�lling capabilities but often create extraneous surfaces way
beyond the data support, which requires manual cleanup. We argue that small holes
in the surface are undesirable and have to be closed in order to obtain a watertight
surface. The incorporation of hole-�lling capabilities in the presented surface recon-
struction approaches has not been explored and is a relevant and interesting chal-
lenge. A hypothetical pre-processing solution is to introduce additional samples in
regions with insu�cient data, which can be di�cult to realize especially in stream-
ing reconstruction approaches. A simple post-processing solution is the application
of a triangulation-based hole-�lling algorithm once a surface is reconstructed. Holes
with complex boundary shapes are di�cult for triangulation-based methods. Vol-
umetric di�usion approaches [Davis et al., 2002] have successfully been applied to
compactly supported distance functions on uniform grids. An extension to multi-
scale representations is an interesting future direction.

8.3 Future Work

In the previous section we identi�ed aspects of the reconstruction pipeline that can
bene�t from further research. Handling mis-alignments in the camera calibration
step, employing specialized stereo algorithms for video and more densely sampled
datasets as well as incorporating hole-�lling approaches seem interesting research
problems that can improve the results.

At the heart of this thesis is FSSR, the Floating Scale Surface Reconstruction ap-
proach. Here, we wish to extent the algorithm to handle larger datasets. In its current
implementation, all samples as well as the octree are completely contained in mem-
ory. One possible extension is a streaming implementation of FSSR, where samples
are loaded in a streaming fashion while the octree is updated. To further reduce
memory requirements, only parts of the octree may be contained in memory, re-
sulting in an out-of-core reconstruction strategy. Such a steaming approach may

152

8.3. Future Work

require careful sorting of the input samples to prevent excessive swapping of oc-
tree sub-hierarchies. We also want to investigate reducing the processing time by
making use of massively parallel hardware. In particular, the evaluation of the basis
functions associated with each sample is an independent process and can therefore
be performed in parallel. Currently, only CPU parallelization is considered. Finally,
performance may be improved by reducing the number of input samples, e.g., by
aggregating redundant samples in a pre-processing step.

One potential issue with the surface extraction quality of FSSR has been identi�ed
in Chapter 7. Isosurface extraction algorithms usually employ linear interpolation
to �nd the position of the surface with sub-voxel accuracy. As a consequence, if the
underlying implicit function is not linear, surface contouring can lead to imprecise
isosurface positions. In order to eliminate the resulting artifacts, Hermite data inter-
polation may be considered to obtain more accurate surface positions. Finally, the
resolution of the resulting surface often contains many small triangles even in re-
gions without geometric detail. Making the surface extraction adaptive to the actual
geometry by directly simplifying the octree hierarchy is a promising idea.

The surface remeshing approach presented in Chapter 6 is able to better control
the resolution of the �nal geometry in order to avoid over-tessellated regions with-
out geometric detail. The presence of detail can be detected by employing measures
of surface curvature. Since the curvature is inherently a multi-scale property, this
idea seems �tting in the context of this thesis. However, the precise relationship be-
tween the curvature �eld and the required vertex density to obtain a scale-adaptive
approximation threshold is not yet well understood and left for future work. The
applicability of the remeshing algorithm to large, multi-resolution meshes is a rele-
vant step towards higher quality meshes that render faster and allow more e�cient
post-processing, e.g., texturing of the mesh.

153

Chapter 8. Conclusion

154

(Co-)Authored Publications

Jens Ackermann, Fabian Langguth, SimonFuhrmann, Arjan Kuijper and Michael
Goesele. Multi-View Photometric Stereo by Example. Proceedings of the Inter-
national Conference on 3D Vision, Tokyo, Japan, 2014.

Simon Fuhrmann, Fabian Langguth and Michael Goesele. MVE – A Multi-
View Reconstruction Environment. Proceedings of the Eurographics Workshop
on Graphics and Cultural Heritage, Darmstadt, Germany, 2014.

Simon Fuhrmann and Michael Goesele. Floating Scale Surface Reconstruction.
ACM Transactions on Graphics, Proceedings of ACM SIGGRAPH, Vancouver,
Canada. 2014.

Jens Ackermann, Simon Fuhrmann and Michael Goesele. Geometric Point
Light Source Calibration. Proceedings of Vision, Modeling and Visualization,
Lugano, Switzerland. 2013.

Jens Ackermann, Fabian Langguth, Simon Fuhrmann and Michael Goesele.
Photometric Stereo for Outdoor Webcams. Proceedings of Computer Vision
and Pattern Recognition, Providence, USA. 2012.

Simon Fuhrmann and Michael Goesele. Fusion of Depth Maps with Multiple
Scales. ACM Transactions on Graphics, Proceedings of ACM SIGGRAPH Asia,
Hong Kong, China. 2011.

Meike Becker, Matthias Kirschner, Simon Fuhrmann and Stefan Wesarg. Auto-
matic Construction of Statistical Shape Models for Vertebrae. Medical Image
Computing and Computer Assisted Intervention, Toronto, Canada. 2011.

Simon Fuhrmann, Jens Ackermann, Thomas Kalbe and Michael Goesele. Direct
Resampling for Isotropic Surface Remeshing. Proceedings of Vision, Modeling
and Visualization, Siegen, Germany. 2010.

Michael Goesele, Jens Ackermann, Simon Fuhrmann, Carsten Haubold, Ronny
Klowsky, Drew Steedly and Richard Szeliski. Ambient Point Clouds for View
Interpolation. ACMTransactions onGraphics, Proceedings of ACM SIGGRAPH
2010, Los Angeles, USA. 2010.

155

(Co-)Authored Publications

Michael Goesele, Jens Ackermann, Simon Fuhrmann, Ronny Klowsky, Fabian
Langguth, Patrick Muecke and Martin Ritz. Scene Reconstruction from Com-
munity Photo Collections. IEEE Computer, Issue June 2010, Invited Paper.
2010.

Thomas Kalbe, Simon Fuhrmann, Stefan Uhrig, Frank Zeilfelder and Arjan Kui-
jper. A New Projection Method for Point-Set Surfaces. European Association
for Computer Graphics, Annex to the Eurographics Conference Proceedings.
Munich, Germany. 2009.

156

Bibliography

Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz, and Richard Szeliski.
Building Rome in a Day. IEEE 12th International Conference on Computer Vision,
pages 72–79, September 2009.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and
Claudio T. Silva. Point Set Surfaces. IEEE Visualization, pages 21–537, 2001.

Pierre Alliez, E. C. de Verdire, Olivier Devillers, and Martin Isenburg. Isotropic Sur-
face Remeshing. Shape Modeling International, pages 49–58, 2003.

Pierre Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun. Voronoi-based Variational
Reconstruction of Unoriented Point Sets. In Eurographics Symposium on Geometry
Processing, pages 39–48, 2007.

Murat Arikan, Reinhold Preiner, Claus Scheiblauer, Stefan Jeschke, and Michael
Wimmer. Large-Scale Point-Cloud Visualization through Localized Textured Sur-
face Reconstruction. IEEE Transactions on Visualization and Computer Graphics,
20(9):1280–1292, September 2014.

Martin Armstrong, Andrew Zisserman, and Paul A. Beardsley. Euclidean Recon-
struction from Uncalibrated Images. In British Machine Vision Conference, pages
509–518, 1994.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Vangool. Speeded-Up
Robust Features (SURF). Computer Vision and Image Understanding, 110(3):346–
359, June 2008.

Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Claudio T. Silva, and Gabriel
Taubin. The Ball-Pivoting Algorithm for Surface Reconstruction. IEEE Transac-
tions on Visualization and Computer Graphics, 5(4):349–359, October 1999.

James F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on
Graphics, 1(3):235–256, July 1982.

Matthew Bolitho, Michael Kazhdan, Randal Burns, and Hugues Hoppe. Multilevel
Streaming for Out-of-Core Surface Reconstruction. In Eurographics Symposium
on Geometry Processing, 2007.

157

Bibliography

Mario Botsch and Leif P. Kobbelt. A Robust Procedure to Eliminate Degenerate Faces
from Triangle Meshes. In Vision, Modeling, and Visualization, 2001.

Benedict J. Brown and Szymon Rusinkiewicz. Global Non-Rigid Alignment of 3-D
Scans. In ACM SIGGRAPH Computer Graphics, page 21, 2007.

Faith Calakli and Gabriel Taubin. SSD: Smooth Signed Distance Surface Reconstruc-
tion. Computer Graphics Forum, 30(7):1993–2002, September 2011.

Jonathan C. Carr, Rick K. Beatson, J. B. Cherrie, T. J. Mitchell, W. Richard Fright,
Bruce C. McCallum, and T. R. Evans. Reconstruction and Representation of 3D
Objects with Radial Basis Functions. InACMTransactions on Graphics (Proceedings
of ACM SIGGRAPH), pages 67–76, New York, New York, USA, 2001. ACM Press.

Y. Chen and G. Medioni. Object Modeling by Registration of Multiple Range Images.
In IEEE International Conference on Robotics and Automation, pages 2724–2729,
1991.

Paolo Cignoni, Claudio Montani, Claudio Rocchini, and Roberto Scopigno. A Gen-
eral Method for Preserving Attribute Values on Simpli�ed Meshes. In IEEE Visu-
alization, pages 59–66, 1998.

Brian Curless and Marc Levoy. A Volumetric Method for Building Complex Mod-
els from Range Images. ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH), pages 303–312, 1996.

J. Davis, S.R. Marschner, M. Garr, and M. Levoy. Filling Holes in Complex Surfaces
using Volumetric Di�usion. In 3D Data Processing, Visualization and Transmission,
2002.

Akio Doi and Akio Koide. An e�cient method of triangulating equi-valued surfaces
by using tetrahedral cells. IEICE Transactions on Information and Systems, 74(1):
214–224, 1991.

Qiang Du, Vance Faber, and Max Gunzburger. Centroidal Voronoi Tessellations:
Applications and Algorithms. SIAM Review, 41(4):637, 1999.

Nira Dyn, Kai Hormann, Sun-jeong Kim, and David Levin. Optimizing 3D Trian-
gulations Using Discrete Curvature Analysis. In Mathematical methods for curves
and surfaces, pages 135–146. 2001.

Herbert Edelsbrunner and Ernst P. Mücke. Three-Dimensional Alpha Shapes. ACM
Transactions on Graphics, 13(1):43–72, January 1994.

Martin Eisemann, Bert De Decker, Marcus Magnor, Philippe Bekaert, Edilson De
Aguiar, Naveed Ahmed, Christian Theobalt, and Anita Sellent. Floating Textures.
Computer Graphics Forum, 27(2):409–418, 2008.

158

Bibliography

Jakob Engel, Thomas Schoeps, and Daniel Cremers. LSD-SLAM: Large-Scale Direct
Monocular SLAM. In European Conference on Computer Vision, pages 1–16, Cham,
2014. Springer International Publishing.

Carlos Estrada and Juan D. Tard. Hierarchical SLAM: Real-Time Accurate Mapping
of Large Environments. IEEE Transactions on Robotics, 21(4):588–596, 2005.

Olivier Faugeras and Renaud Keriven. Variational principles, Surface Evolution,
PDE’s, Level Set Methods and the Stereo Problem. Technical report, Inria Sophia
Antipolis, 2006.

Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM, 24(6):381–395, June 1981.

Michael Floater. Mean Value Coordinates. Computer Aided Geometric Design, 20(1):
19–27, March 2003.

Yan Fu and Bingfeng Zhou. Direct Sampling on Surfaces for High Quality Remesh-
ing. Computer Aided Geometric Design, 26(6):711–723, August 2009.

Simon Fuhrmann. Curvature-adaptive and Feature-sensitive Isotropic Surface
Remeshing. TU Darmstadt, 2009.

Simon Fuhrmann and Michael Goesele. Fusion of Depth Maps with Multiple Scales.
In ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia), number
December, page 1, New York, New York, USA, 2011. ACM Press.

Simon Fuhrmann and Michael Goesele. Floating Scale Surface Reconstruction. In
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH), number July,
2014.

Simon Fuhrmann, Jens Ackermann, Thomas Kalbe, and Michael Goesele. Direct Re-
sampling for Isotropic Surface Remeshing. In Vision, Modeling, and Visualization,
2010.

Simon Fuhrmann, Fabian Langguth, and Michael Goesele. MVE – A Multi-View
Reconstruction Environment. In Eurographics Workshop on Graphics and Cultural
Heritage, 2014.

Yasutaka Furukawa and Jean Ponce. Accurate Camera Calibration from Multi-View
Stereo and Bundle Adjustment. International Journal of Computer Vision, 84(3):
257–268, April 2009.

Yasutaka Furukawa and Jean Ponce. Accurate, Dense, and Robust Multiview Stere-
opsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1362–
76, August 2010.

159

Bibliography

Yasutaka Furukawa, Brian Curless, Steven M. Seitz, and Richard Szeliski. Towards
Internet-scale multi-view stereo. IEEE Conference on Computer Vision and Pattern
Recognition, pages 1434–1441, June 2010.

David Gallup, Jan-Michael Frahm, Philippos Mordohai, Qingxiong Yang, and Marc
Pollefeys. Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE,
June 2007.

Michael Goesele, Brian Curless, and Steven M. Seitz. Multi-View Stereo Revisited.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 2402–2409.
IEEE, 2006.

Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and Steven M. Seitz.
Multi-View Stereo for Community Photo Collections. IEEE 11th International Con-
ference on Computer Vision, pages 1–8, October 2007.

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The
Lumigraph. In Computer Graphics and Interactive Techniques (SIGGRAPH), pages
43–54, New York, New York, USA, 1996. ACM Press.

Gaël Guennebaud and Markus Gross. Algebraic Point Set Surfaces. ACM Transac-
tions on Graphics, 26(3):23, July 2007.

Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized Incremental
Construction of Delaunay and Voronoi Diagrams. Algorithmica, 7(1-6):381–413,
1992.

Robert M. Haralick, Chung-Nan Lee, Karsten Ottenberg, and Michael Nölle. Review
and Analysis of Solutions of the Three Point Perspective Pose Estimation Problem.
IEEE International Journal of Computer Vision, 356:331–356, 1994.

Richard Hartley. In defense of the eight-point algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(6):580–593, June 1997.

Richard Hartley and Andrew Zisserman. Multiple ViewGeometry in Computer Vision.
Cambridge University Press, second edition, 2004. ISBN 0521540518.

Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong Li. Rotation Averaging.
International Journal of Computer Vision, 103(3):267–305, January 2013.

Richard I. Hartley. Euclidean Reconstruction from Uncalibrated Views. In Applica-
tions of Invariance in Computer Vision, pages 235–256, Berlin, Heidelberg, 1994.
Springer Berlin Heidelberg.

Wilfried Hartmann, Michal Havlena, and Konrad Schindler. Predicting Matchabil-
ity. IEEE Conference on Computer Vision and Pattern Recognition, pages 9–16, June
2014.

160

Bibliography

Michal Havlena and Konrad Schindler. VocMatch: E�cient Multiview Correspon-
dence for Structure from Motion. In European Conference on Computer Vision,
2014.

Carlos Hernandez and Francis Schmitt. Silhouette and Stereo Fusion for Object Mod-
eling. Computer Vision and Image Understanding, 96(3):367–392, 2004.

Kazunori Higuchi, Martial Herbert, and Katsushi Ikeuchi. Building 3D Models from
Unregistered Range Images. In IEEE Conference on Robotics and Automation, pages
2248–2253, 1994.

A. Hilton and J. Illingworth. Multi-Resolution Geometric Fusion. In International
Conference on Recent Advances in 3-D Digital Imaging and Modeling, pages 181–
188. IEEE Comput. Soc. Press, 1997.

A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt. Reliable Surface Recon-
struction from Multiple Range Images. European Conference on Computer Vision,
pages 117–126, 1996.

Hugues Hoppe. New Quadric Metric for Simpli�ying Meshes with Appearance At-
tributes. In IEEE Visualization, pages 59–66, 1999.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuet-
zle. Surface Reconstruction from Unorganized Points. In ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH), pages 71–78, July 1992.

Wolfgang Hormann, Josef Leydold, and Gerhard Der�inger. Automatic Nonuniform
Random Variate Generation. Statistics and Computing, 2004.

Nianjuan Jiang, Zhaopeng Cui, and Ping Tan. A Global Linear Method for Camera
Pose Registration. IEEE 14th International Conference on Computer Vision, pages
481–488, December 2013.

Xiangmin Jiao and Michael T. Heath. Feature Detection for Surface Meshes. In In-
ternational Conference on Numerical Grid Generation in Computational Field Sim-
ulations, pages 705–714, 2002.

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual Contouring of Hermite
Data. ACM Transactions on Graphics, 21(3), July 2002.

Michael Kazhdan. Reconstruction of Solid Models from Oriented Point Sets. In
Eurographics symposium on Geometry processing, 2005.

Michael Kazhdan and Hugues Hoppe. Screened Poisson Surface Reconstruction.
ACM Transactions on Graphics, 32(3):1–13, June 2013.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson Surface Recon-
struction. In Eurographics Symposium on Geometry Processing, pages 61–70, New
York, New York, USA, 2006. Eurographics Association.

161

Bibliography

Michael Kazhdan, Allison Klein, Ketan Dalal, and Hugues Hoppe. Unconstrained
Isosurface Extraction on Arbitrary Octrees. In Eurographics symposium on Geom-
etry processing, pages 125–133, 2007.

Ronny Klowsky, Arjan Kuijper, and Michael Goesele. Modulation Transfer Function
of Patch-based Stereo Systems. IEEE Conference on Computer Vision and Pattern
Recognition, pages 1386–1393, June 2012.

Laurent Kneip, Davide Scaramuzza, and Roland Siegwart. A Novel Parametriza-
tion of the Perspective-Three-Point Problem for a Direct Computation of Abso-
lute Camera Position and Orientation. In Computer Vision and Pattern Recognition,
pages 2969–2976, 2011.

Kalin Kolev, Thomas Brox, and Daniel Cremers. Fast Joint Estimation of Silhou-
ettes and Dense 3D Geometry from Multiple Images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(3):493–505, March 2012.

Rainer Kummerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram
Burgard. G2o: A general framework for graph optimization. IEEE International
Conference on Robotics and Automation, pages 3607–3613, May 2011.

Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven. E�cient Multi-View Re-
construction of Large-Scale Scenes using Interest Points, Delaunay Triangulation
and Graph Cuts. International Conference on Computer Vision, pages 1–8, 2007.

Victor Lempitsky and Denis Ivanov. Seamless Mosaicing of Image-Based Texture
Maps. IEEE Conference on Computer Vision and Pattern Recognition, pages 1–6,
June 2007.

Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. BRISK: Binary Robust
Invariant Scalable Keypoints. International Conference on Computer Vision, pages
2548–2555, November 2011.

David Levin. The Approximation Power of Moving Least-Squares. Mathematics of
Computation, 67(224):1517–1532, October 1998.

Marc Levoy, Jeremy Ginsberg, Jonathan Shade, Duane Fulk, Kari Pulli, Brian Curless,
Szymon Rusinkiewicz, David Koller, Lucas Pereira, Matt Ginzton, Sean Ander-
son, and James Davis. The Digital Michelangelo Project. In ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH), pages 131–144, New York, New York,
USA, 2000. ACM Press.

Tony Lindeberg. Feature Detection with Automatic Scale Selection. International
Journal of Computer Vision, 30:79–116, 1998.

S. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

162

Bibliography

Charles T. Loop. Smooth Subdivision Surfaces Based on Triangles. M.s. thesis, Uni-
versity of Utah, 1987.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH), pages 163–169. ACM,
1987.

Manolis I. A. Lourakis and Antonis A. Argyros. SBA: A Software Package for Generic
Sparse Bundle Adjustment. ACM Transactions on Mathematical Software, 36(1):1–
30, March 2009.

David G. Lowe. Object Recognition from Local Scale-Invariant Features. Interna-
tional Conference on Computer Vision, pages 1150–1157, 1999.

David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, November 2004.

Q. Luong and O. D. Faugeras. The Fundamental matrix: Theory, Algorithms, and
Stability Analysis. International Journal of Computer Vision, 17:43–75, 1995.

Don P. Mitchell. Generating Antialiased Images at Low Sampling Densities. In
Computer Graphics and Interactive Techniques (SIGGRAPH), pages 65–72, 1987.

Masahiro Mori, Karl F. MacDorman, and Norri Kageki. The Uncanny Valley. IEEE
Robotics and Automation Magazine, 19:98–100, 2012.

Pierre Moulon, Pascal Monasse, and Renaud Marlet. Global Fusion of Relative Mo-
tions for Robust, Accurate and Scalable Structure from Motion. In International
Conference on Computer Vision, 2013.

Patrick Mücke, Ronny Klowsky, and Michael Goesele. Surface Reconstruction From
Multi-Resolution Sample Points. Vision, Modeling, and Visualization, 2011.

Marius Muja and David G. Lowe. Fast Approximate Nearest Neighbors with Auto-
matic Algorithm Con�guration. In International Conference on Computer Vision
Theory and Application (VISSAPP’09), pages 331–340, 2009.

Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison. DTAM: Dense
Tracking and Mapping in Real-Time. In International Conference on Computer
Vision, pages 2320–2327. IEEE, November 2011.

David Nistér. An E�cient Solution to the Five-Point Relative Pose Problem. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(6):756–77, June 2004.

David Nister and Henrik Stewenius. Scalable Recognition with a Vocabulary Tree.
In Conference on Computer Vision and Pattern Recognition, pages 2161–2168. IEEE,
2006.

163

Bibliography

Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel.
Multi-level partition of unity implicits. ACMTransactions on Graphics (Proceedings
of ACM SIGGRAPH), 22(3):463–470, July 2003.

Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. Sparse Surface Recon-
struction with Adaptive Partition of Unity and Radial Basis Functions. Graphical
Models, 68(1):15–24, January 2006.

Gabriel Peyré and Laurent D. Cohen. Geodesic Remeshing using Front Propagation.
International Journal of Computer Vision, 69(1):145–156, 2006.

R. Pito. Mesh Integration Based on Co-Measurements. In IEEE International Confer-
ence on Image Processing, pages 397–400. IEEE, 1996.

Marc Pollefeys, Reinhard Koch, and Luc Van Gool. Self-Calibration and Metric Re-
construction in spite of Varying and Unknown Intrinsic Camera Parameters. In-
ternational Journal of Computer Vision, 1998.

Marc Pollefeys, Luc Van Gool, Maarten Vergauwen, Kurt Cornelis, and Jan Tops. 3D
Recording for Archaeological Fieldwork. IEEE Computer Graphics and Applica-
tions, 23(3):20–27, 2003.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An E�cient
Alternative to SIFT or SURF. International Conference on Computer Vision, pages
2564–2571, November 2011.

Pedro V. Sander, Diego Nehab, and Joshua Barczak. Fast Triangle Reordering for
Vertex Locality and Reduced Overdraw. ACM Transactions on Graphics, 26(3):89,
July 2007.

Scott Schaefer and Joe Warren. Dual Marching Cubes: Primal Contouring of Dual
Grids. Computer Graphics Forum, 24(2):195–201, June 2005.

Daniel Scharstein and Richard Szeliski. A Taxonomy and Evaluation of Dense Two-
Frame Stereo Correspondence Algorithms. International Journal of Computer Vi-
sion, 47(1):7–42, 2002.

William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of
triangle meshes. ACM SIGGRAPH Computer Graphics, 26(2):65–70, July 1992.

W.J. Schroeder, B. Geveci, and M. Malaterre. Compatible Triangulations of Spatial
Decompositions. IEEE Visualization, pages 211–217, 2004.

Steven M. Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard Szeliski.
A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 519–528. IEEE, 2006.

164

Bibliography

Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk. Interpolating and Approx-
imating Implicit Surfaces from Polygon Soup. ACM Transactions on Graphics, 23
(3):896, August 2004.

Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo Tourism: Exploring
Photo Collections in 3D. In ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH), pages 835–846. ACM, 2006.

Noah Snavely, Steven M. Seitz, and Richard Szeliski. Skeletal Graphs for E�cient
Structure from Motion. IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8, June 2008.

Marc Soucy and Denis Laurendeau. Building a Surface Model of an Object using
Multiple Range Views. In Proceedings of SPIE, page 85, 1992.

Marc Soucy and Denis Laurendeau. A General Surface Approach to the Integra-
tion of a Set of Range Views. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(4):344–358, April 1995.

Vitaly Surazhsky and Craig Gotsman. Explicit Surface Remeshing. In Eurographics
Symposium on Geometry Processing, pages 17–28, 2003.

Vitaly Surazhsky, Pierre Alliez, and Craig Gotsman. Isotropic Remeshing of Surfaces:
a Local Parameterization Approach. In 12th International Meshing Roundtable,
2003.

Richard Szeliski. Computer Vision: Algorithms and Applications. Springer Interna-
tional Publishing, 2010. URL http://szeliski.org/Book/.

Christian Theobalt, Naveed Ahmed, Hendrik Lensch, Marcus Magnor, and Hans-
Peter Seidel. Seeing People in Di�erent Light – Joint Shape, Motion, and Re-
�ectance Capture. IEEE Transactions on Visualization and Computer Graphics, 13
(3):663–674, 2007.

Grit Thuermer and Charles A. Wuethrich. Computing Vertex Normals from Polyg-
onal Facets. Journal of Graphics Tools, 3(1):43–46, 1998.

Engin Tola, Vincent Lepetit, and Pascal Fua. A Fast Local Descriptor for Dense
Matching. In Computer Vision and Pattern Recognition, 2008.

Engin Tola, Vincent Lepetit, and Pascal Fua. DAISY: An E�cient Dense Descrip-
tor Applied to Wide-Baseline Stereo. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(5):815–830, 2010.

James Tompkin, Ki Kim, Jan Kautz, and Christian Theobalt. Videoscapes: Exploring
Sparse, Unstructured Video Collections. ACM Transactions on Graphics . . . , 2012.

Greg Turk. Re-Tiling Polygonal Surfaces, 1992. ISSN 00978930.

165

http://szeliski.org/Book/

Bibliography

Greg Turk and Marc Levoy. Zippered Polygon Meshes from Range Images. Proceed-
ings of the 21st Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 311–318, 1994.

Greg Turk and James F. O’Brien. Variational Implicit Surfaces. Technical report,
Georgia Institute of Technology, 1999.

Alex Vlachos, Jörg Peters, Chas Boyd, and Jason L. Mitchell. Curved PN triangles. In
Symposium on Interactive 3D Graphics, pages 159–166, New York, New York, USA,
2001. ACM Press.

George Vogiatzis and Carlos Hernandez. Video-based, Real-Time Multi View Stereo.
Image and Vision Computing, 2011.

Alexandre Vrubel, Olga R. P. Bellon, and Luciano Silva. A 3D Reconstruction Pipeline
for Digital Preservation. In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2687–2694. IEEE, June 2009.

Hoang-Hiep Vu, Renaud Keriven, Patrick Labatut, and Jean-Philippe Pons. Towards
High-Resolution Large-Scale Multi-View Stereo. IEEE Conference on Computer
Vision and Pattern Recognition, pages 1430–1437, June 2009.

Hoang-Hiep Vu, Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven. High
Accuracy and Visibility-consistent dense Multiview Stereo. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34(5):889–901, May 2012.

Michael Waechter, Nils Moehrle, and Michael Goesele. Let There Be Color! Large-
Scale Texturing of 3D Reconstructions. In European Conference on Computer Vi-
sion, pages 836–850, Cham, 2014. Springer International Publishing.

R. Westermann, Leif P. Kobbelt, and T. Ertl. Real-time Exploration of Regular Volume
Data by Adaptive Reconstruction of Iso-Surfaces. The Visual Computer, 15(2):100–
111, 1999.

Brian Williams, Mark Cummins, José Neira, Paul Newman, Ian Reid, and Juan
Tardós. A comparison of loop closing techniques in monocular SLAM. Robotics
and Autonomous Systems, 57(12):1188–1197, December 2009.

Kyle Wilson and Noah Snavely. Robust Global Translations with 1DSfM. In European
Conference on Computer Vision, Lecture Notes in Computer Science, pages 61–75,
Cham, 2014. Springer International Publishing.

Changchang Wu. Towards Linear-Time Incremental Structure from Motion. Inter-
national Conference on 3D Vision, pages 127–134, June 2013.

Changchang Wu, Sameer Agarwal, Brian Curless, and Steven M. Seitz. Multicore
Bundle Adjustment. IEEE Conference on Computer Vision and Pattern Recognition,
(1):3057–3064, June 2011.

166

Bibliography

Dong-Ming Yan, Bruno Lévy, Yang Liu, Feng Sun, and Wenping Wang. Isotropic
Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram.
Computer Graphics Forum, 28(5):1445–1454, July 2009.

Ruigang Yang and Marc Pollefeys. Multi-Resolution Real-Time Stereo on Commod-
ity Graphics Hardware. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 211–217. IEEE, 2003.

Jihun Yu and Greg Turk. Reconstructing surfaces of particle-based �uids using
anisotropic kernels. ACM Transactions on Graphics, 32(1), January 2013.

Ramin Zabih and John Wood. Non-parametric Local Transforms for Computing
Visual Correspondence. In European Conference on Computer Vision, number May,
pages 151–158, 1994.

Christopher Zach, Thomas Pock, and Horst Bischof. A Globally Optimal Algorithm
for Robust TV-L1 Range Image Integration. In IEEE 11th International Conference
on Computer Vision (ICCV). Citeseer, 2007.

167

Wissenschaftlicher Werdegang des Autors1

2003 – 2009 Studium der Informatik
Technische Universität Darmstadt

2007 Abschluss: Bachelor of Science
Bachelor-Thesis: „Volume Data Generation from Triangle
Meshes using the Signed Distance Function”
Referenten: PD Dr. Frank Zeilfelder, Thomas Kalbe

2009 Abschluss: Master of Science
Master-Thesis: „Feature-sensitive, Curvature-adaptive
Isotropic Surface Remeshing”
Referenten: Prof. Dr.-Ing. Michael Goesele, Thomas Kalbe

seit 2009 Wissenschaftlicher Mitarbeiter
Graphics, Capture and Massively Parallel Computing (GCC)
Technische Universität Darmstadt

2012 – 2013 Einjähriges Forschungspraktikum
Google, Inc., Seattle, USA
Entwicklung von “Lens Blur” für die Android Camera App

Ehrenwörtliche Erklärung2

Hiermit erkläre ich, die vorgelegte Arbeit zur Erlangung des akademischen Grades
„Doktor-Ingenieur“ mit dem Titel „Scene Reconstruction fromMulti-Scale Input Data“
selbständig und ausschließlich unter Verwendung der angegebenen Hilfsmittel er-
stellt zu haben. Ich habe bisher noch keinen Promotionsversuch unternommen.

Darmstadt, den 23. März 2015

Simon Fuhrmann

1Gemäß § 20 Abs. 3 der Promotionsordnung der Technischen Universität Darmstadt
2Gemäß § 9 Abs. 1 der Promotionsordnung der Technischen Universität Darmstadt

168

	Title
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Capturing Reality
	Geometry from Images
	Problem Statement
	Contributions
	Thesis Outline

	Background
	Camera Model
	Structure from Motion
	Multi-View Stereo
	Surface Reconstruction
	Post-Processing
	Conclusion

	MVE – The Multi-View Environment
	Introduction
	System Overview
	Reconstruction Guide
	Reconstruction Results
	Software
	Conclusion

	Fusion of Depth Maps with Multiple Scales
	Introduction
	Related Work
	Concepts
	Signed Distance Field
	Extracting the Isosurface
	Evaluation and Results
	Conclusion

	Floating Scale Surface Reconstruction
	Introduction
	Related Work
	Floating Scale Implicit Function
	Analysis in 2D
	Sampling the Implicit Function
	Results
	Discussion and Conclusion

	Direct Resampling for Isotropic Surface Remeshing
	Introduction
	Related Work
	Preliminaries
	Building the Initial Mesh
	Improving Vertex Positions
	Results
	Conclusion and Future Work

	Surface Reconstruction Evaluation
	Scanner Data
	MVS Data
	Multi-Scale MVS Data
	Reconstruction Statistics
	Remeshing Results
	Conclusion

	Conclusion
	Summary
	Discussion
	Future Work

	(Co-)Authored Publications
	Bibliography

