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Abstract

We present an interactive algorithm to perform continuous collision detection between general deformable mod-
els using graphics processors (GPUs). We model the motion of each object in the environment as a continuous
path and check for collisions along the paths. Our algorithm precomputes the chromatic decomposition for each
object and uses visibility queries on GPUs to quickly compute potentially colliding sets of primitives. We intro-
duce a primitive classification technique to perform efficient continuous self-collision. We have implemented our
algorithm on a 3.0 GHz Pentium IV PC with a NVIDIA 7800 GPU, and we highlight its performance on complex
simulations composed of several thousands of triangles. In practice, our algorithm is able to detect all contacts,
including self-collisions, at image-space precision in tens of milli-seconds.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computing Methodologies]: Hardware Archi-
tecture; I.3.7 [Computing Methodologies]: Three-Dimensional Graphics and Realism; I.3.5 [Computing Method-
ologies]: Computational Geometry and Object Modeling;

1. Introduction

The problem of collision detection (CD) arises in geometric
modeling, simulation and interaction for diverse areas, in-
cluding virtual reality (VR), cloth simulation, haptic render-
ing, animation, rapid prototyping, CAD/CAM, robotics, and
entertainment. In this paper, we mainly focus on collision de-
tection over a given time period between deformable objects
that includes inter-object collisions between disjoint objects
and intra-object collisions (or self-collisions) within each de-
formable model. Most of the earlier work in CD has been re-
stricted to collision detection at discrete time instances and
these algorithms may not check for possible overlaps be-
tween successive time steps. As a result, it is possible to
miss a collision and can result in visual artifacts, inconsis-
tent state, or incorrect simulation that can significantly affect
the sense of immersion and lead to break in presence (BIP)
in a virtual environment (VE). Such problems can be espe-
cially challenging in environments composed of thin or fast
moving objects, like cloth on virtual avatars.

In order to overcome the limitations of discrete CD al-
gorithms, many techniques have been proposed that model
the motion between successive time instances as a continu-

ous path and check for collisions along these paths. These
are classified as continuous collision detection (CCD) al-
gorithms [Can86, RKC00, KR03, RKLM04a, RKLM04b].
However, current CCD algorithms are only able to han-
dle rigid objects, articulated models, or simple deformable
meshes (consisting of only a few hundreds of polygons) at
interactive rates.

Main Results: We present a novel algorithm to perform
CCD between general deformable models at interactive rates
using commodity graphics processing units (GPUs). Our ap-
proach is general and makes no assumption about object mo-
tion. Each object is represented as a triangulated mesh and
we assume that the mesh connectivity does not change dur-
ing the simulation. We model the continuous motion using
a piecewise linear motion between successive discrete in-
stances and check for collisions between the resulting swept
volumes.

Our algorithm precomputes an improved chromatic de-
composition [GKJ∗05] for each object and decomposes the
problem into checking for overlap between adjacent and
non-adjacent primitives. We extend the Quick-CULLIDE
collision culling algorithm [GLM05], which performs col-
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lisions at discrete time instances, to check for collisions be-
tween the swept volumes of non-adjacent primitives. In or-
der to achieve high-culling efficiency, we classify the adja-
cent primitives into vertex-adjacent and edge-adjacent prim-
itives. We pair the edge-adjacent primitives to reduce the
number of penetrating contacts, as well as lowering the num-
ber of pairwise tests. Based on this decomposition, our al-
gorithm directly checks for inter- and intra-object collisions
and does not need to perform any special processing. The
overall accuracy of our algorithm is governed by image-
space resolution used to perform visibility queries (or 2.5D
overlap tests) on the GPUs.

We have implemented the algorithm on a 3.0 GHz PC
with a NVIDIA 7800 GPU and applied to complex cloth
simulation benchmarks consisting of thousands of triangles.
We are able to check for all collisions between the discrete
time instances at 10−15 frames per second at 1000×1000
image-space resolution, enabling real-time continuous colli-
sion detection for high-resolution deformable meshes with
challenging contact scenarios in virtual environments. As
compared to earlier work [GLM05, GKJ∗05], our approach
offers the following advantages:

• High culling efficiency using tight bounding swept volume
representations for the mesh primitives.

• Interactive performance using an improved mesh decom-
position scheme and a novel primitive classification tech-
nique, resulting in fewer false positives.

Organization: The rest of the paper is organized as fol-
lows. In Section 2, we briefly review the prior work on CCD
and GPU-based collision detection algorithms. We give an
overview of our approach in Section 3 and describe our
primitive classification scheme. We present our algorithm in
Section 4 and describe its implementation and performance
on complex benchmarks in Section 5. We analyze its perfor-
mance in Section 6 and highlight some of its limitations.

2. Related Work

The problem of collision detection has been extensively
studied in the literature. A good overview of different algo-
rithms is available in some recent surveys [Eri04, TMH∗05,
LM03]. In this section, we give a brief survey of earlier work
related to continuous collision detection, GPU-based meth-
ods and collision detection between deformable models.

2.1. Continuous Collision Detection

Most of the prior work on collision detection has been re-
stricted to checking for collisions at discrete time instances.
Recently, many algorithms have been proposed for continu-
ous collision detection (CCD). These approaches model the
trajectory of the object between successive discrete time in-
stances as a continuous path and check the result path for
collisions. Different techniques have been used to model

the trajectory including linear interpolation between the ver-
tex positions, screw motion or arbitrary in-between mo-
tion, etc. At a broad level, the CCD algorithms can be
classified into four approaches: algebraic equation solving
approach [Can86, RKC00], swept volume (SV) techniques
[AMBJ02], adaptive bisection [RKC02,SSL02], and kinetic
data structures (KDS) [ABG∗00]. These approaches have
been used to perform CCD at interactive rates for rigid ob-
jects [RKC02, KR03] and articulated models or avatars in
virtual environments [RKLM04b, RKLM04a]. However, no
good algorithms are known for real-time CCD between gen-
eral deformable models.

2.2. Collision Detection between Deformable Models

Many of the commonly used collision detection algorithms
utilize spatial partitioning or bounding volumes hierarchies.
Different bounding volumes including axis-aligned bound-
ing boxes (AABBs) [BFA02, DKT98], OBBs [PBS02] and
k-DOPs [MKE03, VT00] have been used to accelerate col-
lision detection between deformable models. However, the
cost of updating a hierarchy can be high. As a result, most
algorithms for deformable models use spheres or AABBs
as bounding volumes as it is relatively inexpensive to up-
date these hierarchies. These include top-down and bottom-
up techniques [LAM01, vdB97], models deformed by mor-
phing [LAM03], and a sub-linear algorithm for deformable
models expressed as linear superposition of precomputed
displacements [JP04]. However, these hierarchies may not
be able to perform significant culling and can result in a high
number of false positives. As a result, they may not be able
to check for collisions at interactive rates among complex
deformable models.

Many specialized algorithms have been proposed for col-
lision detection between cloth-like models. These include
exact and approximate approaches. The exact algorithms use
curvature and convexity properties to check for continuous
self-collisions between highly tessellated surfaces [MKE03,
Pro97, VT94]. The continuous self-collision test can also be
applied in a hierarchical manner on large models, though it
can be expensive for interactive applications [VT00]. Given
the complexity of performing continuous collision detec-
tion, esp. self-collision, some interactive algorithms either
do not check for self-collisions [CMT02, FGL03] or per-
form approximate collision detection using multiple layers
[CMT02,KC02] or voxelized grids [MDDB00]. However, it
may be difficult to give any bounds on the accuracy of the
resulting simulation.

2.3. GPU-based Collision Detection Algorithms

Graphics processors (GPUs) have been used to perform in-
terference and proximity computations between rigid and
deformable models [HTG03,KP03,GLM05,RMS92]. These
approaches are directly applicable to deformable models
as they do not involve pre-processing. The underlying al-
gorithms exploit the computation power of rasterization
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hardware and are able to achieve interactive performance
on complex simulations [HZLM01, VSC01, BW02, HTG03,
GRLM03, GLM05]. Moreover, these algorithms are used to
check for inter-object collisions between disjoint objects, as
well as intra-object collisions (or self-collisions) within each
object [GLM05, GKJ∗05, HTG04].

Most GPU-based collision detection algorithms have been
limited to check for collisions at discrete time instances. Re-
cently, a few GPU-based methods have been used for CCD
as well. Redon et al. [RKLM04a,RKLM04b] used the CUL-
LIDE algorithm to perform continuous collision detection
for articulated models and avatars. This algorithm models
the motion of each link using a line swept-sphere volume
and may not extend to general deformable models. Govin-
daraju et al. [GKJ∗05] used a precomputed chromatic de-
composition for CCD. However, this algorithm is only able
to check for collisions at 1− 2 frames a second on complex
cloth models and may not be fast enough for VR applica-
tions. Our new algorithm also uses a precomputed chromatic
decomposition, but its classification techniques help to im-
prove the overall performance, making it better suited for
interactive VR applications (see Section 6.3).

3. Overview

In this section, we give an overview of our continuous colli-
sion detection (CCD) algorithm. We first formulate the prob-
lem of CCD among general deformable models. We present
a novel classification algorithm to perform fast continuous
collision culling between general deformable models.

3.1. Problem Formulation

Given a triangulated mesh M with a fixed mesh connectiv-
ity, we assume that the underlying simulator or tracking de-
vice specifies the position of the mesh triangles at discrete
time instances. The continuous motion between two suc-
cessive time instances is modeled using a piecewise linear
motion of the vertices of the mesh. The continuous motion
generates a swept volume for each primitive p (e.g. a tri-
angle), and we represent the bounding swept volume of p
using the symbol P. The problem of CCD computes the first
time of contact among the swept volumes of the primitives
between the two discrete time instances and is performed
using elementary tests such as vertex-face and edge-edge
tests [Pro97, BFA02].

3.2. Continuous Collision Culling

Our goal is to quickly compute a compact potential colliding
set (PCS) of triangles in close-proximity using a broad-phase
algorithm. The proximity among primitives is computed us-
ing their bounding swept volumes of primitives between the
discrete time instances. We then perform exact overlap tests
among the PCS using a narrow-phase algorithm. We use
tight bounding swept volumes to achieve high culling effi-
ciency. A tight bounding swept volume of a triangle is the

union of bounding swept volumes of its edges. Each edge is
tightly bounded using a tetrahedron defined by the edge ver-
tices in the current time instance and the next time instance.

Given a connected mesh M with primitives pi, i = 1, . . . ,n,
we analyze the cases where penetrations occur between the
bounding swept volumes of primitives. Our analysis is based
on the mesh connectivity and we use the following classifi-
cation for collision culling.

• Vertex-adjacent primitives share one common vertex.
The bounding swept volumes of these primitives touch
each other. For these primitives, we only need to perform
one edge-edge elementary test for penetrations. As the
number of such tests among all vertex-adjacent primitives
is small, broad-phase culling may not be useful for vertex-
adjacent primitives.

• Edge-adjacent primitives share a common edge. The
bounding swept volumes of these primitives penetrate
each other at the edge. Therefore, broad-phase culling
among edge-adjacent pairs will not offer any culling.

• Non-adjacent primitives are neither edge-adjacent nor
vertex-adjacent. Penetrations can occur among non-
adjacent primitives in close-proximity.

As penetrations occur among every pair of edge-adjacent
triangles, Quick-CULLIDE [GLM05] cannot cull triangles
and will not work well for continuous collision detec-
tion. Furthermore, based on our classification, broad-phase
culling is only useful for non-adjacent and edge-adjacent
primitives. Therefore, we decompose the mesh into disjoint
sets of non-adjacent primitives and perform collision culling
among every pair of sets. Govindaraju et al. [GKJ∗05] pro-
posed chromatic decomposition to generate such disjoint
sets of non-adjacent primitives. However, the resulting num-
ber of sets in chromatic decomposition is quite large to
achieve interactive performance (See Figs. 1 and 3).

Given a mesh M with decomposition S1, . . . ,Sk such that
M = S1 ∪ . . .∪Sk, we ensure the following key properties in
the decomposition. These properties are used to reduce the
number of penetration tests among non-adjacent and edge-
adjacent primitives.

1. Non-adjacency in a set: No two triangles in the same set
are adjacent to each other. This property is used to reduce
penetration tests among non-adjacent primitives.

2. Unique edge-adjacency relations among any two sets:
Every triangle in one set is edge-adjacent to at most one
triangle in any other set. This property is used to reduce
penetration tests among edge-adjacent primitives.

Since the penetrating contacts are tested only for non-
adjacent or edge-adjacent primitives, the above two proper-
ties are sufficient to perform CCD culling tests. We compute
a dual graph of the mesh and use graph coloring algorithms
to decompose the mesh into disjoint sets.

Property 2 is a key property in our algorithm as we can
uniquely pair edge-adjacent primitives for every two disjoint
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sets. The pairing eliminates overlap tests between the edge-
adjacent primitives in the broad phase.

Theorem 1: Given two non-adjacent triangles pi, p j ∈ S1
and a primitive pk ∈ S2, pk is edge-adjacent to at most one
of pi and p j .

Proof: Let us assume pk is edge-adjacent to both pi and p j .
This implies that pi is adjacent to p j . This leads to a contra-
diction that pi and p j are non-adjacent.

As a result of Theorem 1, given a pair of sets S1 and S2,
we can uniquely compute edge-adjacent pairs of primitives
(p1, p2), p1 ∈ S1, p2 ∈ S2.

For every pair of sets Si,S j, j 6= i, we treat each edge-
adjacent pair of triangles between the two sets as one ob-
ject, and the remaining unassigned triangles as separate ob-
jects for collision checking. The collision culling problem
between any two sets reduces to N-body collision detection
problem among these objects.

Our algorithm only performs inter-set collision culling.
In contrast to the chromatic decomposition algorithm
[GKJ∗05], our algorithm does not require separate intra-set
collision culling and is more efficient.

3.3. Algorithm

Our collision detection proceeds in two phases: a broad
phase that computes potentially colliding primitives (PCS)
that are not-adjacent, and a narrow-phase that is used to per-
form exact elementary tests among non-adjacent and adja-
cent primitives.

The broad phase of our algorithm proceeds in two stages:

1. We update an AABB hierarchy and use the hierarchy
to compute the potentially colliding non-adjacent prim-
itives.

2. We perform continuous collision culling among the ob-
jects corresponding to every pair of sets S1,S2,S1 6= S2.
We use the bounding swept volume representations of
primitives and compute a set of potentially colliding
primitives using the Quick-CULLIDE algorithm.

In the narrow phase, we first perform exact elementary tests
among the potentially overlapping non-adjacent triangles.
We then perform elementary tests among adjacent primi-
tives. We further reduce the number of elementary tests if
the non-adjacent edges belonging to a pair of non-adjacent
primitives are not overlapping [GKJ∗05].

4. Interactive Continuous Collision Detection

In this section, we present our multi-stages collision detec-
tion algorithm. We first describe the preprocessing phase fol-
lowed by the runtime algorithm.

4.1. Pre-Process

Our algorithm uses an AABB hierarchy to quickly cull non-
adjacent primitives that are not in close-proximity. We ini-
tially construct the AABB hierarchy using a standard top-
down approach based on the mesh connectivity. Each leaf
node contains a pointer to the mesh triangle and a list of adja-
cent primitives. The list of adjacent primitives are used to ig-
nore overlaps between the adjacent primitives. Furthermore,
each node in the hierarchy stores a pointer to an AABB. The
AABB hierarchy is constructed as a pre-process and is up-
dated at run-time for a deformable object.

During the pre-process, we decompose the mesh by ap-
plying a graph coloring algorithm to the dual graph. We
compute the dual graph G = (V,E) such that

• each vertex vi ∈ G corresponds to a primitive pi ∈ M and
• each edge (vi,v j) ∈ G corresponds to a pair of vertex- or

edge-adjacent primitives pi, p j ∈ M.

A graph coloring of G performs a mesh decomposition of M
into independent sets and satisfies the two mesh decomposi-
tion properties (in Section 3.2). The complexity of the over-
all collision culling algorithm is a function of the number of
independent sets generated by the graph coloring algorithm
and the number of primitives in the mesh. The decomposi-
tion is performed using the DSATUR approximation algo-
rithm [Bré79] for graph coloring.

After the mesh decomposition, our algorithm computes a
data structure for each pair of sets. The data structure stores
all the primitive pairs that belong to the two sets and are
edge-adjacent. If a primitive is not edge-adjacent with any
of the primitives in the set, we conceptually generate a prim-
itive pair where one primitive is set to NULL. The pseudo-
code for generating the pair data structure for sets S1,S2,
where S1 6= S2 is given in Algorithm 4.1.

4.2. Bounding Representations

We tightly enclose the linearly interpolated path of each tri-
angle using a union of three edge-bounding-volumes, and
the two discrete positions of the triangle. Our algorithm
computes the tetrahedron obtained using the initial positions
and the final positions of the edge as the edge bounding vol-
ume. Our bounding volume representation for the triangle
is closed and tight. The bounding volume representation for
a pair of triangles is the union of the bounding volumes of
the two individual triangles. At run-time, our algorithm uses
these closed bounding volume representations to perform ef-
ficient collision culling.

The bounding representation requires no additional over-
head per frame as the representations are defined using the
vertex indices of the primitive at the two discrete time in-
stances. These indices are precomputed and do not change
during the simulation. Therefore, we do not need to update
the bounding representations at run-time.
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GENSETTRIANGLEPAIRS()
1. For each triangle t1 in the mesh
2. For each adjacent triangle t2 of t
3. If EdgeAdjacent(t1, t2) and NotFind(t1, t2)
4. SetPairs(t1.color, t2.color).AddPair(t1, t2)
5. End For
6. End For

7. For each color c1 = 1, . . . ,numcols
8. For each color c2 = c1 + 1, . . . ,numcols
9. For each triangle t in the mesh
10. If t.color = c1 or c2 and NotInSetPair(t,c1,c2)
11. SetPairs(c1,c2).AddPair(t1,NULL)

12. End For
13. End For
14. End For

ALGORITHM 4.1: Primitive Pair Generation Algorithm: The
data structure SetPairs stores the primitive pairs for each pair of
sets. Each set is assigned a unique integer color that varies from 1
to numcols (line 7). Lines 1-6 compute the edge-adjacent pairs for
each pair of sets. Line 3 checks if the primitives are edge-adjacent,
and whether the primitive pair already exists in the data structure.
Lines 7-14 compute the unassigned primitive pairs in each set and
add them to the data structure (line 11).

4.3. Run-time Algorithm

Our run-time algorithm consists of four stages:

• Stage I: We use the AABB hierarchy to compute trian-
gles that potentially collide with other non-adjacent tri-
angles. During each simulation time step, we update the
AABB hierarchy using the mesh vertices of the two dis-
crete instances. We traverse the hierarchy and test whether
the AABBs of the triangles overlap with any of the non-
adjacent triangles.

• Stage II: We perform 2.5-D visibility tests among
each pair of sets. We use the bounding volume repre-
sentations of the primitive pairs and combine it with
Quick-CULLIDE culling algorithm to perform continu-
ous culling. We use the results of stage I to reduce the
number of visibility computations. A primitive pair (t1, t2)
that corresponds to the sets (S1,S2) is potentially collid-
ing, if and only if either t1 or t2 is potentially colliding
with any other primitive in the two sets. We use the func-
tion RENDERPAIR shown in Algorithm 4.2 to render a
primitive pair in Quick-CULLIDE. Observe that only tri-
angles that are potentially colliding after stage I are used
for visibility computations.

RENDERPAIR()
1. Given primitive pair (t1, t2)
2. If t1 is in PCS, render t1
3. If t2 is not NULL, and t2 is in PCS, render t2

ALGORITHM 4.2: Primitive Pair Rendering Algorithm: Only
primitives which are in PCS after stage I are rendered (lines 2-3).

• Stage III: We perform edge-edge and vertex-face elemen-
tary tests among the potentially colliding non-adjacent
primitives. We only perform these elementary tests, if the
bounding swept volumes of primitives that are adjacent
along the corresponding edges or vertices of the overlap-
ping primitives are not touching or have tangential con-
tacts.

• Stage IV: We perform elementary tests among adjacent
primitives. Similar to stage III, we only perform elemen-
tary tests, if the bounding swept volumes of primitives that
are adjacent along the corresponding edges or vertices are
not touching.

5. Implementation and Results

We have implemented our algorithm on a Pentium IV
PC with 2GB memory and NVIDIA GeForce 7800 GTX
GPU. We use the OpenGL API under Windows XP
and GL_NV_occlusion_query for performing the full vis-
ibility queries asynchronously. We improve the render-
ing performance by storing the mesh vertices using the
GL_vertex_buffer_object extension on the GPU. We are able
to achieve a throughput of 20 million triangles per second.
We use an image resolution of 1000 × 1000 for collision
computations, and used three axis-aligned views to perform
collision culling.

We have applied our algorithm to detect collisions on gen-
eral meshes used for cloth simulation. We have tested our
algorithm on two complex benchmarks:

• Benchmark I: In this simulation, the cloth is modeled
using 6K triangles. Our precomputation algorithm decom-
poses this mesh into using 11 colors as shown in Fig. 1(b).
We have illustrated three sequences from this simulation
in Figs. 1(e), (f), and (g). Using the stage I of our algo-
rithm, the PCS reduces to 2000−2500 triangles. The av-
erage update time for the AABBs is about 4ms and the
average collision culling time spent in stage I is about
20ms. The stage II of our algorithm further reduces the
size of the PCS to 100−200 triangles. The average colli-
sion culling time in stage is about 70ms, and the average
collision detection time is about 100ms per frame. The
PCS computed after stages I and II are highlighted in red
in Fig. 1 (c) and (d), respectively.

• Benchmark II: In this environment, the cloth wraps
around a sphere. The cloth mesh is represented using 7K
triangles, and our precomputation algorithm partitions the
mesh into only 10 independent sets. Figs. 3 (e), (f), and (g)
illustrates three snapshots from the simulation. The aver-
age PCS size after Stages I and II are around 3000 trian-
gles and 200 triangles respectively. We highlight the PCS
in red after the Stage I and II in Fig. 3 (c) and (d) respec-
tively. The average collision culling time in the Stages I
and II of our algorithm are 20 ms and 60 ms, respectively.
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(a) Benchmark I (b) Our Mesh Decom-
position: 11 sets

(c) Chromatic Decom-
position: 23 sets

(d) PCS computed (in
red) after Stage I (2.5K
primitives)

(e) PCS computed (in
red) after Stage II (40
primitives)

(f) First snapshot of
Benchmark I

(g) Second snapshot of
Benchmark I

Figure 1: Benchmark I: The cloth is modeled using 7K triangles and our mesh decomposition results in 11 colors (as shown in Fig. 1 (b)).
The chromatic decomposition algorithm [GKJ∗05] results in 23 colors and the comparison is highlighted in Fig. (c). Using AABBs, the PCS is
reduced to 2000− 2500 triangles and is highlighted in red in Fig. 1 (d). Using the Stage II of our algorithm, we further reduce the size of the
PCS to 40 primitives and is shown in Fig. 1 (e). The sequence of images Figs. 1 (f), (g) show the various instances of a skirt due to the motion
of the avatar. As the simulation progresses many complex folds and wrinkles arise. Our algorithm is able to detect all the collisions within 100
ms on a Pentium IV PC with a GeForce 7800 GPU.

6. Analysis

In this section, we analyze the performance of our algorithm.
This includes the culling efficiency and different factors that
govern the overall performance.

6.1. Performance

The performance of the Stage I of our algorithm is a lin-
ear function of the number of primitives in the mesh. The
performance of the Stage II of our algorithm is linear to
the number of the mesh primitives and the number of sets
generated using the decomposition algorithm. We use the
DSATUR algorithm [Bré79] to perform the mesh decompo-
sition. In our benchmarks, we are able to partition complex
cloth meshes into at most 10 independent sets. Furthermore,
it may be possible to obtain optimal coloring for regular and
subdivision meshes using our algorithm. Fig. 2 highlights
the performance of our algorithm on benchmark I and II.

6.2. Culling Efficiency

The culling efficiency of our algorithm varies based on the
relative position of the mesh primitives, and the bounding
volume representations used to bound the continuous path
of the primitives. The culling efficiency obtained by our al-
gorithm is also a function of the view directions used to per-
form 2.5D overlap tests and the number of views. We have
compared the culling efficiency obtained using stage I and
stage II of our algorithm. Fig. 2(c) and 2(d) highlight the

culling efficiency after each stage of our algorithm on the
two benchmarks. Since the AABBs used to bound the prim-
itive are more conservative than the tight bounding repre-
sentations used in Stage II, our algorithm is able to reduce
the PCS size after Stage II by 1− 2 orders of magnitude in
comparison to Stage I.

6.3. Comparison

Our algorithm performs continuous collision detection be-
tween general deformable models at image-space precision.
Our algorithm checks for collision detection between the
time steps whereas Quick-CULLIDE [GLM05] checks for
collisions only at discrete time instances. Due to the use
of bounding swept volumes, the accuracy of our algorithm
is always higher than Quick-CULLIDE. As compared to
the chromatic decomposition algorithm [GKJ∗05], our al-
gorithm is relatively faster by almost 6 times. This is mainly
due to the improved chromatic decomposition algorithm and
edge-adjacent pair computation (as highlighted in Figs. 1
and 3). However, our algorithm performs collision queries
at image-space precision, whereas the chromatic decompo-
sition performs them at object-space precision. Furthermore,
our algorithm does not check for touching contacts. Most of
the object-space algorithms based on bounding volume hier-
archies have been applied to relatively simpler benchmarks
and are slower than our algorithm.
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Figure 2: Culling Efficiency and Performance on Benchmark I: We highlight the amount of culling efficiency obtained in each of the stages
in Fig. 2(a) and 2(c). The graphs indicate over an order of magnitude improvement in culling efficiency using Stage II over Stage I. Fig. 2(b)
and Fig. 2(d) highlight the time taken to update the AABB hierarchy, the collision time in Stage I and the total collision time. The average
collision time is around 100 msec for Benchmark I and 90 msec for Benchmark II.

6.4. Limitations

Our approach has some limitations. First of all, the colli-
sion queries are performed at image-space resolution. Sec-
ondly, our algorithm does not detect all types of contacts,
e.g. touching contacts. Furthermore, the performance of our
algorithm varies as a function of the time step. For a large
time step, the culling efficiency of the algorithm goes down
and it performs a higher number of elementary tests.

7. Conclusions and Future Work

We have presented an interactive continuous collision de-
tection algorithm for general deformable meshes in virtual
environments. We decompose the problem into adjacent and
non-adjacent collision detection. The algorithm takes advan-
tages of primitive connectivity information to perform effi-
cient collision culling between bounding swept volumes to
ensure no collision is missed between time steps. The colli-
sion culling is performed using 2.5D queries on the GPUs.
It is able to check for collisions, including self-collisions, in
complex simulations consisting of many thousands of trian-
gles. There are many avenues for future work. We would like
to use this approach for other application including avatar
motion and surgical simulation. Furthermore, we would like
to perform other proximity queries including separation dis-
tance and penetration depth computation.
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