
An Improved Z-Buffer CSG Rendering Algorithm

Nigel Stewart * Geoff Leach
Department of Manufacturing Systems Engineering Department of Computer Science

Sabu John
Department of Manufacturing Systems Engineering

FWIT University, Melbourne, Australia

Abstract

We present an improved z-buffer based CSG rendering algorithm,
based on previous techniques using z-buffer parity based surface
clipping. We show that while this type of algorithm has been re-
ported as requiring O(n2), (where n is the number of primitives), an
O(lcn) (where k is depth complexity) algorithm may be substituted.
For cases where k is less than n this translates into a significant
performance gain.

CR Categories: 1.3.5 [Computing Methodologies]: Computer
Graphics-Constructive solid geometry (CSG) 1.3.3 [Computing
Methodologies]: Computer Graphics-Display Algorithms 1.3.1
[Computing Methodologies]: Computer Graphics-Hardware Ar-
chitecture

1 INTRODUCTION

Constructive Solid Geometry (CSG) is an approach to geometric
modeling. CSG arranges boolean operations and primitive objects
into a tree. The nodes (or non-terminals) of the tree represent
boolean operations, and the leaves (or terminals) represent objects.
The boolean operations used in CSG are Union (U), Intersection
(17) and Difference (-). Affine transformations such as scale, trans-
lation and rotation may also be associated with each tree node. Fig-
ure 1 illustrates an abstract CSG object specified in terms of boxes,
spheres and cylinders.

CSG has significant advantages for some problem domains. One
such domain - the main motivation for our work - is Computer
Aided Design (CAD) packages for modelling components and de-
vices manufactured using processes, such as milling and grinding,
where material is removed from an initial work-piece, typically a
block or cylinder. A machine tool produced by this kind of process
is shown in Figure 2.

For each milling or grinding operation, the volume swept by the
cutting tool can be tessellated into triangles. This boundary rep-
resentation (b-rep) surface must then be clipped against the work-

‘Email: nigels@eisa.net.au

CAnB)-(CUD)
8

Figure 1: A CSG tree.

piece and all other operations in order to display the surfaces that
form the final component or device. This is the central problem
in solid modelling applications. Broadly, there are two classes
of approach: object space and image space. Object space ap-
proaches such as analytic intersection, b-rep and spatial enumer-
ation schemes apply clipping operations to objects represented in
terms of geometric primitives. Image-space approaches such as
ray-casting, scan-line and z-buffer algorithms perform clipping as
part of the rendering process, and operate on pixels. Object space
approaches are viewer independent, while image-space approaches
are not. The cost of object space calculation is typically higher
than the cost of one frame of image space calculation. Since image
space approaches regenerate the solution each frame, they are bet-
ter suited to situations where the position, shape and relationship of
objects vary over time.

This paper presents an image-space z-buffer CSG rendering al-
gorithm based on the previous work of Goldfeather[S, 61. We pro-
pose re-arranging the algorithm in order to exploit image-space
characteristics of the scene. We detail the Goldfeather algorithm,
introduce a new variation, and compare performance characteris-
tics.

2 CSG RENDERING

There are different ways of rendering the image of a CSG tree. Here
we give an overview of the main approaches and discuss their ad-
vantages and disadvantages. We use the term clipping in a generic
sense, referring to any process of classifying the surface of one vol-
ume with respect to the surface of another volume.

B-rep [12, 133 Each primitive is tessellated into a set of polygons,
typically triangles. A clipped b-rep is formed by finding the
portions of the surface which satisfy the CSG tree logic. The
result of the b-rep clipping operation can be passed to a ras-
teriser as a set of polygons. The main advantage of this ap-
proach is the view independence of the solution,

25

Figure 2: Simulated manufactured object.
Figure 3: Z-buffer parity with respect to a surface.

Ray Casting Surface clipping is simplified by only considering
one line in space at a time. For each pixel, a ray is formed
which is then intersected with the objects in the CSG tree. The
closest visible surface is resolved on the basis of the closest
surface satisfying the CSG tree logic. One advantage of ray
casting is that the line-object intersection can be implemented
for a broad class of objects including analytic and tesselated
surfaces. Ray casting is considered to be easy to implement
and more robust than the b-rep approach. The disadvantages
of ray casting are that the solution is view dependent, each
image can take a substantial time to draw, and that ray casting
is rarely supported in graphics hardware.

Spatial Enumeration [7,2] Volume is subdivided in either a uni-
form or nonuniform manner. The occupancy of each object
is determined for every region of space. The advantage of
spatial enumeration is that volumes may be intersected in a
simple manner, and the solution is view independent. The
disadvantages are that large amounts of storage are required,
surface information is modelled poorly, and specialised algo-
rithms are required to render an image or interface to a stan-
dard scan-line renderer.

Scan-line Techniques [l, 10,141 The conventional rasterisation
pipeline is extended to perform clipping against the CSG tree.
This is achieved either by providing a point membership clas-
sification function at low levels of the rendering pipeline, or
maintaining lists of surfaces at each scanline and performing
clipping over spans of pixels. The disadvantages of scan-line
CSG rendering are that the solution is view dependent and
that the technique is not supported in conventional graphics
hardware.

Z-Buffer Algorithms [5,6,16,3,15] Surfaces are clipped in a z-
buffer by a multiple pass algorithm. Arbitrary CSG trees are
handled by tree normalisation and pruning techniques. [6]
Methods exist to support non-convex primitives. The ad-
vantage of z-buffer algorithms is that no b-rep clipping is
required, and the approach can take advantage of hardware
graphics acceleration including hardware z-buffer. One disad-
vantage of the z-buffer approach is the dependence on z-buffer
copying, which is not optimised in many hardware rendering
environments.

Hybrid Algorithms [ll] Clipping surfaces by using a combina-
tion of the previously mentioned techniques has the advantage
that computational load is spread across CPU and graphics
hardware.

The CSG rendering approach described here is a derivative z-
buffer CSG rendering algorithm. In the following sections, key con-
cepts of previous z-buffer CSG rendering techniques are presented,
along with proposed extensions aimed at improving performance.

3 GOLDFEATHER CSG RENDERING

Arbitrary CSG trees can be rendered in standard z-buffered archi-
tecture using techniques described by J. Goldfeather.[6] Whilst the
approach was originally developed for the Pixel-Planes graphics
architecture[5,9,4, 81, it has recently been adapted to the OpenGL
graphics environment.[l6] The approach is based on the ideas of
surface parity, tree normalisation, and z-buffer surface clipping. We
refer to these concepts collectively as Goldfeather CSG Rendering.
We discuss each aspect in the following subsections.

3.1 Parity

Surface parity refers to whether a surface in the z-buffer is inside
or outside of a given volume. The parity of each z-buffer element
can be determined by counting the number of surfaces in front of
the z-buffer. This is a minor variation of the standard z-less depth
testing algorithm where rather than updating the z-buffer on suc-
cessful z test, a parity flag is toggled at that pixel. Regions of odd
parity, where the flag is set to one, correspond to z-buffer elements
volumetrically inside an object. Figure 3 illustrates regions of even
and odd parity for a given z-buffer and surface.

The following code fragment is an OpenGL implementation,
where the parity of the z-buffer is stored in the stencil buffer.

glEnable(GL-STENCIL-TEST);
glStencilFunc(GL-ALWAYS,~xOl,rJx~l);
glStencilOp(GL-KEEP,GL-KEEP,GL-INVERT);
glEnable(GL-DEPTH-TEST);
glDepthFunctGL_LESS);
glDepthMasktGL_FALSE);
glDisable(GL-CULL-FACE);
drawSurf ace () ;

There are important constraints on surfaces used for parity test-
ing. Parity logic depends on no surface being interior or exterior to
the volume it represents. Also, all boundaries of the volume should
be covered by surface. This means that the surface should be closed,
and should not contain any holes caused by an incomplete descrip-
tion, such as missing polygons. Additionally, the surface must not
self-intersect, forming folds or loops.

26

((AnIS)-C)-D

8

(a) Intersection

(b) Difference

Figure 4: A Normalised CSG tree.
Figure 5: Using parity to clip a z-buffer.

3.2 Tree Normalisation

Tree normalisation converts a general CSG tree to a form suitable
for image space CSG rendering. A collection of primitives related
by boolean union is called a sum, whilst a collection related by
boolean intersection or difference is called a product. A CSG tree
in sum-of-products form is said to be normalised. Figure 4 is a nor-
malised CSG tree corresponding to Figure 1. Graphically, a nor-
malised tree has three characteristics:

I. The union nodes, if any, are at the top of the tree.

2. No non-terminal node is to the right of an intersection or dif-
ference node.

3. No union node is to the left of an intersection or difference
node.

The significance of tree normalisation is that it simplifies the al-
gorithm required to render a CSG tree. Tree normalisation is the
first step in a process which converts a tree into something manage-
able for a standard z-buffer architecture. This is because each prod-
uct can be rendered by comparing primitives rather than subtrees.
The union of the products is handled by sending all the products
to the z-buffer with a ‘z-less-than’ depth test. The surfaces form-
ing each product may be obtained in image space by using z-buffer
surface clipping, discussed next.

3.3 Z-buffer Surface Clipping

Depth buffer surface clipping refers to the process of rasterising
a surface into the z-buffer and detecting those pixels which satisfy
the constraints of the CSG product. Since a product consists only of
intersection and difference operations, each primitive may be par-
ity tested against each other primitive in the product sequentially.
The configuration of the parity test depends on the operation be-
tween the primitives. Intersection operations retain z-buffer regions
of odd parity - these are z-buffer values volumetrically inside the
primitive, other regions are reset to an empty state. The parity test

is inverted for difference operations -regions of even parity are re-
tained and regions of odd parity are reset. Figure 5 illustrates parity
testing for intersection and difference operations.

3.4 Polygon Culling

The surface of an object can be categorised as front or back fac-
ing, in relation to the position of the viewer. In general render-
ing, back-facing polygons are culled since they are not visible to
the user. Back-face culling depends on the surface being closed,
and the polygon vertices being ordered consistently - constraints
which also apply to z-buffer CSG rendering. Image space surface
clipping only considers potentially visible surfaces, and these form
the subset selected for z-buffer clipping. The front or back facing
surface of each primitive is selected on the basis of whether the
primitive is subtracted: front facing surfaces of unsubtracted prim-
itives and the back facing surfaces of subtracted primitives.

In the following example, C and D are subtracted primitives. The
CSG product is formed in the z-buffer by finding the closest clipped
surface for each pixel. Figure 6 illustrates the CSG product formed
by the union of clipped surfaces:

AnB-C-D

3.5 The Goldfeather CSG Rendering Algorithm

The Goldfeather CSG rendering algorithm is summarised below.
The combined effect of tree normalisation and z-buffer surface clip-
ping is to collapse the CSG tree into a series of clipped z-buffer
surfaces which are merged by the standard ‘z-less-than’ depth test.
One z-buffer, the surface z-buffer, stores the visible surface of each
primitive, one at a time. This is the z-buffer where surface clip-
ping is performed. Another z-buffer, the output z-buffer, is used to
determine the closest clipped surface to the viewer.

initialise output z-buffer to zFar
for each product P do

27

Figure 6: CSG product as union of clipped surfaces

for each primitive A in P do
initialise surface z-buffer to zFar
if A is subtracted

draw back of A into surface z-buffer
else

draw front of A into surface z-buffer
for each other primitive B in P do

if B is subtracted
accept pixels of even parity

else
accept pixel of odd parity

apply parity test in
surface z-buffer

draw surface z-buffer into
output z-buffer with z-less test

Goldfeather shows that the CSG rendering algorithm can be ex-
tended to non-convex primitives.[6] Optimisation of the normali-
sation algorithm by means of tree pruning is also discussed. The
requirements of implementing this approach in OpenGL are a sin-
gle colour buffer, a single z-buffer, a stencil buffer and the ability to
save and restore the contents of the z-buffer[161.

4 TAKING ADVANTAGE OF DEPTH
COMPLEXITY

In analysing performance issues it is useful to talk about a single
product of length n. Figure 7 illustrates the steps required to sub-
tract four spheres from a rectangular block with the Goldfeather
approach. Each row corresponds to a primitive clipping operation,
which are essentially independent operations. In the first column,
the primitive surface is drawn into the z-buffer. In the second col-
umn, the z-buffer surface is clipped against other primitives in the
product. In the third column, the clipped surface is merged into the
final result. Each row requires n primitive rasterisations (where n
is the number of primitives) and one z-buffer copy operation.

Our proposed improvement to the algorithm is to reduce the
number of passes by clipping more than one primitive at a time.
In Figure 8 the spheres are clipped together, rather than in seper-
ate passes, taking advantage of the fact that the spheres no do not
overlap in image space. The term depth complexity refers to the
number of primitives which cover each pixel. We denote k as being

Figure 7: Clipping on per-primitive basis.

Drawk’thsurfh Clip suffkc Merp%-but&

Figure 8: Clipping on per-layer basis.

the maximum depth complexity of a pixel given a specific viewing
direction. We propose clipping on the basis of layers rather than
primitives - the number of required layers being k.

This modification to the algorithm introduces three new sub-
problems. One is to determine Ic, the depth complexity of the prod-
uct. Another is to extract each layer from a given set of primitives.
The final problem is to ensure reliable clipping of surfaces against
their corresponding primitives. We will discuss each of these issues
seperately.

4.1 Determining lc

A simple stencil test can be used to determine k. The following
OpenGL code fragment finds the number of primitives that cover
each pixel, and stores this count in the stencil buffer. The number
of clipping passes required by the algorithm is then determined by

28

5 THE NEW ALGORITHM

Figure 9: Image space depth complexity

finding the maximum stencil buffer value.

glClear(GL-STENCIL-BUFFER-BIT);
glDepthMask(GL-FALSE);
glDepthFunc(GL-ALWAYS);
glEnable(GL-STENCIL-TEST);
glStencilFunc(GL-ALWAYS,Oxff,Oxff);
glStencilOp(GL~INCR,GL_INCR,GL_INCR,GL~INCR~;
drawPrimitiveSurfaces () ;

The result of this operation depends on the viewing direction,
as illustrated in Figure 9. Five spheres are viewed from different
directions and the counts in the stencil buffer visualised via different
shades. The first scenario where no primitives overlap is ideal for
clipping, since all five spheres may be clipped at once. The third
scenario is the worst possible case, since all five spheres overlap at
least one pixel. For this viewing direction, clipping primitives as a
sequence of five layers, rather than five primitives offers no speedup
over the standard algorithm.

4.2 Layer Extraction

A stencil test may be employed to draw only the n’th layer of a set
of primitives. The following OpenGL code fragment increments
a count in the stencil buffer for each pixel covered by each prim-
itve. The primitive is only drawn to the z-buffer if the stencil count
equals the number of the desired layer.

glClear(GL-STENCIL-BUFFER-BIT);
glDepthMask(GL-TRUE) ;
glDepthFunc(GL-ALWAYS) ;
glEnable(GL-STENCIL-TEST);
glStencilFunc(GL-EQUAL,n,Oxff);
glStencilOp(GL-INCR,GL-INCR);
drawPrimitiveSurfaces0;

It should be noted that the particular surfaces in each layer are de-
termined by the order in which primitives are presented to OpenGL.
The first layer will consist of surface from the first primitive, and
portions of the second primitive not overlapping the first, and so on.

4.3 Layer Clipping

The Goldfeather CSG rendering algorithm implicitly avoids clip-
ping z-buffer surfaces against the corresponding primitive. Clip-
ping on a per-layer basis however, requires a clipping algorithm
which will behave in this situation sensibly. Specifically, the front
facing surface of an intersecting primitive should be classified as
‘inside’ the primitive. Similarly, the back facing surface of a sub-
tracted primitive should be classified as ‘outside’. Configuring the
parity test to utilise the ‘z-less-or-equal’ z-test satisfies these con-
straints, although they do depend on triangles being rasterised to
precisely the same z-buffer values on different passes.

The new algorithm is summarised below. Two z-buffers are utilised
in a similar manner to the Goldfeather algorithm. The surj&e z-
buffer is used to extract and clip each layer of surfaces in the prod-
uct. The output z-buffer accumulates the final result, taking the
closest pixel from each instance of the surface z-buffer. Like the
Goldfeather algorithm, a final pass over all primitives draws the
correct colour into the frame buffer, using a ‘z-equal-test’ on the
final z-buffer.

initialise output z-buffer to zFar
for each product P do

for each layer k in P do
initialise surface z-buffer to zFar
draw k’th surface into surface z-buffer
for each primitive A in P do

if A is subtracted
accept pixels of even parity

else
accept pixel of odd parity

apply parity test in
surface z-buffer

draw surface z-buffer into
output z-buffer with z-less test

5.1 Comparative Analysis

The Goldfeather algorithm performs one clipping operation per
primitive. The time required for each clipping operation is an + b,
where a is related to polygon rasterisation speed, and b is related
to z-buffer copy speed. The time required to draw the product is:
an2 + bn.

The modified CSG rendering algorithm requires rendering n
primitives to extract a layer, rendering n primitives to clip the layer,
and one z-buffer copy operation per layer. Multiplying this cost
by the number of layers k, the time required to draw a product is:
2akn + bk.

The important difference between this and the standard algo-
rithm is the behavior of k. The depth complexity of a scene is
determined by the viewing direction and the particular configura-
tion of primitives in the product. The usefulness of this approach
is therefore limitied to those applications where k < n. For situa-
tions where k M n, the performance is expected to be similar to that
of the standard algorithm - O(n’). It should be noted that since
layer extraction doubles the polygon rasterisation load, the standard
algorithm should be faster when L = n.

5.2 Further Work

It is expected that this improvement to the Goldfeather CSG render-
ing algorithm will be of particular use in the simulation of manu-
facturing processes. Our observation is that this application domain
has the characteristic that k tends to be significantly less than n. A
systematic investigation would be required to quantify this relation-
ship.

The constants referred to as a and b could be also be quantified.
These correspond to rasterisation and z-buffer copying performance
respectively. Our observation is that z-buffer copy rate is the bottle-
neck on platforms we have experimented with. An investigation to
quantify these characteristics would be useful in predicting the use-
fulness of z-buffer CSG algorithms for different problem domains.
This would also aid the identification of suitable platforms for hard-
ware implementation of the algorithm.

Implementation of the algorithm could include a decision mal-
ing policy to choose the best clipping strategy, given n and k.

29

In certain circumstances, clipping on a primitive basis is optimal,
while in other circumstances, layer clipping would be more effi-
cient.

6 CONCLUSION

We have described an image-space CSG subtraction algorithm
which performs better in many useful cases. Modifying the Gold-
feather CSG rendering algorithm to exploit depth complexity offers
O(Ln) performance rather than O(n’). The algorithmic implication
of this modification is to increase the cost of the inner loop, while
potentially reducing the number of iterations of the outer loop.

A significant implication of this result, given current graphics
hardware architectures, is the reduced z-buffer copy bandwidth and
z-comparison requirement. This is reduced from n to k.

7 ACKNOWLEDGEMENTS

The following people are acknowledged for their suggestions, guid-
ance and contributions to this research: Dr. Mike Simakov and the
software development team at ANCA Pty. Ltd. This research is
supported by the Co-operative Research Center for Intelligent Man-
ufacturing Systems & Technologies, their industry partner ANCA
Pty. Ltd., and their academic partner RMIT University.

References

[I] P. Atherton, “A Scan-Line Hidden Surface Removal Proce-
dure for Constructive Solid Geometry”, Computer Graphics
(Proc S&graph), Vol. 17, No. 3, July 1983, pp. 73-82

[2] J. Ayala, P. Brunet, R. Juan, I. Navazo “Object Representation
by Means of Nonminimal Division Quadtrees and Octrees”,
ACM Trans. on Graphics, Vol. 4, No. 1, Jan. 1985, pp. 41-59

[3] D. Epstein, F. Jansen, J. Rossignac, “Z-Buffer Rendering
from CSG: The Trickle Algorithm”, IBM Research Report RC
15182, Nov. 1989

[4] J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Lastra, N.
England, L. Westover “PixelFlow: The Realization” Proc.
1997 SiggrapWEurographics Workshop on Graphics Hard-
wnre, August 1997, pp. 3-13

[5] J. Goldfeather, J. Hultquist, H. Fuchs, “Fast Constructive
Solid Geometry in the Pixel-Powers Graphics System”, Com-
puter Graphics (Proc. S&graph), Vol. 20, No. 4, Aug. 1986,
pp. 107-l 16

[6] J. Goldfeather, S. Molnar, G. Turk, H. Fuchs, “Near Real-
Time CSG Rendering Using Tree Normalization and Geomet-
ric Pruning”, IEEE CC&A, Vol. 9, No. 3, May 1989, pp. 20-
28.

[7] G. Hunter, K. Steiglitz “Operations on Images Using Quad
Trees”, IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, Vol. PAMI-1, No. 2, Apr. 1979, pp. 145-153

[8] S. Molnar “Combining Z-buffer Engines for Higher-Speed
Rendering” Proc. Eurographics ‘88, Third Workshop on
Graphics Hardware, Sep. 1998, pp. 171-182

[9] S. Molnar, J. Eyles, J. Poulton, “PixelFlow: High-Speed Ren-
dering Using Image Composition” Siggraph 92, pp. 231-240

[lo] N. Okino, Y. Kakazu, M. Morimoto, “Extended Depth-Buffer
Algorithms for Hidden-Surface Visualization”, IEEE CC&A,
Vol. 4, No. 5, May 1984, pp. 79-88

[1 l] A. Rappoport, S. Spitz, “Interactive Boolean Operations for
Conceptual Design of 3-D Solids”, Siggraph 97, pp. 269-278

[121 A. Requicha, “Representations for Rigid Solids: Theory,
Methods, and Systems”, Computing Surveys, Vol. 12, No. 4,
Dec. 1980, pp. 437-464

[131 A. Requicha, H. Voelcker, “Boolean Operations in Solid Mod-
elling: Boundary Evaluation and Merging Algorithms”, Proc.
ofthe IEEE, Vol. 73, No. 1, Jan. 1985, pp. 30-44

[141 J. Rossignac, A. Requicha, “Depth-Buffering Display Tech-
niques for Constructive Solid Geometry”, IEEE CC&A, Vol.
6, No. 9, Sept. 1986, pp. 29-39

[IS] J. Rossignac, J. Wu “Correct Shading of Regularized CSG
solids using a Depth-Interval Buffer”, Proc. Fifth Eurograph-
its Workshop on Graphics Hardware, 1990.
Also in: Grimsdale, R.L., Kaufman A., (eds), Advances
in Computer Graphics Hardware V, Sprinter-Verlag, Berlin,
1990, pp. 117-138

[161 T. F. Wiegand “Interactive Rendering of CSG Models” Com-
puter Graphics Forum, Vol. 15, NO. 4, Oct. 1996, pp. 249-261

30

