
Copyright © 2009 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
Sketch-Based Interfaces and Modeling 2009, New Orleans, LA, August 1–2, 2009.
© 2009 ACM 978-1-60558-602-1/09/0008 $10.00

EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)
C. Grimm and J. J. LaViola Jr. (Editors)

Shadow Buttons: Exposing WIMP Functionality While

Preserving the Inking Surface in Sketch-Based Interfaces

Diane Marinkas1, Robert C. Zeleznik2, and Joseph J. LaViola Jr.1

1University of Central Florida, School of EECS, Orlando, FL USA†

2Brown University, Department of Computer Science, Providence, RI USA‡

Abstract

We present Shadow Buttons, an approach to placing WIMP interface elements into gestural and sketch-based

interfaces. Utilizing the hover state, supported by pen-based devices such as Tablet PCs, we provide users with

important WIMP-based functionality by invoking widgets only when the stylus hovers over "shadow" regions. In

this way, every pixel of the display, including the shadows, can be drawn on. By interacting with a shadow region

while in the hover state, users can temporarily display and interact with familiar WIMP elements. We explore the

Shadow Button design space as it relates to handwritten mathematical expressions and also present an informal

evaluation of our technique, examining various Shadow Button parameters including button size, placement, and

method of invocation. Preliminary results indicate that users prefer utilizing the hover state over tapping on the

Shadow Button and in general, prefer interface elements to be as close to the ink as possible. In addition, the

distance between the shadow region and the menu was found to be the most important factor in Shadow Button

usability.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Computer Graphics]: User Interfaces—
Interaction Styles

1. Introduction

Pen-based interfaces are a simple and natural method of in-
teracting with computers. For example, digital artists fre-
quently use Wacom tablets for intuitive, free-form input, and
students often choose tablet PCs to ease note taking in class.
Handheld devices such as personal digital assistants (PDAs)
are adopting pen-based interaction, as are cell phones, ultra-
mobile PCs (UMPCs), and mobile internet devices (MIDs).
As these devices become smaller and more feature-rich, we
are faced with the problem of shrinking screen space avail-
ability.

One method of counteracting this problem is to use a ges-
tural interface, where the user performs a particular move-
ment to initiate a command. Since there are few or no WIMP
(Windows, Icons, Menus, and Pointing devices) interface el-
ements, the majority of the screen can be devoted to the

† {marinkas,jjl}@eecs.ucf.edu
‡ bcz@cs.brown.edu

stylus input area. Additionally, a gestural interface can be
"mode-less", where a series of operations can be performed
without an explicit mode switch from one operation to an-
other. However, there are inherent difficulties with this in-
teraction technique. For instance, gestural interfaces suffer
from being non-self-disclosing. In most cases, a user can-
not simply sit down and start using the application without
human assistance or training. Another issue is the increased
cognitive load placed on the user. The user must be able to
remember all of the gestures, which artificially creates an up-
per bound on the number of gestures and consequently, the
complexity of operations which can be performed with the
software [BZW∗09].

We believe that Shadow Buttons will alleviate many of
these issues. A Shadow Button is not a button in the true
sense, but rather a shaded region found within or next to the
bounding box of a particular collection of digital ink strokes
(i.e., a word, a phrase, or, as in our case, a mathematical ex-
pression). Shadow buttons make use of the "hover" state em-
ployed by tablet PCs in which the tablet can detect the loca-

http://www.eg.org
http://diglib.eg.org

Diane Marinkas, Robert C. Zeleznik, & Joseph J. LaViola Jr. / Shadow Buttons

Figure 1: The application used for our evaluation.

tion of the stylus when it is a short distance above the tablet
surface. Using the stylus, the user hovers over the shadow re-
gion invoking a floating widget containing a menu of "real"
buttons. These buttons correspond to functionality that could
be found in a drop-down menu in a traditional application.

Using our technique, we can include WIMP elements in a
pen-based application without consuming screen real estate.
All of the complex functionality of the application can be ac-
cessed from the Shadow Button’s menu, freeing up the ink-
ing space for additional input. This technique has the added
benefit of being easily discoverable by the user.

In this paper, we present an analysis of the Shadow Button
design space by examining various interface parameters in-
cluding button size, button placement, menu shape and loca-
tion, and invocation method. In addition, we discuss the re-
sults of an informal usability study exploring how these dif-
ferent interface parameters effect users’ reactions to the tech-
nique. Specifically, we were interested in finding whether
utilizing the hover state or a tap on the Shadow Button was
preferable. In the next section, we discuss work related to
Shadow Buttons, followed by a discussion of our design cri-
teria and the Shadow Button design space. Section 4 dis-
cusses our informal evaluation followed by our results in
Section 5. Section 6 presents areas for future work and con-
cludes the paper.

2. Related Work

There have been several in-band menuing strategies for in-
voking application functionality without the explicit use of
traditional WIMP-style interfaces. Marking menus provide
users with the ability to invoke menu items by placing the
menu under the pen-tip. All menu items are arranged the
same distance from a fixed point, essentially on the circum-
ference of an imaginary circle [KB94, CHWS88]. For this
reason they are often called "radial" or "pie" menus. Users

can drag the pen to the desired menu item or perform a
"flick" gesture to select the desired menu option. Marking
menus are advantageous because each choice is the same
distance from the point where the user invoked the menu.
Additionally, the target selections can be a bit larger than
items in a linear menu, which adds to their ease of use.

Flow menus [GW00] are similar to marking menus, but
were designed with pen applications in mind. The flow menu
is also arranged radially into octants. Users employ a pen
input device and, once the menu is invoked, move the pen
from the center "rest" area to the octant they wish to select,
and back to the center rest area. Users also have the option,
depending on the selection, to seamlessly continue their in-
teraction without lifting the pen. For instance, if a user se-
lects a "move" operation from the menu, he may continue to
drag-move the object without an explicit mode switch. Other
similar menu techniques have also been developed such as
tracking menus [FKP∗03]. In these systems, users must tap
on the screen to instantiate the menu. The act of tapping on
the screen prevents users from entering ink and interrupts
work flow. With Shadow Buttons, users can invoke a menu
while the pen tip is hovering over the screen and still enter
ink in the shadow region, saving screen real estate for inking.

Grossman’s Handle Flags [GBH09] were designed to as-
sist users with selection tasks in pen-based applications.
Handle Flags are floating widgets that strive to provide a
handle for accessing each potential selection in an inking
application. A common task in inking applications is selec-
tion of the digital ink itself, rather than selection of a but-
ton or menu item. This is a difficult task, however, due to
the fact that words or expressions can be composed of arbi-
trary strokes which may often overlap. With Handle Flags,
when the user’s pen approaches a potential selection, the
Handle Flag fades in at a certain offset from the pen loca-
tion. The user can then tap on the flag corresponding to the
desired selection. Although Handle Flags are similar in spirit
to Shadow Buttons, they are focused on selecting ink rather
than invoking various interface widgets.

Closely related to our work is Hover Widgets by Gross-
man et al [GHB∗06]. In this work, the tablet PC hover state
is also used. When the user wishes to invoke the widget, he
or she performs a simple L-shaped gesture very close to but
not touching the tablet surface, then tapping the pen to the
surface. The widget, which in this case is a single floating
button, appears very near the user’s cursor. The gesture "tun-
nel" is in the shape of an L in order to prevent accidental
activation, since variations on the gesture’s orientation (i.e.,
upside down) are unlikely to be intentional. Hover Widgets
are the first effort recognized in the literature to make use of
the hover state.

Shadow Buttons seek to extend the notion of hover wid-
gets by once again employing the hover state while simpli-
fying the method of invocation. Instead of invoking a widget
using a gesture and tap combination, Shadow Button users

160

Diane Marinkas, Robert C. Zeleznik, & Joseph J. LaViola Jr. / Shadow Buttons

can simply move the stylus over the shadow region to invoke
the menu. Additionally, a small menu of WIMP buttons im-
mediately appears, rather than the additional step of tapping
a single button to invoke a circular menu as with hover wid-
gets.

3. Shadow Buttons

3.1. Design Criteria

Shadow Buttons are not buttons in the traditional sense. In-
stead, they provide shadow regions on the drawing or writing
area where users can still use the pen to draw ink, but use the
hover state to instantiate WIMP interface elements. In creat-
ing Shadow Buttons, we considered the following:

• Screen space - Our primary goal is the preservation of
screen space. By invoking the buttons only when needed
and with hover, we don’t waste space for menus and tool-
bars. Additionally, every pixel of the display is available
for inking, including the shadow regions.

• Discoverability - Shadow Buttons, unlike many elements
in pen and gestural interfaces, are easily discoverable. The
user may accidentally hover over the shadow region and
make the widget appear, or he or she may see the differ-
ently colored region and be curious about its significance.

• Convenience - We believe that application functional-
ity should be easy to access at a moment’s notice. The
shadow region is associated with a particular group of ink
strokes and contains only commands that pertain to that
grouping. For instance, in our work we have focused on
mathematical expressions. A matrix of real numbers may
invoke a widget containing matrix operations, such as
finding eigenvalues or computing the inverse [ZMLL08].

• Work flow - Specifying commands to the application
should not disrupt the user’s work flow. Searching for an
instruction in a series of traditional WIMP menus takes
too much time and distracts the user from the task they
want to accomplish. Keeping the necessary commands lo-
cal means the interface stays transparent to the user.

• Cognitive load - Rather than have the user remember nu-
merous gestures, we keep the frequently needed options
in a menu, making it a "cheat sheet" of sorts. Addition-
ally, the buttons and menus are familiar to most users and
further reduce the amount of "thinking overhead" needed
to use the application.

Figure 2: An example of the shadow region overlapping the

ink (left) and not overlapping (right).

3.2. Design Space

In realizing the Shadow Button concept, we explored a rather
large design space. In this paper, we decided to focus on
Shadow Buttons in the context of mathematical sketching
systems [LZ04]. Thus, we examined them as they apply
to handwritten and recognized mathematical expressions. In
particular, we have implemented Shadow Buttons in Math-
Paper [ZMLL08], a pen-based system for fluid entry and
editing of mathematics with support for interactive compu-
tation. Users use the stylus to input handwritten mathemat-
ics, and the application recognizes expressions and can solve
and graph equations, integrals, matrices, etc. The user’s dig-
ital ink appears surrounded by a light yellow bounding box.
The shadow region is a small green square in the upper left-
hand corner of this bounding box (see Figure 2). When the
user hovers over this region, four small, square buttons ap-
pear in a square configuration. Three of the buttons perform
frequently used operations such as "Simplify Expression,"
"Graph Expression, " and "Drag Interactively." When the
user selects the fourth button, a traditional drop-down menu
appears presenting the user with more options.

There are many design parameters which may be tweaked
to change the user experience. There are two categories of
parameters that we explored: those that have to do with the
shadow region, and those that have to do with the menu wid-
get that is presented to the user. For instance, the location of
the shadow region belongs to the first category, whereas the
size of the buttons belongs to the second. Here we discuss
only a subset of the possible configurations.

The parameters related to the shadow region include loca-
tion and size. When we refer to the location of the shadow
region, we simply mean in which corner of an expression’s
bounding box it is in. We chose to place it in the upper left-
hand corner, but another good choice would have been the
lower right-hand corner. In either case, the objective is to be
unobtrusive. We do not want to interrupt the work flow of
the user by accidentally triggering the widget and having it
become a nuisance to the user. We feel it is the most out of
the way in the upper-left corner, since we assume the user
will be writing in a left-to-right direction. For the same as-
sumption, the lower-right corner also makes sense since the
user will finish writing and have several common commands
at their disposal without any additional hand movement.

Another aspect of the location variable is its distance rel-
ative to the digital ink. In our implementation, it is fixed by
the corner of the ink bounding box (see the left image in
Figure 2). This means that the ink is displayed overlapping
the shadow region. Another prototype expanded the bound-
ing box and shifted the shadow region to the left, so that the
region does not interfere with the ink, as shown in the right
image in Figure 2. We believe that some users may be dis-
tracted by the overlap with the ink, or that it may cause ac-
cidental triggers. In the future, we would like to expand on
this idea and have an option where the user may circle the

161

Diane Marinkas, Robert C. Zeleznik, & Joseph J. LaViola Jr. / Shadow Buttons

shadow region and drag it out of the way to a comfortable
distance.

The size of the shadow region is also of particular inter-
est. The region must be large enough to be useful, but small
enough to prevent accidental invocation. In our first proto-
type, the region was approximately 25 pixels by 25 pixels,
and we experienced a moderate number of unintentional trig-
gers. We count accidental triggers as those that both invoke
the widget when not specifically called upon and "catch" on
one of the buttons, preventing the collection of ink. A second
implementation used a much smaller region (9 x 9 pixels)
which helped reduce the undesired triggers. Another option
is to make the size of the shadow region proportional to the
size of the bounding box surrounding the ink.

In addition to the shadow region, the menu itself has many
variations. We assumed that a square arrangement of the
menu buttons was optimal, but we also experimented with
others. We tried aligning the buttons vertically, going both
up from the shadow region as well as down. Additionally,
we aligned the buttons horizontally. We believe that a circu-
lar arrangement of buttons, perhaps combined with a mark-
ing menu, may be a desirable alternative, though this remains
untested.

Another parameter of interest is the way in which the wid-
get is invoked. Shadow buttons were created with tablet PCs
and Wacom tablets in mind. These devices have a hover
state, where the stylus position can still be detected within
a small distance above the surface of the tablet. We chose to
use the hover state rather than a gestural command in an ef-
fort to reduce accidental triggering of the widget. However,
a different approach, such as tapping to bring up the menu,
would be more appropriate for a handheld device which may
not report hover data.

We also believe that button size plays a role in the utility of
Shadow Buttons. Depending on the arrangement of the menu
buttons, the size of the buttons may increase or decrease the
number of accidental invocations. Another problem is that if
the buttons are too large, they may obscure the ink or other
elements of the UI.

The final parameter which we considered straddles both
categories and has the most nuances. The distance between
the shadow region and the location where the widget appears
is very important. The menu must appear close enough to
the shadow region to be accessed quickly, without interfer-
ing with other elements on the screen. It must also be far
enough away to not be triggered accidentally. Additionally,
depending on the menu shape, the position relative to the ex-
pression may change. By default, the square menu appears
directly diagonal to the shadow region (see Figure 1).

4. Evaluation

We performed an informal pilot study to determine if user
preferences coincided with what we felt were the impor-

tant attributes of Shadow Buttons. In addition, we wanted
to gauge users’ reactions about different Shadow Button
configurations. This study consisted of nine participants, all
members of the Interactive Systems and User Experience
Lab at the University of Central Florida. This had the advan-
tage that most were experienced tablet PC users and there-
fore had an idea of the necessary elements in a pen-based
application. However, this also a hindrance, since outside in-
put from novice users would have allowed us to make more
general conclusions. Seven participants were male and two
were female, and two of the participants were left-handed.

We used a stripped-down version of MathPaper for the
experiment (see Figure 1). We did not want to distract users
with the extensive features of the full application. The pro-
gram was implemented using Windows Presentation Foun-
dation (WPF) and run on a HP tc4400 tablet PC. The pro-
gram contained the necessary elements, such as a digital ink
collection canvas, a math recognition backend, and bounding
boxes for recognized mathematics. The software also had
a large ribbon area consisting of several combo boxes and
buttons in order for the tester and the users to change the
Shadow Button configuration on the fly. Each time an option
was changed, the current configuration was written to a log
file for further analysis.

Each participant was asked to write several mathematical
expressions. For each expression, they were asked to select
a different button from the Shadow Button menu configured
in several different ways. When selected, the button played a
familiar Windows system sound. In the first test, the partici-
pants wrote a mathematical expression and selected a button
from the menu in the "square", "up", "down", and "horizon-
tal" configurations (see Figure 3). The second test consisted
of writing a different expression and tapping or hovering
over the shadow region to bring up the menu. The third ex-
ample tested whether users preferred the shadow region to
overlap the ink or not. After each test, the participants were
asked which configuration they preferred and why.

The final test was "user’s choice." Each user was asked to
write an expression once on the left side of the writing area,
once in the middle, and once on the right edge, to determine
if Shadow Button configurations depend on screen location.
In each case, they were asked to modify any of the Shadow
Button parameters in the way they felt was ideal for all three
cases.

5. Results

Of the nine participants, five preferred the square configu-
ration of the menu buttons, three preferred the down con-
figuration, and one liked the up configuration, though there
was no consensus on a reason. Seven of the participants pre-
ferred hovering over the shadow region to tapping on it to
invoke the widget. Two preferred tapping, and in fact, tapped
even when hovering was enabled. When asked to tap on the

162

Diane Marinkas, Robert C. Zeleznik, & Joseph J. LaViola Jr. / Shadow Buttons

Figure 3: The four menu shapes used in our evaluation.

Clockwise from top: square, up, horizontal, down.

shadow region, most users understood how to invoke the
menu but did not understand how to get rid of the menu. One
user attempted to select a button from the menu without lift-
ing the stylus, as would be the case when using a flow menu.
Seven users preferred the non-overlapping Shadow Button,
one thought overlapping was better, and one said they were
about the same.

Even though there was no consensus on menu shape, the
participants’ comments were similar. Those that preferred
the square menu liked it because it kept the functionality
within easy access. Each button was about the same distance
from the shadow region. Those that liked the down config-
uration preferred it because it ran along the left edge of the
expression’s bounding box. In contrast to the up configura-
tion, this kept the buttons close to the ink. Additionally, if
the buttons appeared in a specific order, for instance, in order
of most important to least important, the down shape lends
itself nicely to this. Two of the participants said that they
would have liked the horizontal shape if the buttons had run
along the top edge of the bounding box, rather than heading
off to the left as was the default horizontal configuration.

During the user’s choice test, five users did not change the
button size, three increased the size, and one attempted to
decrease the size (they couldn’t however because the button
content would no longer be visible). Three again selected
the "down" menu shape. All participants chose to move the
menu from the default location, regardless of configuration.
Only one participant chose to move the menu farther away
from the expression, so it appears that in general users want
the buttons as close to the ink as possible without obscuring
it.

Preliminary results from our study indicate that the dis-
tance from the buttons to the shadow region is the most
important factor to the usability of Shadow Buttons. Menu
shape also plays an important role, but this reduces to a ques-
tion of distance as well. In addition, the fact that the majority

of our participants preferred using hover over tapping to in-
voke the buttons indicates that the Shadow Button concept is
one users are willing to accept.

6. Conclusions and Future Work

Though our informal study was brief and entirely qualita-
tive, we can identify specific areas for further exploration.
We would like to run a formative usability study and collect
quantitative data about Shadow Buttons in an ecologically
valid setting. We would like to have participants attempt to
complete a task both with and without Shadow Buttons. For
instance, the objective of the task could be to hand-write a
mathematical equation, recognize it, solve it, and graph it.
Once the math is written, the other tasks may be present in
the Shadow Button menu.

Additionally, we would like to further explore which
menu shape is preferable, taking into consideration what we
have learned in this pilot, and collect quantitative data. We
would like to include a horizontal menu that by default runs
along the top of the expression’s bounding box. It would also
be beneficial to collect timing data and distance information.
Since our pilot study indicated that distance was the most
important factor in determining the utility of Shadow But-
tons, we would like to see to see how far away we can move
the buttons before utility declines. We also want to explore
what the shadow should look like. For example, is the green
shaded region too distracting? Would a "real" drop-shadow
be too subtle?

Finally, we recognize this work was tailored toward hand-
written mathematical expressions. We would like to explore
how Shadow Buttons might work in the context of other
pen- and sketch-based applications and how the design space
might change accordingly. For example, would it be plausi-
ble to use Shadow Buttons in an application that recognized
words instead of mathematical expressions? Or what about
in an application that focuses on hand-drawn sketches?

Since our participants were experienced tablet users,
many had suggestions for improvement. For example, one
user thought that a radial marking menu would be another
good choice for menu configuration. Another mentioned that
their answers might be different if there were a different
number of buttons. We could therefore examine how the
Shadow Button technique scales with the number of buttons.

We have presented Shadow Buttons, an approach to pro-
viding users with WIMP-based interface elements in pen-
based applications. With Shadow Buttons, screen real estate
is conserved by utilizing the hover state to invoke interface
widgets, letting users enter ink anywhere on the screen, re-
claiming space normally occupied by menus and toolbars.
We explored the Shadow Button design space in the con-
text of handwritten mathematical expressions and presented
a informal usability study exploring users’ perceptions of the
interface technique. Our pilot study revealed that users, in

163

Diane Marinkas, Robert C. Zeleznik, & Joseph J. LaViola Jr. / Shadow Buttons

general, found the distance between the shadow region and
the menu to be the most important factor in the usability of
Shadow Buttons. In addition, users found the hover state to
be a valuable approach to invoking the menu, validating the
Shadow Button approach. Although our study was informal
and there is a significant amount of future work to be done,
we believe this work provides a useful starting point in de-
veloping and understanding Shadow Buttons in pen-based
interfaces.

Acknowledgements

This worked is supported in part by Microsoft, IARPA,
SAIC, and NSF CAREER award IIS-0845921. Thanks to the
anonymous reviewers for their valuable suggestions.

References

[BZW∗09] BRAGDON A., ZELEZNIK R., WILLIAMSON B.,
MILLER T., LAVIOLA JR. J. J.: Gesturebar: improving the
approachability of gesture-based interfaces. In CHI ’09: Pro-

ceedings of the 27th international conference on Human fac-

tors in computing systems (New York, NY, USA, 2009), ACM,
pp. 2269–2278.

[CHWS88] CALLAHAN J., HOPKINS D., WEISER M., SHNEI-
DERMAN B.: An empirical comparison of pie vs. linear menus.
In CHI ’88: Proceedings of the SIGCHI conference on Human

factors in computing systems (New York, NY, USA, 1988), ACM,
pp. 95–100.

[FKP∗03] FITZMAURICE G., KHAN A., PIEKÉ R., BUXTON B.,
KURTENBACH G.: Tracking menus. In UIST ’03: Proceedings

of the 16th annual ACM symposium on User interface software

and technology (New York, NY, USA, 2003), ACM, pp. 71–79.

[GBH09] GROSSMAN T., BAUDISCH P., HINCKLEY K.: Handle
flags: Efficient and flexible selections for inking applications. In
To appear: GI 2009 Conference Proceedings: the Graphics In-

terface Conference (2009).

[GHB∗06] GROSSMAN T., HINCKLEY K., BAUDISCH P.,
AGRAWALA M., BALAKRISHNAN R.: Hover widgets: using
the tracking state to extend the capabilities of pen-operated de-
vices. In CHI ’06: Proceedings of the SIGCHI conference on Hu-

man Factors in computing systems (New York, NY, USA, 2006),
ACM, pp. 861–870.

[GW00] GUIMBRETIÉRE F., WINOGRAD T.: Flowmenu: com-
bining command, text, and data entry. In UIST ’00: Proceedings

of the 13th annual ACM symposium on User interface software

and technology (New York, NY, USA, 2000), ACM, pp. 213–
216.

[KB94] KURTENBACH G., BUXTON W.: User learning and per-
formance with marking menus. In CHI ’94: Proceedings of

the SIGCHI conference on Human factors in computing systems

(New York, NY, USA, 1994), ACM, pp. 258–264.

[LZ04] LAVIOLA J., ZELEZNIK R.: Mathpad2: A system for the
creation and exploration of mathematical sketches. ACM Trans-

actions on Graphics 23, 3 (Aug. 2004), 432–440. (Proceedings
of SIGGRAPH 2004).

[ZMLL08] ZELEZNIK R., MILLER T., LI C., LAVIOLA JR. J. J.:
Mathpaper: Mathematical sketching with fluid support for inter-
active computation. In SG ’08: Proceedings of the 9th interna-

tional symposium on Smart Graphics (Berlin, Heidelberg, 2008),
Springer-Verlag, pp. 20–32.

164

