Eurographics Symposium on Parallel Graphics and Visualization (2013)
F. Marton and K. Moreland (Editors)

Rendering Molecular Surfaces using
Order-Independent Transparency

D. Kauker, M. Krone, A. Panagiotidis, G. Reina, and T. Ertl

Visualization Research Center, University of Stuttgart, Germany

(a) Van der Waals (b) Solvent Excluded Surface (c) Solvent Accessible Surface

Figure 1: Visualizations of different molecular surfaces of a small protein rendered using our order-independent
transparency algorithm. Note that the interior Stick model is correctly combined with the transparent surfaces.

Abstract

In this paper we present a technique for interactively rendering transparent molecular surfaces. We
use Puxels, our implementation of per-pizel linked lists for order-independent transparency rendering.
Furthermore, we evaluate the usage of per-pizel arrays as an alternative for this rendering technique.
We describe our real-time rendering technique for transparent depiction of complexr molecular surfaces
like the Solvent Excluded Surface which is based on constructive solid geometry. Additionally, we
explain further graphical operations and extensions possible with the Puzels approach. The evaluation
benchmarks the performance of the presented methods and compares it to other methods.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling—Boundary Representations 1.3.3 [Computer Graph-
ics]: Picture/Image Generation—Display Algorithms J.3 [Computer Applications]: Life and Medical
Sciences—Biology and Genetics

1. Introduction many applications since they show the boundary of a
molecule with respect to a certain property. Naturally,
transparent surfaces do not fully obscure other parts
of the scene. That is, users can see through objects and
spot features or changes on the backside immediately
without changing the perspective. Furthermore, users
are able to see inside molecules. This makes transpar-
ent molecular surfaces especially suited for complex
analysis tasks where the user wants to see the molecu-
lar surface but also another, sparse representations of
the molecule like a stick model (cf. Figure 1). Multiple
nested representations of the molecule can be used to
provide more information to the user.

Many fields of research like chemistry, physics, and
biomedicine work with molecular data. This data
can originate from purely computational sources (e.g.
molecular dynamics simulations, normal mode anal-
ysis, or fitting calculations) or from measurements
(e.g. x-ray crystallography or scanning tunneling mi-
croscopy). High-quality visualizations are an impor-
tant tool for the analysis of these data sets. Many
different molecular models have been developed to
that end. Among these models, molecular surface rep-
resentations are widely used. They are beneficial for

© The Eurographics Association 2013.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY
DOI: 10.2312/EGPGV/EGPGV13/033-040 www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV13/033-040

34 D. Kauker, M. Krone, A. Panagiotidis, G. Re

Traditionally, geometric objects like molecular st
faces are triangulated for rendering. Rendering m
tiple complex objects as transparent triangle mest
can be time-consuming, though. The standard rend:
ing pipeline uses blending to accumulate the color
fragment. However, the triangles of all objects hs
to be sorted according to their depth for a corre
result. Since the advent of programmable GPUs, m
tiple algorithms for order-independent transparen
(OIT) have been presented (see Section 2.2) that
not require explicit sorting before rendering.

Molecular surfaces are defined as a set of impli
surface patches. Thus, they can be rendered usi
GPU-based ray casting [Gum03,RE05]. This results
higher visual quality and faster rendering while ad:
tionally saving the computation time and memory for
the triangulation. However, for transparent rendering,
it poses an even greater problem than triangulated
surfaces. The implicit surface patches might not only
overlap and generate multiple fragments which have
to be sorted according to their depth, but there are
also parts of these surface patches which have to be
removed to obtain a correct final image.

In this paper we present a rendering method for
transparent molecular surfaces. The main contribu-
tions of our paper can be summarized as follows:

e We describe the Puzel method for order-
independent transparency (OIT), which uses
per-pixel linked lists and per-pixel arrays.

e We explain how the Puxel algorithm is capable of
Constructive Solid Geometry (CSG) modeling.

e We detail how this method can be used to render
transparent molecular surfaces in real-time.

e We compare Puxels to a freely available existing
OIT approach from the NVIDIA SDK.

The remainder of this paper is structured as fol-
lows: Section 2 explains molecular surface rendering
and summarizes related work. In Section 3 we describe
the contribution of our work. We explain our render-
ing technique for molecular surfaces based on Puxels
in Section 4. Benchmarking results and comparisons
to other approaches are presented in Section 5. Sec-
tion 6 discusses extensions and further applications of
the Puxels framework. Finally, a summary and direc-
tions for future work are given in Section 7.

2. Related Work

In this section, we describe previous work in the field
of molecule rendering and order-independent trans-
parency rendering.

Solvent Accessible Surface

VdW Surface
(Atoms)

Solvent Excluded Surface

Figure 2: Schematics of the Solvent Accessible Sur-
face (red) and the Solvent Excluded Surface (green),
both defined by a probe (depicted orange in a sample
position) rolling over the molecule atoms (blue).

2.1. Molecular Surface Definitions

There are several definitions for molecular surface
models, which are based on physical properties of the
atoms.

The Van der Waals (VAW) surface shows the ex-
tent of a molecule. All atoms are represented by
spheres with the corresponding VAW radius of their
element, which is derived from the distance between
non-bonded atoms. Figure 2 shows a 2D schematic of
the VAW surface (colored blue).

A fundamental drawback of the VAW surface is that
it has no correlation with the surrounding medium
(e.g. solvent molecules or ligands). The Solvent Acces-
sible Surface (SAS) [Ric77] includes this information.
It is defined by the center of a spherical probe which
rolls over the VAW surface of the molecule. Thus, the
SAS represents the surface that is directly accessible
for solvent molecules the size of the probe. Figure 2
shows a 2D schematic of the SAS (colored red). The
SAS closes small gaps and holes in the VAW surface,
which cannot be entered by solvent molecules.

The Solvent Ezcluded Surface (SES) [Ric77] is the
topological boundary of the union of all possible
probe spheres that do not intersect any atom of the
molecule [GB78]. The SES can also be defined by a
spherical probe rolling over the VAW surface. Here,
the surface of the probe traces out the SES (in con-
trast to the SAS, where the probe center is used). Fig-
ure 2 shows a 2D schematic of the SES (colored green).
Consequently, the SES consists of three types of ge-
ometrical primitives: convex spherical patches, con-
cave spherical triangles, and saddle-shaped toroidal
patches. The spherical patches are the remainders of
the VAW spheres. They occur when the probe is rolling
over the surface of an atom and touches no other atom.
The toroidal patches are formed when the probe is
in contact with two atoms and rotates around the

© The Eurographics Association 2013.



D. Kauker, M. Krone, A. Panagiotidis, G. Reina, & T. Ertl / Rendering Molecular Surfaces using OIT 35

Figure 3: 3D schematics of the SES depicting the
spheres (blue), the spherical triangle (yellow) and the
toroidal patches (green) defined by the probe (orange).

axis connecting the atom centers (see Figure 3). The
inward-looking, saddle-shaped patch of the resulting
torus is part of the SES. While rolling, the probe traces
out a small circle arc on each of the two VAW spheres.
These small circle arcs are part of the boundaries of
the aforementioned spherical patches. Spherical trian-
gles occur if the probe is simultaneously in contact
with three VAW spheres. Here, the probe is in a fixed
position, meaning that it cannot roll without losing
contact to at least one of the atoms. Please note that
the probe can in theory be in contact with more than
three atoms, however, these cases can be divided into
multiple atom triplets for simplicity.

Similar to the SAS, the SES closes small gaps and
holes, but it does not inflate the molecule. The extent
of the VAW surface is retained. Therefore, the SES
is the most versatile molecular surface and suitable
for many applications and analysis tasks like docking
or solvation. Other molecular surface definitions like
the Molecular Skin Surface (MSS) [Ede99] or Meta-
balls [Bli82] are less commonly used.

2.2. Molecular Surface Visualization

The computation and rendering of the VAW surface
and SAS is quite trivial, since they only consist of
spheres. If the surface is drawn opaque, the interior
parts of overlapping spheres do not have to be re-
moved since they are not visible anyway. However, for
transparent renderings, the interior parts have to be
removed. If the spheres are composed of triangles, the
intersections for each triangle have to be computed.
Laug et al. [LB02] presented methods for high-quality
meshing of molecular surfaces. Today, implicit surfaces
like spheres are commonly rendered using high-quality
GPU-based ray casting [Gum03, RE05]. Clipping the
interior parts would require neighborhood informa-
tion. Since this would result in a plethora of additional
intersection tests in some cases, available tools often
do not clip the interior parts, which results in a clut-
tered representation when using transparency.

© The Eurographics Association 2013.

The computation of the SES is more complex
and costly. Connolly [Con83] presented the analyt-
ical equations to compute the SES. Based on his
work, several methods to accelerate the computa-
tion of the SES have been introduced. Edelsbrun-
ner and Micke [EM94] presented the a-shape. San-
ner [SOS96] developed the Reduced Surface. Krone et
al. [KBEO0Y] later used this algorithm for dynamic sim-
ulation data and were the first to render the SES using
fast GPU-based ray casting of the individual patches
instead of triangulations. Varshney et al. [VBW94] de-
scribed a parallelizable algorithm based on Voronoi
diagrams. Lindow et al. [LBPH10] showed that this
method can also be used to compute the MSS. Totrov
and Abagyan [TA95] proposed a contour-buildup algo-
rithm for the SAS, from which the SES can be derived.
This algorithm was recently shown to be parallelizable
on multi-core CPUs [LBPH10] and GPUs [KGE11].
Parulek and Viola [PV12] presented an implicit repre-
sentation for the SES using a ray casting approach.
With the exception of [PV12], all aforementioned
methods compute the patches of the SES. The tech-
nique best suited for the application may depend on
different factors, e.g. hardware capabilities.

2.3. Transparency Rendering

Molecular models can be rendered using ray trac-
ing by sending primary rays from the view point
into the scene. For every hit with an object, sec-
ondary rays are generated to capture reflection and re-
fraction. Ray tracing generates very accurate images,
but is computationally demanding. With the perfor-
mance of current CPUs and GPUs, real-time ray trac-
ing of complex scenes has become possible [Wal04].
This, however, requires elaborate acceleration struc-
tures. BALLView [MHLKO6], a molecule viewer, offers
such real-time ray tracing [MDG*10]. Although ray
tracing—including secondary rays—achieves interac-
tive frame rates, point-based GPU ray casting [RE05]
has a considerably higher performance. The perfor-
mance of ray tracing further decreases when using
transparency. As we do not include effects which re-
quire secondary rays, we use GPU ray casting.

The Painter’s algorithm [FvDFH90] is the most
straightforward way for drawing scenes that contain
transparent faces: draw the polygons ordered by their
depth from farthest to closest. Hereby, the correct ren-
dering of the transparent fragments is given implic-
itly. Chen et al. [CSN*12] use view point dependent
presorted meshes and render using the painter’s al-
gorithm. Zhang et al. [ZP07] do single-pass deferred
blending using point-based rendering, also achieving
transparency effects.



36 D. Kauker, M. Krone, A. Panagiotidis, G. Reina, & T. Ertl / Rendering Molecular Surfaces using OIT

Depth Peeling [Eve0l] is a multi-pass algorithm
that captures fragments using multiple depth tests.
Fragments that have been captured in earlier render
passes are rejected, thereby avoiding explicit sorting.
There are several optimizations to the basic concept,
for example peeling multiple layers per pass [BMOS,
LHLWO09], offering z-fighting awareness [VF11], or us-
ing only constant memory [BE11]. Storing multiple
fragments and their attributes is a concept first de-
scribed as A-buffer [Car84] as part of the REYES
renderer for the CPU, and has since been extended
to GPUs as R-buffer [Wit01] and stencil-routed k-
buffer [BCL*07]. The k-buffer uses textures as mul-
tiple render targets to store k fragments per ren-
der pass, avoiding read-modify-write hazards while
enabling various effects like order-independent trans-
parency, depth-of-field, and volume rendering. Several
limitations, like artifacts and approximations, are ad-
dressed by Yang et al. [YHGT10] with per-pixel linked
lists for modern GPUs. In this paper, we use an im-
plementation similar to their method.

3. Rendering Methods

In the following, we explain our Puxel algorithm used
for rendering transparent molecular surfaces and de-
tail possible implementations.

3.1. Puxels Algorithm

The Puxels (pixel tubes) framework is similar to the
A-buffer. It collects and stores all fragments for later
processing. This is achieved in a single render pass us-
ing per-pixel linked lists [YHGT10] or in two render
passes using per-pixel arrays, similar to a k-buffer with
varying k for each pixel. The final image is created
by sorting—either globally all fragments or locally for
each per-pixel list—and then compositing each pix-
els’ fragments front to back. After the data has been
sorted, it is also possible to perform operations like
CSG on the fragments (see Section 3.2).

The whole Puxel algorithm consist of four render-
ing stages: clear, render, order, and display. First, the
clear shader resets all data structures. Then, the ren-
der shader is used to store the fragments as mentioned
above. This results in unordered lists or arrays for each
pixel, which need to be sorted according to fragment
depth for blending. Sorting can be done either in a
separate step or directly before blending. We use a
combination of both: for long arrays or lists, the data
is sorted in global memory using an optional order
shader. Short arrays and lists are cached in a local
array in the display shader and sorted directly prior
to blending. Since everything is re-generated every
frame, the cost of sorting the fragments can be as-
signed to any of the stages. This shader also composes

Figure 4: Close-up view of the UNC power plant
model rendered with Puxels.

the depth-sorted data front to back and sends them
to the OpenGL framebuffer. Figure 4 shows the UNC
power plant model rendered with our Puxel method.

Data is collected and processed using OpenGL
shaders and GL_SHADER_STORAGE_BUFFERs introduced
in OpenGL 4.3. For each pixel of the viewport, the
header buffer contains the entry index to the data
buffer which stores the fragment attributes.

For the per-pixel array, the number of fragments per
array is counted in the first render pass, so the entry
index can be calculated using a prefix sum. In a second
render pass, each fragment is stored in the respective
array within the data buffer.

An element of the data buffer contains the color
and depth per fragment and may store additional
attributes (e.g. fragment normal or texture coor-
dinate). Per-pixel lists are created during render-
ing by appending the attributes of a fragment to
the list in the fragment shader. A global atomic
counter which contains the index of the next free
element in the data buffer is incremented in a
thread-safe manner (atomicCounterIncrement). The
arrays are created in the same way by using an
atomic per-pixel counter that contains the index
of the next free element in the per-pixel array.
Existing fragment shaders and rendering methods
can easily use Puxels by replacing assignments like
gl_FragColor = color; and gl_FragDepth = depth
with puxelsStore(color, depth).

When a scene additionally contains opaque frag-
ments, such as the sticks in Figure 1(b) and Fig-
ure 1(c), they are rendered into a separate frame-
buffer object first. Transparent fragments that lie be-
hind opaque ones can be discarded during rendering,
shortening the resulting lists.

3.2. Constructive Solid Geometry

Using the Puxels approach, all fragments in the scene
are available for compositing. Thus, the constructive
solid geometry (CSG) operation union can be imple-
mented as follows: when composing the sorted frag-

© The Eurographics Association 2013.



D. Kauker, M. Krone, A. Panagiotidis, G. Reinc

ments, we count the layers and only render a fragment
when the counter is incremented from 0 to 1 (entering
the object) or decremented from 1 to 0 (leaving the ob-
ject). This represents the outer border and no internal
structure or overlapping geometry is composed into
the final image. The counter increases for fragments
facing the viewer and decreases for fragments facing
away. We determine the orientation of a fragment in
the render stage and store it as sign of the depth value.
Therefore, all depth-dependent checks are performed
on the absolute depth value for consistency.

The two other basic CSG operations—difference
and intersection—can be implemented analogously.
More complex CSG operations, e.g. XOR, are logical
combinations of these three basic operations.

4. Transparent Molecular Surface Rendering

The VAW and the SAS representations consist only
of spheres. As these spheres intersect each other, all
parts of a sphere which are inside another sphere have
to be removed since they would be visible when us-
ing transparency. The Puxel method allows to remove
these interior parts using the CSG union operation ex-
plained in Section 3.2. That is, all sphere fragments are
stored in the Puxel data buffer during rendering. Inte-
rior fragments are discarded in the composing stage.

As explained in Section 2.1, the SES consists of
three types of patches: concave spherical triangles,
torus segments, and convex spherical patches. The
spherical triangles can be ray casted straightforwardly,
since they have no interior parts which have to be
clipped. Krone et al. [KBE09] showed that the outer
part of the torus, shown as wireframe in Figure 3,
can be removed using a sphere-intersection test. The
interior parts of the torus (shown as dotted lines in
Figure 5) can be removed by intersection tests with
two planes. Simply speaking, we cut a pie slice out
of the torus ring. The spherical patches are the parts
of the VAW spheres that are accessible by the rolling
probe. The parts that are interior to the small circles
traced out by the rolling probe while forming a torus
have to be removed. These parts can be cut away using
a clip plane through the small circle. However, there
might be an inner remain which also has to be re-
moved (shown as purple patch in Figure 5). If we use
the Reduced Surface (RS) for the SES computation,
these problematic remains lie inside the RS. The RS
is a closed triangle surface. The RS triangle vertices
connect atom centers that share a torus patch. The
RS triangle faces span atoms which share a spherical
triangle. Please refer to [SOS96, KBEQ9] for more de-
tails. That is, we can use Puxel CSG to remove the
spherical remains. Please note that our method could
also use a-shapes [EM94] or Power Cells [VBW94] to

© The Eurographics Association 2013.

37

Toroidal patches and hull segments

Inner remains

VdW Surface
(Atoms) T

Solvent Excluded Surface

Figure 5: Schematic representation of the SES and
Reduced Surface of a molecule depicting the inner re-
mains of a VAW sphere which has to be removed.

compute the SES and remove the inner remains of the
spheres since they are essentially dual to the RS.

For the VAW and SAS, we only performed CSG on
visible objects. However, we can also render invisible
objects (alpha equals zero) which will not contribute
to the final image, but can be considered for the CSG
operations. Hence, we can render the triangles of the
RS with alpha set to zero. Consequently, the fragments
of the atom spheres inside the RS will be removed
in the Puxel compositing stage without changing the
algorithm.

However, not all parts of the sphere which are lo-
cated within the inner torus ring are also inside the
RS. These fragments have to be removed as well. For
that purpose, we close the torus. That is, we draw the
two planes delimiting the torus patch and the interior
parts of the torus ring (red dotted lines in Figure 5) as
invisible objects as well. Therefore, the CSG operation
additionally will remove all fragments inside the torus
object. The final rendering will only show the outer
parts of the VAW spheres, the spherical triangles, and
the outer torus patches. Thus, the transparent SES
can be rendered correctly.

5. Evaluation

As mentioned in Section 2.2, Parulek et al. [PV12] de-
fined an implicit function for the SES. They render
the SES using a sphere tracing of this function. Their
performance evaluation for opaque surfaces shows sim-
ilar frame rates on a NVIDIA Geforce GTX 480 as
we achieve on a GTX 680 for transparent renderings.
Since the sphere tracing is only executed until the first
hit is found, more steps would be necessary for trans-
parency rendering. This would drastically lower the
performance of their method for large numbers of sur-
face layers. Additionally, their visualization approach
might have visible artifacts if the number of neighbor-
ing atoms is set too low [PV12]. While this is only
a minor distraction in opaque surfaces, the artifacts
might become prominent in transparent renderings.



38 D. Kauker, M. Krone, A. Panagiotidis, G. Reina, & T. Ertl / Rendering Molecular Surfaces using OIT

Table 1: Comparison of Puzxels with other approaches
for different polygon models using an NVIDIA GTX 680
on a 1024x1024 viewport. The numbers for the render-
ing methods are frames per second.

Dragon | Protein UNC
Vertices 435k | 1,046k | 10,975k
Faces 871k 348k | 12,748k
Fragments 1,157k | 2,227k | 14,765k
Depth Layers 10 16 186
Screen Coverage 484% | 702%| 76.1%
OpenGL 599.5 693.0 110.4
Dual Depth Peeling 89.8 62.9 0.8
Puxel Lists 135.2 97.0 3.9
Puxel Arrays 102.4 82.8 4.2

Figure 6: Polygon model of the 1GKI protein surface
rendered using Puzxels. The mesh was generated us-
ing QuickSurf [KSES12] and exported from the freely
available Visual Molecular Dynamics tool [HDS96].

‘We compare the performance of the Puxels method
with dual depth peeling (DDP) [BMO08] and, for refer-
ence, with pure (unsorted) OpenGL blending. DDP
was chosen since it guarantees full visual quality
whereas other accelerated depth peeling methods, e.g.
bucket depth peeling [LHLW09], may introduce visual
artifacts. We use the freely available implementation
of DDP from the NvipiA SDK. For benchmarking, we
used an Intel i7 920 CPU with an NVIDIA Geforce
GTX580 (Fermi) and an NvIDIA Geforce GTX 680
(Kepler), driver version 310.90. We used freely avail-
able meshes and protein data sets from the Protein
Data Bank [BWF*00] for our tests.

Table 1 shows the performance in frames per sec-
ond of the Puxels per-pixel linked lists and per-pixel
arrays compared to the dual depth peeling method for
polygon meshes: a single Stanford Dragon, a protein
surface mesh generated by VMD [HDS96] (see Fig-
ure 6) and the UNC power plant (see Figure 4).

As DDP can only peel two depth layers per render-
ing pass, the framerate is very low compared to our
implementations and to the OpenGL reference due to
the number of render passes.

(a) 1VIS, SES colored by (b) 4ADJ, SAS colored by

temperature factor chain with Sticks inside

Figure 7: Two proteins (1VIS and 4ADJ) used for
the benchmarks shown in Table 2.

We assume that the difference between the list and
the array approach is due to the different data struc-
ture and the additional operations necessary. Per-pixel
arrays require two render passes and the calculation of
the prefix sum. The benefit is a more structured mem-
ory layout as each pixels’ fragments are stored consec-
utively. By contrast, the list approach has a scattered
memory layout.

Table 2 details the performance for the ray casted
molecules (see Figures 1 and 7). The surface repre-
sentation directly influences the fragment count, es-
pecially due to inner fragments and hull fragments
needed for CSG. The SES generates about twice as
many fragments as the VAW representation. The frag-
ment count of the SAS is three to four times the count
of VAW. This is also the approximate loss in the frame
rate for the surface representations. A higher number
of fragments slows down the performance when sort-
ing and blending. The same effect as seen in Table 1
occurs here, too. Per-pixel arrays outperform per-pixel
linked lists only for very high numbers of fragments.
For small and medium fragment counts, the per-pixel
linked lists are preferable performance-wise.

Another interesting fact is the performance differ-
ence between the GTX 680 and GTX 580. On average
for the selected benchmarks, the GTX 680 based on
the newer Kepler architecture is about 40% slower
than the older Fermi architecture of the GTX 580.
This is not a Puxels related effect but, according to
our experience, holds for other applications as well.

6. Extended Applications

The main advantage of the Puxels technique is that
all fragments of the scene are available and can be
used for later operations. In the following, we detail
extensions for Puxels.

6.1. Splatting

Instead of rendering a full screen quad, the Puxel data
can be displayed directly using splatting [Wes90]. For

© The Eurographics Association 2013.



D. Kauker, M. Krone, A. Panagiotidis, G. Reina, & T. Ertl / Rendering Molecular Surfaces using OIT

39

Table 2: Performance evaluation for different molecules and surface models rendered with our Puzel framework.
The numbers for the rendering methods are frames per second.

Surface Van der Waals Solvent Excluded Surface | Solvent Accessible Surface
Molecule 1YV8| 1VIS| 4ADJ| 1YV8 1VIS 4ADJ| 1YV8 1VIS 4ADJ
Atoms 641 2482 9720 641 2482 9720 641 2482 9720
Fragments 2.30M [ 6.98M | 9.34M | 4.64M | 12.33M | 18.00M | 8.87M | 23.92M | 32.16 M
Screen Coverage 18.0% | 48.4% | 42.6% | 18.0% | 48.7% | 428% | 23.8% | 57.1%| 47.1%
Depth Layers 44 66 92 117 135 188 128 160 234
GTX 580 Puxel Array 69.5 23.8 14.7 21.3 10.2 3.8 14.0 4.7 2.5

Puxel Lists 85.4 29.6 16.6 31.0 11.2 6.2 14.7 4.8 1.8
GTX 680 Puxel A.rray 58.2 20.9 12.9 16.0 6.5 2.1 8.0 2.6 1.4

Puxel Lists 76.6 26.1 13.9 22.1 7.7 4.2 10.3 3.3 1.3

Figure 8: Multiple Stanford dragons with depth-of-
field effect rendered using our extended Puzel method.

this purpose, each element needs to store the full 3D
position and color. Because of the flexible extensibil-
ity of the Puxels data structure, those attributes can
simply be added to the elements of the data buffer.
After rendering the scene into the Puxel buffers, the
data is mapped to CUDA and sorted using the Thrust
library. This destroys the structure of our buffer, mak-
ing the data effectively an array of vertices ordered by
depth. The complete buffer is mapped as vertex buffer
and rendered as points. This can be extended, for ex-
ample to create a depth-of-field effect (see Figure 8),
using a geometry shader that creates quads whose size
depends on the distance to the focal point.

6.2. Distributed Rendering

An important use case for Puxels is distributed par-
allel rendering of (partially) transparent, object-space
decomposed models. This can be easily implemented
by having each render node send its buffers to a dis-
play node. In a merge step all incoming per-pixel data
is combined into the per-pixel data of the display node.
Afterwards, the normal rendering pass takes place in-
cluding the depth-sorting of the collected fragments.
Alternatively, the fragments can be sorted remotely
and simply merged on the display node in O(n) steps.

© The Eurographics Association 2013.

6.3. Alternate SES Rendering

In addition to the transparent SES rendering ex-
plained above, there is another way which we want to
detail here. As the problem is to determine whether a
fragment of a VAW sphere may be drawn or not, one
has to determine if this fragment is inside the surface
or not. This can be achieved by rendering the SAS and
projecting these fragments back to the original VAW
spheres. A fragment from an atom is only visible if
the corresponding SAS sphere fragment is visible. Al-
though this method can be implemented straightfor-
wardly, the problem here is the massive overhead of
SAS rendering. As the evaluation shows, our SES is
faster than the SAS rendering and, thus, the alterna-
tive SES generation was not inspected further.

7. Summary and Future Work

We presented an approach for rendering transparent
molecular surfaces using the Puxels framework for
order-independent transparency. We extended exist-
ing methods and detailed the rendering of the trans-
parent molecule surfaces. In particular, our method
solves the difficult removal of internal fragments of the
SES using CSG operations. Additionally, we discussed
further visualization applications possible when using
Puxels. The performance of our approach was com-
pared to and outperforms dual depth peeling, which
serves as a ground truth OIT rendering method.

For future work, we want to investigate how to com-
bine post-processing effects like ambient occlusion or
cel shading with transparency which might help to
understand complex visualizations. To make the OIT
rendering generally applicable to even larger models
and more complex scenes, we want to extend the Pux-
els framework to distributed network rendering. Here,
especially the amount of fragments generated and sent
over the network needs attention to minimize the data
overhead. Additionally, we plan to use the Puxel data
for advanced effects, like global illumination, reflection
and refraction, and volume rendering.



40 D. Kauker, M. Krone, A. Panagiotidis, G. Reina, & T. Ertl / Rendering Molecular Surfaces using OIT

Acknowledgments

This work was partially funded by Deutsche For-
schungsgemeinschaft as SFB 716 projects D.3 & D.4,
and by the Federal Ministry of Education and Re-
search of Germany as part of FeToLL and MCSimVis.

References

[BCL*07] BavoiL L., CALLAHAN S. P., LEFOHN A,
CowmBA J. L. D., Siva C. T.: Multi-fragment effects
on the GPU using the k-buffer. In Symposium on Inter-
active 3D graphics and games (2007), pp. 97-104. 4

[BE11] BavoiL L., ENDERTON E.: Constant-Memory
Order-Independent Transparency Techniques. 2011. 4

[Bli82] BLINN J.: A Generalization of Algebraic Surface
Drawing. ACM Trans. Graph. 1 (1982), 235-256. 3

[BMO08] BavoiL L., MYErRs K.:  Order Independent
Transparency with Dual Depth Peeling. 2008. 4, 6

[BWF*00] BeErMAN H., WEsTBROOK J., FENG Z.,
GILLILAND G., BHAT T., WEISsi¢ H., SHINDYALOV 1.,
BOURNE P.: The Protein Data Bank. Nucl. Acids Res.
28 (2000), 235-242. http://www.pdb.org. 6

[Car84] CARPENTER L.: The a -buffer, an antialiased hid-
den surface method. SIGGRAPH Comput. Graph. 18,
3 (1984), 103-108. 4

[Con83] ConNoLLY M. L.: Analytical Molecular Surface
Calculation. J. Appl. Cryst. 16 (1983), 548-558. 3

[CSN*12] CHEN G., SANDER P. V., NEHAB D., YANG
L., Hu L.: Depth-presorted triangle lists. ACM Trans.
Graph. 31, 6 (Nov. 2012), 160:1-160:9. 3

[Ede99] EDELSBRUNNER H.: Deformable smooth sur-
face design. Discrete €& Computational Geometry 21,
1 (1999), 87-115. 3

[EM94] EDELSBRUNNER H., MUcCke E. P.:  Three-
dimensional alpha shapes. ACM Trans. Graph. 13, 1
(1994), 43-72. 3, 5

[Eve01] EvVErRITT C.: Interactive Order-Independent
Transparency. NVIDIA Corp., 2001. 4

[FVDFH90] FoLeEy J. D., vaNn Dam A., FEINER S. K.,
HucHEs J. F.: Computer graphics: principles and prac-
tice (2nd ed.). Addison-Wesley Longman, 1990. 3

[GB78] GREER J., BusH B. L.: Macromolecular shape
and surface maps by solvent exclusion. In Proceedings
of the National Academy of Science (1978), pp. 303-307.
2

[Gum03] GumHOLD S.: Splatting Illuminated Ellipsoids
with Depth Correction. In Proceedings of VMV (2003),
pp. 245 — 252. 2, 3

[HDS96] HuMPHREY W., DALKE A., SCHULTEN K.: VMD
— Visual Molecular Dynamics. Journal of Molecular
Graphics 14 (1996), 33-38. 6

[KBE09] KroNE M., BipmoN K., ErRTL T.: Interac-
tive visualization of molecular surface dynamics. IEEE
Trans. Vis. Comp. Graph. 15, 6 (2009). 3, 5

[KGE11] KRrONE M., GROTTEL S., ErTL T.: Parallel
Contour-Buildup Algorithm for the Molecular Surface.
In IEEE Symposium on Biological Data Visualization
(biovis’11) (2011), pp. 17-22. 3

[KSES12] KRONE M., STONE J. E., ERTL T., SCHULTEN
K.: Fast Visualization of Gaussian Density Surfaces for

Molecular Dynamics and Particle System Trajectories.
In EuroVis Short Papers (2012), vol. 1, pp. 67-71. 6

[LB02] Lauc P., BoroucHAKI H.: Molecular Surface
Modeling and Meshing. Engineering with Computers
18, 3 (2002), 199-210. 3

[LBPH10] Lixpow N., BAUM D., PROHASKA S., HEGE
H.-C.: Accelerated Visualization of Dynamic Molecular
Surfaces. Computer Graphics Forum 29 (2010), 943—
952. 3

[LHLWO09] Liwv F., Huang M.-C., Liv X.-H., Wu E.-H.:
Efficient depth peeling via bucket sort. In Proceedings
of the Conference on High Performance Graphics 2009
(2009), ACM, pp. 51-57. 4, 6

[MDG*10] MARSALEK L., DEHOF A., GEORGIEV I.,
LENHOF H.-P., SLUSALLEK P., HILDEBRANDT A.: Real-
Time Ray Tracing of Complex Molecular Scenes. In 14th
International Conference on Information Visualization
(IV) (2010), pp. 239-245. 3

[MHLKO06] MoLL A., HILDEBRANDT A., LENHOF H.-P.,
KOHLBACHER O.: Ballview: A tool for research and ed-
ucation in molecular modeling. Bioinformatics 22, 3
(2006), 365-366. 3

[PV12] PARULEK J., VioLA L.: Implicit Representation
of Molecular Surfaces. In IFEE Pacific Visualization
Symposium (2012), pp. 217-224. 3, 5

[RE05] REINA G., ErTL T.:  Hardware-Accelerated
Glyphs for Mono- and Dipoles in Molecular Dynamics
Visualization. In EuroVis05: IEEE VGTC Symposium
on Visualization (2005), pp. 177-182. 2, 3

[Ric77] RICHARDS F. M.: Areas, Volumes, Packing, and
Protein Structure. Annual Review of Biophysics and
Bioengineering 6, 1 (1977), 151-176. 2

[SOS96] SANNER M. F., OLsoN A. J., SPEHNER J.-C.:
Reduced Surface: An efficient way to compute molecular
surfaces. Biopolymers 38, 3 (1996), 305-320. 3, 5

[TA95] ToTrROV M., ABAGYAN R.: The contour-buildup
algorithm to calculate the analytical molecular surface.
Journal of Structural Biology 116 (1995), 138-143. 3

[VBW94] VARSHNEY A., BROOKS F. P., WRIGHT W. V.:
Linearly Scalable Computation of Smooth Molecular
Surfaces. IEEE Computer Graphics and Applications
14, 5 (1994), 19-25. 3, 5

[VF11] VasiLakis A. A., Fupos I.: Z-fighting aware
depth peeling. In ACM SIGGRAPH 2011 Posters
(2011), SIGGRAPH ’11, ACM, pp. 77:1-77:1. 4

[Wal04] WALD I.: Realtime Ray Tracing and Interactive
Global Ilumination. PhD thesis, Computer Graphics
Group, Saarland University, 2004. 3

[Wes90] WESTOVER L.: Footprint evaluation for volume
rendering. SIGGRAPH ’90, ACM, pp. 367-376. 6

[Wit01] WITTENBRINK C. M.: R-buffer: a pointerless a-
buffer hardware architecture. Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware (2001), 73-80. ACM ID: 383529. 4

[YHGT10] Yanc J. C., HENSLEY J., GRUN H., THI-
BIEROZ N.: Real-time concurrent linked list construction
on the GPU. Computer Graphics Forum 29, 4 (2010),
1297-1304. 4

[ZP07] ZHANG Y., PAJAROLA R.: Deferred blending: Im-
age composition for single-pass point rendering. COM-
PUTER & GRAPHICS 81 (2007), 175-189. 3

© The Eurographics Association 2013.



