
Latency- and Hazard-Free Volume Memory Ar­
chitecture for Direct Volume Rendering

M. de Boer, A. Gropl, J. Hesser, R. Manner

Lehrstuhl fur Informatik V, Universitat Mannheim, D-68131 Mannheim, Germany

e-mail: boer@mp-sunl.informatik.uni-mannheim.de

Abstract
The computational power required for direct volume rendering

like ray-casting or volume ray-tracing can be provided by high­

speed rendering architectures. However the increasing proces­

sor speed makes a performance bottleneck obvious - the vol­

ume memory. This paper describes a volume memory architec­

ture that achieves at least a tenfold speed-up in read-out rate

with moderate additional hardware. It has been simulated suc­

cessfully. A multi-level cache system is used with software

prefetching and latency hiding. Pre- and postcaches addi­

tionally speed up the read-out rate so that a 5123 data set stored

in a single memory module can be rendered at 3.125 Hz.

Introduction
Visualization of three-dimensional data sets can be performed

by a class of algorithms known as direct volume rendering [I].

These algorithms do not require intermediate data structures to

represent the three-dimensional information. They simulate the

interaction between light and virtual matter, the latter repre­

sented by the data set. Typically the ray-casting approach is

used where the interaction of light is restricted to viewing rays

only. Algorithms that consider higher order rays are called ray-

tracing. Normally ray-tracing operates on well defined surfaces
",

of objects. Algorithms that directly work on volume data, i.e.

on every voxel of the data set, are called below volume ray­

tracing algorithms. Examples are the rendering algorithm

realized on the VIRIM real-time renderer [2] and the Heidelberg

Raytracer [4].

Lacroute and Levoy [5] have achieved 10 frames per second for

a ray-caster using a 2563 data set on a 16 processor SGI Chat­

lenge. To achieve this speed they used parallel light, precom­

putation of gradients, space-leaping (suppression of rendering

on empty regions), early ray-termination, and shear warp.

Perspective views, and on-line classification of voxels accord­

ing to density and gradient magnitude, reduce the frame rate by

a factor of 6-10.

Faster frame rates can only be achieved by using problem

adapted hardware architectures since inter-processor communi­

cation limits the speed on conventional super-computers. We

consider three architectures (3).

For Cube-4 [6] a massively parallel rendering and memory

architecture has been proposed for high-speed rendering of

large data sets. Cube-4 is assumed to process a full line of view­

ing rays in parallel so that a full line can be read in one step

109

mailto:boer@mp-sunl.informatik.uni-mannheim.de
http://www.eg.org
http://diglib.eg.org

from a skewed memory. This cubic memory is read out by ran­

dom access. Using synchronous DRAM devices a read-out speed

of30 MHz per memory bank is assumed. The maximal system

consisting of 1024 memory banks and 1024 processor nodes

(32 MHz) will be able to render 10243 data sets at 30 Hz. Cube­

4 operates only on parallel rays that are arranged at fixed dis­

tances. Therefore neither arbitrary walk throughs are possible,

nor algorithms using filtering like volume ray-tracing or 3D

data processing, nor segmentation (region oriented segmenta­

tion does not seem to be supported by the memory architec­

ture).

For Vogue [7] it is proposed to map the ray-cast algorithm

directly into parallel pipe lined hardware. 4 VLSI devices are

required for integrating the functions. Vogue uses 8 memory

banks from which 8 neighboring voxels forming a sub-cube

can be read simultaneously. Each bank is 8-fold interleaved,\

page mode is used, and a one-entry cache speeds up repeated

accesses to the same memory location. FlFOs decouple the

memory system from the remaining hardware to allow usage of

the page mode of normal DRAM devices independently. Com­

pared to random access the speed-up amounts to a factor of 2-3.

One processing node will achieve 2.5 Hz for 2563 data sets.

Compared to Cube-4, Vogue additionally implements perspec­

tive view which allows arbitrary data walk-throughs.

VIRIM [2] is the first real-time direct volume rendering system

which is already in practical use. It uses in principle the same

memory architecture like Vogue but with 4 times fewer memory

devices and provides a much higher flexibility. Due to its free

programmability ray-casting and volume ray-tracing, data

processing, and segmentation can be implemented (ray-casting

and volume ray-tracing are already implemented; region grow­

ing is currently in the implementation phase).

In contrast to Cube-4, Vogue, and VlRIM, the DIV2A system [9]

will use space-leaping and early ray-termination to speed up

rendering by a factor of up to 20. It has a similar flexibility

like VIRIM and is supposed to achieve a 20 Hz frame rate on

2563 data sets using a 16 processor system. The memory archi­

tecture consists of 8 memory banks realized in SRAM; but only

50% of the memory can be used since the data set must be stored

twice in an interleaved way.

All architectures have to cope with the limited data rate achiev­

able with conventional memory devices. The upper limit of

currently suggested memory architectures is 750 MB~t~s/s per

memory.

In the following a new memory architecture is presented that

achieves a 10-fold speed-up over the conventional architec­

tures. It relies on efficient prefetching, latency hiding, and

multi-level caching. Using commercial DRAM devices this

architecture allows rendering of 5123 data sets at >3 Hz per

memory module.

The VI RIM System

VIRIM is the first available real-time direct volume special

purpose rendering hardware'. A prototype is in daily use since

June 1995. VIRIM will soon be commercially available. Its

architecture is modular and scalable. Each module consists of

two processors.

A geometry processor that resamples an image data set and

estimates the gradients in the image space. Image data set

voxels with gradients are transferred to the second processor,

the ray-cast processor which performs shading and compo-

I The RealityEngine of SGJ allows to use 3D texture mapping
to implement direct volume rendering. However gradient esti­
mation and Phong shading are not supported and must be pre­
calculated.

110

siting. The ray-cast processor is assembled of freely program­

mabIe digital signal processors. It can therefore be used for any

computation as long as it requires only loose coupling between

processors.

The lead user is the Clinic for Head Surgery of the University of

Heidelberg, Germany, which uses VIRIM for operation plan­

ning and control. Fig. I shows the system.

Fig. I: VIRIM system. Left: full system. Right, top: geometry
processor. bottom: ray-cast processor.

New Memory Architecture

The new memory architecture is based on the architecture used

in the VIRIM system [2][3]. It uses image space parallelism to

achieve real-time rendering rates. First the rendering approach

is described followed by the basic architectural idea. A sugges­

tion for implementation shows how this idea can be realized.

The performance of an optimized version of this architecture is

given.

Parallel Rendering Approach

The new memory architecture supports two volume oriented

rendering approaches, ray-casting and volume ray-tracing.

Ray-casting starts by casting a ray into the virtual scene from

each image pixel [5]. Along each ray, sample points--that are

image data set voxels- are generated by interpolation of their

neighboring voxels in the object data set. On these sample

points gradients are estimated using local difference filters.

Gradients and local density are used for calculating the reflected

light using Phong shading as reflection model. After shading

the contributions of each sample point on the considered ray

are composited to the final projection by using the over-

operator [1].

In contrast volume ray-tracing additionally considers the ab­

sorption of incident light. This way shadows can be generated

which are t:equired for some applications [11].

Both algorithms, ray-casting and volume ray-tracing, have

been implemented in the VIRIM system and are realizable using

the new memory architecture as well.

For volume ray-tracing image data set voxels have to be proc­

essed in a predetermined order which can be parallelized only in

the image data set. Therefore image space parallelism is used

like for VIRIM. This rendering parallelism is realized as fol­

lows:

UbJect lJata Set Image lJata Set

"~l
?ender

/; ~'l
~~

§Scanlines

Projection Plane

Fig. 2: Image space parallelism: First the object data set is
resampled in an image data set that is parallel to the main view­
ing direction. After this transformation each image data slice is
processed and produces one final scanline of the projection.

First an image data set is resampled from the object data set.

The image data set is oriented such that one of its main coordi-

I 11

nate directions is parallel to the viewing direction. For each

voxel of the image data set its position in the object data set is

determined. Its eight neighboring voxels in the object data set

are read-out from the volume memory and are interpolated e.g.

by trilinear interpolation. Gradients can be computed in paral­

lel to the interpolation process by using the same 8 object data

set voxels like in the Vogue system [7]. After resampling and

gradient estimation, absorption, shading, and compo siting are

processed.

Image space parallelism allows to process each image data slice

independently from others provided that the necessary data for

resainpling and gradient estimation are available for each ren­

dering processor.

Basic Architectural Idea

In this paper we concentrate on the memory architecture for two

reasons. First, memory read-out rate is currently the bottleneck

that limits the speed achievable by the rendering hardware.

Second, processor performance doubles approximately every

18 months but the memory performance cannot catch up with

that speed and thus the gap between memory and processor per­

formance widens. As typical example, Knittel reports process­

ing rates of approximately 80 MHz for one ASIC in the Vogue

system while the system fails to deliver the required data rate by

a factor of 2-4 [7]. In this paper we show that memory band­

width will not be a limiting factor for real-time rendering for

the next few years, if e.g. the proposed memory architecture is

used.

For direct volume rendering algorithms the high data rate is

required for reading the data from the volume memory before

interpolation of the image data set voxel value. Here 8 voxels

in a 2x2x2 sub-cube are to be read from the object data set.

Parallel read-out is possible as has been demonstrated [2][7] by

an appropriate distribution of the data over 8 different memory

units (see Fig. 3). This 8-fold sub-division is used in this new

architecture as well.

The open question is how to achieve a maximum read­

throughput for each of these 8 identical units. Since a volume

data set is very large -several tens to several hundreds of

megabytes are common-- slow dynamic memories (DRAMs)

have to be taken instead of fast static memories (SRAMs) for

cost reasons.

Recently new DRAM interfaces are available that promise at

least one to two orders higher read-out throughput than conven­

tional DRAM. One of the fastest devices is the RDRAM

(Rambus DRAM) which is chosen for the new memory architec­

ture, although the architecture can also be realized with other

modem DRAM interfaces. The new architecture is designed to

obtain nearly the maximal bandwidth of the RDRAM and to

combine it with the non-sequential and non-regular access

requirements for direct volume rendering caused by random

viewing directions and by allowing arbitrary data walk

throughs.

Rambus achieve the high bandwidth by using multiple

(internal) banks in a interleaved mode. The effective sustained

bandwidth for 32-byte random access transfers is 480 MB/s

[10]

In the following we discuss the design for one of 8 identical

memory units.

In order to achieve the high throughput by the RDRAM the data

must be read sequentially. However this contradicts the possi­

bility to randomly access the data during rendering, e.g. by

112

changing the viewing direction arbitrarily. In order to solve

this problem a cache architecture is used. The cache stores

small non-intersecting sub-cubes of the object data set that are

required to resample one or more image data slices. The sub­

cube data voxels are stored on the RDRAM in a sequential ad­

dress space such that they can be read at maximum bandwidth.

The sub-cube voxels stored in the cache can be accessed ran­

domly, since the cache is realized in SRAM. Temporal and

spatial coherency required during rendering guarantee efficient

use of the cache. Temporal coherence occurs since subsequent

resampling points of a ray often require the same or nearby

object data set voxels for interpolation. Spatiid coherency

occurs for neighboring rays that share object data set voxels

for interpolation.

Fig. 3: New memory architecture. Top: Assignment of voxels
ofa 2x2x2 neighborhood to memory units. Bottom: The vol­
ume data is stored in an interleaved manner on 8 memory units.
Each memory unit contains two or more caches. The rendering
processor reads data directly from the caches of all memory
units.

The second problem is the high latency for cache misses when

the RDRAM must deliver the requested sub-cube. A prefetch

strategy solves this problem. The prefetch strategy is software

based and determines when which sub-cube is required for ren­

deringbefore the sub-cube is actually required. Thus no cache

miss occurs. The prefetch algorithm is a modified polygon

filling algorithm (see Foley and van Dam [I]).

Third, since the rendering processor requires an uninterrupted

access to the cache memory, a non-blocking cache is required.

Non-blocking means that during read-out of the cache it can be

loaded with new sub-cubes. Non-blocking is achieved by using

multiple devices where one can be selected for read access and

simultaneously a different one for write access.

Implementation of the Architecture

Resampling Order

The image data set -which is a cube- is generated by resam­

piing slices parallel to the projection plane in front-to-back

order (see Fig. 4). These slices are called x-z-slices in the fol­

lowing.

Fig. 4: The image data set consists of a stack of x-z slices that
are perpendicular to the main viewing direction and parallel to
the projection plane. These slices are resampled beginning by
slice 0, i.e., in front-to-back order.

In the following it will be important that all these slices are

parallel and have equal distance to each other. Due to the per­

spective projection however their size increases with the dis­

113

tance to the viewer so that the stack of x-z slices in the image

data set cuts out a pyramid from the object data set'.

Prefetching Sub-Cubes

For the proposed memory architecture latencies that come from

cache misses and from the overhead of reading the first data

from the RDRAM are hidden by prefetching data before it is

required in the rendering process. The prefetch algorithm must

precalculate when which sub-cube is required but it should not

consume much computational power compared to the rendering

algorithm. The precomputation runs in parallel to the rendering

algorithm some slices ahead so that thl!_ latencies for reading

sub-cubes from RDRAM and storing them into the"cacnes are

much shorter than the remaining time until these sub-cubes are

read from the cache.

The algorithm determines which sub-cubes of the object data

set are intersected by the currently considered x-z slice of the

image data set. This intersection calculation is a generalized

line drawing algorithm for planes in 3D space ([\], pp. 92-99.)

where the basic building blocks are sub-cubes instead of

voxels.

Sub-Cube Assignment to Caches

The data required for resampling each scanline is read out from

the volume memory in the form of sub-cubes that are buffered in

the caches. First sub-cubes required for one slice are loaded into

the considered cache bank. The cache bank size is supposed to

be large enough to store all these sub-cubes. If the cache bank

is not filled yet, the sub-cubes required for the subsequent slices

are loaded into the same bank until it is filled. The remaining

sub-cubes of the last considered slice are loaded into the next

2 In order to evade aliasing artifacts the maximal grid distance
of rear sl ices must be below the grid distance of the object data
set.

cache bank. By this mechanism sub-cubes required for one slice

can be distributed over two cache banks.

A software flag prevents sub-cubes that are already stored in the

cached to be written twice thus saving bus bandwidth. The

fil1ing of the cache banks is done in a round-robin order, i.e.,

cache bank 0 is filled before cache bank I, cache bank 2, and

again cache bank 0 etc. The cache banks are filled continuously

from its lowest address space irrespective of the previous con­

tents.

.-"'!-..... ­
5 ,

_ Sub-Cubc in Cache BanI: 0

~, III t~ SlJb.Cubc in Cach< Bank 1

q 1 0 SlJb.Culn Cach< Bank 2

Fig. 5: Example of assigning sub-cubes to caches. The dark
sub-cubes are required to resample image data slice 1 and are
stored in cache bank O. The information of this cache can be
used for resampling image data slice 2 as well. Sub-cubes re­
quired for resampling slice three that have not yet stored in the
cache bank 0 are stored in cache bank l. To fill the cache bank
some sub-cubes that are required for slice 4 only can be stored
in this cache bank before switching to bank 2.

By choosing sufficiently large cache banks it is guaranteed

that all sub-cubes required to resample an image data slice is

read from at most two cache banks. When n is the edge-length

of the sub-cubes the size is given by 512 2 ·4n (details, see

Appendix 1).

Realization of Non-Blocking Caches

Non-blocking caches are realized by using individual cache

banks and to allow to read from one bank while writing to

another. 6 gives an example: While two cache banks are

readable by the rendering processor one cache bank is writable

from the RDRAM side. The cache banks are used in tum as

114

shown in Fig. 6. Assume for example, e.g., that cache banks 0

and 1 are used for read transfers and cache bank 2 is filled with

sub-cubes from the RDRAM. When data from cache 2 is re­

quired, the status of each cache bank changes. Cache banks 2

and 0 are now readable while cache bank I is writable. In the

next tum cache banks I and 2 are readable and cache bank 0 is

writable.

Read ~8ank2 ~Bank I

Read

Write

[;[]~Bank I BankO [;[]Bank 2

lJ;tJ~ rr;rr Time:::: BankO

-:. "~'.,

Fig 6: Three cycles of the filling scheme for the cache architec­
ture.

Performance Estimation and Opti­
mization of the Architecture

Optimal Cache Size

The memory system consists of two SRAM-based parts, the

cache and an address-mapper memory that maps object data set

absolute addresses into cache absolute addresses.

The size of the cache is determined by the sub-cube size; which

is critical for the architectural efficiency as well. The larger the

sub-cubes the higher the performance obtained by the RDRAM

since the latencies per voxel are reduced. However the total size

of the cache increases proportionally to the sub-cube size n

since each cache has to store at least 4x5122xn voxels for 5123

data sets.

The address-mapper depends on the sub-cube size as well. To

understand the relationship between address-mapper size and

sub-cube size the implementation of the former has to be given

(see also Fig. 7). The least significant bits of the object data

set absolute address are interpreted as sub-cube relative ad­

dresses. The most significant bits define the sub-cube address

in the data set. This sub-cube address is mapped by the mapping

table onto an address with I) an identifier that signifies which

cache is to be accessed (and selects it) and 2) the memory ad­

dress of the sub-cube in the respective cache.

1------l... Select Cache

Voxel
Address

Sub-Cube
Address Voxel Address

011 Selected Cache

...
Sub-Cube
Relative
Address

Fig. 7: Computation of the cache address of the voxel from its
absolute address in the data set.

The cache absolute sub-cube address and the sub-cube relative

address are then combined to address the selected cache.

Each time a new sub-cube is written into the cache memory the

mapping table is updated accordingly.

The mapping table has 5123/n 3 entries, i.e., as many entries as

there are sub-cubes in the volume memory.

Fig. 8 shows the total demand in SRAM for all memory units

together as a function of n for cache and memory mapping

table. It is assumed that for all 8 memory units only one map­

ping table is required since the sub-cube addresses are identical.

In Fig. 8 SRAM size VS. sub-cube size is plotted. The graph has

a minimum for n=4; which is a good choice in order to mini­

mize the SRAM size of the whole system.

115

c

,.

,

//
/'

!!l
,/

"~

j

\
\,--,/

L1 r. r.

Fig 8: Total SRAM (cache and mapping table) required for an
architecture with 3 cache banks per memory unit versus size n
of the transferred cubes.

Further Cache Optimization by
Fragmentation

The discussion above shows that the cache size is relatively

large compared to the volume memory since it has to store

those sub-cubes that are necessary to resample a x-z slice of the

image data set. This way full spatial and temporal coherency of

and within rays can be exploited when accessing object data set

voxels for resampling. Each voxel is read only once from the

volume memory and mUltiple references to the same voxel

occur on the cache only.

By relaxing the amount of coherency however the size of the

caches can be reduced by a factor of 4; which leads to a perform­

ance loss of only a ,:;;9%.

Performance

The cache architecture allows to resample image data set voxels

at a rate close to 200 MHz assuming a sufficiently fast SRAM

memory and a comparable pipeline processor and that proc­

esses the data at the same speed). For a 51 i data set 1.3.108

image data set voxels have to be generated for each frame. This

architecture can thus support rendering systems that achieve

frame rates of 1.6 Hz on 512) data sets using only one volume

memory (8 modules with 3 banks each).

The contributions of each building block of the architecture,

the cache principle, the prefetch, and the non-blocking cache

design are listed below:

Without caching an approach like that taken for VIRI:-1 would

have to be used with the above mentioned performance (see

Introduction) where the realistic difference between conven­

tional DRAM and other, modem DRAM interfaces is at most a

factor of 2-3.

Without prefetching cache misses occur. To handle a cache

miss, the pipeline processor has to be stalled, i.e., all current

states have to be stored. Then a package request is sent to the

RDRAM that answers after 120 ns with the first data of the

requested sub-cube of size 43
• After at least 320 ns the sub-cube

is stored in the cache. A realistic figure for this latency is there­

fore between 500 ns and I Ils. Since the whole data set consists

of approximately 2 million sub-cubes and since a cache miss

occurs for each of these sub-cubes the total latency adds up to 1­

2 seconds, i.e., the performance is reduced by a factor of 2.

Conventional caches require that the rendering processor must

be stalled during the write to the caches. Since each voxel is

accessed 8 times and has to be read (nearly) only once the per­

formance loss is 1/8,:;;12.5% 4. If the rendering processor is

3 The implementation of 200 MHz devices on board level is
difficult but multi-chip-module integration is realizable.
4 Here it is assumed that a sufficiently large cache allows to

harness the full spatial coherency. In general this is not the
case however since nearby sub-cubes may lie far away in the
linear address space of the cache and thus sub-cubes may be
purged from the cache before the rendering processes accesses
them a second time.

116

designed in a full pipeline design non-blocking caches do not

require stall cycles and therefore reduce the hardware overhead

of that processor.

Speedup by Post-Caches

During the simulation phase it turned out that the temporal

coherency could be used in another memory hierarchy, a post-

cache. It speeds-up the rendering rate by a factor of 2 by using

only small additional hardware.

Each pipeline processor contains 8 such post-caches, one for

each 16 bit wide channel to each memory unit The post-cache

works as follows (see Fig. 9): A~sume the pipeline processor­

resamples point A. When sampling the next point B another 8

neighborhood is fetched which is disjunct to the previously

fetched 8 voxels. This new neighborhood allows to resample

the following point C as well. In total the access to the main

cache is reduced by a factor of 2; which can be used to feed

another rendering processor and thus speeds-up the rendering

by a factor of 2. Using post-caches the rendering speed can

therefore be raised to 3.2 Hz for 5123 data sets.

C B A

.0­ -- -- -- -;0 -- -- -- -­
.,,,~ i ~ ..

; ,.• .1'

Fig. 9: When sampling A the voxels marked black are read from
the memory units. For sampling B the hatched voxels are read.
These hatched voxels allow to resampJe C without additional
access to the memory units. A speed-up ofabout a factor 2 is
achieved.

Outlook

The volume memory architecture described in this paper gives

at least a speed-up of a factor of 10 compared to the best current

approaches. Using this architecture, the volume memory is no

longer the limiting factor for the next-generation direct volume

rendering systems. Operating at 200 MHz a fully pipe lined

rendering processor of the pizza-box size could render 512) data

sets in interactive time.

Acknowledgments

This work is supported by the Ministry of Education and Re­

search, Germany under grant 01 IR 406 A8 and by the Landes­

forschungsschwerpunktprograrnm of Baden-WUrttemberg under

grant 7532.24-2-16.

References
[I] 	 J.D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes.

Computer Graphics: Principles and Practice. Addison
Wesley, Reading. MA, 2d. ed., 1990.

[2] 	 T. GUnther, C. Poliwoda, C. Reinhart, J. Hesser, R.
Manner, H.-P. Meinzer, H.-J. Baur. VIRIM: A Mas­
sively Parallel Processor for Real-Time Volume Visuali­
zation in Medicine. W. StraBer, 9th Eurographics
Workshop on Graphics Hardware, Oslo, Norway, 1994,
pp. 103-108 .

[3] 	 J. Hesser, R. Manner, G. Knittel, W. StraBer, H. Pfister,
A. Kaufman. Three Special-purpose Architectures for
Real-Time Volume Rendering. Eurographics '95, Maas­
tricht, The Netherlands, 1995, pp. C-III--C-122.

[4] 	 H.-P. Meinzer, K. Meetz, D. Scheppelmann, U. Engel­
mann, H.-J. Baur. The Heidelberg Ray Tracing Model.
IEEE Compo Graphics & Appl., Nov. '91, pp. 34.

[5] P. Lacroute and M. \.evoy. Fast Volume Rendering
Using a Shear-Warp factorization of the Viewing Trans­
form. Computer Graphics, Proc. of SIGGRAPH '94, Or­
lando, FL, 1994, pp. 451-457.

[6) H.-P. Pfister, A. Kaufman. Towards a Scalable Architec­
ture for Real-Time Volume Rendering 10th Eurographics
Workshop on Graphics Hardware, Maastricht, The
Netherlands, 1995, pp. 123- \30.

(7] 	 G. Knittel, W. Stra/3er. A Compact Volume Rendering
Accelerator. 1994 Symp. on Vol. Vis., ACP press., NY,
1994, pp. 67-74.

117

(8) 	 F. Jones. A new year oHast dynamic RAMs. IEEE Spec­
trum, Oct. 1992, pp. 43-49.

[9] 	 1. Lichtermann. Design of a Fast Voxel Processor for
Parallel Volume Visualization. W. StraBer, 10th Euro­
graphics Workshop on Graphics Hardware, Maastricht,
The Netherlands, 1995, pp. 83-92.

[10) 	 Improved Rambus DRAM Reduces Latency, Doubles
Effective Bandwidth. Rambus Press Realease,Mountian
View,CA. May 13,1996

[11] 	 H. 1. Wieringa. MEG, EEG and the integration with
Magnetic Resonance Images. Ph.D. thesis, Univ.
Twente, The Netherlands, 1993.

Appendix I: Cache Size

The data to resample one entire image data slice should always

fit into one cache bank. The worst case occurs for a slice given

by the equation z =x+y-256, Here a maximal number of sub-

cubes is required for resampling. Fig. 10 shows that for this

case 4 layers of sub-cubes are required, i.e., the cache must store

at least 512" 4n voxels per bank, The estimation is described in

detail below:

Two voxels are called independent from each other if one voxel

is not in the 26-connected neighborhood of the sccondvoxel.

For a cache bank of the discussed size the voxels contained in

the most recently filled cache bank and in the cache bank to be

filled next are separated by the voxels stored in the currently

filled cache bank (see Fig. 10).

~~-T'''-...''-...
~I "-...

~, ,'."-...

Slice 8111.',\,cl n SIil:c <1:1 level n+ 1

/

• Sub-Cubes n::quifoo to re:;ampie slice at level z

D Sut;..CuDes required to teWnplc stice at level z+n

Fig. 10: Worst case situation for resampling an image data
slice. Some sample points lie between 8 sub-cubes and thus
require 8 of them for resampling (top: 3D-view, bottom: slice
view). Those sample points of the same slice that differ by a z
value ofn require additionally sub-cubes that are dotted. No
more 'than 4n of these sub-cubes are required. The right figure
gives a 3D view of the worst-case slice.

Assume cache bank 0 and cache bank I have been filled and the

next cache to be filled is bank 2. The sub-cubes in cache bank 0

and cache bank 2 are separated by at least one sub-cube stored

in cache bank I, because each cache bank contains 5121 4n

voxels. Thus any two sub-cubes in cache bank 0 and 2 respec­

tively are independent in respect to a 26-connected neighbor­

hood.

An exact analysis obtained by simulation of the worst case

condition gives a tighter bound: For resampling the worst case

slice it was assumed that 5122 4n voxels were needed. A more

detailed investigation gives 5122 3n voxels for this case.

Appendix II: Cache Frag­
mentation

J 18

Fig. II' Processing order denoted by 0-10 in which the seg­
ments and x-z slices are processed.

Fig. 12: A segment is a part of the x-z slice. In this example
the x direction is parallel to the scan line and the z direction is
perpendicular to both the main viewing direction and the scan­
line. 4 segments of 128 voxels z-thickness are required for an
image data slice of 512><512.

Instead of resampling a whole x-z-slice it is resampled in

equally large portions, called segments (see Figs. II and 12).

Each segment consists of Sz lines parallel to the scanlines in

the projection plane. The more segments are used the smaller is

the required cache size. For m ;: 512/S. segments the cache size

is given by 3nx512x S" i.e., it is reduced by a factor m.

However the spatial coherency of data resampling two subse­

quent slices is destroyed if a new segment is processed since the

required sub-cubes have been purged from the cache. These

additional sub-cubes must be loaded again; which leads to the

performance loss. The amount of data for each new segment is

3nx512x512 for 512' data sets, i.e., at most the amount of data

to resample a slice. For m slices 3n mx512x512 voxels are

required, i.e., 3n1Sz• For Sz= 128 the performance loss is ",9%

and the cache size is reduced by a factor of 4.

119

