
A Scalable Architecture for Volume Rendering
Gunter Knittel

WSI I GRISt

University of TUbingen, Gennany

Abstract
We describe the operational principles of a scalable
hardware accelerator for volume rendering. The
basic philosophy is to provide an atomic unit which
already provides sophisticated volume graphics at
interactive rendering speed. Realtime speed can
then be achieved by operating multiple units in par­
allel. The basic unit consists of just four VLSI
chips and the volume memory and thus meets the
requirements of a small size and low costs. Never­
theless it provides arbitrary perspective projections
(e.g., for walk-throughs), Phong shading, a freely
moveable light source, depth-cueing and interac­
tive, non-binary classification (semi-transparent
display) at a frame rate of about 2.5Hz for 256 3

data sets.

Keywords: graphics hardware, VLSI designs,
volume rendering, ray casting

1 Introduction
In recent years, volume rendering has made its way
out of the research labs into the real world. It has
gained a large number of application fields, such as
medical diagnosis and surgery planning, non­
destructive evaluation, weather forecast or explora­
tion of mineral resources to name a few. Besides
the fact that large scalar arrays must be classified
and visualized, the different applications do not
have much in common. In a clinical environment,
reliability and performance is at premium with lit­
tle concern of the costs. In atmospheric research,
the ultimate rendering speed may not be the most
wanted feature, but instead the ability to handle
extremely large data sets. For the visualization of
simulated dynamic processes any machine which
does not provide realtime volume animation is use­
less, whereas in the workstation market the price is
the most crucial quantity.

tUniversitat Tubingen
Wilhelm-Schickard-Institut fur Informatik ­
Graphisch-Interaktive Systeme (WSI I GRIS)
Auf der Morgenstelle 10, C9
D-72076 Tiibingen, Germany
Phone: ..497071295461
FAX: . .49 7071 29 5466
email: knittel@gris.informatik:.uni-tuebingen.de

Thus, the task is to develop a generic voxel graph­

ics architecture, which defines a consistent view

from the algorithmic and software side, but never­

theless allows different implementations exactly

tailored to the requirements of the application.

We take the following visualization paradigms as

the common architectural basis:

a direct volume rendering using ray casting,

a _ integrated, interactive classification as

opposed to pre-segmentation,
a semi-transparent display of structures of inter­

est,
a arbitrary perspective projections allowing

walk-through examinations and
a meaningful images by sophisticated illumina­

. tion models, i.e., non-parallel light, Phong
shading and depth-cueing.

2 Algorithm
This architectural approach follows the work of
Levoy [8] and Drebin et al. [1]. The algorithm pro­
posed by Levoy performs the shading and classifi­
cation operations on the acquired or prepared
samples of the data set For each grid point, the
local gradient is approximated using the samples in
the 6-neighbomood. The samples are Phong
shaded using the gradient as surface normal. The
classification step assigns the samples a certain
opacity. which is taken from an opacity map using
the function value and the gradient magnitude as
pointers. The results are two new data sets: one
holds the color of the shaded samples, the other
their opacity. For the image generation, the ray
casting algorithm is performed on both of the data
sets. The reconstruction via tri-linear interpolation
at the resample locations along a ray accordingly
operates on colors and opacities. The compositing
operation finally sums up the color of all points on
a ray in back-to-front order according to their opac­
ity to give the pixel color.
However, the algorithm is not well suited for inter­
active exploration. Any change in classification or
shading parameters requires the data set holding
the color or opacity to be reconstructed. For the
visualization, however, we have to go through the
data set a second time.
A direct hardware realization would show unneces­
sary high storage costs. Since in-place computation

58

mailto:knittel@gris.informatik:.uni-tuebingen.de
http://www.eg.org
http://diglib.eg.org

(replacing the operands by the results) is not possi­
ble, we would have to provide memory for the
original sample values, their color and opacity.
Given a data width of 16, 24 and 8 bits, respec­
tively, the memory would have three times the size
of the original data set.
Thus, the algorithm is reorganized to allow an easy
hardware implementation. The ray-casting algo­
rithm is performed on the original data set. For
each resample location, a specific set of neighbor­
ing samples is read out, from which the function
value, the local gradient and the gradient magni­
tude are computed. Function value and gradient
magnitude are then used as pointers into several
look-up tables, which hold the classification trans­
fer function (opacity 0), the color assignment
(RGB) and material properties (such as the specular
reflection coefficient ks) for shading. Phong shad­
ing is then applied to the resample location, and the
intensities of all points on a ray are then compos­
ited in front-to-back order according to their opac­
ity.
Thus, the volume memory must hold only one data
set. All processing is done on the fly by specialized
VLSI units, which can ideally be placed into a
pipeline.
Two modes of operation, differing in the way the
gradient is approximated, can be used: High-Speed
Rendering and High-Quality Rendering.

2.1 High-Speed Rendering

In this mode, the gradient is approximated from the
8 samples needed by the tri-linear interpolation.
Figure 1 shows a volume element which is defined
by the eight samples SO••S7 at the comers. The off­

1 - z

z
./

./ E3

ES./ ./ ./ S7
./ /"" Fs ./ E7

E4 S5
F3

Fo ./V /' /'
/ ./ V 0 / Fl

F2
Els~

E2 l,....o-v /
./ / F4

Figure 1: Fast Gradient Computation

set of the resample location within the volume ele­
ment is given by {x,y,z}. The tri-linear interpolation
is decomposed into a sequence of linear interpola­
tions, i.e., first the quantities Eo..E7 are linearly
interpolated, from which the quantities Fo..F5 are
again computed by linear interpolations. The
desired value D and the gradient components Gx' Gy
and Gz at that resample location are then approxi­

59

mated by:

D = F4 (1-z) + Fsz and (1)

= F)-FO; G = F3-F2 ; G = F -F4 ·(2)Gx y z s

The memory system (see section 3.1) facilitates the
parallel access to the 8 comer samples (called an S­
set) of any volume element, so that all needed
quantities for the processing of a given resample
location are extracted from the data set in one sin­
gle memory access.

2.2 High-Quality Rendering

For a more accurate gradient approximation, the
samples in an extended neighborhood are taken
into account. Figure 2 shows a volume element
with a collection of adjacent samples. The compu-

Figure 2: Extended Neighborhood

tation of the function value and the gradient com­
ponents now take place in four steps. First the
samples labeled S, which bound the volume ele­
ment holding the resample location, are fetched
from memory and passed to the tri-linear interpola­
tion. It is obvious that a memory system capable of
delivering an S-set in parallel can also provide all
samples labeled A (an A-set) in a single access.
Then, together with the previously fetched S-set, all
data is available to compute the x-components of
the gradients at the original sample points, i.e.:

Gxl = (S}-A})/2, G l = (A 6 -S6)/2. (3)xo 7

The x-components of the gradients are then tri-lin­
early interpolated at the resample location. The
remaining two steps refer to the samples labeled B
and C, and produce the interpolated y- and z-com­
ponents of the local gradient, respectively.
All together, one resample location requires 4
memory accesses, so that High-Quality Rendering
runs at approximately one fourth the speed of the
High-Speed mode.

3 Basic Ray Casting Engine dimensional look -up tables addressed by D and G.

The architecture is a one-to-one mapping of the
described algorithmic steps to appropriate hard­
ware units. The accelerator is organized as a pipe­
line, which, at peak performance, completes the
processing of one resample location each clock
cycle. An overview of the voxel graphics engine,
which grew out of our previous work in this area
[4], [7], is given in Figure 3.
The Address SeQuencer (ASQ), a VLSI unit, per­
forms the ray-casting algorithm. After having
obtained all ray parameters, it subsequently gener­
ates all points on that ray, clips against clip planes
and volume boundaries, computes the associated
memory addresses and schedules the different
access types in High-Speed and High-Quality Ren­
dering mode.
The volume memory (VoluMem) is designed to
deliver the eight samples of any set in parallel. It
uses address interleaving and address pipelining
and exploits the Page Mode of standard DRAMs to
reach a sustained bandwidth of about 750MByte/s.
The Reconstructor and EXtractor (REX), a VLSI
chip, performs the reconstruction of the scalar
function at the resample location via tri-linear
interpolation, the gradient approximation in both
High-Speed and High-Quality Rendering mode
and the gradient magnitude calculation.
Function value D and gradient magnitude G are
then passed to several look-up tables: the· color
(ROB) of a point on a ray is derived from its func­
tion value, the visibility (opacity Q) and the
appearance (specular reflection coefficient ks) of
the surface the point lies on are taken from two-

Both the Q- and ks-functions are stored at a lower
resolution and are bi-linearly interpolated at the
exact position; this allows the use of fast but small
memory devices.
The largest VLSI unit is COLOSSUS (COmplex
LOgic for Shading at SUper Speed). For each resa­
mple location, the unrestricted Phong illumination
model (non-parallel light, perspective projection) is
evaluated. Depth-cueing is provided according to
the travelling distance of the light from the source
to the eye. The key idea to reach the single-chip
target is to transform the operands into the loga­
rithm at various places in the computing pipeline,
thus replacing divisions and multiplications by
simple subtractions and additions, and to back­
transform the results into the number domain. Pro­
vided the logarithm converters are compact and
fast, significant gains in chip space can be
achieved. Of particular usefulness is the fact that
the exponentiation of the specular term can then be
done by a multiplication instead of a table-look-up.
The basic macrocell, a fast logarithm converter, has
been developed and is described in [6].
COMET (COMpositing UniT) finally sums up the
intensity contributions of all points on a ray in
front-to-back order, and passes the pixel color to
the framebuffer. Basically this VLSI chip is just an
arrangement of multiply-and-accumulate pipelines.
Additionally, the unit will support the virtual inte­
gration of surface-oriented objects into the volume
data set. .
Here we will focus on the front half of the volume
graphics system: ASQ, VoluMem and REX, which,
taken together, already represent a very useful

SCREEN PIXEL

Rft:Y I"'AHAMI:: I I::Hl:S, DATA INTERFACE
CLIP PLANES,

WRENDERING MODEJ Q1 G
III COMET h~ rt c:·

~A!=:AMPI~!=:

COLOSSUS r­~-III •
.2

Figure 3: Architectural OverY!

....

!---t r- ­
~~ r-:::E­

u---e w
II:::E

r-:::>­ASOJ --.J

rnl;ll t-~-
r--t t- ­

REX

8 MEMORY ~_

wr-< ..J
D CD RGB

~ · CD
(!Jl a: G, L,A

,,1
w

L....t ..J
ksIII

60

voxel graphics subsystem. The "back end" of the
accelerator, COLOSSUS and COMET, are still
under development and will be described in a later
document.

3.1 VoluMem

We start the detailed description of the hardware

units with the volume memory, since it is the part

which defines the performance and the costs of the

entire system.

A data set can have up to 5123 samples. The coor­

dinates of a resample location have a 9 bit integer

part and an 8 bit fraction The coordinates (X, Y,Z)

of the original samples seX) are 9 bit unsigned inte­

gers.

We define the Reference Point for a given resam­

pIe location L= (L, M, N) by

...

P = (P, Q, R) = (LLJ, LMJ, LNJ) , (4)

where P denotes the component in X-, Q the com­
ponent in y- and R the component in z-direction.
For performance reasons, any set of samples (S-, A­
, B-, and C-set) relative to a given Reference Point
must be obtainable by a single memory access.
This requires 8 independent memory banks and a
conflict-free distribution function. Grouping the
samples according to the least significant bits
(Xl) YiPZo) of their coordinates will avoid any access
conflicts. The bank number of a given sample is
then given by

~ = P2Pl~O = ZoYaXo' 	 (5)

the location of a sample within its bank is given by
....
U = (U, v, W) = (LXI2J,LYI2J,LZl2J). (6)

For further performance increase in High-Speed
Rendering mode, we use address pipelining and
apply address interleaving to each memory bank.

Any sample contributes to a set of 8 volume ele­
ments, what we call its catchment area For the
samples of a given memory bank, the catchment
areas are all non-overlapping. Each memory bank
is subdivided again into 8 memory units, so that
adjacent catchment areas in each direction have
their samples in different memory units. In terms of
address arithmetic, the samples are distributed
according to (UiP ViPWoJ = (Xj>YjlZj) among the
eight memory units.
Although the spacing can be arbitrary per ray, we
optimize the system for the following assumption:
o 	for any point, the next resample location falls

into the same volume element or one of its 26­
neighborhood.

Then we make the following observations:
o 	Any memory unit is either accessed subse­

quentlyan arbitrary number of times or
o 	at least two accesses refer to other units before

the next access to this unit can occur.
In the latter case a memory cycle can take three
clock cycles, i.e. 50ns at a target clock frequency of
60MHz. This is sufficient for the so-called Page
Mode of standard DRAMs.
The basic architecture of memory devices is an
array of storage cells [10]. Any random access to a
DRAM device takes place in two steps: first, the
addressed row (or page) must be loaded completely
into an internal output register (row access), from
where the desired data item can be accessed in a
second step (column access). If the following
memory cycle refers to the same row, the row
access can be skipped since the data still exists in
the output register (page Mode access). The Page
Mode cycle time is about 40ns. Thus, the task is to
arrange the samples within the memory devices so
that the Page Mode can be used the most often.
Data sets of 5123 samples, 16 bits each, require a

BANK CONTROL AND ADDRESS BUS (16 BIT)

FROM
ASQ

~~~ tl~~iBHH~~ 

UNIT#~O_~~~~i..... 
UNIT #7 

BANK DATA BUS (16 BIT) 

TO REX 

Figure 4: Intelligent Memory Module 

61 



memory capacity of 256MByte. With 16MBit 
DRAM technology we need 128 devices. We use 
2Mx8 (2048 rows x 1024 columns x 8 bits) orga­
nized DRAMs. so that each pair of devices forms 
one of 64 memory units. We provide each memory 
unit with address registers and control logic so that 
it can operate independently. Eight such memory 
units are integrated into one Intelligent Memory 
Module (lMM), of which again eight are needed to 
build the complete volume memory. One row 
across all devices has 1MBit, that is 64K samples. 
Since there are no principal ray directions, we 
place the samples of a 32x64x32 subvolume, 
called ''P-block'', into one page. 
If subsequent accesses to the same memory unit 
occur, however, always the same sample is 
addressed. Placing a fast register (a one entry 
cache) behind each unit avoids any performance 
penalty in this case. 
In this way one set of addresses can be issued and 
one S-set is delivered each clock cycle as long as 
we move around in one P-block. 
High-Quality Rendering also benefits from this 
memory architecture. Due to the high interleaving 
factor and the one-entry caches. all the samples of 
the S-, A-, B- and C-sets can be fetched within 4 
clock cycles as long as no set is distributed across 
more than one P -block. 
The block diagram of an IMM is shown in Figure 
4. Each clock a new command (row access, read, 
write, no operation, etc.) is written into the bank 
command register and broadcast to the eight units. 
A command word has 16 bits and carries the row or 
column address (11 or 10 bits, a unit address (3 
bits) and a command word (2 or 3 bits». That is, 
the bus from ASQ to VoluMem is 128 bits wide. A 
Memory Unit Controller (MUC), if selected, exe­
cutes a command immediately after receipt For 
write cycles, the host is required to place the eight 
samples of an S-set into the bank data registers 
before one write operation can be completed. This 
can be done sequentially or all samples at a time. 
Assumed there is a large Silicon Disk holding a 
sequence of data sets, one S-set can be loaded each 
clock, giving a load time of about .35ms for a 2563 

data set. In the case of a read cycle, the sample is 
clocked into the unit data register (the one-entry 
cache) and placed onto the (tri-state) bank data bus 
the appropriate number of times. Due to the strict 
behavior of the memory units, the MUCs can eas­
ily be integrated into small EPLDs (Erasable Pro­
grammable Logic Devices). 

3.2 Address SeQuencer (ASQ) 

A block diagram of the Address SeQuencer is 
shown in Figure 5.. ASQ generates the memory 
addresses for both read and write operations. For 
write cycles, additional synchronization mecha-

CLIP PLANES, 

VOLUME BOUNDARIES, RAY PARAMETERS 


RENDERING MODE 


GIS 0 
(J) u..SCHEDULER W u:: 
!;: w 
Z 0 
- Z 
~ ~ o (J)OUTPUT STAGE o ­o 0 

..:.. 
8 ADDRESS & L,A

COMMAND WORDS 

Figure 5: ASQ 

nisms are needed, which are not described in this 
paper. Here we will focus on read cycles, since 
they are more challenging and more relevant for 
the usefulness of the machine. ASQ was designed 
as a pipelined unit, which processes a complete ray 
autonomously and issues accesses at the maximum 
rate defined by the memory system. 
The host interface is a collection of registers, 
accepting 
o 	rendering mode, clip planes and volume bound­

aries, set up once per frame or session; 

o 	the starting point is on the ray, the vector AL 
to the next resample location, the initial dis­
tance from the view point As and its increase 
£\A, programmed once per ray. 

The coordinates sequencer is just a set of adders, 
which can generate any sequence of evenly spaced 
points on a straight line. In the High-Quality Ren­
dering mode, the coordinates of any resample loca­
tion are issued four times and tagged as an S-, A-, 
B-, or C-type access, respectively. 
The coordinates are passed to the boundary & clip 
logic, which invalidates the location if the region 
of interest has not been reached yet or terminates 
the ray if it was left. In the latter case the process­
ing of a new ray will be started automatically if its 
parameters are already present in the host interface. 
A FIFO assures that all parameters of a given resa­
mple location arrive synchronously at the inputs of 
REX. 
The scheduler issues and delays accesses according 
to the momentary state of the memory system. As 
explained in the previous section, one access can 
be initiated each clock as long as all samples of the 

62 




addressed set reside in the same P-block, once the 
appropriate page is loaded. However, if any set is 
spread over multiple P-blocks, a certain subset of 
memory banks is required to load a new page into 
their output registers. Then the scheduler halts the 
internal pipeline of ASQ, inserts a number of wait­
states to finish any pending memory cycle, sends a 
row access command to the memory banks in ques­
tion and issues the next read command after two 
additional wait-states. 
Besides that, the scheduler detects any resample 
location stepping outside the 26-environment of its 
predecessor. In this case the read operations are all 
random accesses. 
The sc4eduler also maintains synchronization 
between the different memory banks. There are 
neither synchronization elements between the 
memory banks nor between the memory units; any 
unit completes a read or write access within a fixed 
period after receipt. 
The output stage finally transforms the coordinates 
of the Reference Point into a set of memory 
addresses as described in Figure 6, using just 6 
adders/subtractors (8-bits wide) and eight multi­
plexers. 

3.3 Reconstructor and EXtractor (REX) 

Although parts of this unit have already been pre­

sented [4],[5], we give a short description so that 

the reader has a clear understanding of how we 

reach the single chip target. 

REX falls into five parts: 

o 	the data entry stage, which generates the quan­

tities to be tri-linearly interpolated, 

o 	the tri-linear interpolator, which computes the 
function value D(L) and the gradient G(L) , 

o 	the gradient magnitude unit and 
o 	two FIFO memories to maintain synchroniza­

tion. 

In High-Speed Rendering mode, the chip accepts 
one set of input parameters {SO"S7' L} and pro­
duces one set of output parameters {D, G, G} each 
clock cycle. In High-Quality Rendering mode, four 
clock cycles are needed to enter the input parame­
ter sets ~So ..S7' L} , {Ao..A7' L} , {B ..B7, L} ando 

{Co"c7' L} . 


A block diagram of the chip is given in Figure 7. 
The data entry stage passes the samples of an S­
type access unmodified to the tri-linear interpola­
tor, but stores them in a set of input registers. 
Together with the samples of subsequent A-, B- and 
C-type accesses (if any), it computes the X-, y- and 
z-components of the gradient at the original sample 
locations and feeds them into the tri-linear interpo­
lator. Basically, the data entry stage consists of a 
number of registers, 8 subtractors and a set of mul­
tiplexers. 
The tri-linear interpolator is a three-layered, 
straight-forward arrangement of 15 linear interpo­
lators (LI), which in the first layer compute all val­
ues on the edges (labeled En in Figure 1). These 
quantities are then passed to the second layer to 
produce the quantities named Fn' The third layer 
consists of one LI which computes the recon­
structed function value or gradient component at 
the resample location. Besides that, there are three 

lIne access function (l for an S-set defined by a Reference Point (P'Q,R) returns the coordinates of the 
samples in dependency of the bank number ~: 

U = LPl2J+Po for ~o = 0; u = LPI2J for ~o = 1]
cx:P ~ U(~) = V = LQI2J + Qo for ~1 = 0; V = LQI2J for ~1 = 1 . (7)

[ 
W = LRI2J+Ro for ~2 = 0; w = LRI2J for ~2 = 1 

For an A-set, replace the first line by: 

u = LPl2J+Po for ~o = 0; . u= (-1) Po + LPI2J for ~o = 1 . (8) 

For a B-set, replace the second line by: 

v = LQI2J+ Qo for ~1 = 0; V= (_1)Qo + LQI2J for ~1 = 1 . (9) 

For a C-set, finally, replace the third line by: 

w = LRI2J+Ro for ~2 = 0; w= (_1)Ro + LRI2J for ~2 = 1 . (10) 

The address function cr transforms the coordinates into 8 linear memory addresses: 

O':U(~) ~ N(~) = W3.. 1(~) x 27 + V4..1(~) x 23 + U3.. 1(~) for Page Mode (column) accesses and (11) 

0': U(~) ~ N(~) = W7..i~) x 27 + V7 ..S(~) x 24 + u7..4(~) for page (row) accesses. (12) 

Figure 6: Functional Description of the Output Stage 

63 




FROMASQ SAMPLES FROM MEMORY BANKS 
..... 

A L o 234567 

DATA ENTRY STAGE 

>­ TRI-LiNEAR INTERPOLATOR a:: o 
~ Gzw D 
~ --~I_tGy lG 

xo 
lL 
u:: 

FIFO 
MEMORY 

.....
A L D Gz Gy Gx G 

Figure 7: REX 

R1633..32 

subtractors to compute the gradient components in 
High-Speed Rendering mode. 
The gradient magnitude unit consists of three 
square units, a triple input adder and a square root 
unit. All units are pipe lined to reach the clock fre­
quency target. We will explain the square root unit 
in greater detail, which is shown in Figure 8. 
The squared gradient length r arrives as a 34 bit 
unsigned number r33r32 ..rO at the inputs. For every 
two digits of the square, the integer part of the 
square root G = GI6G15.. GO has one digit. The most 
significant bit G 16 of the root can be calculated 

from r33.. .32 independently of the other bits. 

Thus: 


G16=f33vf32' (13) 

a possible remainder R~~..32 is given by 
U M­

R33::: and R32 = f 33 "f32. (14)r 33"f32 

The square root of the binary number r33f32r31rJO 

is still approximated by 2xG16, the remainder 

R3J..30 is represented by R~~R~~f31 f 30' If we add 

GIS' the new root is 2 x G16 + GIS' and therefore its 

square is increased by 4 x G16 x G I5 + G;5' 

SO the following relation must be satisfied: 

• 2 (15)R33 .. 30 '?:.4xG16xG15+GI5· 


Assuming G15=1 requires that 


R;3.. 30 '?:.4xG I6 +1. (16) 


Thus, G 15 is just the result flag of the above com­
pare operation. For GIS = 1 the new remainder 

15 •• bR32 .. .30 IS given y 
15 • 

R32..30 = R 33..30 -4xG16 -1, (17) 

•
•
• 

G16..0 

. Figure 8: Square Root Pipeline 

for G15 =0 the remainder is left unchanged. This 
operation is repeated for every result bit. Accord­
ingly, the pipeline has 16 stages. 

In this way, one square root operation is completed 
every clock The density D and the gradient com­
ponents travel through a FIFO memory and arrive 
synchronously with the gradient magnitude at the 
outputs. For further processing, the parameters of 
the resample location are then passed to the classi­
fication, shading and compositing units. REX has 
app. 350 YO-pins and uses about 175.000 gates. 

4 Image Quality 

A software simulation of the algorithm was written 
to show the differences between the High-Quality 
(Figure 9) and the High-Speed Rendering mode 
(Figure 10) under worst-case conditions. A com­
puter-generated, unfiltered data set of 2563 sam­
ples, containing a discretized sphere of 240 units in 
diameter, was rendered. We used simple threshold­
ing, and the rays were terminated after the first 
encounter of the sphere surface. The surface was 
illuminated using the Phoag illumination model 
with 10% ambient, 30% diffuse and 60% specular 
reflected light and the specular exponent set to 25. 

64 




5 Performance 6 Parallelizing Ray Casting Engines 

Since the required rendering time for a sequence of 
perspective views is hard to predict, a simulator 
was written which performs the functions of the 
coordinates sequencer and the scheduler within 
ASQ. Two round-trips around a 2563 data set were 
simulated: for round-trip #1 the observer was 
placed at (128, 512*cOSCl+I28, 512*sinCl+128), for 
trip #2 at (362*cOSCl+128, 362*cOSCl+128, 
512*sinCl+128). A l00xlOO view plane was 
located 256 units apart from the observer and ren­
dered at a 2562 resolution using a stepsize of 0.95 
along each ray. Each round-trip produced 360 
frames, and was simulated in High-Speed and 
High-Quality mode. Provided the clock frequency 
target of 60MHz can be reached, which is the upper 
limit given by the DRAM devices, we'll obtain the 
following results: 

! 
Round-

Trip 
Rendering 

Mode 
Total 
lime 

Average 
lime 
per 

Frame 
i 

Frame 
Rate 

1 HS I 139.5s O.38SS 2.58Hz 

2 HS 148.88 0.413s 2.42Hz 

1 HQ 601.2s 1.678 0.6Hz 

2 HQ 647.7s 1.8s O.56Hz 

Thus, for example, rendering 10 frames in High­
Speed mode to find a new viewpoint and one frame 
in High-Quality mode afterwards will take roughly 
5.75s. 

Although advances in technology will allow us to 
increase the clock frequency up to a certain point, 
significant speed-up can only be achieved by oper­
ating multiple engines in paralleL Due to the high 
costs, however, providing each engine with mem­
ory for the entire data set is definitely not accept­
able. 
The general idea is to divide the data set into cer­
tain subvolumes and to distribute these subvolumes 
over different ray casting engines. Each engine 
processes any given ray as long as it traverses 
through its own region. On exit, each engine 
assembles a communication packet defining the 
ray properties up to this point and sends it to the 
engine holding the subvolume the ray is about to 
enter. Thus, at peak performance, the number of 
rays which can be traced in parallel through the 
data set equals the number of engines. 
The first problem to be solved is to find the optimal 
granularity: if the subcubes are too small, the com­
munication overhead is the performance bottle­
neck, if the subcubes are too large, an uneven 
workload may paralyze the system, especially in 
the case of walk-throughs. However, our architec­
ture has a "natural" granularity: the P-blocks 
defined by the page size of the DRAMs. Crossing a 
P-block boundary causes a certain overhead any­
way, and assembling a communication packet and 
scheduling a new ray will not increase this over­
head significantly. Although one can always find 
cases in which any parallel machine operates at 
low efficiency (in this case, for example, rendering 
a frame from a single P-Block), an almost linear 
speed-up over the number of units is achievable in 

Figure 9: High-Quality Rendering Figure 10: High-Speed Rendering 

65 




most practical cases. 
Another problem is presented by resample loca­
tions which fall in the space between two P-blocks 
residing on different engines. Collecting the appro­
priate neighborhood for this sample point will 
result in an excessive communication overhead. 
Thus, a special replicating and partitioning scheme, 
which assures that each engine always has all 
required samples available, is needed. However, 
any modification of the data set requires to adapt 
the ray casting algorithm. Data set partitioning and 
distributed ray casting are discussed in the follow­
ing two sections. 

6.1 Data Set Preparation and Partitioning 

For explanation purposes, let's assume a P-Block 
size of 32x32x32 and a maximum data set size of 
5123 samples, which should be distributed over 8 
ray casting engines. For the moment, we will only 
consider High-Speed Rendering. 

Thus, all boundary layers between subvolumes 
must be duplicated. This introduces a certain 
redundancy into the data set and causes a small loss 
in maximum data size. The data set preparation can 
be explained by the following lines of pseudo­
code: 

FOR X = 511 TO 32 DO 
FOR Y = 0 TO 511 DO 

FOR Z = 0 TO 511 DO 
sample(X,Y,Z) = sample(X - LXl32J ,Y,Z); 

FOR Y = 511 TO 32 DO 
FOR X = 0 TO 511 DO 

FOR Z =0 TO 511 DO 
sample(X,Y,Z) =sample(X,Y - LY/32J ,Z); 

FOR Z= 511 TO 32 DO 
FOR X= OTO 511 DO 

FOR Y =0 TO 511 DO 
sample(X,Y,Z) = sample(X,Y,Z - LZl32J); 

Or, explained differently but more comprehen­
sively: the layer with X=31 was copied into the 
layer with X =32 after having shifted right all sam­
ples with X"232 by one grid location. Then, using 
this modified data set, 'the layer with X = 63 was 
copied into the layer with X=64 after having 
shifted right all samples with X~ 64. We proceed up 
to the volume boundary, discarding the layers with 
497~X~511. The same procedure is then performed 
in y- and z-direction. Thus, the maximum data set 
size was reduced to 497x497x497. The loss can be 
centered by first shifting the data set 8 locations in 
negative X-, y- and z-direction. 
The prepared data set is then distributed over the 8 
engines according to {Z5Y5X5}' thus establishing P­
Block interleaving in each direction. 

6.2 Distributed Ray Casting 

Rays can be cast into this distributed data set as 
usual, however, one has to observe the following 
rule: 

... 
a 	a resample location L = (L, M, N) in the logical 

space must be transformed by 

L' 	= (L+ltJM+l:iJN+l~D (18) 

into machine coordinates. 
This must be done once per ray by the host to com­
pute the starting point, and by each engine every 
time a ray leaves a P-Block (except, of course, on 
volume exit). For simplicity, we assume that the 
26-neighborhood rule is always satisfied. Then, the 
exit-condition for a P-Block is given 
by XB v fB v ZB' where 

XB = P'4P'JI"21" jP'O' 	 (19) 

fB 	= Q'4Q'JQ'2Q'JQ'O and (20) 

ZB = R'4R'JR'2R '1 R'O' 	 (21) 

The coordinate transformation which must be done 
by each engine on P-Block exit is simple: 

L'exit = (-I)SAL xXB +L', 	 (22) 
SIJ.M 

Mexit =(-1) x fB+M , 	 (23) 

R'exit = (-1) SAN x ZB + R' , 	 (24) 

where SM." SAM and SAN are the sign flags of the 
increments in X-, y- and z-direction, respectively. 
That is, increase every coordinate of the resample 
location which cause a P-Block exit if the incre­
ment in this direction is positive, else decrement 
the coordinate. This function is performed by ASQ. 
The address of the target engine is derived from the 
transformed coordinates. 
An example of this kind of data partitioning and 
ray casting is given in Figure 11. For clarity, a two­
dimensional view, where only 4 engines are 
involved, is shown. 

6.3 Ray Definition Packet (RDP) 

The ray properties are given by the following data 
items (n.m denote n integer and m fraction bits): 

Property Name Format # of Bits 

U,V 10.2 24(sub·) pixel address 

accum. color and opacity 8.10 72RGBn 
...next resample location 9.10 57 
L 

....Increments 331.10 
ill 

10distance to observer A 10 

12increase in distance 2.10IlA 

....normalized viewing vector 481.15 
V 

66 




Z 

15 


14 


13 


12 


11 	 Figure 11 a: Ray Casting per­
fonned on the logical data set. 

10 P-Block size is 4xnx4. 
9 

8 


7 


6 


5 


4 


3 


2 


x 
o 

15 (12) 	 Figure 11b: Ray Casting per­
fonned on the distributed data 

14 (11) 
set. Dark grey samples are cop­

13 (10) ies. The coordinates given in 
12 (9) parenthesis represent the logi­

cal address of the samples. The11 (9) 
engine number is shown for 

10 (8) each P-Block. Coordinate trans­
9 (7) fonnations on P-Block exits are 
8 (6) indicated by small arrows. 

7 (6) 

6 (5) 

5 (4) 

4 (3) 

3 

2 

1 
RAY 1 

o 
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(3) (4) (5) (6) (6) (7) (8) (9) (9) (10)(11 )(12) 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 RAY 1 

Z 

x 

Thus, an RDP contains 256 bits. The precision 
requirements of the operands stem from the follow­
ing consideration: the accumulation error should 
not reach the integer part Thus, for example, 
assuming a maximum of 1024 resample locations 
along a ray, the increments can be truncated after 
2-10• 

All quantities are readily available in internal regis­
ters of ASQ, COLOSSUS and COMET. On vol­
ume exit, the color components are sent to the host 
as 8 bit integers, together with the ray-ID (u, V). 

6.4 Parallel Hardware Architecture 

We will now transform the demonstration example 
into the real world. The maximum data set size of 
5123 samples, 16 bits each, distributed over 8 ray 
casting engines gives 2563 = 16M samples or 
32MBytes per engine. The volume memories are 
constructed from 256Kx16 DRAM devices, orga­
nized as 512x512x16. Then,.each memory unit 
consists of one DRAM device, a memory bank 
contains 8 devices and the memory system on one 

67 




• • • 

x 

. wCIl Z<­UG
'>--Z<cw 
0:: 

G 
Z"­
-:II: 

w !~ ~ PACKET BUS 

0ffi" >< 
II ­

Z 

G .....
z* 

~w ~w 
<~ <z 

UGUG
,>--Z '>--z<cw<cw 
0:: 0:: 

~ ~ ~ s? S7 PIXEL BUS S? 
<~ I 
0:::::> 
~m 

Figure 13a: Multi-Master Bus Figure 13b: Torus Network 

engine has 64 DRAM chips. One page across all 
devices of a single engine has 512KBits, that is 32K 
samples. In this way, P-Blocks spanning 32x32x32 
samples are constructed. 

A simplified block diagram of one ray casting 
engine is given in Figure 12. RDPs are received 
from the packet bus via the input FIFOs, processed 

PACKET BUS TO I FROM HOST OR 
OTHER ENGINES 

STORAGE 

REX 

VIEWING 


VECTOR 


FIFO 


RGSil 


FIFO 


PIXEL BUS TO HOST I FRAMEBUFFER 

Figure 12: Ray Casting Engine for Parallel 

Operation and Volume Animation 


and sent through the output FIFOs to the packet 
bus again or to the host via the pixel bus. 
The bus topology is of special importance in any 
parallel architecture. In the simplest configuration, 
as shown in Figure 13a, the packet bus is a multi­
master bus which provides time-multiplexed 
access. In the worst case, a ray travels diagonally 
through the data set and steps into each and every 
P-Block boundary. Then it requests a data transfer 
approximately every 20 clocks. In the best case 
(parallel projection along one of the main axes), 
bus requests occur once every 32 clocks. Assuming 
a typical average bus request frequency of once 
every 24 clocks per ray, a bus cycle may take 3 
clocks. Assuming further that one bus phase is con­
sumed by ovemead (arbitration and bus turnaround 
time), an RDP must be transferred within two 
clocks. This requires to have a 128 bit bus running 
at 6OMHz, what represents the current state of 
technology. 
However, any larger number of parallel ray casting 
engines does not permit the use of a bus. In the 
ideal case, each engine should be connected to 
every other engine in its 26-neighbomood. Of 
course, the hardware expenses would be too large. 
An often used compromise is the ring-connected 
cube network, where each engine is connected to 
its 6 neighbors in x-, y- and z-direction. The inter­
connection scheme is shown in Figure 13b for a 
two-dimensional arrangement. The maximum dis­
tance a RDP must travel is 3 channels, and each 
engine needs appropriate routing capabilities. In 
the case of 64 engines, we need 192 bidirectional 
links. 

6.5 High-Quality Rendering Mode 

In general, the same principle can be used to dis­
tribute the data set and to perform distributed ray 

68 




casting in High-Quality Rendering mode. How­
ever, due to the enlarged neighborhood used to 
compute the gradient. the loss in maximum data 
size becomes substantial. Another drawback is that 
the data set must be partitioned differently for 
High-Speed and High-Quality Rendering mode. 
Thus we propose to always prepare and partition 
the data set for High-Speed mode, and to use High­
Quality Rendering only within the P-Blocks. The 
slightly decreased gradient accuracy at the P-Block 
boundaries will most probably cause no visible 
artifacts. 

7 	 Volume Animation 
Using a large background storage system (see Fig­
ure 12) with a sufficiently short access time, com­
plete sequences of (properly prepared and 
partitioned) data sets can be visualized. As 
explained in section 3.1, one S-set can be loaded 
each clock per engine. Thus, using 8 engines in 
parallel, the load time for a 2563 data set is about 
4.4ms, and a 5123 data set is loaded in 35ms (using 
a clock frequency of 6OMHz). For any given con­
figuration or data set size, the load time can be 
neglected versus the rendering time. 

S 	 Conclusion and Future Work 
We presented a scalable volume rendering architec­
ture which covers a wide range of application 
requirements. The basic ray casting engine already 
provides sophisticated visualization techniques and 
interactive rendering speed, but nevertheless fits on 
a single PC slotboard. Adaptive refinement [9] or 
subsampling during motion can bring the frame 
generation rate for previewing purposes up into the 
real-time range. 
The parallelization scheme presented in this paper 
supports realtime volume rendering and animation. 
An easy-to-build parallel system of 8 engines 
achieves a peak generation rate of 20Hz for 2563 

data sets; a highly-parallel system of 64 engines 
provides a peak performance of 20 frames per sec­
ond for 5123 data sets, while still presenting moder­
ate design complexity. In this configuration, the 
performance compares to or even exceeds that of 
other realtime architectures such as CUBE [3] or 
VIRIM [2]. 
Our short-term research activities are devoted to 
the design of the remaining circuitries, the Phong 
Shader (COLOSSUS) and the Compositing Unit 
(COMET). Next, a distributed simulation frame­
work will be implemented on a workstation net­
work to verify the design and to evaluate 
performance limits. 

9 	 Acknowledgments 
This work was supervised by Prof. StraBer and is 
part of the advanced graphics accelerator project at 

WSIIGRIS, University of Tuebingen, supported 
partially by the CEC's ESPRIT programme. 
Thanks to Reinhard Klein and Andreas Schilling 
for their numerous valuable suggestions. 

10 	 References 

1. 	 R. A. Drebin, L. Carpenter, P. Hanrahan, 
"Volume Rendering", Computer Graphics, 
Vol. 22, No.4, August 1988, pages 65-74 

2. 	 T. Giinther, C. Poliwoda, C. Reinhart, J. 
Hesser, R. Manner, H.-P. Meinzer, H.-J. 
Baur, "VIRIM: A Massively Parallel Proces­
sor for Real-Time Volume Visualization in 
Medicine", Proceedings of the 9. Eurograph­
ics Hardware Workshop, Oslo, September 12­
13,1994 

3. 	 H. Pfister and A. Kaufman, "Real-Time Ar­
chitecture for High-Resolution Volume Visu­
alization", Proceedings of the 8. Eurographics 
Hardware Workshop, Barcelona, September 
6-7, 1993, pages 72-80 

4. 	 G. Knittel, "VERVE - Voxel Engine for Real­
time Visualization and Examination", Com­
puter Graphics Forum, Vol. 12, No.3, Septem­
ber 1993, pages 37-48 

5. 	 G. Knittel, "A VLSI-Design for fast Vector 
Normalization", Proceedings of the 8. Euro­
graphics Hardware Workshop, Barcelona, 
September 6-7, 1993, pages 1·14 

6. 	 G. Knittel, "A Fast Logarithm Converter", 
Proceedings of the 7. IEEE International ASIC 
Conference, Rochester, NY, September 19·23, 
1994 

7. 	 G. Knittel and W. StraBer, "A Compact Vol­
ume Rendering Accelerator", Proceedings of 
the ACM/IEEE Symposium on Volume Visu­
alization, Washington, DC, October 17-18, 
1994 

8. 	 M. Levoy, ''Display of Surfaces from Volume 
Data", IEEE. Computer Graphics & Applica­
tions, Vol. 8, No.5, May 1988, pages 29-37 

9. 	 M. Levoy, "Volume Rendering by Adaptive 
Refmement", The Visual Computer, Vol. 6, 
No. I, February 1990, pages 2-7 

1O. B. Prince, "Semiconductor Memories", Wiley 
& Sons, Chichester, 1991, pages 250-255 

69 



