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Abstract 

We present an improved z-buffer based CSG rendering algorithm, 
based on previous techniques using z-buffer parity based surface 
clipping. We show that while this type of algorithm has been re- 
ported as requiring O(n2), (where n is the number of primitives), an 
O(lcn) (where k is depth complexity) algorithm may be substituted. 
For cases where k is less than n this translates into a significant 
performance gain. 

CR Categories: 1.3.5 [Computing Methodologies]: Computer 
Graphics-Constructive solid geometry (CSG) 1.3.3 [Computing 
Methodologies]: Computer Graphics-Display Algorithms 1.3.1 
[Computing Methodologies]: Computer Graphics-Hardware Ar- 
chitecture 

1 INTRODUCTION 

Constructive Solid Geometry (CSG) is an approach to geometric 
modeling. CSG arranges boolean operations and primitive objects 
into a tree. The nodes (or non-terminals) of the tree represent 
boolean operations, and the leaves (or terminals) represent objects. 
The boolean operations used in CSG are Union (U), Intersection 
(17) and Difference (-). Affine transformations such as scale, trans- 
lation and rotation may also be associated with each tree node. Fig- 
ure 1 illustrates an abstract CSG object specified in terms of boxes, 
spheres and cylinders. 

CSG has significant advantages for some problem domains. One 
such domain - the main motivation for our work - is Computer 
Aided Design (CAD) packages for modelling components and de- 
vices manufactured using processes, such as milling and grinding, 
where material is removed from an initial work-piece, typically a 
block or cylinder. A machine tool produced by this kind of process 
is shown in Figure 2. 

For each milling or grinding operation, the volume swept by the 
cutting tool can be tessellated into triangles. This boundary rep- 
resentation (b-rep) surface must then be clipped against the work- 
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Figure 1: A CSG tree. 

piece and all other operations in order to display the surfaces that 
form the final component or device. This is the central problem 
in solid modelling applications. Broadly, there are two classes 
of approach: object space and image space. Object space ap- 
proaches such as analytic intersection, b-rep and spatial enumer- 
ation schemes apply clipping operations to objects represented in 
terms of geometric primitives. Image-space approaches such as 
ray-casting, scan-line and z-buffer algorithms perform clipping as 
part of the rendering process, and operate on pixels. Object space 
approaches are viewer independent, while image-space approaches 
are not. The cost of object space calculation is typically higher 
than the cost of one frame of image space calculation. Since image 
space approaches regenerate the solution each frame, they are bet- 
ter suited to situations where the position, shape and relationship of 
objects vary over time. 

This paper presents an image-space z-buffer CSG rendering al- 
gorithm based on the previous work of Goldfeather[S, 61. We pro- 
pose re-arranging the algorithm in order to exploit image-space 
characteristics of the scene. We detail the Goldfeather algorithm, 
introduce a new variation, and compare performance characteris- 
tics. 

2 CSG RENDERING 

There are different ways of rendering the image of a CSG tree. Here 
we give an overview of the main approaches and discuss their ad- 
vantages and disadvantages. We use the term clipping in a generic 
sense, referring to any process of classifying the surface of one vol- 
ume with respect to the surface of another volume. 

B-rep [12, 133 Each primitive is tessellated into a set of polygons, 
typically triangles. A clipped b-rep is formed by finding the 
portions of the surface which satisfy the CSG tree logic. The 
result of the b-rep clipping operation can be passed to a ras- 
teriser as a set of polygons. The main advantage of this ap- 
proach is the view independence of the solution, 
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Figure 2: Simulated manufactured object.
Figure 3: Z-buffer parity with  respect to a surface.

Ray Casting  Surface clipping  is simplified  by only considering
one line in space at a time.  For each  pixel, a ray is formed
which  is then  intersected  with  the objects in the CSG tree. The
closest visible  surface is resolved on the basis of the closest
surface satisfying  the CSG tree logic. One  advantage of ray
casting is that the line-object  intersection  can be implemented
for a broad class of objects  including  analytic  and tesselated
surfaces.  Ray casting is considered  to be easy to implement
and more robust than  the b-rep approach. The disadvantages
of ray casting are that the solution is view dependent, each
image can take a substantial  time to draw, and that ray casting
is rarely supported in graphics hardware.

Spatial  Enumeration [7,2] Volume  is subdivided in either a uni-
form or nonuniform manner.  The  occupancy of each  object
is determined for every region of space.  The  advantage of
spatial enumeration is that  volumes may be intersected  in a
simple manner,  and the solution is view independent. The
disadvantages are that large amounts  of storage are required,
surface information  is modelled poorly, and specialised  algo-
rithms are required to render an image or interface to a stan-
dard scan-line  renderer.

Scan-line Techniques  [l, 10,141  The conventional rasterisation
pipeline  is extended to perform clipping  against the CSG tree.
This is achieved either by providing  a point membership clas-
sification function at low levels of the rendering pipeline, or
maintaining lists of surfaces at each scanline and performing
clipping  over spans  of pixels. The disadvantages of scan-line
CSG rendering are that  the solution is view dependent and
that  the technique is not  supported in conventional graphics
hardware.

Z-Buffer Algorithms [5,6,16,3,15] Surfaces are clipped in a z-
buffer by a multiple  pass algorithm. Arbitrary  CSG trees are
handled by tree normalisation  and pruning techniques.  [6]
Methods exist to support non-convex  primitives. The  ad-
vantage of z-buffer algorithms is that no b-rep clipping is
required, and the approach can take advantage of hardware
graphics acceleration  including hardware z-buffer.  One  disad-
vantage of the z-buffer approach is the dependence on z-buffer
copying, which is not  optimised  in many  hardware rendering
environments.

Hybrid  Algorithms  [ll] Clipping  surfaces by using a combina-
tion of the previously  mentioned techniques has the advantage
that  computational  load is spread across CPU  and graphics
hardware.

The  CSG rendering approach described  here is a derivative z-
buffer CSG rendering algorithm. In the following sections, key con-
cepts of previous z-buffer CSG rendering techniques are presented,
along with proposed extensions aimed at improving  performance.

3 GOLDFEATHER  CSG RENDERING

Arbitrary  CSG trees can be rendered in standard z-buffered archi-
tecture using techniques described  by J. Goldfeather.[6]  Whilst  the
approach was originally  developed for the Pixel-Planes  graphics
architecture[5,9,4, 81, it has recently been adapted to the OpenGL
graphics environment.[l6]  The approach is based on the ideas of
surface parity, tree normalisation,  and z-buffer surface clipping. We
refer to these concepts collectively  as Goldfeather  CSG  Rendering.
We discuss each  aspect in the following subsections.

3.1 Parity

Surface parity refers to whether a surface in the z-buffer is inside
or outside of a given volume.  The  parity of each z-buffer element
can be determined by counting the number of surfaces in front of
the z-buffer.  This is a minor variation of the standard z-less depth
testing algorithm where rather than  updating the z-buffer on suc-
cessful z test, a parity flag is toggled at that pixel. Regions of odd
parity, where the flag is set to one, correspond to z-buffer elements
volumetrically  inside  an object. Figure 3 illustrates  regions of even
and odd parity for a given z-buffer and surface.

The  following code fragment is an OpenGL implementation,
where  the parity of the z-buffer is stored in the stencil buffer.

glEnable(GL-STENCIL-TEST);
glStencilFunc(GL-ALWAYS,~xOl,rJx~l);
glStencilOp(GL-KEEP,GL-KEEP,GL-INVERT);
glEnable(GL-DEPTH-TEST);
glDepthFunctGL_LESS);
glDepthMasktGL_FALSE);
glDisable(GL-CULL-FACE);
drawSurf ace ( ) ;

There are important constraints on surfaces used for parity test-
ing. Parity logic depends on no surface being interior  or exterior  to
the volume  it represents.  Also, all boundaries  of the volume should
be covered by surface.  This means  that the surface should be closed,
and should not contain any holes caused by an incomplete descrip-
tion,  such  as missing polygons. Additionally,  the  surface  must  not
self-intersect,  forming folds or loops.
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(a) Intersection 

(b) Difference 

Figure 4: A Normalised CSG tree. 
Figure 5: Using parity to clip a z-buffer. 

3.2 Tree Normalisation 

Tree normalisation converts a general CSG tree to a form suitable 
for image space CSG rendering. A collection of primitives related 
by boolean union is called a sum, whilst a collection related by 
boolean intersection or difference is called a product. A CSG tree 
in sum-of-products form is said to be normalised. Figure 4 is a nor- 
malised CSG tree corresponding to Figure 1. Graphically, a nor- 
malised tree has three characteristics: 

I. The union nodes, if any, are at the top of the tree. 

2. No non-terminal node is to the right of an intersection or dif- 
ference node. 

3. No union node is to the left of an intersection or difference 
node. 

The significance of tree normalisation is that it simplifies the al- 
gorithm required to render a CSG tree. Tree normalisation is the 
first step in a process which converts a tree into something manage- 
able for a standard z-buffer architecture. This is because each prod- 
uct can be rendered by comparing primitives rather than subtrees. 
The union of the products is handled by sending all the products 
to the z-buffer with a ‘z-less-than’ depth test. The surfaces form- 
ing each product may be obtained in image space by using z-buffer 
surface clipping, discussed next. 

3.3 Z-buffer Surface Clipping 

Depth buffer surface clipping refers to the process of rasterising 
a surface into the z-buffer and detecting those pixels which satisfy 
the constraints of the CSG product. Since a product consists only of 
intersection and difference operations, each primitive may be par- 
ity tested against each other primitive in the product sequentially. 
The configuration of the parity test depends on the operation be- 
tween the primitives. Intersection operations retain z-buffer regions 
of odd parity - these are z-buffer values volumetrically inside the 
primitive, other regions are reset to an empty state. The parity test 

is inverted for difference operations -regions of even parity are re- 
tained and regions of odd parity are reset. Figure 5 illustrates parity 
testing for intersection and difference operations. 

3.4 Polygon Culling 

The surface of an object can be categorised as front or back fac- 
ing, in relation to the position of the viewer. In general render- 
ing, back-facing polygons are culled since they are not visible to 
the user. Back-face culling depends on the surface being closed, 
and the polygon vertices being ordered consistently - constraints 
which also apply to z-buffer CSG rendering. Image space surface 
clipping only considers potentially visible surfaces, and these form 
the subset selected for z-buffer clipping. The front or back facing 
surface of each primitive is selected on the basis of whether the 
primitive is subtracted: front facing surfaces of unsubtracted prim- 
itives and the back facing surfaces of subtracted primitives. 

In the following example, C and D are subtracted primitives. The 
CSG product is formed in the z-buffer by finding the closest clipped 
surface for each pixel. Figure 6 illustrates the CSG product formed 
by the union of clipped surfaces: 

AnB-C-D 

3.5 The Goldfeather CSG Rendering Algorithm 

The Goldfeather CSG rendering algorithm is summarised below. 
The combined effect of tree normalisation and z-buffer surface clip- 
ping is to collapse the CSG tree into a series of clipped z-buffer 
surfaces which are merged by the standard ‘z-less-than’ depth test. 
One z-buffer, the surface z-buffer, stores the visible surface of each 
primitive, one at a time. This is the z-buffer where surface clip- 
ping is performed. Another z-buffer, the output z-buffer, is used to 
determine the closest clipped surface to the viewer. 

initialise output z-buffer to zFar 
for each product P do 
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Figure 6: CSG product as union of clipped surfaces 

for each primitive A in P do 
initialise surface z-buffer to zFar 
if A is subtracted 

draw back of A into surface z-buffer 
else 

draw front of A into surface z-buffer 
for each other primitive B in P do 

if B is subtracted 
accept pixels of even parity 

else 
accept pixel of odd parity 

apply parity test in 
surface z-buffer 

draw surface z-buffer into 
output z-buffer with z-less test 

Goldfeather shows that the CSG rendering algorithm can be ex- 
tended to non-convex primitives.[6] Optimisation of the normali- 
sation algorithm by means of tree pruning is also discussed. The 
requirements of implementing this approach in OpenGL are a sin- 
gle colour buffer, a single z-buffer, a stencil buffer and the ability to 
save and restore the contents of the z-buffer[ 161. 

4 TAKING ADVANTAGE OF DEPTH 
COMPLEXITY 

In analysing performance issues it is useful to talk about a single 
product of length n. Figure 7 illustrates the steps required to sub- 
tract four spheres from a rectangular block with the Goldfeather 
approach. Each row corresponds to a primitive clipping operation, 
which are essentially independent operations. In the first column, 
the primitive surface is drawn into the z-buffer. In the second col- 
umn, the z-buffer surface is clipped against other primitives in the 
product. In the third column, the clipped surface is merged into the 
final result. Each row requires n primitive rasterisations (where n 
is the number of primitives) and one z-buffer copy operation. 

Our proposed improvement to the algorithm is to reduce the 
number of passes by clipping more than one primitive at a time. 
In Figure 8 the spheres are clipped together, rather than in seper- 
ate passes, taking advantage of the fact that the spheres no do not 
overlap in image space. The term depth complexity refers to the 
number of primitives which cover each pixel. We denote k as being 

Figure 7: Clipping on per-primitive basis. 

Drawk’thsurfh Clip suffkc Merp%-but& 

Figure 8: Clipping on per-layer basis. 

the maximum depth complexity of a pixel given a specific viewing 
direction. We propose clipping on the basis of layers rather than 
primitives - the number of required layers being k. 

This modification to the algorithm introduces three new sub- 
problems. One is to determine Ic, the depth complexity of the prod- 
uct. Another is to extract each layer from a given set of primitives. 
The final problem is to ensure reliable clipping of surfaces against 
their corresponding primitives. We will discuss each of these issues 
seperately. 

4.1 Determining lc 

A simple stencil test can be used to determine k. The following 
OpenGL code fragment finds the number of primitives that cover 
each pixel, and stores this count in the stencil buffer. The number 
of clipping passes required by the algorithm is then determined by 
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5 THE NEW ALGORITHM

Figure 9: Image space depth complexity

finding  the maximum stencil buffer value.

glClear(GL-STENCIL-BUFFER-BIT);
glDepthMask(GL-FALSE);
glDepthFunc(GL-ALWAYS);
glEnable(GL-STENCIL-TEST);
glStencilFunc(GL-ALWAYS,Oxff,Oxff);
glStencilOp(GL~INCR,GL_INCR,GL_INCR,GL~INCR~;
drawPrimitiveSurfaces  () ;

The  result of this operation depends on the viewing direction,
as illustrated  in Figure  9. Five spheres are viewed from different
directions  and the counts  in the stencil  buffer visualised  via different
shades.  The first scenario where no primitives overlap is ideal for
clipping, since all five spheres may be clipped at once.  The third
scenario is the worst possible  case, since all five spheres overlap at
least one pixel. For this viewing direction,  clipping  primitives as a
sequence  of five layers, rather than  five primitives offers no speedup
over the standard algorithm.

4.2 Layer  Extraction

A stencil test may be employed  to draw only the n’th layer of a set
of primitives. The following OpenGL code fragment increments
a count  in the stencil  buffer  for each pixel  covered by each  prim-
itve. The  primitive  is only drawn to the z-buffer if the stencil count
equals the number of the desired layer.

glClear(GL-STENCIL-BUFFER-BIT);
glDepthMask(GL-TRUE)  ;
glDepthFunc(GL-ALWAYS)  ;
glEnable(GL-STENCIL-TEST);
glStencilFunc(GL-EQUAL,n,Oxff);
glStencilOp(GL-INCR,GL-INCR);
drawPrimitiveSurfaces0;

It should be noted that the particular  surfaces in each  layer are de-
termined  by the order  in which  primitives  are presented to OpenGL.
The  first layer will  consist  of surface  from the first primitive, and
portions of the second primitive not overlapping  the first, and so on.

4.3 Layer  Clipping

The  Goldfeather  CSG rendering algorithm implicitly  avoids clip-
ping z-buffer surfaces against the corresponding  primitive. Clip-
ping on a per-layer  basis however,  requires a clipping  algorithm
which  will  behave  in this situation sensibly.  Specifically,  the front
facing  surface  of an intersecting  primitive  should  be classified  as
‘inside’  the primitive.  Similarly,  the back facing  surface  of a sub-
tracted primitive should be classified  as ‘outside’.  Configuring the
parity  test to utilise  the ‘z-less-or-equal’  z-test satisfies  these  con-
straints, although  they  do depend  on triangles  being  rasterised  to
precisely  the same z-buffer values on different passes.

The  new algorithm is summarised below.  Two z-buffers are utilised
in a similar  manner to the Goldfeather  algorithm. The surj&e z-
buffer is used to extract and clip each layer of surfaces in the prod-
uct. The  output z-buffer accumulates the final result, taking the
closest pixel from each  instance of the surface z-buffer.  Like the
Goldfeather  algorithm, a final pass over all primitives draws  the
correct colour into the frame buffer,  using a ‘z-equal-test’  on the
final z-buffer.

initialise  output z-buffer  to zFar
for each product P do

for each layer  k in P do
initialise  surface z-buffer  to zFar
draw k’th surface into surface z-buffer
for each primitive  A in P do

if A is subtracted
accept  pixels of even parity

else
accept  pixel of odd parity

apply parity test in
surface z-buffer

draw surface  z-buffer into
output z-buffer  with z-less test

5.1 Comparative Analysis

The Goldfeather  algorithm performs one clipping  operation per
primitive. The time required for each clipping  operation is an + b,
where  a is related to polygon rasterisation  speed, and b is related
to z-buffer copy speed.  The time required to draw the product is:
an2 + bn.

The  modified CSG rendering algorithm requires rendering n
primitives to extract a layer, rendering n primitives  to clip the layer,
and one z-buffer copy operation per layer. Multiplying  this cost
by the number  of layers k, the time required to draw a product is:
2akn  + bk.

The  important difference between this and the standard algo-
rithm is the behavior  of k. The depth complexity  of a scene is
determined by the viewing direction and the particular  configura-
tion of primitives in the product.  The usefulness of this approach
is therefore limitied  to those applications  where k < n. For situa-
tions where  k M n, the performance is expected to be similar  to that
of the standard algorithm - O(n’). It should be noted that  since
layer extraction doubles the polygon rasterisation  load, the standard
algorithm  should  be faster when  L = n.

5.2 Further Work

It is expected that this improvement to the Goldfeather  CSG render-
ing algorithm will be of particular  use in the simulation of manu-
facturing processes. Our observation is that  this application  domain
has the characteristic  that k tends to be significantly  less than  n. A
systematic investigation would be required to quantify this relation-
ship.

The constants referred to as a and b could be also be quantified.
These correspond to rasterisation  and z-buffer copying performance
respectively.  Our observation  is that  z-buffer copy  rate is the bottle-
neck on platforms we have  experimented  with.  An investigation to
quantify these characteristics  would be useful in predicting  the use-
fulness  of z-buffer CSG algorithms for different  problem domains.
This would  also aid the identification  of suitable platforms for hard-
ware  implementation  of the algorithm.

Implementation  of the algorithm  could include  a decision mal-
ing policy to choose the best clipping  strategy, given n and k.

29



In certain circumstances, clipping on a primitive basis is optimal, 
while in other circumstances, layer clipping would be more effi- 
cient. 

6 CONCLUSION 

We have described an image-space CSG subtraction algorithm 
which performs better in many useful cases. Modifying the Gold- 
feather CSG rendering algorithm to exploit depth complexity offers 
O(Ln) performance rather than O(n’). The algorithmic implication 
of this modification is to increase the cost of the inner loop, while 
potentially reducing the number of iterations of the outer loop. 

A significant implication of this result, given current graphics 
hardware architectures, is the reduced z-buffer copy bandwidth and 
z-comparison requirement. This is reduced from n to k. 
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