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Abstract 
The computational power required for direct volume rendering 

like ray-casting or volume ray-tracing can be provided by high­

speed rendering architectures. However the increasing proces­

sor speed makes a performance bottleneck obvious - the vol­

ume memory. This paper describes a volume memory architec­

ture that achieves at least a tenfold speed-up in read-out rate 

with moderate additional hardware. It has been simulated suc­

cessfully. A multi-level cache system is used with software 

prefetching and latency hiding. Pre- and postcaches addi­

tionally speed up the read-out rate so that a 5123 data set stored 

in a single memory module can be rendered at 3.125 Hz. 

Introduction 
Visualization of three-dimensional data sets can be performed 

by a class of algorithms known as direct volume rendering [I]. 

These algorithms do not require intermediate data structures to 

represent the three-dimensional information. They simulate the 

interaction between light and virtual matter, the latter repre­

sented by the data set. Typically the ray-casting approach is 

used where the interaction of light is restricted to viewing rays 

only. Algorithms that consider higher order rays are called ray-

tracing. Normally ray-tracing operates on well defined surfaces 
", 

of objects. Algorithms that directly work on volume data, i.e. 

on every voxel of the data set, are called below volume ray­

tracing algorithms. Examples are the rendering algorithm 

realized on the VIRIM real-time renderer [2] and the Heidelberg 

Raytracer [4]. 

Lacroute and Levoy [5] have achieved 10 frames per second for 

a ray-caster using a 2563 data set on a 16 processor SGI Chat­

lenge. To achieve this speed they used parallel light, precom­

putation of gradients, space-leaping (suppression of rendering 

on empty regions), early ray-termination, and shear warp. 

Perspective views, and on-line classification of voxels accord­

ing to density and gradient magnitude, reduce the frame rate by 

a factor of 6-10. 

Faster frame rates can only be achieved by using problem 

adapted hardware architectures since inter-processor communi­

cation limits the speed on conventional super-computers. We 

consider three architectures (3). 

For Cube-4 [6] a massively parallel rendering and memory 

architecture has been proposed for high-speed rendering of 

large data sets. Cube-4 is assumed to process a full line of view­

ing rays in parallel so that a full line can be read in one step 
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from a skewed memory. This cubic memory is read out by ran­

dom access. Using synchronous DRAM devices a read-out speed 

of30 MHz per memory bank is assumed. The maximal system 

consisting of 1024 memory banks and 1024 processor nodes 

(32 MHz) will be able to render 10243 data sets at 30 Hz. Cube­

4 operates only on parallel rays that are arranged at fixed dis­

tances. Therefore neither arbitrary walk throughs are possible, 

nor algorithms using filtering like volume ray-tracing or 3D 

data processing, nor segmentation (region oriented segmenta­

tion does not seem to be supported by the memory architec­

ture). 

For Vogue [7] it is proposed to map the ray-cast algorithm 

directly into parallel pipe lined hardware. 4 VLSI devices are 

required for integrating the functions. Vogue uses 8 memory 

banks from which 8 neighboring voxels forming a sub-cube 

can be read simultaneously. Each bank is 8-fold interleaved,\ 

page mode is used, and a one-entry cache speeds up repeated 

accesses to the same memory location. FlFOs decouple the 

memory system from the remaining hardware to allow usage of 

the page mode of normal DRAM devices independently. Com­

pared to random access the speed-up amounts to a factor of 2-3. 

One processing node will achieve 2.5 Hz for 2563 data sets. 

Compared to Cube-4, Vogue additionally implements perspec­

tive view which allows arbitrary data walk-throughs. 

VIRIM [2] is the first real-time direct volume rendering system 

which is already in practical use. It uses in principle the same 

memory architecture like Vogue but with 4 times fewer memory 

devices and provides a much higher flexibility. Due to its free 

programmability ray-casting and volume ray-tracing, data 

processing, and segmentation can be implemented (ray-casting 

and volume ray-tracing are already implemented; region grow­

ing is currently in the implementation phase). 

In contrast to Cube-4, Vogue, and VlRIM, the DIV2A system [9] 

will use space-leaping and early ray-termination to speed up 

rendering by a factor of up to 20. It has a similar flexibility 

like VIRIM and is supposed to achieve a 20 Hz frame rate on 

2563 data sets using a 16 processor system. The memory archi­

tecture consists of 8 memory banks realized in SRAM; but only 

50% of the memory can be used since the data set must be stored 

twice in an interleaved way. 

All architectures have to cope with the limited data rate achiev­

able with conventional memory devices. The upper limit of 

currently suggested memory architectures is 750 MB~t~s/s per 

memory. 

In the following a new memory architecture is presented that 

achieves a 10-fold speed-up over the conventional architec­

tures. It relies on efficient prefetching, latency hiding, and 

multi-level caching. Using commercial DRAM devices this 

architecture allows rendering of 5123 data sets at >3 Hz per 

memory module. 

The VI RIM System 

VIRIM is the first available real-time direct volume special 

purpose rendering hardware'. A prototype is in daily use since 

June 1995. VIRIM will soon be commercially available. Its 

architecture is modular and scalable. Each module consists of 

two processors. 

A geometry processor that resamples an image data set and 

estimates the gradients in the image space. Image data set 

voxels with gradients are transferred to the second processor, 

the ray-cast processor which performs shading and compo-

I The RealityEngine of SGJ allows to use 3D texture mapping 
to implement direct volume rendering. However gradient esti­
mation and Phong shading are not supported and must be pre­
calculated. 
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siting. The ray-cast processor is assembled of freely program­

mabIe digital signal processors. It can therefore be used for any 

computation as long as it requires only loose coupling between 

processors. 

The lead user is the Clinic for Head Surgery of the University of 

Heidelberg, Germany, which uses VIRIM for operation plan­

ning and control. Fig. I shows the system. 

Fig. I: VIRIM system. Left: full system. Right, top: geometry 
processor. bottom: ray-cast processor. 

New Memory Architecture 

The new memory architecture is based on the architecture used 

in the VIRIM system [2][3]. It uses image space parallelism to 

achieve real-time rendering rates. First the rendering approach 

is described followed by the basic architectural idea. A sugges­

tion for implementation shows how this idea can be realized. 

The performance of an optimized version of this architecture is 

given. 

Parallel Rendering Approach 

The new memory architecture supports two volume oriented 

rendering approaches, ray-casting and volume ray-tracing. 

Ray-casting starts by casting a ray into the virtual scene from 

each image pixel [5]. Along each ray, sample points--that are 

image data set voxels- are generated by interpolation of their 

neighboring voxels in the object data set. On these sample 

points gradients are estimated using local difference filters. 

Gradients and local density are used for calculating the reflected 

light using Phong shading as reflection model. After shading 

the contributions of each sample point on the considered ray 

are composited to the final projection by using the over-

operator [1]. 

In contrast volume ray-tracing additionally considers the ab­

sorption of incident light. This way shadows can be generated 

which are t:equired for some applications [11]. 

Both algorithms, ray-casting and volume ray-tracing, have 

been implemented in the VIRIM system and are realizable using 

the new memory architecture as well. 

For volume ray-tracing image data set voxels have to be proc­

essed in a predetermined order which can be parallelized only in 

the image data set. Therefore image space parallelism is used 

like for VIRIM. This rendering parallelism is realized as fol­

lows: 

UbJect lJata Set Image lJata Set 

"~l 
?ender 

/; ~'l 
~~ 

§Scanlines 

Projection Plane 

Fig. 2: Image space parallelism: First the object data set is 
resampled in an image data set that is parallel to the main view­
ing direction. After this transformation each image data slice is 
processed and produces one final scanline of the projection. 

First an image data set is resampled from the object data set. 

The image data set is oriented such that one of its main coordi-
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nate directions is parallel to the viewing direction. For each 

voxel of the image data set its position in the object data set is 

determined. Its eight neighboring voxels in the object data set 

are read-out from the volume memory and are interpolated e.g. 

by trilinear interpolation. Gradients can be computed in paral­

lel to the interpolation process by using the same 8 object data 

set voxels like in the Vogue system [7]. After resampling and 

gradient estimation, absorption, shading, and compo siting are 

processed. 

Image space parallelism allows to process each image data slice 

independently from others provided that the necessary data for 

resainpling and gradient estimation are available for each ren­

dering processor. 

Basic Architectural Idea 

In this paper we concentrate on the memory architecture for two 

reasons. First, memory read-out rate is currently the bottleneck 

that limits the speed achievable by the rendering hardware. 

Second, processor performance doubles approximately every 

18 months but the memory performance cannot catch up with 

that speed and thus the gap between memory and processor per­

formance widens. As typical example, Knittel reports process­

ing rates of approximately 80 MHz for one ASIC in the Vogue 

system while the system fails to deliver the required data rate by 

a factor of 2-4 [7]. In this paper we show that memory band­

width will not be a limiting factor for real-time rendering for 

the next few years, if e.g. the proposed memory architecture is 

used. 

For direct volume rendering algorithms the high data rate is 

required for reading the data from the volume memory before 

interpolation of the image data set voxel value. Here 8 voxels 

in a 2x2x2 sub-cube are to be read from the object data set. 

Parallel read-out is possible as has been demonstrated [2][7] by 

an appropriate distribution of the data over 8 different memory 

units (see Fig. 3). This 8-fold sub-division is used in this new 

architecture as well. 

The open question is how to achieve a maximum read­

throughput for each of these 8 identical units. Since a volume 

data set is very large -several tens to several hundreds of 

megabytes are common-- slow dynamic memories (DRAMs) 

have to be taken instead of fast static memories (SRAMs) for 

cost reasons. 

Recently new DRAM interfaces are available that promise at 

least one to two orders higher read-out throughput than conven­

tional DRAM. One of the fastest devices is the RDRAM 

(Rambus DRAM) which is chosen for the new memory architec­

ture, although the architecture can also be realized with other 

modem DRAM interfaces. The new architecture is designed to 

obtain nearly the maximal bandwidth of the RDRAM and to 

combine it with the non-sequential and non-regular access 

requirements for direct volume rendering caused by random 

viewing directions and by allowing arbitrary data walk 

throughs. 

Rambus achieve the high bandwidth by using multiple 

(internal) banks in a interleaved mode. The effective sustained 

bandwidth for 32-byte random access transfers is 480 MB/s 

[10] 

In the following we discuss the design for one of 8 identical 

memory units. 

In order to achieve the high throughput by the RDRAM the data 

must be read sequentially. However this contradicts the possi­

bility to randomly access the data during rendering, e.g. by 
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changing the viewing direction arbitrarily. In order to solve 

this problem a cache architecture is used. The cache stores 

small non-intersecting sub-cubes of the object data set that are 

required to resample one or more image data slices. The sub­

cube data voxels are stored on the RDRAM in a sequential ad­

dress space such that they can be read at maximum bandwidth. 

The sub-cube voxels stored in the cache can be accessed ran­

domly, since the cache is realized in SRAM. Temporal and 

spatial coherency required during rendering guarantee efficient 

use of the cache. Temporal coherence occurs since subsequent 

resampling points of a ray often require the same or nearby 

object data set voxels for interpolation. Spatiid coherency 

occurs for neighboring rays that share object data set voxels 

for interpolation. 

Fig. 3: New memory architecture. Top: Assignment of voxels 
ofa 2x2x2 neighborhood to memory units. Bottom: The vol­
ume data is stored in an interleaved manner on 8 memory units. 
Each memory unit contains two or more caches. The rendering 
processor reads data directly from the caches of all memory 
units. 

The second problem is the high latency for cache misses when 

the RDRAM must deliver the requested sub-cube. A prefetch 

strategy solves this problem. The prefetch strategy is software 

based and determines when which sub-cube is required for ren­

deringbefore the sub-cube is actually required. Thus no cache 

miss occurs. The prefetch algorithm is a modified polygon 

filling algorithm (see Foley and van Dam [I]). 

Third, since the rendering processor requires an uninterrupted 

access to the cache memory, a non-blocking cache is required. 

Non-blocking means that during read-out of the cache it can be 

loaded with new sub-cubes. Non-blocking is achieved by using 

multiple devices where one can be selected for read access and 

simultaneously a different one for write access. 

Implementation of the Architecture 

Resampling Order 

The image data set -which is a cube- is generated by resam­

piing slices parallel to the projection plane in front-to-back 

order (see Fig. 4). These slices are called x-z-slices in the fol­

lowing. 

Fig. 4: The image data set consists of a stack of x-z slices that 
are perpendicular to the main viewing direction and parallel to 
the projection plane. These slices are resampled beginning by 
slice 0, i.e., in front-to-back order. 

In the following it will be important that all these slices are 

parallel and have equal distance to each other. Due to the per­

spective projection however their size increases with the dis­
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tance to the viewer so that the stack of x-z slices in the image 

data set cuts out a pyramid from the object data set'. 

Prefetching Sub-Cubes 

For the proposed memory architecture latencies that come from 

cache misses and from the overhead of reading the first data 

from the RDRAM are hidden by prefetching data before it is 

required in the rendering process. The prefetch algorithm must 

precalculate when which sub-cube is required but it should not 

consume much computational power compared to the rendering 

algorithm. The precomputation runs in parallel to the rendering 

algorithm some slices ahead so that thl!_ latencies for reading 

sub-cubes from RDRAM and storing them into the"cacnes are 

much shorter than the remaining time until these sub-cubes are 

read from the cache. 

The algorithm determines which sub-cubes of the object data 

set are intersected by the currently considered x-z slice of the 

image data set. This intersection calculation is a generalized 

line drawing algorithm for planes in 3D space ([\], pp. 92-99.) 

where the basic building blocks are sub-cubes instead of 

voxels. 

Sub-Cube Assignment to Caches 

The data required for resampling each scanline is read out from 

the volume memory in the form of sub-cubes that are buffered in 

the caches. First sub-cubes required for one slice are loaded into 

the considered cache bank. The cache bank size is supposed to 

be large enough to store all these sub-cubes. If the cache bank 

is not filled yet, the sub-cubes required for the subsequent slices 

are loaded into the same bank until it is filled. The remaining 

sub-cubes of the last considered slice are loaded into the next 

2 In order to evade aliasing artifacts the maximal grid distance 
of rear sl ices must be below the grid distance of the object data 
set. 

cache bank. By this mechanism sub-cubes required for one slice 

can be distributed over two cache banks. 

A software flag prevents sub-cubes that are already stored in the 

cached to be written twice thus saving bus bandwidth. The 

fil1ing of the cache banks is done in a round-robin order, i.e., 

cache bank 0 is filled before cache bank I, cache bank 2, and 

again cache bank 0 etc. The cache banks are filled continuously 

from its lowest address space irrespective of the previous con­

tents. 

.-"'!-..... ­
5 , 

_ Sub-Cubc in Cache BanI: 0 

~, III t~ SlJb.Cubc in Cach< Bank 1 

q 1 0 SlJb.Culn Cach< Bank 2 

Fig. 5: Example of assigning sub-cubes to caches. The dark 
sub-cubes are required to resample image data slice 1 and are 
stored in cache bank O. The information of this cache can be 
used for resampling image data slice 2 as well. Sub-cubes re­
quired for resampling slice three that have not yet stored in the 
cache bank 0 are stored in cache bank l. To fill the cache bank 
some sub-cubes that are required for slice 4 only can be stored 
in this cache bank before switching to bank 2. 

By choosing sufficiently large cache banks it is guaranteed 

that all sub-cubes required to resample an image data slice is 

read from at most two cache banks. When n is the edge-length 

of the sub-cubes the size is given by 512 2 ·4n (details, see 

Appendix 1). 

Realization of Non-Blocking Caches 

Non-blocking caches are realized by using individual cache 

banks and to allow to read from one bank while writing to 

another. 6 gives an example: While two cache banks are 

readable by the rendering processor one cache bank is writable 

from the RDRAM side. The cache banks are used in tum as 
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shown in Fig. 6. Assume for example, e.g., that cache banks 0 

and 1 are used for read transfers and cache bank 2 is filled with 

sub-cubes from the RDRAM. When data from cache 2 is re­

quired, the status of each cache bank changes. Cache banks 2 

and 0 are now readable while cache bank I is writable. In the 

next tum cache banks I and 2 are readable and cache bank 0 is 

writable. 

Read ~8ank2 ~Bank I 

Read 

Write 

[;[]~Bank I BankO [;[]Bank 2 

lJ;tJ~ rr;rr Time:::: BankO 

-:. "~'., 

Fig 6: Three cycles of the filling scheme for the cache architec­
ture. 

Performance Estimation and Opti­
mization of the Architecture 

Optimal Cache Size 

The memory system consists of two SRAM-based parts, the 

cache and an address-mapper memory that maps object data set 

absolute addresses into cache absolute addresses. 

The size of the cache is determined by the sub-cube size; which 

is critical for the architectural efficiency as well. The larger the 

sub-cubes the higher the performance obtained by the RDRAM 

since the latencies per voxel are reduced. However the total size 

of the cache increases proportionally to the sub-cube size n 

since each cache has to store at least 4x5122xn voxels for 5123 

data sets. 

The address-mapper depends on the sub-cube size as well. To 

understand the relationship between address-mapper size and 

sub-cube size the implementation of the former has to be given 

(see also Fig. 7). The least significant bits of the object data 

set absolute address are interpreted as sub-cube relative ad­

dresses. The most significant bits define the sub-cube address 

in the data set. This sub-cube address is mapped by the mapping 

table onto an address with I) an identifier that signifies which 

cache is to be accessed (and selects it) and 2) the memory ad­

dress of the sub-cube in the respective cache. 

1------l... Select Cache 

Voxel 
Address 

Sub-Cube 
Address Voxel Address 

011 Selected Cache 

... ... ... 
Sub-Cube 
Relative 
Address 

Fig. 7: Computation of the cache address of the voxel from its 
absolute address in the data set. 

The cache absolute sub-cube address and the sub-cube relative 

address are then combined to address the selected cache. 

Each time a new sub-cube is written into the cache memory the 

mapping table is updated accordingly. 

The mapping table has 5123/n 3 entries, i.e., as many entries as 

there are sub-cubes in the volume memory. 

Fig. 8 shows the total demand in SRAM for all memory units 

together as a function of n for cache and memory mapping 

table. It is assumed that for all 8 memory units only one map­

ping table is required since the sub-cube addresses are identical. 

In Fig. 8 SRAM size VS. sub-cube size is plotted. The graph has 

a minimum for n=4; which is a good choice in order to mini­

mize the SRAM size of the whole system. 
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Fig 8: Total SRAM (cache and mapping table) required for an 
architecture with 3 cache banks per memory unit versus size n 
of the transferred cubes. 

Further Cache Optimization by 
Fragmentation 

The discussion above shows that the cache size is relatively 

large compared to the volume memory since it has to store 

those sub-cubes that are necessary to resample a x-z slice of the 

image data set. This way full spatial and temporal coherency of 

and within rays can be exploited when accessing object data set 

voxels for resampling. Each voxel is read only once from the 

volume memory and mUltiple references to the same voxel 

occur on the cache only. 

By relaxing the amount of coherency however the size of the 

caches can be reduced by a factor of 4; which leads to a perform­

ance loss of only a ,:;;9%. 

Performance 

The cache architecture allows to resample image data set voxels 

at a rate close to 200 MHz assuming a sufficiently fast SRAM 

memory and a comparable pipeline processor and that proc­

esses the data at the same speed). For a 51 i data set 1.3.108 

image data set voxels have to be generated for each frame. This 

architecture can thus support rendering systems that achieve 

frame rates of 1.6 Hz on 512) data sets using only one volume 

memory (8 modules with 3 banks each). 

The contributions of each building block of the architecture, 

the cache principle, the prefetch, and the non-blocking cache 

design are listed below: 

Without caching an approach like that taken for VIRI:-1 would 

have to be used with the above mentioned performance (see 

Introduction) where the realistic difference between conven­

tional DRAM and other, modem DRAM interfaces is at most a 

factor of 2-3. 

Without prefetching cache misses occur. To handle a cache 

miss, the pipeline processor has to be stalled, i.e., all current 

states have to be stored. Then a package request is sent to the 

RDRAM that answers after 120 ns with the first data of the 

requested sub-cube of size 43
• After at least 320 ns the sub-cube 

is stored in the cache. A realistic figure for this latency is there­

fore between 500 ns and I Ils. Since the whole data set consists 

of approximately 2 million sub-cubes and since a cache miss 

occurs for each of these sub-cubes the total latency adds up to 1­

2 seconds, i.e., the performance is reduced by a factor of 2. 

Conventional caches require that the rendering processor must 

be stalled during the write to the caches. Since each voxel is 

accessed 8 times and has to be read (nearly) only once the per­

formance loss is 1/8,:;;12.5% 4. If the rendering processor is 

3 The implementation of 200 MHz devices on board level is 
difficult but multi-chip-module integration is realizable. 
4 Here it is assumed that a sufficiently large cache allows to 

harness the full spatial coherency. In general this is not the 
case however since nearby sub-cubes may lie far away in the 
linear address space of the cache and thus sub-cubes may be 
purged from the cache before the rendering processes accesses 
them a second time. 
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designed in a full pipeline design non-blocking caches do not 

require stall cycles and therefore reduce the hardware overhead 

of that processor. 

Speedup by Post-Caches 

During the simulation phase it turned out that the temporal 

coherency could be used in another memory hierarchy, a post-

cache. It speeds-up the rendering rate by a factor of 2 by using 

only small additional hardware. 

Each pipeline processor contains 8 such post-caches, one for 

each 16 bit wide channel to each memory unit The post-cache 

works as follows (see Fig. 9): A~sume the pipeline processor­

resamples point A. When sampling the next point B another 8 

neighborhood is fetched which is disjunct to the previously 

fetched 8 voxels. This new neighborhood allows to resample 

the following point C as well. In total the access to the main 

cache is reduced by a factor of 2; which can be used to feed 

another rendering processor and thus speeds-up the rendering 

by a factor of 2. Using post-caches the rendering speed can 

therefore be raised to 3.2 Hz for 5123 data sets. 

C B A 

.0­ -- -- -- -;0 -- -- -- -­
.,,,~ i ~ .. 

; ,.• .1' 

Fig. 9: When sampling A the voxels marked black are read from 
the memory units. For sampling B the hatched voxels are read. 
These hatched voxels allow to resampJe C without additional 
access to the memory units. A speed-up ofabout a factor 2 is 
achieved. 

Outlook 


The volume memory architecture described in this paper gives 

at least a speed-up of a factor of 10 compared to the best current 

approaches. Using this architecture, the volume memory is no 

longer the limiting factor for the next-generation direct volume 

rendering systems. Operating at 200 MHz a fully pipe lined 

rendering processor of the pizza-box size could render 512) data 

sets in interactive time. 
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Appendix I: Cache Size 

The data to resample one entire image data slice should always 

fit into one cache bank. The worst case occurs for a slice given 

by the equation z =x+y-256, Here a maximal number of sub-

cubes is required for resampling. Fig. 10 shows that for this 

case 4 layers of sub-cubes are required, i.e., the cache must store 

at least 512" 4n voxels per bank, The estimation is described in 

detail below: 

Two voxels are called independent from each other if one voxel 

is not in the 26-connected neighborhood of the sccondvoxel. 

For a cache bank of the discussed size the voxels contained in 

the most recently filled cache bank and in the cache bank to be 

filled next are separated by the voxels stored in the currently 

filled cache bank (see Fig. 10). 

~~-T'''-...''-... 
~I "-... 

~, ,'."-... 

Slice 8111.',\,cl n SIil:c <1:1 level n+ 1 

/ 

• Sub-Cubes n::quifoo to re:;ampie slice at level z 

D Sut;..CuDes required to teWnplc stice at level z+n 

Fig. 10: Worst case situation for resampling an image data 
slice. Some sample points lie between 8 sub-cubes and thus 
require 8 of them for resampling (top: 3D-view, bottom: slice 
view). Those sample points of the same slice that differ by a z 
value ofn require additionally sub-cubes that are dotted. No 
more 'than 4n of these sub-cubes are required. The right figure 
gives a 3D view of the worst-case slice. 

Assume cache bank 0 and cache bank I have been filled and the 

next cache to be filled is bank 2. The sub-cubes in cache bank 0 

and cache bank 2 are separated by at least one sub-cube stored 

in cache bank I, because each cache bank contains 5121 4n 

voxels. Thus any two sub-cubes in cache bank 0 and 2 respec­

tively are independent in respect to a 26-connected neighbor­

hood. 

An exact analysis obtained by simulation of the worst case 

condition gives a tighter bound: For resampling the worst case 

slice it was assumed that 5122 4n voxels were needed. A more 

detailed investigation gives 5122 3n voxels for this case. 

Appendix II: Cache Frag­
mentation 
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Fig. II' Processing order denoted by 0-10 in which the seg­
ments and x-z slices are processed. 

Fig. 12: A segment is a part of the x-z slice. In this example 
the x direction is parallel to the scan line and the z direction is 
perpendicular to both the main viewing direction and the scan­
line. 4 segments of 128 voxels z-thickness are required for an 
image data slice of 512><512. 

Instead of resampling a whole x-z-slice it is resampled in 

equally large portions, called segments (see Figs. II and 12). 

Each segment consists of Sz lines parallel to the scanlines in 

the projection plane. The more segments are used the smaller is 

the required cache size. For m ;: 512/S. segments the cache size 

is given by 3nx512x S" i.e., it is reduced by a factor m. 

However the spatial coherency of data resampling two subse­

quent slices is destroyed if a new segment is processed since the 

required sub-cubes have been purged from the cache. These 

additional sub-cubes must be loaded again; which leads to the 

performance loss. The amount of data for each new segment is 

3nx512x512 for 512' data sets, i.e., at most the amount of data 

to resample a slice. For m slices 3n mx512x512 voxels are 

required, i.e., 3n1Sz• For Sz= 128 the performance loss is ",9% 

and the cache size is reduced by a factor of 4. 
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