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Abstract

The growing need for reliable and accurate recognition solutions along with the recent
innovations in deep learning methodologies has reshaped the research landscape of
biometric recognition. Developing efficient biometric solutions is essential to minimize the
required computational costs, especially when deployed on embedded and low-end devices.
This drives the main contributions of this work, aiming at enabling wide application range
of biometric technologies.

Towards enabling wider implementation of face recognition in use cases that are ex-
tremely limited by computational complexity constraints, this thesis presents a set of
efficient models for accurate face verification, namely MixFaceNets. With a focus on
automated network architecture design, this thesis is the first to utilize neural architec-
ture search to successfully develop a family of lightweight face-specific architectures,
namely PocketNets. Additionally, this thesis proposes a novel training paradigm based on
knowledge distillation (KD), the multi-step KD, to enhance the verification performance
of compact models. Towards enhancing face recognition accuracy, this thesis presents a
novel margin-penalty softmax loss, ElasticFace, that relaxes the restriction of having a
single fixed penalty margin.

Occluded faces by facial masks during the recent COVID-19 pandemic presents an
emerging challenge for face recognition. This thesis presents a solution that mitigates
the effects of wearing a mask and improves masked face recognition performance. This
solution operates on top of existing face recognition models and thus avoids the high cost
of retraining existing face recognition models or deploying a separate solution for masked
face recognition.

Aiming at introducing biometric recognition to novel embedded domains, this thesis is
the first to propose leveraging the existing hardware of head-mounted displays for identity
verification of the users of virtual and augmented reality applications. This is additionally
supported by proposing a compact ocular segmentation solution as a part of an iris and
periocular recognition pipeline. Furthermore, an identity-preserving synthetic ocular
image generation approach is designed to mitigate potential privacy concerns related to
the accessibility to real biometric data and facilitate the further development of biometric
recognition in new domains.







Zusammenfassung

Der wachsende Bedarf an verlasslichen und genauen Erkennungsmethoden zusammen mit
den kiirzlichen Fortschritten im Bereich des Deep Learning haben den Forschungsbereich
der biometrischen Erkennung grundlegend veréndert. Die Entwicklung von effizienten
biometrischen Losungen, die den benétigten Rechenaufwand minimieren ist wichtig, vor al-
lem wenn die biometrischen Methoden auf eingebetteten Systemen oder Low-End-Geréten
eingesetzt werden. Hintergrund dieser Arbeit ist daher, einen breiten Anwendungsbereich
fiir biometrische Technologien zu erschlief3en.

Um eine breitere Anwendung von Gesichtserkennung in Szenarien mit starker Limi-
tierung beziiglich des Rechenaufwands zu ermoglichen, prasentiert diese Thesis eine
Reihe von effizienten Gesichtserkennungsmodellen namens MixFaceNets. Mit Fokus auf
automatisiertem Netzwerkarchitektur-Design ist diese Thesis die erste, welche Neural
Architecture Search einsetzt, um eine Reihe von kompakten Netzwerkarchitekturen, Po-
cketNets, fiir die Gesichtserkennung zu entwickeln. Des Weiteren présentiert diese Thesis
ein neues auf Knowledge Distillation aufbauendes Trainingsparadigma namens multi-step
KD, welches die Verifizierungsperformanz von kompakten Modellen verbessert. Um die
Gesichtserkennungsgenauigkeit zu erhohen, préasentiert diese Thesis zudem eine neuartige
margin-penalty softmax loss Funktion, ElasticFace, welche die Einschrankung beziiglich
einer festen penalty margin aufhebt.

Die Verdeckung von Teilen des Gesichts durch Gesichtsmasken wihrend der jlingsten
COVID-19 Pandemie stellt eine neue Herausforderung fiir Gesichtserkennungssysteme dar.
Diese Thesis présentiert einen Ansatz, welcher die Effekte der Maske auf die Erkennungs-
performanz abschwacht und so die Performanz verbessert. Der vorgestellte Losungsansatz
setzt auf existierende Gesichtserkennungsmodelle auf und vermeidet so zusitzlichen
Rechenaufwand aufgrund des erneuten Trainierens oder der Umsetzung eines separaten
Losungskonzepts fiir maskierte Gesichter.

Mit dem Ziel, biometrische Erkennung in neue eingebettete Doménen einzufiihren,
wird in dieser Thesis erstmals vorgeschlagen, Head-Mounted Displays fiir die Identi-
tatsverifizierung von Benutzern von Virtual und Augmented Reality Anwendungen zu
benutzen. Hierfiir wird zudem eine kompakte Losung zur Segmentierung der Augen als
Teil der Erkennungspipeline vorgeschlagen. Dariiber hinaus wird ein identitdtserhaltender
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Ansatz zur Erzeugung synthetischer Bilder von Augen entwickelt, um potenzielle Daten-
schutzbedenken im Zusammenhang mit dem Zugang zu echten biometrischen Daten zu

entkraften und die Weiterentwicklung der biometrischen Erkennung in neuen Bereichen
zu erleichtern.
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1. Introduction

Biometric recognition is the automated recognition of individuals based on their behav-
ioral or biological characteristics [122]. Historically, applications using biometrics have
been originated and used by law enforcement agencies within forensic investigations
[44]. Nowadays, biometric recognition systems are an integral part of identity manage-
ment systems with various application scenarios, such as automated border control [76],
forensic application [44], and financial transaction [226]. Unlike knowledge-based (e.g.
user-names and passwords) and ownership-based (e.g. tokens) authentication systems,
biometric characteristics cannot be lost, forgotten, or delegated to a third party. These
advantages enhance the usability and the security of traditional authentication systems,
leading to an increase in the deployment of operational biometric systems. According to
an extensive study by [40], the global biometrics market has been rapidly growing since
2016. The total global market revenue reached $18.78 billion in 2019 with an annual
growth rate of 18.6% and an anticipated worth of $45.96 billion by 2024.

The advancements in biometric technology, equipped by the recent developments in
computational intelligence, enable incorporating biometric technology into novel domains
such as embedded environments. To perform biometric recognition, a biometric template
that represents a biometric sample of an individual needs to be extracted. The inference of
such template from a biometric sample can occur either on a back-end server (e.g. cloud) or
on an edge device (e.g. mobile device, computer, or embedded device). Figure 1.1 shows
an example of an on-device biometric system (embedded biometric). Embedded biometrics
is a particular use of biometric recognition involving devices and use cases that targets
minimizing the operational requirements (including hardware, energy consumption, etc.)
and maximising the recognition performance, e.g. mobile devices. In embedded biometrics,
data capture devices (e.g. cameras) are often built-in the devices themselves, biometric
templates are locally stored [154], and biometric feature extraction and comparison
operations are performed on edge devices [154, 74]. On-device inference enables a
completely on the edge process, e.g. on a mobile device, which allows users to benefit
from fast inference at the edge without sending sensitive biometric data to the server for
biometric decision-making [154]. An example of on-device identity recognition systems
is the Face ID powered by Apple [119, 216] and the Android FR powered by Google




Data storage subsystem

Enroliment Identity claim —
Verificati Enroliment
— Verification Akl

—-—- Identification cg' ]
w - S i | Reference template (s)
@ =1l o ISy ; —
g ) 1) = T v Verification
= o c
= HIHIE | |
Capture device || 8 =) Y] @——» match/nomatch
o “_SI131]2 & — 3 Comparison y /
3 sl11sl & |[&
S MIE 5 3 ——~-—»] ldentify |-+ ——»|dentification
@ > =]
Data capture o outcome:
subsystem <] Comparison subsystem Decision subsystem Identity /

candidates list

Single processing subsystem

Figure 1.1.: General component of a biometric system in three operations modes: en-
rollment, verification and identification [123]. In this figure, all operation are
performed on-device.

[95, 193]. These FR systems operate on the edge and can securely verify the identity of
the individual. It should be noted that edge devices, such as mobile devices, usually have
limited computational resources and power capacity. Thus, designing biometric systems
for such devices requires carefully considering their computational limitations.

According to the recent report from the Juniper market research [182], FR will be
integrated into 2.1 billion mobile devices by 2024, in comparison to an estimated 96
million in 2019. A study by Lovisotto et al. [166] pointed out the high demand for
mobile biometric technology by stating that 93% of the MasterCard e-payment customers
preferred mobile biometric authentication to traditional methods such as a password, and
92% of banks desire to adopt such technology.

In 2021, IDEMIA, a major biometric and identity solutions provider, announced the
launch of Mobile ID technology in four states in the United-State [2]. This solution allows
the residents to have a digitized version of their driver licenses or state-issued IDs on their
mobile devices. Individuals can use the digitized ID as a legal form of identity verification
where the associated information can only be accessed through biometric verification.

Another prominent use case of computationally restrained biometrics is the one in the
automotive domain [262]. According to a study by Allied Market Research [1], the global
automotive biometric market was valued at $476 million in 2017, and it is anticipated to
be worth $1128 million by 2024. As hardware cost in the automotive domain is relatively




high, the biometric solution provider should pay attention to the required deployment
resources, especially when competing with other smart automotive applications. Growth in
the demand for safe, secure, and convenient access control solutions is the primary aspect
that drives the evolution of the automotive biometric market [245, 111]. Integrating
biometric identity recognition, such as speech, face, and iris recognition, in automotive
domains, provides secure vehicle access control, ignition switch, vehicle personalized,
and health monitoring for safety purposes [282]. An application use-case of automotive
biometrics is car-sharing, where a user can be automatically recognized, enabling vehicle
customization and guaranteeing secure temporal access to vehicles [137].

Building efficient, convenient, and high-performing biometric solutions is essential to
enable the spread of the technology in novel domains. This work tackles several research
questions raised by the emerging deployments of biometrics in the embedded domain
and presents solutions to address these research questions. These solutions targets
minimizing computational costs, deployment in novel domains, as well as targeting
emerging challenges in the biometric domain. This chapter presents the motivation
towards developing biometrics in the embedded domain in Section 1.1, followed by the
research questions posed in this work in Section 1.2. Finally, an outlook on the content of
the rest of this dissertation is presented in Section 1.3.

1.1. Toward efficient biometric

One of the primary aspects of achieving an accurate biometric recognition system is to
extract a discriminative biometric template from biometric samples. Biometric template
refers to a compact representation of the captured characteristic of an individual so that
this representation, i.e., template, is discriminated in comparison to other individuals.
Recently, high-performing biometric solutions, especially FR ones [80, 185, 117, 268, 27],
rely on deep neural networks for biometric template extraction due to their high learning
capabilities. The rapid progress in deep learning research has been dramatically influenced
by the advanced computational capabilities of the hardware accelerators such as Graphics
Processing Unit (GPU) and Tensor processing unit (TPU), enabling training extremely deep
neural networks [258]. However, the computational demands of training and deploying
deep learning-based solutions have scaled up rapidly over the past years, especially with
the increased depth and width of such network leading to a high number of trainable
parameters [235, 258]. For example, the computational demands of training deep neural
networks have increased 300,000 times from 2012 to 2018 [10]. Besides the high
computational demand for training deep neural networks, deploying such solutions on
use-cases constrained by the computational capabilities is challenging [180, 81], due




to rapid inference requirements along with resources limitations on edge devices, e.g.
memory footprint and power capacity.

These challenges raise the need for novel, accurate, yet efficient solutions. The efficiency
in this perspective refers to deep learning solutions that can achieve high accuracy without
increasing the computational demands and, ideally, decreasing them. From an application
perspective, such an efficient biometric solution is needed for two main reasons: a) Com-
putational resources is critical, and b) Minimize hardware cost. In use-cases constrained
by computational resources such as mobile devices, Head-Mounted Display (HMD) de-
vices, and internet-of-thing (IoT) devices, the available run-time memory, computational
operations, and power capabilities are limited. Also, these resources are usually shared
between several applications to enable simultaneous access to smart applications. Thus,
enabling a biometric recognition in such an environment requires designing efficient and
accurate solutions that can reliably operate with minimum resources.

The emerging deployment of biometric systems in new domains often requires addi-
tional investment into hardware. The hardware cost varies between different application
scenarios. For example, the hardware cost is relatively high in the automotive domain.
Automotive companies such as Daimler and HyundaiMotor announced that biometric tech-
nology would be integrated into their high-end luxury segmented cars [120, 53]. These
limited deployments are mainly caused by the high electronics component cost in the
automotive domain [240]. Reducing the computational cost of a biometric solution, and
thus the required hardware cost will enable wider implementation of biometric solutions
in the automotive domain. In other application scenarios, such as large-scale identity
management, the cost comes from the scale of the operation rather than the specialty of
the application domain. An example of a large-scale biometric system is the EU Entry/Exit
(EES) System, aiming at registering information (name, travel document, biometric data,
and place of entry and exit) of travelers from third countries each time they cross an EU
external border [52]. Achieving an efficient biometric solution in large-scale application
scenarios reduces the operation cost and thus, enables wider deployability of the biometric
solution.

1.2. Research questions

This thesis aims at enabling a wider implementation of biometric technologies in the em-
bedded domains and use-cases constrained by computational capabilities and operational
limitations. This section presents three principal research questions posed by this thesis,
followed by detailed research questions derived from the principal research questions to
address each of them more granularly. The research questions fall within three research




areas based on the identified challenges and targeted application.

In the first research area, this thesis concentrates on enabling FR in use-cases constrained
by computational capabilities, which requires designing efficient and accurate FR models.
This leads to the first principal research question posed in this thesis:

RQ1: Can efficient and high-performing FR approaches be successfully designed?

Achieving efficient and high-performing FR solutions leads to the broad integration of
the technology in various applications from border control to logical access control on
consumer end-devices. However, FR still faces several challenges such as pose variations
[295], ageing [192] and occlusion [64]. One of the recent and emerging challenges for
FR is the face mask occlusions presented during the recent COVID-19 pandemic. Several
studies [64, 82, 201, 202] have evaluated the effect of wearing protective face masks on
FR performance and concluded that such occlusion negatively affect the FR verification
performance. The second research area covers this emerging challenge, leading to the
second principal research question:

RQ2: Can the negative impact of face masks on FR verification performance be effectively
reduced?

FR commonly requires capturing full faces of the subjects for the recognition process,
which might be infeasible in some application scenarios due to the limited data capture
setup. Virtual Reality and Augmented Reality (VR/AR) technologies utilize HMDs, which
typically include eye-facing cameras that capture the ocular region and are used for
eye tracking [96]. The possible introduction of biometric recognition to VR/AR using
the existing setups is therefore limited to specific biometric modalities within the ocular
region. The third research area focuses on introducing biometric recognition to VR/AR
applications enabled by HMDs, leading to the third research question:

RQ3: Can existing VR/AR setups be leveraged for the biometric verification of their users
identities?

This thesis dissects the stated principal research questions into detailed research ques-
tions and provides extensive responses to each of them. The rest of this section presents
the sets of detailed research questions following the principal RQ1, RQ2, and RQ3, in
Sections 1.2.1, 1.2.2 and 1.2.3, respectively.

1.2.1. Efficient and high-performing face recognition

Following the stated principal RQ1, this section presents detailed research questions. FR
technologies are increasingly used to enhance the security and convenience of identity




verification processes, such as border control and financial services. State of the Art (SOTA)
FR models [80, 268, 156, 117] depend on learning to extract deep feature representation
using a deep neural network that applies multiple convolutional layers. The design choice
of SOTA deep learning-based FR models followed the common trend of other computer
vision applications by utilizing an overparameterized deep neural network with high
computational cost [107, 110, 241, 252]. Deploying such as an overparameterized model
on use-cases constrained by a computational capability is challenging. This challenge
has received increased attention in the literature in the past few years [180, 81]. The
main focus of recent efficient FR models presented in the literature was reducing the
memory footprint of the FR model [49, 179, 284, 150, 281]. Although the reduction of
the memory footprint is important, the aspect of computational complexity is additionally
critical for many use-cases, and it received relatively lower attention in FR literature. In
use-cases that are extremely limited by computational complexity, achieving an accurate
solution with low complexity is essential to enable FR. All these motivate the first research
question raised in this work, stated as follows:

RQ1.1: Can a network based on multi-scale convolution operations be designed for accurate
and yet low computationally complex FR? And can the accuracy be further improved by
enabling information communication between various fractions of the network?

Efficient deep FR models proposed in the literature [49, 179, 284, 281, 150] are
commonly adopted from the ones designed for common computer vision tasks [233,
173, 290, 144]. With the developments in Automated Machine Learning (AutoML),
Neural Architecture Search (NAS), a technique for automating the design of neural
network architectures, has shown SOTA performances in many computer vision tasks
[155, 283]. The NAS solutions are commonly trained and evaluated on general image
classification datasets such as CIFAR10 (animals, cars, etc.) [143] with the training
objective of recognizing the main object in images [155, 283]. Unlike the common
images classification task, the training objective of FR is to learn discriminative identity
features from the face images, which might be more subtle. Thus, architectures designed
for common computer vision tasks could be suboptimal for FR. This motivates the next
question:

RQ1.2: Can NAS be successfully utilized to design a lightweight network specifically for FR?
Does this architecture optimization over face identities enhance the learned architecture?

Knowledge Distillation (KD) is a common technique to improve the performance of
compact models by transferring the knowledge learned by a deeper model (teacher) or
assembly of models to a single small model (student) [108]. When the network size gap




between the teacher and the student models is large, transforming the knowledge to a
shallow student is challenging [284, 1871, due to the different levels of model complexity.
This affects the effectiveness of the KD process and thus might lead to less optimal
performance of student models. This motivates the next research question tackled in this
work:

RQ1.3: Can the difficulty of a substantial discrepancy between teacher and student model in
KD paradigm be relaxed through KD process management? Does such a solution lead to a
better-performing student model?

In addition to the evolution of deep network architectures, training losses are behind
major advances in achieving accurate FR [150, 268, 117, 185, 27]. Early FR models such
as FaceNet [234] proposed to utilize metric-based learning, e.g. triplet loss [234], to
minimize the distance between face embeddings of the same identity while maximizing
the distance between embeddings of different identities. An alternative to metric-based
learning loss is the softmax classification loss and its variants. Margin-penalty softmax
loss is the most adopted loss in the recent high-performing FR solution due to its SOTA
performance on the main benchmarks [268, 80, 159]. Such a loss adds a fixed margin
penalty between the feature embeddings and their respective class centers to encourage
intra-class compactness and inter-class separability between the learned features. However,
fixed margin penalty losses [268, 80, 159] assume that the samples can be equally
pushed to their class center. This learning objective may lead to sub-optimal verification
performance in a real training dataset with inconsistent inter-and intra-class variations.
This motivates our next research question:

RQ1.4: Can the FR performance be enhanced by relaxing the fixed margin penalty during
training through assigning a more flexible penalty margin?

Focusing on enabling FR on use-cases constrained by a computational capability, this
thesis proposes a set of efficient and yet accurate FR models. Moreover, this work investi-
gates designing a compact FR model by taking advantage of NAS to design a face-specific
architecture. Such approaches consider the computational cost by design, and thus, their
operations require minimum computational resources. Additionally, to enhance the accu-
racy of FR, a novel margin-penalty softmax loss that relaxes the restriction of having a
single fixed penalty margin is presented.

1.2.2. The emerging challenge of masked face recognition

This section presents detailed research question derived from the principal RQ2. FR has
been preferred as a contactless identity verification solution deployed in many application




scenarios, such as automated border control [3]. Given the recent COVID-19 pandemic,
wearing masks became an essential means to prevent the spread of contagious diseases,
which presents a new challenge for FR. This motivates a number of studies to evaluate
the effect of wearing a face mask on a FR performance [64, 82, 201, 202]. These studies
concluded that FR performance, and thus the trust in contactless identity verification
through FR, is affected by wearing a mask. Several works proposed to deal with this
challenge by training a FR model with synthetically generated masked faces [118, 195].
However, deploying such solutions in a real-world scenario is not realistic and comes with
a high cost as it requires replacing the current FR solution with new ones. Furthermore,
the previous studies [64, 82, 201, 202] that evaluated the effect of the face mask on
FR performance reported that the genuine score distribution, i.e., distribution of scores
obtained by comparing samples belonging to the same identity, is significantly affected
by masked probes. The studies [64, 61] also reported that the genuine score distribution
strongly shifts towards the imposter score distributions. On the other hand, masked face
probes do not seem to strongly affect the imposter score distribution, i.e., distribution
of scores obtained by comparing samples belonging to the different identities. These
motivate the next questions in this work.

RQ2.1: Can a compact model be designed on top of existing FR models to produce masked
face templates that perform similarly to the ones from unmasked faces? Can such a solution
be designed to take advantage of the deep insights into the effect of wearing a mask on FR
verification?

To answer this question, this thesis designs an approach to reduce the negative impact
of wearing a protective face mask on FR performance. The proposed approach processes
an embedding of a masked face and outputs a new embedding that behaves similarly to
the embedding of the unmasked faces of the same identity. Such a solution is designed to
operate on top of existing FR models, and thus, it avoids the cost of retraining the base FR
models or requiring an additional full scale dedicated masked FR model.

1.2.3. Biometrics in head-mounted displays

This section presents detailed research questions derived from the principal RQ3. VR/AR,
enabled by HMDs, is being increasingly deployed in different applications such as health-
care, education, and law enforcement [259, 172, 246]. These applications often require
accessing and processing sensitive information that should only be accessible to authorized
users. HMD devices typically include internal cameras to facilitate gaze interaction with
the virtual environment [96]. The identity verification of the HMD user using this internal
camera is not yet explored. Such a solution is not only understudied but also has to




consider the limited computational resources in HMDs. This led to the next research
question posed in this thesis and stated as follows:

RQ3.1: Can images captured from the internal camera of HMD devices be successfully used
for biometric authentication based on the suboptimal iris and periocular captures?

The performance of iris recognition depends on the precise segmentation of the iris area
[294, 217]. Considering the minimalistic hardware specifications of an HMD device, the
segmentation solution should be efficient yet accurate to enable continuous identity verifi-
cation. Such segmentation solution is additionally needed to enable smoother interaction
and eye-tracking in AR/VR environment [96]. These motivate the next research question
that can be formulated as follows:

RQ3.2: Can a key eye-regions semantic segmentation solution successfully take advantage of
multi-scale representations to perform accurately?

Enabling biometric solutions, especially in new domains, requires the availability of
identity-specific biometric data, i.e., pairs of samples belonging to the same identity with
large variations. However, it is not a trivial task, and it may not be feasible to collect
biometric datasets for biometric processing due to privacy concerns [266]. Such concerns
motivate the next investigation in this work.

RQ3.3: Can an identity preserving ocular image be successfully generated from an arbitrary
semantic segmentation? How well would these images preserve the content and identity
embedded in the iris and periocular characteristics?

In the effort to answer these questions, this thesis is the first work that proposes and
investigates enabling biometric recognition in HMDs from their existing built-in cameras.
The proposed biometric recognition solutions focus on both, the iris and periocular region.
Moreover, a compact multi-label segmentation model is designed to serve essential prepro-
cessing operations. Additionally, this thesis successfully proposes an identity-preserving
synthetic ocular image generation approach.

1.3. This thesis

This section presents an overview of the rest of this thesis.

Chapter 2 provides essential background knowledge that enables a better comprehen-
sion of the contributions of this thesis and their motivations. It starts by discussing the
components of biometric system and the performance evaluation metrics, including those
measuring the performance of biometric recognition, as well as the computational costs.




A high-level overview of deep learning-based FR models is presented, including the main
network architectures, loss functions, and mainstream benchmarks.

Chapter 3 proposes two sets of FR networks and a novel margin-penalty loss function.
First, as a response to RQ1.1, this chapter presents a set of extremely low complex and high
throughput models for accurate face verification, MixFaceNets. The proposed MixFaceNets
are evaluated and compared, in terms of verification performance and computational
complexity, with SOTA efficient FR models proposed in the literature. Second, as a response
to RQ1.2, this thesis is the first to automate the design of FR network architecture by
successfully utilizing NAS learned on a face dataset, resulting in a set of highly compact
architectures, PocketNets. Chapter 3 will then present a novel training paradigm based on
KD, the multi-step KD, in response to RQ1.3. Lately, a novel margin penalty softmax loss,
ElasticFace, is proposed. ElasticFace aims at relaxing the fixed penalty margin constrain by
proposing elastic penalty margin loss allowing flexibility in the push for class separability.
This chapter responds to RQ1.4 by presenting, discussing, and evaluating ElasticFace in
comparison to the state-of-the-art apporaches.

In response to RQ2.1, Chapter 4 successfully presents a novel solution to reduce the
effect of wearing a face mask on FR verification performance. This chapter first investigates
how the verification performances of high-performing and compact FR models are affected
by wearing a face mask. This investigation is then used to theorize the learning process of
the proposed unmasking embedding model and self-restrained triplet loss. Such a learning
process aims at training the unmasking embedding model to learn to process a masked
face embedding to behave more similarly to an embedding from an unmasked face of the
same identity. The benefit of the proposed solution is successfully demonstrated on top of
different FR models.

Chapter 5 focuses on designing and evaluating several approaches to enable biometrics
in VR/AR applications. First, this chapter proposes to use the ocular images captured by
eye-oriented cameras within HMD devices for biometric verification, taking into account
the limited computational resources in HMD devices. Additionally, this chapter provides
in-depth analyses on the effect of iris selection based on the amount of visible iris in
the image on the biometric performance and presents a new methodology to select the
suitable iris to enhance the biometric performance on HMD devices, responding an answer
to RQ3.1. A compact semantic segmentation model for the ocular region is designed
and evaluated as a response to RQ3.2. Later, this chapter proposes and validates an
identity-preserving synthetic ocular image generation approach. The identity preservation
of the generated images is validated by providing the biometric performance of the iris
and periocular characteristics on the generated images and comparing its verification
performances to the one on real data, responding to RQ3.3.

Chapter 6 provides a set of concluding remarks of this thesis and an outlook for future
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Figure 1.2.: An overview of the principal and detailed research questions posed in this
thesis grouped by the research area.

research. A summary of the main contributions of this thesis is also presented in this
chapter.

1.4. Summary

This chapter provided the motivation and identified the challenges leading to the set of
research questions posed in this thesis. These research questions are mainly motivated
by enabling a wider deployment of biometric solutions in embedded domains and other
use-cases constrained by computational resources. The research questions are grouped
into three categories based on the targeted challenges, efficient and high-performing FR,
the emerging challenge of masked FR, and biometrics in head-mounted displays (Figure
1.2).

The research questions concerned with enabling FR solutions in low computational
capability domains stresses the need to propose novel yet accurate FR models that can be
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operated within such environments. The focus of the second group of research questions
targets the emerging challenge of masked FR. Consequently; it raises the need for designing
novel solutions to reduce the negative effect of a masked face on FR performance. The
third group of research questions is concerned with introducing biometric recognition to
VR/AR applications enabled by HMD devices.
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2. Background

The previous chapter presented a motivation for the research questions posed in this
thesis. This chapter provides the essential background information and definitions needed
to comprehend the investigations in the following chapters. This chapter presents first
the formal definitions for biometric systems and their main components. Then, this
chapter presents biometric performance metrics commonly used in the literature, including
biometric recognition performance metrics and computational cost metrics. Finally, this
chapter presents a detailed insight into deep FR network architectures and the mainstream
benchmarks.

2.1. Biometric systems

The growing demands for reliable and accurate identification and verification solutions
in many government and commercial applications are the essential aspects that have
driven the extraordinary evolution in biometric recognition technology over the past years
[126, 3]. Biometric recognition is the automated recognition of individuals based on
their biological or behavioral characteristics such as iris, periocular, fingerprint, and face
[122]. This section presents first the biometric recognition systems components. Then,
the biometric system operation modes are presented.

2.1.1. Components of biometric recognition system

This section presents the biometric recognition pipeline and main components based
on the definition of biometric system components in ISO/IEC 19795-1 standard [123].
Biometric samples are acquired from a subject by a sensor, e.g. a camera (Figure 1.1). This
process is part of the data capture subsystem. The output of the data capture subsystem
(signal) is sent to the signal processing subsystem via the transition subsystem. The signal
processing subsystem extracts the feature from the biometric sample. The input of the
signal processing subsystem is a biometric sample, and the output is distinctive features.
The signal processing subsystem usually involves preprocessing, feature extraction, and
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quality control modules. The prepossessing module refers to the enhancement and
segmentation processes of the signal processing subsystem [123]. Feature extraction
module derives repeatable and distinctive features from the captured biometric sample.
Feature extraction module could be run on a local server, cloud, or embedded device (e.g.
mobile device). The signal processing subsystem may involve a quality control module that
assesses the suitability of a biometric sample for biometric recognition [122, 256]. Based
on the operation mode, i.e. enrolment or the operation of verification and identification, the
extracted features are sent to either the data storage subsystem or comparison subsystem.
In the case of enrolment, the signal processing subsystem produces a biometric reference
and sends it to the data storage subsystem. In the case of the operation of verification and
identification, the signal processing subsystem produces a biometric probe and sends it to
the comparison subsystem. The data storage subsystem stores the biometric reference
in the enrolment database. Reference may store in portable devices such as a mobile
device, local server, or could. The comparison subsystem involves a process that compares
probe(s) against reference(s) and produces comparison scores. These comparison scores
are then passed to the decision subsystem. In the verification operation, a single probe is
compared to a single reference. In the identification operation, a probe is compared to
all references or a subset of references. In verification and identification operations, the
comparison scores indicate the similarity/dissimilarities between the compared pair(s).
The decision subsystem processes a comparison score to produce a decision based on the
verification or identification operation. In the verification scenario, a match or non-match
decision is obtained based on a defined threshold, i.e. a comparison score is higher than a
defined threshold. In the identification scenario, identification decision is produced based
on 1) comparison score is higher than a defined threshold 2) and/or the comparison score
is ranked within a predefined number of ranked values.

2.1.2. Operation modes

The biometric system involves three operation modes: enrolment, verification, and identi-
fication [123, 3]. In enrolment mode, the biometric sample of an individual is captured
by the data capture subsystem and then processed by the signal processing subsystem
to generate and store an enrolment template (reference) with the associated identity
information in the data storage subsystem.

Biometric verification uses biometrics information to verify a positive identity claim. The
biometric sample is captured and then processed by the single processing subsystem to
generate a biometric template (probe). The biometric reference is usually associated with
identity information, and the system uses this information to retrieve the corresponding
reference template from the data storage subsystem. Then, the biometric system verifies
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that the claimed identity belongs to the individual by comparing the probe template with
the stored reference one.

Biometric identification attempts to identify an individual based on the captured bio-
metric characteristics. Unlike the verification mode where probe template is compared
to one reference, biometric identification requires comparing the probe template to all
reference ones in the enrolment database. Therefore, the verification is a 1:1 comparison
process, and identification is a 1: N comparison process, where N is the number of the
enrolled subjects.

2.2. Performance metrics

This section provides performance metrics for evaluating the biometric recognition system.
This section presents first the performance metrics recommended by ISO/IEC 19795-1
[123]. Noting that most of the biometric recognition works presented in literature did not
follow the ISO/IEC 19795-1 [123] terms for algorithmic level evaluation. For the sake of
comparability and reproducibility, most of the biometric recognition works presented in the
literature follow the evaluation metrics used in the utilized benchmarks and the previous
works reporting on them. Therefore, this section also presents the main evaluation metrics
used in the literature and link them to the evaluation metric based on ISO/IEC 19795-1
[123] terms. Lastly, this section presents metrics for estimating the computational cost
of deep learning-based models. There is no definition for estimating the computational
cost of deep learning-based systems in the international standard ISO/IEC 19795-1 [123].
Therefore, the derived computational cost metrics are based on practice and reported
metrics in the literature.

2.2.1. Biometric recognition performance metrics

The ISO/IEC 19795-1 standard [123] provided a set of metrics for evaluating a biometric
system. A subset of these metrics targets algorithmic level evaluation. The performance
of the biometric acquisition process is reported as Failure to Acquire Rate (FTAR). FTAR
is the proportion of verification or identification attempts for which the system fails to
capture or locate a sample of sufficient quality. FTAR is a combination of failures of the
capture process and failures of the feature extraction process. The failure of the capture
process is reported as Failure to Capture Rate (FTCR), which is a proportion of failures
of the biometric capture process to produce a captured biometric sample. The failure of
the feature extraction process is reported as Failure to Extract Rate (FTXR), which is a
proportion of failures of the feature extraction process to generate a template from the
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captured biometric sample.

Algorithmic level evaluation assumes that FTXR and FTCR are zeros. In the case of
verification operation, the verification performance on algorithmic level evaluation depends
on False Non-match Rate (FNMR) and False Match Rate (FMR) metrics. FNMR is the
proportion of genuine attempt samples falsely declared not to match the template of the
same characteristic from the same user supplying the sample. FMR is the proportion of
zero effort impostor attempt samples falsely declared to match the compared non-self
template. Both FMR and FNMR metrics are functions of the system operation threshold
that control the trade-off between these metrics. Thus, it is common to report the
verification performance in terms of FNMR at different decision thresholds by reporting
the lowest FNMR at fixed FMR [94]. Another common metric to report the biometric
verification performance is Equal Error Rate (EER). EER is the FNMR or the FMR at the
operation point where they are equal. On the system level evaluation, the verification
performance depends on False Reject Rate (FRR) and False Acceptance Rate (FAR) metrics.
FRR and FAR correspond to the FNMR and FMR, respectively, on the system evaluation
level. The FRR is given by:

FRR = FTAR+ FNMR x (1 — FTAR), (2.1)
and the FAR is given by:
FAR = FMR x (1 — FTAR). (2.2)

Detection error trade-off (DET) and Receiver Operating Characteristic (ROC) curves
are verification performance visualization plots that show the performance at all decision
thresholds. DET curve plots false negative (y-axis) vs. false positive (x-axis), i.e. FNMR
vs. FMR. ROC curve plots true positive (y-axis) vs. false positive (x-axis), i.e. 1- FNMR vs.
FMR.

The biometric evaluation in the identification case varies between closed-set and open-set
identification scenarios. The primary measure of closed-set identification performance is
the cumulative match characteristic curve (CMC), in which the (true positive) identification
rate at rank r is plotted as a function of r. In open-set identification, the main metric
for reporting the identification performance is the false-negative identification error rate
(FNIR) at fixed false-positive identification error rate (FPIR). These two errors can be
estimated from the verification error metrics as:

FNIR=FTAR+ (1- FTAR) x FNMR, (2.3)

and
FPIR=(1-FTARx (1— (1 - FMR)™))), 2.4
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where N is the number of samples in the reference dataset.

The reported evaluation results in the literature on mainstream benchmarks do not
always follow the ISO standard evaluation metrics. In general, several benchmarks opt to
include the ROC curve as an evaluation metric [114, 296, 192]. In addition to the ROC
curve, several benchmarks [114, 296, 192] additionally report the performance in terms
of accuracy (Acc) as follows:

Acc= (TP+TN)/(N), (2.5)

where true positive (TP) is the number of correctly match genuine pairs i.e. 1-FNMR,
true negative (TN) is the number of non-match imposter pairs i.e. 1 - FMR, and N is the
total number of comparison. Other benchmarks such as the IARPA Janus Benchmark-B
IJB-B [274], report the verification performance for 1:1 verification protocol as True
Acceptance Rate (TAR) i.e. 1- FRR at fixed FAR). Because FTAR is assumed to be zero in
the IJB-B benchmark, the TAR and FAR, in this case, refer to the 1-FNMR and FMR in the
international standard ISO/IEC 19795-1 [123].

2.2.2. Computational cost metrics

Recent state-of-the-art biometric solutions utilized deep neural networks as a feature
extraction module. In resource-constrained environments by memory footprint and com-
putational complexity such as edge deployments, estimating the required resources by
deep neural networks is essential to enable biometric recognition systems in such envi-
ronment. However, there are no standard metrics to estimate the computational cost of
biometric solutions. Thus, the computational cost of deep learning models in this thesis is
estimated as:

1. Required memory footprint: The required memory footprint of deep neural networks
can be estimated by multiplying the number of parameters by b-bit precision used
to represent each parameter.

2. Computational complexity: The computational complexity in this thesis is reported
based on Floating Point Operations (FLOPs), i.e. the number of multiplication and
addition in a single feed-forward phase.

These metrics are chosen based on: 1) These metrics are commonly reported by the
recent efficient biometric apporaches in the literature [81, 179, 150, 284]. Therefore, for
the sake of comparability with previous works, these metrics are reported in this thesis
when it is feasible. 2) Unlike hardware-related metrics such as Floating Point Operations
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Per Second (FLOP/S), the number of parameters and the FLOPs are independent of the
underlying hardware.

Convolutional neural networks are one of the main classes of deep learning methods
used in various computer vision tasks, including the biometric feature extraction model
[42, 80, 159]. The following section presents details on the main building layers of
convolutional neural networks along with computation cost estimation for each layer.

2.3. Convolutional neural networks

Convolutional neural networks are a class of deep neural networks (DNN). CNN has been
tremendously applied to various computer vision tasks such as FR, image classification,
object detection, and image segmentation. Three layers are commonly used to build CNN:
Convolutional Layer, Pooling Layer, and Fully-Connected Layer. A typical CNN-based
feature extraction network consists of several convolutional and pooling layers followed
by fully connected layers. This section presents an overview of the main components of
CNN and the computational cost of each of them.

Convolutional Layer: Convolutional Layer is the core building block of CNN. A basic
convolutional layer consists of linear operation (convolution) and nonlinear operation
(activation function). Convolutional layer (C;) parameters consist of a set of kernels
(k). i is the layer index. Each filter has size of k,, x kj x ¢;_1, where ky,, k,, and ¢; 1
are the kernel width, height and depth, respectively. The input of convolutions layer
is an image or feature maps of size w; 1 X h;_1 X ¢;_1 and the output is the extracted
feature maps. The output of the convolutional layer is calculated by sliding each filter
across the input volume. Then, the element-wise product between each filter and the
input at any position is computed. Each filter produces feature activation maps. The
final output of the convolutional layer is obtained by adding the bias factors to each
feature activation map and then aggregating them. The size of the convolutional layer
depends on three hyperparameters: number of filters (filters depth), padding, and stride.
The stride hyperparameter s specifies the step size by which the kernel slides over the
input volume. For example, when the stride is equal to one, the filter is moved by one
pixel at each sliding. The padding hyperparameter p specifies whether the input volume
is padded with a specific value around the border. The convolutional layer C; process
input of size h; 1 X w;_1 x ¢;_1 to produce feature maps of size h; x w; x ¢;, where
]’Li = (hi—l — k’h + 2]))/8 + 1 and w; = (wi_l — k‘w + 2p)/8 + 1.
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Number of Parameters: The number of learnable parameters of convolutional layer
C; depends on the kernel size k, number of channel ¢;_; of the input volume, and the
number of kernel (depth) ¢; . Given an input image/feature map with depth (channel) of
¢;—1 and convolution layer with k,, x kj kernel and depth (number of kernels) of ¢;, the
number of learnable parameters of this layer is given by:

P(Cl) = k‘w X k‘h X Ci—1 X ¢ + B7 (26)

where B is the bias factor and it is equal to the layer depth c;.

FLOPs The FLOPs of convolutional layer C; is defined as [189]:
FLOPS(CZ') =2X hj_1 X wi_l(kw x kp, X ci—1 + 1) X Cj, 2.7)

where ¢;_1, k., and kj, are the depth, width and height of the input volume and ¢; is the
depth of layer C;.

Pooling layer: A Pooling layer reduces the spatial size of the input feature maps. Thus,
it reduces the number of parameters and computation in the CNN. It is commonly inserted
in-between successive convolutional layers. The common procedures for pooling layer are
average (Avg-Pooling) and maximum (Max-Pooling) pooling. Avg-Pooling computes the
average values over an f x f neighborhood in each feature map. Max-Pooling computes
the maximum values over an f x f neighborhood in each feature map. Similar to the
convolutional layer, pooling layer requires stride hyperparameter. The pooling layer
processes input of size h;_1 X w;_1 X ¢;—1 to produce output of size h; x w; x ¢;, where
h; = (hi—l — f)/s + 1, w; = (wi_l — f)/S 4+1andc; = ¢;_1.

Number of parameters The pooling layer is parameter-free as the pool size f x f and
stride (s) are hyperparameters.

FLOPs: The FLOPs count of pooling layer PL; can be computed as:
FLOPS(PLZ) = hi X w; X ¢; X f X f (28)

Fully Connected Layer (FC): The FC layer connects each neuron to all activations in
the previous layer. The FC is commonly used as the final layer of the feature extraction
model to obtain the biometric template [234, 253, 80, 27]. The output of the FC layer is
computed as a matrix multiplication between the input of FC and its weights and then
adding a bias offset.
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Number of parameters: The number of parameters of F'C; layer is given by:
P(FC) = (nj—1 + 1) x my), (2.9)

where n;_; is the input size and m; is the number of the output neurons.

FLOPs: The FLOPs count of F'C; layer can be calculated as:

2.4. Face recognition

FR is one of the widely used biometric recognition systems due to its contactless nature
and the high accuracy achieved by FR algorithms.

The conceptual design and principal components of FR systems are inherent from the
biometric systems described in Section 2.1. The output of the data capture subsystem,
face image, is sent to the signal processing subsystem. The preprocessing module of the
signal preprocessing subsystem commonly contains face and landmark points detectors to
align and crop the face inside the images. Face detector [289] is used to locate the signal
of the subject’s face within the received sample from the data capture subsystem. Then,
a facial landmark detector [289] is used to allocate the facial landmark points. Once
the face is aligned and cropped, feature extraction module is used to extract distinctive
features from the face samples. Recently, high-performing FR models used deep neural
networks as feature extraction modules, which is one of the main focuses of this thesis.
The comparison subsystem of FR usually uses a cosine similarity [80] (an inverse of cosine
distance) or euclidean distance [234] to obtain the comparison score between probe and
reference. In normalized embedding space the euclidean distance is equivalent to cosine
similarity.

The following section presents an overview of the main feature extraction architectures
used in FR along with the training loss functions and the mainstream benchmarks.

2.4.1. Deep face recognition

Over the last years, a constant trend in deep learning-based FR models is towards deeper
and larger convolutional neural networks [159, 234, 208] and commonly adopted network
architectures from the ones designed for image classification [107, 252, 241].
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Network architectures

The main network architectures of high-performing FR models are designed based on the
common architectures used in image classification including AlexNet [144], GooglLeNet
[252], VGGNet [241], ResNet [107], and SENet [110]. These network architectures are
briefly described in the following with computational cost of the each of them when it is
feasible.

AlexNet [144] was one of the earliest efforts that popularized CNN in computer vision
and it was the winner of ImageNet large-scale competition (ILSVRC) 2012. AlexNet has
60M parameters, and it consists of five convolutional layers and three fully connected layers.
DeepFace [253] and DeeplD series [249, 248] were the pioneer works that proposed to
use deep neural networks for FR. These works followed the design choice of AlexNet,
i.e. using deeper and wider CNN than LeNet, ReLU activation function, and dropout as
regularization methods to propose FR networks. DeepFace [253] architecture consists of
nine-layer with more than 120 million parameters. DeepID [249] is based on the training
of 60 ConvNets, each of which is trained on different patches (region) of face images.
Each ConvNet consists of four convolutional layers (with max-pooling) followed by the
fully connected to obtain two 160-D face embedding.

GoogleNet [252] was the winner of the ImageNet competition (ILSVRC) 2014. The main
contribution of GoogleNet was the development of an Inception Module and utilizing global
average pooling instead of FC layer at the top of the network that significantly reduced
the number of parameters. GoogleNet contains 4M parameters in comparison to 60M
paramters in AlexNet. The idea of an Inception Module is to utilize different convolution
layers with different kernel sizes (1 x 1, 3 x 3 and 5 x 5) inside the convolutional block to
capture spatial information at different scales. Additionally, GoogleNet adds a bottleneck
layer of 1 x 1 kernel to regulate the computation cost before applying a convolutional layer
with a large kernel (3 x 3 and 5 x 5). FaceNet [234] used GoogleNet [252] architecture
to train FR model with triplet loss. The utilized architecture by FaceNet [234] is almost
identical to GoogleNet [252] with slightly differences i.e. using L, pooling instead of
max-pooling and adding an FC layer with 128-D at the top of the network to obtain
the final face embedding. The presented architecture by FaceNet [234] contains 7M of
trainable parameters with 1600 MFLOPs.

VGGNet [241] was runner-up in the ImageNet competition (ILSVRC) 2014. VGGNet
proposed a very deep homogeneous architecture that only utilizes 3 x 3 convolutions and
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2 x 2 pooling layers from the beginning to the end of the network. On the top of the
network, VGGNet added two FC layers( 4096-D). VGGFace [208] FR network architecture
is based on VGGNet [241] with 145M parameters and 30967 MFLOPs.

ResNet [107] is one of the most widely used CNN architecture. It was the winner of
the ILSVRC 2015 challenge. The network architecture is based on an identity shortcut
connection (residual connection) that skips one or more layers. The skip connection adds
the input of a residual block to its output and passes it to the following residual block.
The powerful representation ability of ResNet has motivated several computer vision tasks
other than classification, such as object detection and FR [80]. ResNet has been widely
adopted for FR [80]. SphereFace [159], CosFace [268] and RingLos [297] used 64-Layer
ResNet architecture to train FR model. ResNet-64 architecture contains 48.3M parameters
with 12227 MFLOPs. 512-D FC layer is used on top of ResNet-64 to obtain the final face
embedding. ResNet100 and ResNet50 are the most widely adopted CNN architecture
for FR [11, 80, 139, 117, 156, 292, 250]. ResNet100 and ResNet50 contain 65.2M and
43.5M parameters with 24211 and 12639 MFLOPs, respectively. The major difference
between the ResNet utilized for FR and the one proposed in the original work [107] is
the use of an FC layer on the top of the network instead of using a global average pooling
layer as a feature extraction layer.

Squeeze and Excitation Network (SENet) introduced a new building block, namely
Squeeze-and-Excitation (SE) block. The main idea of SE-Block is to learn channel attention
for each convolution block, which brings performance gain for various CNN architectures
e.g. ResNet [107] and VGGNet [241]. SENet was first adopted for FR by VGGFace2 [42].
VGGFace?2 used the last average pooling layer of SENet (2048-D) to obtain the final face
representation. VGGFace2 contains 26M parameters with 7749 MFLOPs.

Loss functions

In addition to the evolution of deep network architectures, training losses are behind
major advances in achieving accurate FR [150, 268, 117, 185]. The loss function used
to train FR models can be categorized into metric-based learning [50, 234, 273] and
classification loss [80, 27, 268, 159].

The training objective of metric-based learning loss is to guide the network to directly
optimize the embedding space in which pairs of the same identity stay close to each other
while the ones of different identities are far apart. Contrastive loss [50] was one of the
earliest metric-based learning losses. Contrastive loss processes pairs of embeddings. The
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Model Year Training Dataset Architecture Loss Param. (M) | MFLOPs AECF\(/‘\’;)) :gslzsjo
DeepFace[253] 2014 Facebook [253] Alexnet [144] classification 120 97.35 | -
DeeplD2[248] 2014 Celebfaces+ [248] Alexnet [144] classification - - 99.15
Facenet[234] 2015 Google [234] GoogleNet [252] | metric-based learning 7.5 1600 99.63
VGGFace[208] 2015 VGGface [208] VGGNet-16 [20g] | Classification + 145 30967 | 98.95
metric-based learning
L-Softmax [160] 2016 CASIA [286] VGGNet-16 [208] | classification 145 145 98.71
Center Loss[273] 2016 CASIA [286] - metric-based learning - - 98.8
SphereFace[159] 2017 CASIA [286] Resnet-64 [107] | classification 48.3 12227 99.42
VGGFace2 [42] 2018 VGGFace2 [42] SE-ResNet [110] | classification 26 7749 98.95 -
ArcFace [80] 2019 MS1MV2 [80, 103] Resnet-100 [107] | classification 65.2 24211 99.82 | 98.15
CosFace [268] 2018 Private Resnet-64 [107] | classification 48.3 12227 99.73 -
Dynamic-AdaCos [292] | 2019 MS-Celeb-1M [103] Resnet-50 [107] | classification 43.5 12639 99.73
AdaptiveFace [156] 2019 | MS-Celeb-1M [103, 281] | Resnet-50 [107] | classification 43.5 12639 99.62 | -
GroupFace [139] 2020 MS1MV2 [80, 103] Resnet-100 [107] | classification 65.2 24211 99.85 98.28
CircleLoss [250] 2020 MS1MV2 [80, 103] Resnet-100 [107] | classification 65.2 24211 99.73 | -
CurricularFace [117] 2020 MS1MV2 [80, 103] Resnet-100 [107] | classification 65.2 24211 99.80 | 98.32
Partial-FC [11] 2021 MS1MV2 [80, 103] Resnet-100 [107] | classification 65.2 24211 99.83 | 98.20
Dyn-arcFace [128] 2021 MS1MV2 [80, 103] Resnet-100 [107] | classification 65.2 24211 99.80 | 97.76
MagFace [185] 2021 MS1MV2 [80, 103] Resnet-100 [107] | classification 65.2 24211 99.83 98.17
ElasticFace [27] 2021 MS1MV2 [80, 103] Resnet-100 [107] | classification 65.2 24211 99.82 | 98.35

Table 2.1.: Overview of the high-performing FR approaches. The recent SOTA FR models
used MSTMV?2 [80, 103] to train ResNet-100 [107] using classification loss
i.e, softmax loss or its variants. The difference between models that used
classification loss is the deployed margin-penalty on the feature embeddings
and their corresponding class centers. The number of parameters (Param),
the FLOPs, and the accuracy on Labeled Faces in the Wild (LFW) and AgeDB-30
are reported for each model when it is feasible.

training objective of contrastive loss is to minimize the distance between embeddings
of the same identity and maximize the embedding distance when they are of different
identities. Triplet loss is another metric-based learning loss proposed by [234]. Training
with triplet loss requires a triplet of samples (anchor, positive and negative). An anchor
and positive are two different samples of the same identity (genuine pair), while a negative
is a sample belonging to a different identity (imposter). The learning objective of the
triplet loss is that the distance between genuine pair embeddings with the addition of a
fixed margin value (m) is smaller than the distance between the face embedding (anchor)
and any face embedding of any other identities (imposter). Center loss [273] proposed to
minimize the distance between feature embeddings of each sample and their class center
by leaning the center of each identity and pushing each sample to be close to its class
center.

The widely used multi-class classification loss, softmax loss [160], refers to applying
cross-entropy loss between the output of the logistic function (softmax activation function)
and the ground-truth. Margin-penalty softmax loss is the most widely adopted variant
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Dataset Identities | Images /(videos frames) | Metrics

LFW [114] 5.7K 13.2K 1:1 Accuracy, ROC

CA-LFW [296] 5.7K 11.6K 1:1 Accuracy, ROC

CP-LFW [295] 5.7K 12.1K 1:1 Accuracy, ROC
AgeDB-30 [192] 568 16.4K 1:1 Accuracy

CFP-FP [236] 500 7K 1:1 Accuracy, EER, ROC
1JB-B [274] 1.8K 76.7K 1:1 TAR at FARle-4

IJB-C [183] 3.5K 148.3K 1:1 TAR at FAR1e-4
MegaFace [136] 690K 1.1M Rank-1, 1:1 TAR at FAR1e-6

Table 2.2.: Mainstream face recognition benchmarks.

of softmax loss functions for training FR models due to its state-of-the-art performance
on mainstream benchmarks [27, 159, 268]. Margin-penalty softmax losses proposed to
push the decision boundary of softmax, and thus enhance intra-class compactness and
inter-class discrepancy by deploying a margin penalty between the feature embedding
and their corresponding class centers.

Table 2.1 presents an overview of the high-performing FR approaches. The constant
trend in these models is the use of overparameterized network. The majority of the
recent high-performing FR models are trained with classification loss [80, 268, 11, 27]
i.e. softmax loss and its variants, while earlier works such as FaceNet [234] and VGGFace
[208] are trained using metric-based learning loss.

2.4.2. Evaluation benchmarks
This section presents the mainstream face benchmarks used in the literature as well as in
this thesis.

Face recognition performance evaluation datasets

Table 2.2 summarizes the mainstream FR benchmarks proposed in the literature and used
in this thesis to evaluate the FR verification performances. Each of these datasets (Table
2.2) is briefly described in the following.

LFW [114] : LFW is an unconstrained face verification dataset. The LFW contains 13,233
images of 5749 identities collected from the web !.

http://vis-www.cs.umass.edu/1fw/
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AgeDB-30 [192]: AgeDB is an in-the-wild dataset for age-invariant face verification
evaluation, containing 16,488 images of 568 identities. Every image is annotated with
respect to the identity, age, and gender attribute. AgeDB-30 (30 years age gap) as is the
most reported and challenging subset of AgeDB 2.

Celebrities in Frontal-Profile in the Wild (CFP-FP) [236]: CFP-FP [236] dataset addresses
the comparison between frontal and profile faces. CFP-FP dataset contains 7,000 images
across 500 identities, where 10 frontal and 4 profile image per identity 3.

Cross-Age LFW (CA-LFW) [296]: The CA-LFW dataset [296] is based on LFW with a
focus on comparison pairs with the age gap, however not as large as AgeDB-30. Age gap
distribution of the CA-LFW is provided in [296]. It contains 3000 genuine comparisons,
and the negative pairs are selected of the same gender and race to reduce the effect of
attributes 4.

Cross-Pose LFW (CP-LFW) [295]: The CP-LFW dataset [295] is based on LFW with
a focus on comparison pairs with pose differences. CP-LFW contains 3000 genuine
comparisons, while the negative pairs are selected of the same gender and race °.

IJB-B [274]: The IARPA Janus Benchmark-B (IJB-B) dataset contains 21,798 still im-
ages and 55,026 frames from 7,011 videos of 1,845 identities [274]. The standard 1:1
verification protocol with 10,270 genuine and 8M impostor comparisons [274] ©.

IJB-C [183]: The IARPA Janus Benchmark-C (IJB-C) [183] is a video-based FR dataset
provided by the Nation Institute for Standards and Technology (NIST). It is an extension of
the 1JB-B [274] dataset with a total of 31,334 still images and 117,542 frames of 11,779
videos across 3531 identities 7.

2https://ibug.doc.ic.ac.uk/resources/agedb/
*http://www.cfpw.io/

*http://whdeng.cn/CALFW/

*http://whdeng.cn/CPLFW/
Shttps://www.nist.gov/programs-projects/face-challenges
"https://www.nist.gov/programs-projects/face-challenges
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MegaFace [136] and MegaFace(R) [80, 136]: The MegaFace benchmark [136] includes
a gallery of 1m Flicker images (of 690K identities) and a probe of FaceScrub [199] images
(100K images of 530 identities). The MegaFace benchmark reports the FR performance as
Rank-1 correct identification rate and as TAR at FAR equal to 1e—6 verification accuracy 8.
The MegaFace (R) [80] benchmark is a refined version of MegaFace (refined in [80]) and
reports the same evaluation metrics as MegaFace °.

Ocular dataset

This work uses OpenEDs [96] to train and evaluate the ocular segmentation and recogni-
tion approachs presented in Chapter 5.

OpenEDs [96]: OpenEDs is large-scale ocular images dataset captured using a virtual-
reality HMD device with two eye-facing cameras at a frame rate of 200 Hz under controlled
illumination. . OpenEDs contains three different sub-datasets: generation, semantic
segmentation and sequence sets. The semantic segmentation dataset included 12759
images of 152 individuals with pixel resolution of 640 x 400. The data is split into 8916
pairs of eye images for training, 2403 images for validation and 1440 images for test
as described in [96]. The generation data includes 152 subjects and 12759 images of
640x400 pixel resolution. The data is split into identity-disjoint training, validation, and
testing splits as described in [96]. The sequence dataset contains 91200 images from
contiguous 1.5 second video snippets with pixel resolution of 640x400 [96].

Masked face datasets

Two masked face datasets, MRF2 [13] and MFR [64, 62], are used to evaluate the proposed
approach in Chapter 4.

MRF2 [13]: The Masked Faces in Real World for Face Recognition (MRF2) dataset con-
tains 269 images of 53 identities crawled from the internet to evaluate the masked face
verification performance.

MFR [64, 62]: The Masked Face Recognition (MFR) simulates a collaborative yet varying
scenario. Such as the situation in automatic border control gates or personal unlocking
devices with FR, where the mask illumination and background can change. MFR contains

8http://megaface.cs.washington.edu/
’https://insightface.ai/
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4320 images collected from 48 participants using their webcams on three different, not
necessarily consecutive days (session). Each session contains masked and unmasked face
image captures.

2.5. Summary

This chapter discussed the biometric systems and their main components. Moreover,
it presented the biometric performance metrics including recognition performance and
computational cost metrics. An overview of the high-performing deep FR architectures
and training loss functions was discussed. A description of the mainstream evaluation
benchmarks was presented. Next chapters will investigate in more details the response to
the research questions stated in Chapter 1.
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3. Efficient and high-performing face
recognition

The previous chapter provided essential background knowledge for biometric recognition
systems and their components, along with the performance evaluation metrics, including
those measuring the performance of biometric recognition, as well as the computational
costs. This chapter investigates designing efficient and yet accurate FR models. This
chapter presents two sets of efficient FR networks as response to RQ1.1 (Section 3.3),
RQ1.2 and RQ1.3 (Section 3.4). Then, this chapter presents a novel FR loss based on
margin-penalty softmax as a response to RQ1.4 (Section 3.5). This chapter is based on
[23, 38, 27].

3.1. Introduction

FR is an active research field, and it has benefited from the recent advancements in
machine learning, especially the advancements in deep learning [107] and the novelty of
margin-based Softmax losses [80, 268], achieving a notable recognition accuracy.
Recent SOTA FR models rely on deep learning models with an extremely large number
of parameters [80, 185]. Deploying such models on embedded devices or in applications
with limited memory specifications is a major challenge [180, 81], due to the limited
resources in such environments. This challenge has received increased attention in the
literature in the last few years [180, 81]. Over the past few years, several compact FR
models have been proposed in the literature. MobileFaceNet [49] proposed an efficient
FR model based on MobileNetV2 [233] with around 1M parameters. ShuffleFaceNet
[179] and VarGFaceNet [284] model architectures adopted ShuffleNetV2 [173] and
VarGNet [290], respectively, for the FR task. VarGFaceNet contains 5M parameters.
ShuffleFaceNet presented three architectures with different width scales (0.5, 1.5 and
2) containing 0.5, 2.6, and 4.5M parameters, respectively. Martinez-Diaz et al. [180]
evaluated the computational requirements and the verification performance of five compact
model architectures including MobileFaceNet (2.0M parameters), VarGFaceNet [284]
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(5M parameters), ShufeFaceNet [179] (2.6/M parameters), MobileFaceNetV1 (3.4M
parameters), and ProxylessFaceNAS (3.2M parameters) [180]. The reported results by
Martinez-Diaz et al. [180] demonstrated that compact FR models can still achieve high
accuracies for FR.

Besides the tremendous advances in deep network architectures, training losses are
behind the significant advances in achieving accurate FR. Learning discriminative features
for FR models was the main focus of the recent SOTA FR solution proposed in the literature
[27, 268, 159, 80]. Margin-penalty softmax loss and its variants are the most widely
studied and adopted loss functions for training FR networks [27, 268, 159, 80]. This is
mainly because of their SOTA performance on mainstream benchmarks.

With a focus on achieving efficient FR, this chapter presents a family of extremely effi-
cient FR networks, MixFaceNets [23], for accurate face verification. Extensive experiment
evaluations on mainstream benchmarks have shown the effectiveness of the proposed
MixFaceNets for applications restricted by computational complexity. Under the same level
of computation complexity (< 500M FLOPs), MixFaceNets outperform recent efficient
FR models proposed in the literature on all the evaluated datasets. With computational
complexity between 500M and 1G FLOPs, MixFaceNets achieved results comparable to the
top-ranked models while using significantly fewer FLOPs and less computation overhead,
proving practical value MixFaceNets. The achieved results by MixFaceNets provide an
answer to RQ1.1.

Previous compact FR models have been adopted from the ones designed for common
computer vision tasks, and none of them designed a network specifically for FR. This
chapter presents PocketNet, one of the earliest efforts proposed to utilize NAS to design
a FR network. Additionally, PocketNet [38] proposes a novel training paradigm based
on KD, the multi-step KD, where the knowledge is distilled from the teacher to the
student model at different stages of the training maturity. A detailed ablation study is
conducted in this work, proving both the sanity of using NAS for the specific task of FR
rather than general object classification, which provides an answer to RQ1.2 and the
benefits of the proposed multi-step KD, which provides an answer to RQ1.3. This chapter
presents an extensive experimental evaluation and comparisons with the SOTA compact
FR models on mainstream benchmarks. PocketNets have consistently advanced the SOTA
FR performance on nine mainstream benchmarks when considering the same level of
model compactness. With 0.92M parameters, the smallest network, PocketNetS-128,
achieved very competitive results to recent SOTA compacted models that contain up to
4M parameters.

This chapter also presents a novel margin penalty-based softmax loss, namely ElasticFace
[27]. The recent FR loss functions proposed incorporating a fixed penalty margin on
commonly used classification loss function, softmax loss, in the normalized hypersphere to
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increase the discriminative power of FR models. Marginal penalty softmax losses, such as
ArcFace [80], and CosFace [268], assume that the geodesic distance between and within
the different identities can be equally learned using a fixed penalty margin. However,
such a learning objective is not realistic for real data with inconsistent inter-and intra-class
variation, which might limit the discriminative and generalizability of the FR model. The
proposed ElasticFace loss in this chapter relaxes the fixed penalty margin constrain by
proposing elastic penalty margin loss, allowing flexibility in the push for class separability.
The presented EalsticFace loss is used to train ResNet100 [107] network to be compatible
with the previous works proposed training loss function. ElasticFace loss outperformed
ArcFace and CosFace losses [80, 268], using the same geometric transformation, on a large
set of mainstream benchmarks, providing an answer RQ1.4. From a wider perspective,
ElasticFace has advanced the SOTA FR performance on seven out of nine mainstream
benchmarks.

This chapter is organized as follows: Section 3.2 presents a detailed look into related
works to efficient FR models and training loss functions. Section 3.3 presents a set efficient
FR networks, MixFaceNets. Section 3.4 presents lightweight and accurate FR models
based on NAS, PocketNets. EalsticFace loss is presented in Section 3.5.

3.2. Related work

This section presents and discusses recent efficient FR approaches and FR training losses
proposed in the literature.

3.2.1. Efficient face recognition architectures

This section lists out and discuss the recent efforts on designing an efficient deep learning
model for FR. The computational cost of the presented approaches is based on the the
number of trainable parameters and the FLOPs when it is feasible.

Light CNN [281] was one of the earliest works that presented 3 network architectures
for learning compact representation on a large-scale database. Light CNN proposed
three different architectures- Light CNN-4, Light CNN-9, and Light CNN-29. Light CNN-4
consists of four convolution layers followed by an FC layer. The Light CNN-4 architecture
is based on AlexNet [144] and it contains 4M parameters with 1.5G FLOPs. Light CNN-9
is designed based on Network in Network (NIN) [152] and followed the designed choice
of VGGNet [241] by utilizing a small kernel size. Light CNN-9 consists of 9 convolution
layers followed by an FC layer with 5.5M parameters and 1G FLOPs. Light CNN-29
included residual block [107] to design a network with 29 convolution layers followed by
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an FC layer. Light CNN-29 contains 12.6M parameters with 3.9G FLOPs. Light CNN also
proposed a new activation function Max-Feature-MAP (MFM), an extension of maxout
activation, and incorporated it in all proposed architecture. Compared to the recent
efficient FR models [180], Light CNN architecture is considered computational expensive.

ShiftNet [279] proposed shift-based modules as an alternative to spatial convolutions
and it is adopted for the FR task. The presented face model contains 0.78M parameters.

MobileFaceNets [49] is popular network architecture that has been widely adopted
for designing a compact FR solution [150, 179, 81]. MobileFaceNets [49] is based on
MobileNetV2 [233]. MobileFaceNet contains around one million of trainable parameters
with 443M FLOPs. MobileFaceNets model architecture is based on the residual bottlenecks
proposed by MobileNetV2 [233] and depth-wise separable convolutions layer, which
allows building CNN with a smaller set of parameters compared to standard CNNs.

Different from MobielNetV2 architecture, MobileFaceNet uses Parametric Rectified
Linear Unit (PReLU) [106] as the non-linearity in all convolutional layers and replaces the
last global average pooling with linear global depth-wise convolution layer as a feature
output layer.

AirFace [150] proposed to increase the MobileFaceNet network width and the depth
and adding attention module. The work also presented a loss function named Li-ArcFace
which is based on ArcFace. Li-ArcFace demonstrates better converging and performance
than ArcFace loss on low dimensional features embedding. The proposed model by AirFac
has a computational cost of 1G FLOPs.

VarGFaceNet [284] deployed variable group convolutional network proposed by VarGNet
[290] to design a compact FR model with 5M trainable parameters and 1G FLOPs. VarGNet
[290] proposed to fix the number of input channels in each group convolution instead of
fixing the total group numbers in an effort to balance the computational intensity inside
the convolutional block. VarGFaceNet adds squeeze and excitation (SE) block on the
VarGNet block, replaces ReLU with PReLU, and uses variable group convolution along
with pointwise convolution as the feature output layer.

ShuffleFaceNet [179] is a compact FR model based on ShuffleNet-V2 [173]. Shuf-
fleNetV2 utilizes a channel shuffle operation proposed by ShuffleNetV1 [291], achieving
an acceptable trade-off between accuracy and computational efficiency. Channel shuffle
operation enables information flowing between different groups of channels by shuffling
a group of g channels of the convolution output (i.e. feature map). Channel shuffle opera-
tion is parameter-free and it reduces the computational cost by a factor of 1/g. However,
it affects to some degree the latency of the model [173]. Similar to MobileFaceNet [49],
ShuffelFaceNet replaces the last global average pooling layer with a global depth-wise
convolution layer and a Rectified Linear Unit (ReLU) with PReLU. ShuffleFaceNet pre-
sented three architectures with different width scales (0.5, 1.5 and 2) containing 0.5, 2.6,
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and 4.5M parameters and FLOPs of 66.9M, 577.5M and 1050M, respectively.

In a recent survey by Martinez-Diaz et al. [180], the computational requirements and
the verification performance of five lightweight model architectures are analyzed and
evaluated. The evaluated models are MobileFaceNet (0.9G FLOPs and 2.0M parameters),
VarGFaceNet [284] (1G FLOPs and 5M parameters), ShuffleFaceNet [179] (577.5M FLOPs
and 2.6M parameters), MobileFaceNetV1 (1.1G FLOPs and 3.4M parameters), and Proxy-
lessFaceNAS (0.9G FLOPs and 3.2M parameters). MobileFaceNetV1, ProxylessFaceNAS
and MobileFaceNet are extended versions of MobileNetV1 [109], ProxylessNAS [41],
and MobileFaceNets [49], respectively. The reported evaluation results by [180] showed
that ShufeFaceNet, VarGFaceNet, MobileFaceNet achieved very close accuracy on the
considered evaluation datasets, while MobileFaceNetV1 and ProxylessFaceNAS achieved
slightly lower accuracy.

Among the previous listed works, MobileFaceNets [49] is the only architecture that
achieved high accuracy with less than 500M FLOPs. With the almost same number of
FLOPs as in MobileFaceNets, MixFaceNets (Section 3.3) outperform MobileFaceNets and
achieved competitive results to other models with fewer FLOPs using extremely efficient
architecture.

All previous works utilized network architecture designed for common computer vision
task. Section 3.4 presents PocketNets, which is one of the earliest efforts to automate the
FR network architecture design.

3.2.2. Learning losses

Face recognition training losses can be categorized into metric-based learning and clas-
sification losses. Metric-based learning losses guide the model to directly optimize the
embedding space by pushing the embeddings of same identity to have smaller distance
than the ones of different identities [50] One of the main challenges for training with
metric-based learning such as Triple [234], n-pair [244], or contrastive [50] losses, is
training the model with a large-scale dataset as the number of possible triplets explodes
with the number of samples. Alternatively, classification-based losses such as softmax loss
can be easily adopted for training a FR model as it does not pose that issue. However, the
softmax loss does not directly optimize the feature embedding needed for face verification.
Liu et al. [160] proposed a large-margin softmax (L-Softmax) by incorporating angular
margin constraints on softmax loss to encourage intra-class compactness and inter-class
separability between learned features. SphereFace [159] extended L-Softmax by normal-
izing the weights of the last full-connected layer and deploying multiplicative angular
penalty margin between the deep features and their corresponding weights. Different from
SphereFace, CosFace [268] proposed additive cosine margin on the cosine angle between
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the deep features and their corresponding weights. CosFace also proposed to fix the norm
of the deep features and their corresponding weights to 1, then scaling the deep feature
norm to a constant s, achieving better performance on mainstream FR benchmarks. Later,
ArcFace [80] proposed additive angular margin by deploying angular penalty margin on
the angle between the deep features and their corresponding weights. The great success
of softmax loss with penalty margin motivated several works to propose a novel variant of
softmax loss [128, 156, 84, 139, 250, 117, 185, 11]. All these solutions achieved notable
accuracies on mainstream benchmarks [114, 236, 274, 183] for FR. Huang et al. [117]
proposed an Adaptive Curriculum Learning loss based on margin-based softmax loss. The
proposed loss targets the easy samples at an early stage of training and the hard ones at
a later stage of training. Jiao et al. [128] proposed Dyn-arcface based on ArcFace loss
[80] by replacing the fixed margin value of ArcFace with an adaptive one. The margin
value of Dyn-arcface is adjusted based on the distance between each class center and
the other class centers. However, this might not reflect the real properties of the class
separability, but rather their separability in the current stage of the model training. Kim
et al. [139] proposed to enrich the feature representation learned by ArcFace loss with
group-aware representations. UniformFace [84] suggested to equalize distances between
all the classes centers by adding a new loss function to SphereFace loss [159]. A recent
work by An et al. [11] presented an efficient distributed sampling algorithm (Partial-FC).
The Partial-FC method is based on randomly sampling a small subset of the complete
training set of classes for the softmax-based loss function. Thus, it enables the training
of the FR model on a massive number of identities. The authors experimentally proved
that training with only 10% of training samples using CosFace [268] and ArcFace[80]
can achieve comparable results on mainstream benchmarks to the case when training
is performed on a complete set of classes. MagFace [185] deployed magnitude-aware
margin on ArcFace loss to enhance intra-class compactness by pulling high-quality samples
close to class centers while pushing low-quality samples away. However, this is based on
the weak assumption of optimal face quality (utility) estimation. Moreover, this might
prevent the model from convergence when the most of training samples in the training
dataset are of low quality.

The main challenge for the majority of the previously listed works is the fine selection of
the ideal margin penalty value. Section 3.5 presents ElasticFace loss that relaxes the fixed
single margin value by deploying a random margin drawn from a normal distribution.
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3.3. Efficient face recognition

This section presents a set of extremely efficient architectures for accurate face verification
and identification, namely the MixFaceNets [23]. The proposed MixFaceNets uses MixNets
[254] as a baseline network structure. Additionally, this work carefully designed tailored
head and embedding settings suitable for FR. The proposed MixFaceNets also extends the
MixConv block with a channel shuffle operation aiming at increasing the discriminative
ability of MixFaceNets. With computation complexity of 451M FLOPs, MixFaceNet-S
and ShuffleMixFaceNet-S achieved 99.60 and 99.56 % accuracies on LFW [114] and
92.23 and 93.60 TAR (at FAR1e-6) on MegaFace [136] which are significantly higher
than the ones achieved by MobileFaceNets [49] with a comparable level of computational
complexity (99.55% accuracy on LFW and 90.16% TAR (at FAR1e-6) on MegaFace). Also,
MixFaceNets achieve comparable results to the SOTA solutions that have computation
complexity of thousands of MFLOPs.

This section presents fist the architecture of MixFaceNets. Later on, the experimental
setup along with evaluation details are introduced. This is followed by a detailed compar-
ative discussion of the achieved results in terms of FR performance and computational
complexity. Finally, a set of concluding remarks are drawn.

3.3.1. Methodology

This section presents the architecture of MixFaceNets designed for accurate face verification.
Figure 3.1 illustrates the architecture of the MixFaceNet, partially inspired by MixNets
[254]. To improve the accuracy and the discriminative ability of MixNet, we (a) implement
different head settings, (b) introduce channel shuffle operation to the MixConv block,
and (c) propose different embedding settings. This section discusses the MixConv as an
inspiration to this work. Then, the detailed architecture of MixFaceNets is presented.

Mixed depthwise convolutional kernels

Depthwise Convolution is one of the most popular building block for mobile models
[109, 233, 173]. Depthwise convolutional applies a single convolution filter over each
channel of input. Thus it reduces the number of parameters and achieves computational
efficiency while maintaining the discriminative ability of the convolution [109]. Mixed
Depthwise Convolutional Kernels (MixConv) [254] extends vanilla depthwise convolution
by using multiple kernel sizes in a single convolution. MixConv depends on mixing up
multiple kernel sizes in a single convolution by splitting convolution input into groups
and applying different kernel sizes to each group. Unlike vanilla depthwise convolution,
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Figure 3.1.: An overview of the proposed MixFaceNet-S network architecture inspired
by MixNets [254]. The input of MixFaceNet-S has size of 112 x 112 x 3 and
the output is a face embedding of dimension 512 — d. b) illustrates the
head setting of MixFaceNet-S. The input on the first convolution (stride=2) is
downsapled then one residual block is added. d) is the MixConv block with
multiple kernel sizes ([(3, 3, ), (5,5), (7, 7)]) and channel shuffle operation. All
MixConv blocks have the same structure as in (c) and the reduced blocks have
the same structure as in (d). €) shows the embedding setting of MixFaceNet-
S, where the channel is expanded from 200 to 1024, and then global depthwise
convolution is applied to obtain a 512 — d embedding. The input and output
size, kernel size, stride, and padding (p) are shown for each convolution layer.

MixConv can capture different patterns from convolution input at various resolutions.
Also, it requires fewer parameters, and it is more computationally efficient than using a
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single kernel, e.g., using multiple kernels of size [(3, 3), (5,5), (7,7)] is more computation
efficient than using a single kernel of size 7 x 7. For example, given a convolution input
of size w x h x ¢ and multiple kernels of size [(3,3), (5,5), (7, 7)], MixConv split the input
into 3 groups, each of them has a dimension of w x h x ¢/3. Then it uses different kernels
for each of these groups. Finally, the three outputs are concatenated to produce the
final convolution output. An example of MixConv and downsample-MicConv blocks are
shown as part of Figure 3.1. Unlike manually designed mobile models [173, 179, 233],
MixConv utilized neural architecture search to develop new series of MixConv-based
networks, namely MixNets (MixNet-S, MixNet-M, and MixNet-L). MixNet-S and MixNet-M
are developed using neural architecture search, while MixNet-L is obtained by scaling up
the number of channels in each block by a factor of 1.3. For details about the network
structure and search space, one can refer to the original work [254].

MixFaceNet architecture

This work deploys MixNets [254] as a baseline network structure to develop the proposed
MixFaceNets. Figure 3.1 illustrates the network architecture for MixFaceNet-S. For the
network head, fast down-sampling in the first 3 x 3 convolution (stride=2) followed by
batch normalization [121] and PReLU non-linearity [106] is applied. Then, one residual
block is used as shown in Figure 3.1.b. MixFaceNet-S network uses the same global
structure as MixNet-S. However, different from MixNet-S, MixFaceNet-S did not apply
down-sampling at the first convolution after the head stage to reserve as much information
as possible at the earliest stage of the network. The presented architecture mixes up both
channels and kernels to increase the discriminative ability of MixFaceNet and improve the
model accuracy. This has been achieved by introducing shuffle operation to the MixConv
block. The channel shuffle operation is proposed by [179] to enable information flowing
between different groups of channels. A channel shuffle operation with a group value of 2
is applied after each MixConv block. Thus, MixFaceNet can capture high and low-resolution
patterns at different scales, and it also enables information communication between various
groups of channels. Figures 3.1.c and 3.1.d show the detailed structure of MixConv and
downsampling MixConv blocks with the channel shuffle operation. All MiXConv blocks
uses swish as an activation function [223] followed by batch normalization. MixConv
includes also squeeze-and-excitation (SEBlock) [110] at the end of each block. Finally,
to obtain the feature embedding of the input face image, the last global average pooling
layer is replaced with global depth-wise convolution, as presented in the next section. This
work proposes 3 network architectures, MixFaceNet-XS, MixFaceNet-S, and MixFaceNet-
M. MixFaceNet-S network architecture is illustrated in Figure 3.1.a. MixFaceNet-XS is
obtained by scaling up MixFaceNet-S with a depth multiplier of 0.5. MixFaceNet-M has
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the same global network architecture as MixNet-M [254] with the same strategies applied
to MixFaceNet-S, i.e., head setting and embedding settings. All proposed MixFaceNets are
trained and evaluated with/without channel shuffle operation. The models trained with
channel shuffle operation will be noted as ShuffleMixFaceNet-XS, ShuffleMixFaceNet-S,
and ShuffleMixFaceNet-M.

Embedding setting

MixNets use global average pooling before the classification layer as a feature output
layer. This is common choice for most of the classical compact deep learning models
[109, 233, 173]. However, previous works in [80, 49] observed that CNNs with a fully
connected layer (FC) or global depthwise convolution are more accurate than the ones
with global average pooling for FR. A fully connected layer has been used in many of the
recent deep FR models to obtain face representations [80]. However, using FC on top of
the last convolutional layer will add a large number of parameters to the model. And thus,
it extremely increases the memory footprint and reduces the throughput. For example,
giving the last convolutional layer of CNN with a kernel size of 7 x 7 (as in MixNet)
and output feature maps of size 200, the output of this layer, in this case, has a size of
7 x 7 x 200. Using FC of size 512 — d on top of the previous layer will add additional 5M
parameters to the network (7 x 7 x 200 x 512). Even for small FC, 128 — d, the number of
additional parameters caused by FC will be 1.2M. Thus, using FC is not the optimal choice
for an efficient FR model. Using global depthwise convolution is a common choice for
most of the previous works proposing efficient FR models as it contains fewer parameters
than FC, and it can lead to higher verification performance than using global average
pooling [49]. Therefore, the global average pooling is replaced with global depthwise
convolution. Specifically, we first add 1 x 1 convolutional layer (Conv1) with stride=1 and
zero paddings followed by batch normalization [121] and PReLU none-linearity [106].
In Convl, the channel is expanded from 200 to 1024. Then, 7 x 7 convolution layer
(stride=1, padding=0 and grouping=1024) followed by batch normalization is used.
Finally, 1 x 1 convolution with 512 output channels followed by batch normalization is
added to obtain the final feature embedding which is of size 512 — d, as shown in Figure
3.1.e.

3.3.2. Experimental setup

Dataset: The MS1MV2 dataset [80] is used to train MixFaceNet models. The MS1MV2
is a refined version of the MS-Celeb-1M [103] by [80] and it contains 5.8M images of 85K
identities. The Multi-task Cascaded Convolutional Networks (MTCNN) solution [289] is
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Method FLOPs (M) | # Params. (M) | LFW (%) | AgeDB-30 (%)

ArcFace (LResNet100E-IR) [80] 24211 65.2 99.83 98.15
AirFace [150] 1000 - 99.27 -

ShuffleFaceNet 2% [179] 1050 4.5 99.62 97.28
ShuffleFaceNet 1.5x [179] 577.5 2.6 99.67 97.32
VarGFaceNet [284] 1022 5 99.68 98.10
MobileFaceNet [180] 933 2.0 99.7 97.6
MobileFaceNetV1 [180] 1100 3.4 99.4 96.4
ProxylessFaceNAS [180] 900 3.2 99.2 94.4
MixFaceNet-M (ours) 626.1 3.95 99.68 97.05
ShuffleMixFaceNet-M (ours) 626.1 3.95 99.60 96.98
MobileFaceNets [49] 439.8 0.99 99.55 96.07
ShuffleFaceNet 0.5x [179] 66.9 0.5 99.23 93.22
MixFaceNet-S (ours) 451.7 3.07 99.60 96.63
ShuffleMixFaceNet-S (ours) 451.7 3.07 99.58 97.05
MixFaceNet-XS (ours) 161.9 1.04 99.60 95.85
ShuffleMixFaceNet-XS (ours) 161.9 1.04 99.53 95.62

Table 3.1.: MixFaceNets verification accuracies on LFW and AgeDB-30 datasets. The first
row of the table shows the achieved result by the current SOTA ResNet100
models. The table is divided into two parts. The first part of the table shows
the results achieved by models with computational complexity between 500
and 1000M FLOPs. The second part of the table shows the achieved by models
that have computational complexity less than 500M FLOPs. The number of
decimal points is reported as in the related works.

used to detect and align face images. The MixFaceNet models process an aligned and
cropped face image of the size 112 x 112 x 3 to produce 512 — d feature embeddings.
MixFaceNets are evaluated on the widely used LFW [114] and on the AgeDB-30 [192]
datasets. Also,the performance of the MixFaceNets is reported on large scale evaluation
datasets including MegaFace [136], IJB-B [274] and 1JB-C [183].

MixFaceNets training setup: The proposed models in this work are implemented using
Pytorch. All models are trained using ArcFace loss [80]. The margin value of ArcFace
loss is set to 0.5 and the feature scale to 64. The batch size is set to 512 and trained
MixFaceNets using distributed Partial-FC algorithm [11] on one machine with 4 Nvidia
GeForce RTX 6000 GPUs to enable faster training on a single node. All models are trained
with Stochastic Gradient Descent (SGD) optimizer with an initial learning rate of 1le-1.
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The momentum is set to 0.9 and the weight decay to 5e-4. The learning rate is divided by
10 at 80k, 140k, 210k, and 280k training iterations. During the training, we evaluate the
model on LFW and AgeDB after each 5650 training iterations. The training is stopped
after 300k iterations. During the testing phase, the feature embedding is obtained from
the last layer of the size 512 — d. The Euclidean distance between feature vectors is used
in all experiments for comparison.

MegaFace MegaFace (R) 1JB

Method MELOPs | Params (M) |-t (Ge map o raRio 6 | RankT (%) | TAR at FARTe 6 | BB | UBC
ArcFace (LResNet100E-IR) [80] | 24211 65.2 81.03 96.98 98.35 98.48 94.2 95.6

AirFace [150] 1000 - 80.80 96.52 98.04 97.93 - -
MobileFaceNet [180] 933 2.0 79.3 95.2 95.8 96.8 92.8 94.7
ShuffleFaceNet [180, 179] 577.5 2.6 77.4 93.0 94.1 94.6 92.3 94.3
MobileFaceNetV1 [180] 1100 3.4 76.0 91.3 91.7 93.0 92.0 93.9
VarGFaceNet [180, 284] 1022 5.0 78.20 93.9 94.9 95.6 92.9 94.7
ProxylessFaceNAS [180] 900 3.2 69.7 82.8 82.1 84.8 87.1 89.7
MixFaceNet-M (ours) 626.1 3.95 78.2 94.26 94.95 95.83 91.55 | 93.42
ShuffleMixFaceNet-M (ours) 626.1 3.95 78.13 94.24 94.64 95.22 91.47 | 93.5

MobileFaceNets [49] 439.8 0.99 - 90.16 - 92.59 - -
MixFaceNet-S (ours) 451.7 3.07 76.49 92.23 92.67 93.79 90.17 | 92.30
ShuffleMixFaceNet-S (ours) 451.7 3.07 77.41 93.60 94.07 95.19 90.94 | 93.08
MixFaceNet-XS 161.9 1.04 74.18 89.40 89.35 91.04 88.48 | 90.73
ShuffleMixFaceNet-XS (ours) 161.9 1.04 73.85 89.24 88.823 91.03 87.86 | 90.43

Table 3.2.: The achieved results on large-scale evaluation datasets- MegaFace, 1JB-B,
and IJB-C. The results on MegaFace and MegaFace (R) [80] using FaceScrube
as probe set are reported as face identification (Rank-1 %) and verification
(TAR at FAR1e-6) for different lightweight models. The last two columns
of the table show 1:1 verification TAR (at FAR=1e-4) on IJB-B and IJB-C. The
first row reports the evaluation result using the SOTA FR model- ArcFace
(LResNet100E-IR), which contains 65.2M parameters and 24211M FLOPs. The
rest of the table is organized into two parts: models with computational
complexity between 500 and 1000M FLOPs and models with less than 500M
FLOPs. The number of decimal points is reported as in the related works.
Considering the computation complexity, MixFaceNet models are evaluated
as ones of top-ranked models.

3.3.3. Results

This section presents the achieved result by the MixFaceNets on different benchmarks. We
acknowledge the evaluation metrics in the ISO/IEC 19795-1 [178] standard. However,
for the sake of comparability and reproducibility, we follow the evaluation metrics used in
the utilized benchmarks and the previous works reporting on them.
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Result on LFW and AgeDB-30

LFW [114] is one of the widely used datasets for unconstrained face verification. The
dataset contains 13,233 images of 5749 different identities. The result on LFW is reported
as verification accuracy (as defined in [114]) following the unrestricted with labeled
outside data protocol using the standard 6000 comparison pairs defined in [114]. AgeDB
[192] is common used in-the-wild dataset for evaluating age-invariant face verification.
It contains 16,488 images of 568 different identities. The performance as verification
accuracy is reported for AgeDB-30 (years gap 30) as it is the most challenging subset of
AgeDB. Also, it is the commonly reported set of AgeDB by the recent SOTA FR models.
Similar to the LFW, MixFaceNets is evaluated on AgeDB-30 following the standard protocol
provided by AgeDB [192]. Table 3.1 shows the achieved result on LFW and AgeDB-30.
The result is reported first for one of the top-ranked FR models, ArcFace (LResNet100E-IR)
[80], to give an indication of the current SOTA performance on LFW (99.83 %) and
AgeDB-30(98.15%). Although, the ArcFace (LResNet100E-IR) model [80] is far from
being considered an efficient model, in comparison to lightweight models, with 24211M
FLOPs and 65.2m parameters. Then, the second section of Table 3.1 presents the achieved
result by the recent lightweight models that have computational complexity between 500
and 1000M FLOPs. The best-reported result on LFW (99.70% accuracy) is achieved by the
MobileFaceNet [180] (933M FLOPs). MixFaceNet-M achieved a competitive result on LFW
(99.68% accuracy) using 38% fewer FLOPs (626M). A similar result has been achieved on
AgeDB-30. MixFaceNets achieved very close accuracy to the current SOTA models using a
more efficient model architecture with almost the same number of parameters. Among all
models that have computational complexity less than 500M FLOPs, MixFaseNet models
outperform all listed models, including MobileFaceNets [49] on LFW and AgeDB-30.
Similar conclusion can be seen in the Figure 3.2a and 3.2b. It can be clearly noticed that
MixFaceNets achieved the highest accuracies on LFW and AgeDB-30 when considering
the same level of computational complexity.

Result on IJB-B and IJB-C

The 1JB-B face dataset consists of 1,845 subjects of 21,798 still images and 55,026 frames
from 7,011 videos [274]. The 1JB-B verification protocol provides a list of 10,270 genuine
comparisons and 8M impostor comparisons. The IJB-C face dataset is an extension of IJB-B
by increasing the database variability and size with additional 1,661 new subjects [183].
The 1JB-C consists of 31,334 still images and 117,542 frames from 11,779 videos of 3531
subjects. The IJB-C verification protocol provides a list of 19,557 genuine comparisons
and 15,638,932 impostor comparisons. The result on IJB-C and IJB-B is reported in terms
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of TAR at FAR (as defined in [274]) equal to 1e-4 to provide a comparable result with the
previous works evaluated on these datasets. The achieved verification performances on
IJB-B and IJB-C by MixFaceNet models are reported as part of the Table 3.2. The proposed
MixFaceNet-M and ShuffleMixFaceNet-M models achieved close results to the top-ranked
models using significantly fewer FLOPs.

Result on MegaFace

The evaluation protocol of MegaFace includes gallery (1m images from Flickr) and probe
(FaceScrub and FGNe) sets. In this work, MegaFace [136] is used as a gallery set, and
FaceScrub [199] as the probe set to provide a comparable result with the previous works
evaluated on this dataset. The MegaFace [136] contains 1m images of 690K different
identities and the FaceScrub contains 100K images of 530 identities [199]. The result on
MegaFace is reported as identification (Rank-1) and verification (TAR at FAR=1e-6) to be
compatible with the previous works evaluated on this dataset [180]. Also, the result on the
refined version of the MegaFace is reported [80]. The face verification and identification
results on the MegaFace and the refined version of MegaFace (noted as MegaFace (R))
are presented in Table 3.2. For all evaluated models that have computational complexity
between 500 and 1000M FLOPs, the proposed MixFaceNet-M outperformed ProxylessFace-
NAS [180], VarGFaceNet [180], MobileFaceNetV1 [180], and ShuffleFaceNet [180, 179].
And it achieved very close verification, and identification results to the top-ranked models-
AirFace [150], and MobileFaceNet [180] using less than half the number of FLOPs. Also,
when the considered computational cost is less than 500M FLOPs, in the third section
of Table 3.2, ShuffleMixFaceNet-S achieved the highest verification and identification
performances.

Performance vs. Computational complexity

To present the achieved results in terms of the trade-off between the verification per-
formance and the computation complexity (represented by the number of FLOPs), the
number of FLOPs vs. the verification performance of the proposed MixFaceNets and
the SOTA solutions are plotted. The plots for the comparisons on the LFW, AgeDB-30,
MegaFace, 1JB-B, IJB-C and MegaFace(R) benchmarks are presented in Figures 3.2 (a),
(b), (© ,(d), (e) and (f). Each of the reported models is presented by an indicator on the
plot, where an ideal model will tend to be placed on the top left corner (high performance
and low complexity). In most ranges of the number of FLOPs and on the six benchmarks,
different versions of MixFaceNets achieved the highest verification performance. Similar
conclusions can be made by analyzing the presented values in Table 3.2.
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3.3.4. Discussion

This section presented accurate and extremely efficient FR models, MixFaceNets. Extensive
experiments on popular, publicly available datasets, including LFW, AgeDB-30, MegaFace,
IJB-B, and IJB-C, have been conducted in this work. The overall evaluation results
demonstrate the effectiveness of the proposed MixFaceNets for applications associated
with low computational complexity requirements. MixFaceNet-S and ShuffleMixFaceNet-
S outperformed MobileFaceNets [49] under the same level of computation complexity
(<500M FLOPs). Also, MixFaceNet-M is shown to be one of the top-ranked performing
models while using significantly fewer FLOPs than the SOTA models.
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Figure 3.2.: FLOPs vs. performance on LFW (accuracy), AgeDB-30 (accuracy), MegaFace
(TAR at FARTe-6), IJB-B (TAR at FARTe-4), IJB-C (TAR at FAR1e-4) and refined
version of MegaFace, noted as MegaFace (R), (TAR at FAR1e-6). The proposed
MixFaceNets are highlighted with triangle marker and red edge color.
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3.4. Compact face recognition through AutoML

This work successfully aims at intelligently designing and training a family of lightweight
FR models, namely the PocketNets, that offer the SOTA trade-off between model com-
pactness and performance [38]. To achieve that, we focus on two aspects, the first is
the use of a NAS algorithm to learn an FR-specific lightweight network architecture, and
the second is to design a novel KD paradigm to relax training difficulties raised by the
substantial discrepancy between teacher and student models. We use CASIA-WebFace
(500K images) [286] to learn the optimal architecture using Differential Architecture
Search (DARTS) [155]. We additionally propose a novel training paradigm based on KD,
namely multi-step KD, to enable transferring the knowledge of the teacher network at
different stages of the training process, and thus enhance the verification performance
of the compact student model. We prove our face-specific NAS-based architecture and
the proposed multi-step KD in two detailed ablation studies. First, we experimentally
evaluate the impact of the NAS training dataset source (face vs. general image classes) on
the FR performance of the learned architecture. Second, we experimentally proved and
analyzed the competence of our proposed multi-step KD on improving FR performance in
comparison to the baseline KD solutions, as well as training without KD. To experimentally
demonstrate the competence of our proposed PocketNets, we report their FR performance
on nine different benchmarks, in comparison to the recent SOTA compact models, in terms
of FR performance and model compactness. In a detailed comparison, different versions
of our PocketNets scored SOTA performances in both, under 1M parameters and under
2M parameters, FR model categories. Moreover, PocketNets achieved very competitive
results to much larger FR models, and even outperformed them in many cases.

3.4.1. Methodology

This section presents the methodology leading to our proposed PocketNets solution, both
the architecture design and the training paradigm. We first present the NAS process
leading to the architecture of our proposed PocketNets. Then, we present our proposed
multi-step knowledge distillation training paradigm.

Towards PocketNet architecture

Neural architecture search (NAS) automates the network design by learning the network
architecture that achieves the best performance for a specific task. NAS has proved to be a
robust method in discovering and optimizing neural network architecture. Previous works
[41, 155] demonstrate that the discovered network architectures by NAS do outperform
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handcraft-designed network architectures for different computer vision tasks. For our
PocketNets, we opt to use DARTS algorithm [155] to search for two types of building
blocks (cell) i.e. normal cell and reduce cell, which can be stacked to form the final
architecture. Our choice for DARTS is based on: a) it achieved a competitive result to the
SOTA NAS solutions on different image classification tasks [155], and b) the search time
for DARTS is feasible in comparison to other search methods [298, 299] and thus, it can
be adapted to a large-scale dataset. Unlike common NAS algorithms that are applied on a
small image size of a small dataset, our NAS will be learned on a large-scale face image
dataset with relatively high resolution. In the following, we briefly present the DARTS
algorithm. Our goal here is not only to build an optimal architecture, but also to analyze
the FR performance implications when optimizing such an architecture on a different
learning task, as will be clarified later in this work.

DARTS aims at learning two types of cells: normal cell and reduce cell. Each cell is a
direct acyclic graph (DAG) that consist of N nodes. Each node z; is a latent representation,
where i € [0, N]. The operation space O is a set of candidate operation e.g. convolutional
layer, skip-connection, pooling layer etc. Each edge (i,j) between node z; and x; is
a candidate operation o(*7) € O that applies a particular transformation on z;. Each
candidate operation o is weighted by the architecture parameter a(, j). An intermediate
node x; is calculated as z; = >, . ;ci0.n] ol") (x;). Each cell (DAG) has two input nodes
and a single output node. The two input nodes are the output of the previous two cells of
the network. The output of the last node xz_; i.e. the cell output, is a concatenation of
all nodes in the DAG excluding the input nodes. The candidate operation applied to z(?)
is represented as a function o(.). The choice of a candidate operation is formulated by
applying a Softmax function over the weights of all possible operations O:

(%,9)
) () — exp(ao ) (3.1)
) T) = o(x), .
(z) ;20,60 exp(@,(i.j)) (=)

where agf’j ) is a network architecture weight parameter of a candidate operation o. There-
fore, the architecture search becomes a task of learning a set of parameters o = {a("7)}.
The learning procedure of DARTS is based on jointly learning the network architec-
ture represented by « and the network weights w. Given L4, and L,,; as the train
and validation loss, respectively. The learning objective of DARTS is to find the opti-
mal architecture represented by o* that minimizes the validation loss L, (w*, o*) with
w* = arg miny, Lyyqin (w, a*) as the best performing network weights on the training set.
The architecture parameters are learned using a bi-level optimization problem with « as
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the upper-level and w the lower level variable:

min L,y (w* (@), «)
° (3.2)
s.taw*(a) = arg min Leyqin (w, «).

The final discrete architecture is derived by setting o("/) = argmaxoeoa((f’j ). Given an
input of the shape w x h x ¢, the output of the reduction cell is w/2 x h/2 x 2¢ and the
output of the normal cell is w x h x ¢. The first two nodes of cell k represent the output
of the two previous cells £ — 1 and k£ — 2.

Search space: PocketNet search space includes the following operations: 1) 3 x 3, 5 x 5,
7 x 7 depthwise separable convolutions [109] with kernel size of {3 x 3,5 x 5,7 x 7},
padding of {1, 2, 3} to preserve the spatial resolution, and they have a stride of one (if
applicable). 2) 1 x 1 Convy, a convolution layer with kernel size of 1 x 1 and zero padding.
3) max pooling layer with kernel size of 3 x 3. 4) average pooling layer with a kernel
size of 3 x 3. 5) identity. 6) zero. A zero operation indicates that there is no connection
between nodes. The max and average pooling layers are followed by batch noramlization
(BN) [121]. We use Parametric Rectified Linear Unit (PReLU) [106] as the non-linearity
in all convolutional operation.

PocketNet architecture: We followed [155] by setting the number of nodes in all cells
to N = 7. We apply fast down-sampling in the beginning of the network using 3 x 3
convolution (stride=2) followed by BN [121]. To obtain the feature embedding of the
input face image, we use global depthwise convolution [109] rather than using average
pooling or fully connected layer directly before the classification layer. Our choice of using
the global depthwise convolution for the embedding stage is based on: a) it contains fewer
parameters than a fully connected layer, b) convolutional neural network (CNN) with
global depth-wise convolution is more accurate than the one with average pooling for FR,
as reported in previous works [49, 23]. The rest of the network architecture is constructed
by stacking M normal cells and 3 reduction cells at 1/3 and 2/3 of the network depth,
and after the last normal cell. We trained the NAS to optimize av,prma; aNd Qeguction Used
to construct the normal and reduction cells, respectively.

We trained the search algorithm to learn from the CASIA-WebFace dataset [286]. Train-
ing details are presented later in Section 3.4.2. The best discovered normal and re-
duction cells by DARTS are shown in Figures 3.3a and 3.3b, respectively. In this work,
we present four architectures based on the learned cells: PocketNetS-128, PocketNetS-
256, PocketNetM-128, and PocketNetM-256. The architecture of PocketNetS-128 and
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Operation Output size R | Param.
Conv2d(k=3,s=2,p=1),BN [64 x 56 x 56] 1| 1,856
Normal-Cell 1-6 [64 x 56 x 56] 6 | 33,792
Reduction-Cell 1 [128 x28x28] | 1 | 10,688
Normal-Cell 7-11 [128 x28 x28] | 5 | 92,608
Reduction-Cell 2 [256x14x14] | 1 | 35,712
Normal-Cell 12-15 [256x 14 x14] | 4 | 60,493
Reduction-Cell 3 [512x 7 x 7] 1 | 128,768
PReLU, Conv2d(k=1), BN, PRelLU | [512x 7 x 7] 1 | 264,192
Conv2d(k=7,g=512), BN [512x 1x 1] 126,112
Conv2d(k=1), BN [128x1x1] 1 | 65,792

Table 3.3.: Architecture of PocketNetS-128. Normal and reduction cells are the cells
learned by DARTS on CASIA-WebFace. The table shows the number of pa-
rameters for each operation. If the operation contains a set of sub-operations
(e.g. Conv2d, BN), the number of parameters is presented as the sum of pa-
rameters for all these sub-operations and multiplied by R. Column R indicates
how many times the operation is repeated. The k of the convolution layer
(Conv2d) refers to the kernel size, s is the stride, p is the padding, and g is the
group parameter.

PocketNetS-256 (PocketNet small) are identical. Each of them contains 18 cells i.e 15
normal cells and 3 reduction cells. The number of feature maps (out channel) of the
first layer is 64. The only difference is the embedding size, where the embedding in
PocketNetS-128 is of size 128-D and in PocketNetS-256 is of size 256-D. Table 3.3 presents
the overall architecture of PocketNetS-128. PocketNetS-128 contains in total 925,632
trainable parameters and setting the embedding size to 256 increases the number of
parameters in PocketNetS-256 to 991,424. All networks use floating-point 32 and the
required memory footprints are 3.7 and 3.9 MB by PocketNetS-128 and PocketNetS-256,
respectively. The main motivation for using different embedding sizes is to evaluate the
effect of embedding size on the network performance and memory footprint. We also
investigate a wider architecture of PocketNet by doubling the number of feature maps of
the network and reducing the number of cells from 18 to 9. This result in two networks:
PocketNetM-128 and PocketNetM-256 (PocketNet medium) with embedding size of 128-D
and 256-D, respectively. The architecture of PocketNetM-128 is presented in Table 3.4.
PocketNetM-128 contains 1,686,656 parameters and PocketNetM-256 contains 1,752,448
parameters.
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Operation Output size R | Param
Conv2d(k=3,s=2,p=1),BN [128x56x56] | 1 | 3712
Normal-Cell1-6 [128 x56x56] | 3 | 56,832
Reduction-Cell 1 [256x 28 x28] | 1 | 35,712
Normal-Cell 7-11 [256x 28 x28] | 2 | 128,896
Reduction-Cell 2 [512x14x14] | 1 | 128,768
Normal-Cell 12-15 [512x14x14] | 1 | 227,072
Reduction-Cell 3 [1024 x 7 x 7] 1 | 486,912
PReLU, Conv2d(k=1), BN, PRelLU | [512x 7 x 7] 1 | 526,848
Conv2d(k=7,g=512), BN [512x1x 1] 126,112
Conv2d(k=1), BN [128x1x1] 1 | 65,792

Table 3.4.: Architecture of PocketNetM-128. Normal and reduction cells are the cells
learned by DARTS on CASIA-WebFace. The table shows the number of pa-
rameters for each operation. If the operation contains a set of sub-operations
(e.g. Conv2d, BN), the number of parameters is presented as the sum of pa-
rameters for all these sub-operations and multiplied by R. Column R indicates
how many times the operation is repeated. The k of the convolution layer
(Conv2d) refers to the kernel size, s is the stride, p is the padding, and g is the
group parameter.

PocketNet training paradigm

Towards the PocketNet training paradigm that incorporates our proposed multi-Step
KD, we start by formulating the margin-based Softmax loss and knowledge distillation
concept. Margin-Based Softmax loss has been widely deployed in recent FR solutions
[80, 268, 185]. It achieved SOTA accuracy on major benchmarks [80, 180, 185]. In this
work, we utilize the ArcFace loss [80] to train our PocketNets. ArcFace loss extends over
the softmax loss by manipulating the decision boundary between the classes by deploying
an additive angular margin penalty on the angle between the weights of the last fully
connected layer and the feature representation. Formally, ArcFace loss is defined as follow:

1
LArc = M Z —lOg

C
ieM es(cos(0y, +m)) + Z es(cos(6;))
J=L37yi

es(cos(eyi +m))

; (3.3)

where 0,; is the angle between the feature f; and i — th class center, y; € [1,C] (Cis
the number of classes), M is batch size, m is the margin penalty value and s is scale
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parameter.

Knowledge distillation (KD): KD is a technique to improve the performance and gen-
eralizability of smaller models by transferring the knowledge learned by a cumbersome
model (teacher) to a single small model (student) [108]. The idea is to guide the student
model to learn the relationship between different classes discovered by the teacher model
that contains more complex information beyond the ground truth labels [108]. The
KD is originally proposed to improve the performance of a small backbone trained with
SoftMax loss for a classification task [108]. However, the learning objective of the FR
model is to optimize feature representations needed for face verification. In this work, as
a step towards our proposed multi-step KD, we train our PocketNet model to learn feature
representations that are similar to the ones learned by the teacher model. We achieve
that by introducing an additional loss function (Mean squared error (MSE)) to ArcFace
loss operated on the embedding layer. Formally,the [,,,. loss is defined as follows:

1 1 D S T 2
bmse = 77 ;\; 1- =3P (cbt (z)p — (x)h) , (3.4)

where ®7 and ®} are the feature representations obtained from the last fully connected
layer of student and teacher models, respectively, and D is the size of the feature repre-
sentation. The final training loss function is defined as follow:

lmse = lArc + )\lmsev (35)

where ) is a weight parameter. The feature representations learned by the ArcFace loss are
normalized. Thus, the value range of [,,,s. is much small i.e. < 0.007. This value is very
small in comparison to the ArcFace loss value (around 60 at the beginning of the training
phase.) We set the X value to 100. Thus, the [,,,. contributes to the model training.

Multi-Step knowledge distillation: Previous works [187, 284] observed that transform-
ing the knowledge from a very deep teacher model to a small student model is difficult
when the gap in terms of network size between the teacher and the student model is
large.

In this work, we present a novel concept by relaxing this difficulty of a substantial
discrepancy between teacher model and student by synchronizing the student and the
teacher model during the training, without the need for transforming the knowledge to
intermediate networks [187, 284]. Our solution is designed to transfer the knowledge
learned by a teacher model in a step-wise manner after each = number of iterations, i.e.
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multi-step KD. The key idea is that the information learned by a teacher at different steps
of the training phase is different from the one learned when the teacher is fully converged.
Thus, transferring the knowledge learned by a teacher at an early stage of training is
easier for a student to learn. Thus, at a later point when the student is converged to some
degree, it can learn more complex patterns from the teacher. To achieve that, we first
train the teacher for I iterations. This teacher model is noted as 7'1. Then, we train the
student model for the same number of iteration / with the assistance of the teacher 7'1. In
this case, ®’ (Equation 3.4) is T'1 obtained after the first I iterations. We choose to train
the teacher for one epoch each time. This will give the teacher a chance to learn from the
whole training dataset. We repeated these two steps until the teacher and student models
are converged. To simplify the implementation, we train first the teacher model until it
is converged and save the model weights after each epoch. Then, we train the student
model with the assistance of the teacher models. During the student training, we load the
teacher weights that correspond to the same training epoch.

3.4.2. Experimental setups
Neural architecture search

We train the DARTS to learn the normal and reduction cells on the CASIA-Webface dataset
[286]. CASIA-Webface consists of 494,141 face images from 10,757 different identities.
We split the dataset equally into two parts used for training and validation. The images
are pre-aligned and cropped to 120 x 120 for the training subset and to 112 x 112 for
the validation subset using the Multi-task Cascaded Convolutional Networks (MTCNN)
solution [289]. During the training phase, the training images are randomly cropped to
have a fixed size of 112 x 112 and then randomly horizontally flipped to make the search
more robust, following common practice in FR research [80, 185]. All the training and
validation images are normalized to have pixel values between -1 and 1. We followed
DARTS training setup [155] by using Stochastic Gradient Descent with the momentum
of 0.9 and weight decay of 3e — 4 to optimize the DARTS weight w. We utilize a cosine
annealing strategy [165] to decrease the learning rate after each epoch with a minimum
learning rate of 0.004. We set the batch size to 128 and the initial learning rate to 0.1.
For o optimization, we use similar setup to DARTS [155] by using Adam optimizer with
momentum 5 = (0.5,0.999) and weight decay of 1e — 3. We set the initial learning
rate for Adam optimizer to 0.0012. The initial channel size is set to 64 and the number
of nodes in each cell is set to 8. We use a batch size of 128 and train DARTS for 50
epochs. These configurations are chosen to enable DARTS training on available GPUs. All
training codes are implemented in Pytorch [210] and trained on 6 NVIDIA GeForce RTX
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2080 Ti (11GB) GPUs. The training lasted 2274 hours. We additionally conducted an
additional experiment on CIFAR-10 [143] as a NAS domain ablation study for this work.
The CIFAR-10 is a commonly used dataset for object detection and image classification
tasks consisting of 60000 images (of the size 32 x 32) of 10 classes. We split CIFAR-10
equally into two parts: training and validation subsets. We run the DARTS search using
the exact configurations described previously in this section to learn on the CIFAR-10
dataset. The training lasted around 30 hours on 6 NVIDIA GeForce RTX 2080 Ti (11GB)
GPUs.

Face Recognition models and training

Based on the normal and reduction cells learned by DARTS on CASIA-WebFace [286], we
trained three instances of PocketNetS-128. The first instance (noted as PocketNetS-128
(no KD)) is only trained with ArcFace loss described in Section 3.4.1. The second instance
(noted as PocketNetS-128 (KD)) is trained with ArcFace loss with KD. The third instance
is trained with ArcFace loss along with our proposed multi-step KD (noted as PocketNetS-
128 (multi-step KD)). These three instances are used in our ablation study towards the
proposed multi-step KD. On the other hand, based on the normal and reduction cells
learned on CIFAR-10 [143] (object classification domain), we train another model based
on these cells, noted as DartFaceNet-128 (no KD). This training is used as an ablation
study to analyze the effect of training dataset sources on the NAS algorithm by comparing
its FR performance to its direct counterpart PocketNetS-128 (no KD).

Additionally, as detailed earlier, we trained four instances of PocketNets: PocketNetS-
128, PocketNetS-256, PocketNetM-128, and PocketNetM-256 to compare our proposed
PocketNets with the recent compact FR models proposed in the literature on different
levels of compactness. All these models are trained with ArcFace loss along with our
proposed multi-step KD. To enable KD multi-step solutions, we trained two instances of
the ResNet-100 model with embedding sizes of 128 — D and 256 — D. The ResNet-100(128)
is used as a teacher for PocketNetS-128 and PocketNetM-128, while ResNet-100(256) is
used as a teacher for PocketNetS-256 and PocketNetM-256.

We use the MS1MV2 dataset [80] to train all the investigated FR models in this work.
The MS1MV?2 is a refined version [80] of the MS-Celeb-1M [103] containing 5.8M images
of 85K identities. We follow the common setting [80] to set the scale parameter s to 64
and margin value of ArcFace loss to 0.5. We set the mini-batch size to 512 and train our
models on a single Linux machine (Ubuntu 20.04.2 LTS) with Intel(R) Xeon(R) Gold
5218 CPU 2.30GHz, 512 G RAM, and 4 Nvidia GeForce RTX 6000 GPUs. The proposed
models in this work are implemented using Pytorch [210]. All FR models are trained with
Stochastic Gradient Descent (SGD) optimizer with an initial learning rate of 1e-1. We set
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the momentum to 0.9 and the weight decay to 5e-4. The learning rate is divided by 10 at
80k, 140k, 210k, and 280k training iterations. The total number of training iteration is
295K. During the training, we use random horizontal flipping with a probability of 0.5
for data augmentation. The networks are trained (and evaluated) on images of the size
112 x 112 x 3, with pixel values between -1 and 1. These images are aligned and cropped
using the Multi-task Cascaded Convolutional Networks (MTCNN) [289], following [80].

Evaluation benchmarks and metrics

We evaluate our PocketNets and build a comparison to SOTA based on 9 benchmarks
detailed in this section. The considered evaluation benchmarks are LFW [114], CA-
LFW [296], CP-LFW [295], CFP-FP [236], AgeDB-30 [192], 1JB-B [274], IJB-C [183],
MegaFace [136], and MegaFace (R) [80, 136].

We acknowledge the evaluation metrics in the ISO/IEC 19795-1 [178] standard, how-
ever, for comparability, we follow the evaluation metrics defined in the utilized benchmarks
as follows: LFW (accuracy), CA-LFW (accuracy), CP-LFW (accuracy), CFP-FP (accuracy),
AgeDB-30 (accuracy), MegaFace (Rank-1 identification rate and TAR at FAR) of 1e-6),
IJB-B (TAR at FAR1e-4), IJB-C (TAR at FAR1e-4) and MegaFace (R), (Rank-1 identification
rate and TAR at FAR1e-6). A detailed description of the benchmarks is provided in the
supplementary material.

3.4.3. Ablation study

This section presents two ablation studies addressing the two main aspects of our design
of the PocketNets solution.

Ablation study on NAS training dataset source: We trained two different instances of
DARTS search algorithm to learn from CASIA-WebFace [286] (face images) and CIFAR-10
[143] (animals, cars, etc.), respectively. Figure 3.3 presents the normal and reduction
cells learned on CASIA-WebFace and CIFAR-10, used to build our PocketNetS-128 (no KD)
and the DartFaceNetS-129 (no KD), respectively. These networks share the same structure
including the embedding stage and the number of cells. These networks are trained
using the exact training setup described in Section 3.4.2. DartFaceNetS-128 (no KD)
contains 885,184 parameters with 620.9286 MFLOPs. PocketNetS-128 (no KD) contains
925,632 parameters with 587.11 MFLOPs. Table 3.5 presents the achieved performance
by PocketNetS-128 (no KD) and DartFaceNetS-128 (no KD) on nine different benchmarks.
It can be clearly noticed that PocketNetS-128 (no KD) outperformed DartFaceNetS-128
(no KD) with an obvious margin on all considered benchmarks. The demonstrates that
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utilizing neural network architecture designed for common computer vision tasks leads to
sub-optimal performance when it is used for the FR. It also supports our choice for training
NAS to learn from a face image dataset and points out that FR does require face-specific
architecture design.

Ablation study on multi-step KD: Here, we prove the benefit of introducing our multi-
step KD training process on the PocketNet FR performance. This step-wise ablation study
first looks into the advances provided by the KD training in comparison to training with
no KD, proving the advancement achieved by our multi-step KD in comparison to KD.
Introducing KD to the PocketNet training phase improved the verification performances
on all evaluation benchmarks by comparing PocketNetS-128 (no KD) to PocketNetS-128
(KD), ass observed in Table 3.5. PocketNetS-128 (no KD) is trained only with ArcFace loss,
while PocketNetS-128 (KD) is trained with ArcFace along with KD from the ResNet-100
model. When PocketNetS-128 is trained with ArcFace along with our multi-step KD (i.e.
PocketNetS-128 (multi-step KD)), the achieved verification performance improved in eight
out of nine different benchmarks in comparison to PocketNetS-128 (KD) (Table 3.5),
empirically proving the benefit of our multi-step KD. We also investigated the competence
of our proposed multi-step KD on improving the model convergence. Figure 3.4a presents
a comparison between ArcFace loss values of PocketNetS-128 (KD) and PocketNetS-128
(multi-step KD). It can be noticed that multi-step KD improved the model convergence.
Also, our multi-step KD enhanced the similarity between the feature representation of the
teacher model and the student model. This observation is seen in Figure 3.4b where the
MSE values of PocketNetS-128 (multi-step KD) is smaller than the one of PocketNetS-128
(KD).

3.4.4. Experimental results

Table 3.6 presents the achieved FR results by our PocketNets on all evaluation benchmarks.
It also presents a comparison between our proposed PocksetNets and the recent compact
models proposed in the literature. The presented models are ordered in groups based on
the number of parameters (compactness). The first part of Table 3.6 presents the achieved
result by the models that have between 2 and 5M trainable parameters, while the second
and third parts present the results for the models with less than 2M and less than 1M
trainable parameters, respectively.

Our PocketNetS-128 (0.92M parameters) and PocketNetS-256 (0.99M parameters)
outperformed all models that have less than 1M parameters. With 10% less parameter than
MobileFaceNets [49], PocketNetS-128 outperformed MobileFaceNets on all considered

54



LFW | CA-LFW | CP-LFW | CFP-FP | AgeDB-30 | IJB-B | IJB-C MegaFace MegaFace (R)
Model Param. (M) | MFLOPs ) (%) (%) (%) & (%) (%) (%) Rank-l("/i) Ver.(%) Rank-lg(%) Ver.(%)
ResNet100-128 - Teacher 55.52 24192.51 | 99.83 96.16 93.1 98.64 98.3 94.72 | 96.08 80.55 97.13 98.36 98.66
DartFaceNetS-128 (no KD) 0.89 620.9 99.26 | 94.98 88.5 93.18 95.23 87.89 | 90.5 73.44 87.65 87.99 89.42
PocketNetS-128 (no KD) 0.925 587.11 99.5 95.01 88.93 93.78 95.88 88.29 | 90.79 74.42 88.99 89.46 90.67
PocketNetS-128 - KD 0.925 587.11 99.55 95.15 89.13 93.82 96.50 89.23 | 91.47 75.22 90.21 90.72 92.04
PocketNetS-128 - multi-step KD | 0.925 587.11 99.58 | 95.48 89.63 | 94.21 96.10 89.44 | 91.62 75.81 90.54 91.22 92.23

Table 3.5.: Comparative evaluation results of ResNet100-128, DartFaceNetS-128 (no KD),
PocketNetS-128 (no KD), PocketNetS-128 KD, and PocketNetS-128 multi-step
KD on different evaluation benchmarks. The results are reported based on the
evaluation metric described in Section 3.4.2. ResNet100-128, DartFaceNetS-
128 (no KD) and PocketNetS-128 (no KD) are trained with ArcFace loss.
PocketNetS-128 KD is trained with ArcFace loss with KD from teacher model
(ResNet100-128). PocketNetS-128 multi-step KD is trained with ArcFace loss
with multi-step KD from teacher model (ResNet100-128). PocketNetS-128 (no
KD) performed better than the DartFaceNetS-128 (no KD), proving the sanity of
designing FR-specific architecture. PocketNetS-128 multi-step KD performes
better than PocketNetS-128 (no KD) and PocketNetS-128 KD, proving the ben-
efits of the proposed multi-step KD.

benchmarks. Also, PocketNetS-128 and PocketNetS-256 achieved competitive results to
other deeper models that contain 4 or 5 times more parameters than PocketNets. For
example, PocketNetS-128 outperformed VarGFaceNet (5M parameters) on the challenging
CA-LFW and CP-LFW benchmarks where the achieved accuracies by PocketNetS-128 are
95.48% on CA-LFW and 89.63% on CP-LFW in comparison to 95.15% on CA-LFW and
88.55% CP-LFW achieved by VarGFaceNet [284].

The proposed PocketNetM-128 (1.68M parameters) and PocketNetM-256 (1.75M pa-
rameters) outperformed all models proposed in the literature that have less than 2M
parameters. They also achieved competitive results to the models that have between 2 and
5M parameters, even outperforming them in many cases. For example, our PocketNetM-
128 achieved SOTA accuracies on the challenging CA-LFW and CP-LFW among all models
that have less than 5M of trainable parameters. On the large-scale evaluation benchmarks,
IJB-B and IJB-C, our PocketNetM achieved competitive performance to many of the larger
models. For example, on IJB-C, our PocketNetM-128 (1.68M parameters) achieved verifi-
cation performance of 92.63% TAR at FAR 1le-6 and the best verification performance is
94.7% achieved by MobileFaceNet [180] (2M parameters) and VarGFaceNet [284] (5M
parameters). On MegaFace and the refined version of MegaFace, our PocketNetM outper-
fomred all the models than have less than 2M of trainable parameters and they achieved
a competitive results in term of identification and verification accuracies to the models
that have between 2 and 5M parameters. For example, our PocketNetM-258 (1.75M
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LFW | CA-LFW | CP-LFW | CFP-FP | AgeDB-30
Model Params.(M) | MFLOPs (%) %) %) %) & %)
VarGFaceNet [284, 180] 5.0 1022 99.85 | 95.15 88.55 98.50 98.15
ShuffleFaceNet 2x [179] 4.5 1050 99.62 - - 97.56 97.28
MixFaceNet-M [23] 3.95 626.1 | 99.68 - - - 97.05
ShuffleMixFaceNet-M [23] 3.95 626.1 99.60 - - - 96.98
MobileFaceNetV1 [180] 3.4 1100 99.4 94.47 87.17 95.8 96.4
ProxylessFaceNAS [180] 3.2 900 99.2 92.55 84.17 94.7 94.4
MixFaceNet-S [23] 3.07 451.7 99.6 - - - 96.63
ShuffleMixFaceNet-S [23] 3.07 451.7 99.58 - - - 97.05
ShuffleFaceNet 1.5x [179, 180] 2.6 577.5 99.7 95.05 88.50 96.9 97.3
MobileFaceNet [180] 2.0 933 99.7 95.2 89.22 96.9 97.6
PocketNetM-256 (Ours) 1.75 1099.15 | 99.58 | 95.63 90.03 95.66 97.17
PocketNetM-128 (Ours) 1.68 1099.02 | 99.65 | 95.67 90.00 95.07 96.78
Distill-DSE-LSE [161] 1.35 - 99.67 | 95.63 89.68 94.19 96.83
MixFaceNet-XS [23] 1.04 161.9 | 99.60 - - - 95.85
ShuffleMixFaceNet-XS [23] 1.04 161.9 | 99.53 - - - 95.62
MobileFaceNets [49] 0.99 439.8 | 99.55 - - - 96.07
PocketNetS-256 (Ours) 0.99 587.24 | 99.66 | 95.50 88.93 93.34 96.35
PocketNetS-128 (Ours) 0.92 587.11 | 99.58 | 95.48 89.63 94.21 96.10
ShuffleFaceNet 0.5x [179] 0.5 66.9 99.23 - - 92.59 93.22

Table 3.6.: The achieved results on LFW, CA-LFW, CP-LFW, CFP-LFW and AgeDB bench-
marks. The results are reported in % based on the evaluation metric described
in Section 3.4.2. The models are ordered based on the number of parameters.
Our PoacketNetS-128 and PocketNetS-256 consistently extend the SOTA per-
formance on all evaluation benchmarks for the models that have less than 1M
parameters. Our PoacketNetM-128 and PocketNetM-256 also achieved SOTA
performances for models that have less than 2M parameters. Additionally,
they achieved very competitive results to larger models that have between
2 and 5M parameters. All decimal points are provided as reported in the
respective works.

parameters) outperformed MixFaceNet-S [23] (3.07M parameters), ProxylessFaceNAS
[180] (3.2M parameters) and MobileFaceNetV1 [180] (3.4M parameters) on MegaFace
and MegaFace (R).

To visually illustrate the competence of our PocketNet, we plot the number of parameters
vs. the achieved verification performance of our PocketNet and the recent compact models
proposed in the literature (all numbers provided in Table 3.6). Figure 3.5 presents a
trade-off between the number of parameters and the achieved verification performance.
Each of the presented solutions is marked with a point(x,y) in the plot, where x is the
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1JB-B | IJB-C MegaFace MegaFace(R)
Model Params.(M) | MELOPs | “o0y" | (o) Rank-T (%) | Ver. (%) | Rank-1 (%) | Ver. (%)

VarGFaceNet [284, 180] 5.0 1022 92.9 94.7 78.2 93.9 94.9 95.6

ShuffleFaceNet 2x [179] 4.5 1050 - - - - - -
MixFaceNet-M [23] 3.95 626.1 91.55 | 93.42 78.20 94.26 94.95 95.83
ShuffleMixFaceNet-M [23] 3.95 626.1 91.47 | 91.47 78.13 94.24 94.64 95.22
MobileFaceNetV1 [180] 3.4 1100 92.0 93.9 76.0 91.3 91.7 93.0
ProxylessFaceNAS [180] 3.2 900 87.1 89.7 69.7 82.8 82.1 84.8
MixFaceNet-S [23] 3.07 451.7 90.17 | 92.30 76.49 92.23 92.67 93.79
ShuffleMixFaceNet-S [23] 3.07 451.7 90.94 | 93.08 77.41 93.60 94.07 95.19
ShuffleFaceNet 1.5x [179, 180] 2.6 577.5 92.3 94.3 77.4 93.0 94.1 94.6
MobileFaceNet [180] 2.0 933 92.8 94.7 79.3 95.2 95.8 96.8
PocketNetM-256 (Ours) 1.75 1099.15 | 90.74 | 92.70 78.23 92.75 94.13 94.40
PocketNetM-128 (Ours) 1.68 1099.02 | 90.63 | 92.63 76.49 92.45 92.77 94.17

Distill-DSE-LSE [161] 1.35 - - - - - -

MixFaceNet-XS [23] 1.04 161.9 88.48 | 90.73 74.18 89.40 89.35 91.04
ShuffleMixFaceNet-XS [23] 1.04 161.9 87.86 | 90.43 73.85 89.24 88.823 91.03
MobileFaceNets [49] 0.99 439.8 - - - 90.16 - 92.59
PocketNetS-256 (Ours) 0.99 587.24 | 89.31 | 91.33 | 76.53 91.77 92.29 93.5
PocketNetS-128 (Ours) 0.92 587.11 | 89.44 | 91.62 | 75.81 90.54 91.22 92.23

ShuffleFaceNet 0.5x [179] 0.5 66.9 - - - - - -

Table 3.7.: The achieved results on IJB-B, IJB-C, MegaFace, and MegaFace (R) bench-
marks. The results are reported in % based on the evaluation metric described
in Section 3.4.2. The models are ordered based on the number of parameters.
Our PoacketNetS-128 and PocketNetS-256 consistently extend the SOTA per-
formance on all evaluation benchmarks for the models that have less than 1M
parameters. Our PoacketNetM-128 and PocketNetM-256 also achieved SOTA
performances for models that have less than 2M parameters. Additionally,
they achieved very competitive results to larger models that have between
2 and 5M parameters. All decimal points are provided as reported in the
respective works.

number of parameters in millions and y is the achieved verification performance. The
model that tends to be placed on the top-left corner (small x and large y) of the plot
has the best trade-off between the model compactness and the achieved verification
performance. It can be observed, in Figure 3.5, that our PocketNets are always in the top
left corner in comparison to other methods, proving to achieve SOTA trade-off between
model compactness and FR performance. It must be noted that all the reported PocketNets
in this section are trained with our proposed multi-step KD.
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3.4.5. Discussion

This section presented a family of extremely lightweight FR models, namely PocketNets
[38]. This is one of the first efforts proposing to utilize NAS to learn to design a compact
yet accurate FR model. We additionally presented a novel training paradigm based
on knowledge distillation, namely mulit-step KD, where the knowledge distillation is
performed at multiple stages of the teacher training maturity. Extensive step-wise ablation
studies proved the benefits of both, designing a face-specific architecture, as well as,
the enhanced performance of the lightweight model when trained with the proposed
multi-step KD. Through extensive experimental evaluations on nine FR benchmarks, we
demonstrated the high verification performance achieved by our compact PocketNet
models and our proposed mulit-step KD. Under the same level of model compactness, our
PocketNets consistently scored SOTA performances in comparison to the compact models
proposed in the literature.
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(d) Reduction cell learned on CIFAR-10.

Figure 3.3.: Normal and reduction cells learned by DARTS on CASIA-WebFace and CIFAR-
10 datasets.
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(a) ArcFace loss value of the model trained with KD vs. the model trained with
multi-step KD over training iterations.
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(b) KD vs. multi-step KD loss values over training iterations.

Effect of multi-step KD on the student model convergence. It can be noticed
that multi-step KD enables the model trained with ArcFace and multi-step
KD losses to better converges in comparison to the case where the model is
trained with ArcFace and KD losses (Figure 3.4a). Also, it can be observed that
training with multi-step KD guides the model to learn feature representations
that are more similar (in comparison to KD) to the teacher ones (Figure 3.4b).

These figures are based on training the PocketNetS-128 network.
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Figure 3.5.: Number of parameters (in millions) vs. performance on LFW (accuracy),
CA-LFW (accuracy), CP-LFW (accuracy), CFP-FP (accuracy), AgeDB-30 (ac-
curacy), MegaFace (TAR at FARTe-6), IUB-B (TAR at FAR1e-4), IUB-C (TAR at
FAR1e-4) and MegaFace (R), (TAR at FARTe-6). Our PocketNets are marked
with circle marker and red edge color and are placed repeatedly in the top left
corner, proving a SOTA trade-off between FR performance and compactness.
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3.5. High-performing face recognition

This section presents the ElasticFace loss [27] aiming at enhancing the discriminative
learning ability of FR. ElasticFace relaxes the fixed single margin value of margin-penalty
softmax loss by deploying a random margin drawn from a normal distribution. The
randomized margin assignment allows flexibility in the push for class separability, demon-
strated by proving the superiority of ElasticFace loss over fixed-margin penalty losses on
the mainstream benchmarks, using the same geometric transformation. We additionally
extended this concept by guiding the assignment of the drawn margin values to put more
attention on hardly classified samples. We provided a simple toy example with an 8-class
classification problem to demonstrate the enhanced separability and robustness induced
by our ElasticFace loss. To experimentally demonstrate the effect of our ElasticFace loss
on face recognition accuracy, we report the results on nine different benchmarks. The
achieved results are compared to the results reported in the recent SOTA. In a detailed
comparison, compared to fixed margin penalties and recent SOTA, our ElasticFace loss
enhanced the face recognition accuracy on most of the considered benchmarks, conse-
quently extending SOTA face recognition performance on seven out of nine benchmarks
and scoring close to the SOTA in the remaining two. This is especially the case in the
benchmarks where the intra-class variation is extremely high, such as frontal-to-profile
face verification (CFP-FP [236]) and large age gap face verification (AgeDB-30 [192]),
which points to the generalizability induced by the proposed ElasticFace.

In the rest of this section, we will first introduce our proposed ElasticFace loss by building
up to its definition starting from the basic softmax loss. This rationalization will include
an experimental toy example demonstrating the effect of the proposed loss. Later on,
the experimental setup and implementation details are introduced. This is followed by a
detailed comparative discussion of the achieved results and a final conclusion.

3.5.1. ElasticFace

We propose in this work a novel learning loss strategy, ElasticFace loss, aiming at improving
the accuracy of face recognition by targeting enhanced intra-class compactness and inter-
class discrepancy in a flexible manner. Unlike previous works [80, 159, 268] that utilize
a fixed penalty margin value, our proposed ElasticFace loss accommodates flexibility
through relaxing this constraint by randomly drawing the margin value from a Gaussian
distribution. Our proposed ElasticFace loss does not only target giving the model flexibility
in optimizing the separability between and within the classes but also avoiding overfitting
(thus enhancing generalizability) the model as it incorporates random margin values for
each sample in each training iteration. The randomized margin penalty can be easily
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integrated into any of the angular margin-based softmax losses, which we demonstrate
on two SOTA margin-based softmax losses. The angular margin-based losses and our
ElasticFace loss extend over the softmax loss by manipulating the decision boundary to
enhance intra-class compactness and inter-class discrepancy. Therefore, in this section,
we first revisit the conventional softmax loss. Then, we present the modified version of
softmax loss and the angular margin-based softmax loss. This leads up to presenting
our proposed ElasticFace loss and an extended definition, the ElasticFace+, where the
assignment of the drawn margins to training samples is linked to their proximity to their
class centers.

Softmax loss The widely used multi-class classification loss, softmax loss [160], refers to
applying cross-entropy loss between the output of the logistic function (softmax activation
function) and the ground-truth. Assume z; € R? is a feature representation of the i-th
sample z; and y; is its corresponding class label (y; integer in the range [1, ¢]). Given that
c is the number of classes (identities), the output of the softmax activation function is
defined as follows:

el e:viqu;_ +by,
softmax(x;, ;) = — S — (3.6)
Z efj Z e:Ein +bj
j=1 j=1

where f,, is the activation of the last fully-connected layer with weight vector W, and
bias b,,. W,, is the y;-th column of weights W € R? and b,, is the corresponding bias
offset. The output of the softmax activation function is the probability of x; being correctly
classified as y;. Given a mini-batch of size N, the cross-entropy loss function that measures
the divergence between the model output and the ground-truth labels can be defined as
follows:

1 oTiWy; by,
Lep=—Y —logm——. (3.7)
N ieN i eijTerj
j=1

In a simple binary class classification, assuming that the input z; belong to class 1, the
model will correctly classify z; if W{ z; + b1 > WzT xz; + b2 and z; will be classified as
class 2 if Wiz; + b2 > W{z; + bl. Therefore, the decision boundary of softmax loss
is 2(W{ — W) + b1 — b2 = 0. One of the main limitations of using softmax loss for
learning face embeddings is that softmax loss does not explicitly optimize the feature
representation needed for face verification as there is no restriction on the minimum
distance between the class centers. Thus, training with softmax loss is less than optimal

63



for achieving the maximum inter-class distances and the minimum intra-class distances.
To mitigate this limitation, margin penalty-based cosine softmax loss was proposed as
an alternative to the conventional softmax loss and it became a popular loss function
for training face recognition models [80, 268, 159]. To get there, [159] has proposed
a modified softmax loss (Cosine softmax loss) that optimized the angle cosine between
features and the weights cos(f) and then, incorporates a margin penalty on cos(0).
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Figure 3.6.: Decision boundary of (a) ArcFace, (b) ElasticFace-Arc, (c) CosFace, and (d)
ElasticFace-Cos for binary classification. The dashed blue line is the decision
boundary. The gray area illustrates the decision margin.

Cosine softmax loss Following [80, 268, 159, 160], the bias offset, for simplicity,
can be fixed to b,, = 0. The logit f,,, in this case, can be reformulated as: szyT =
||zi||[|[ Wy, llcos(8y,), where §,, is the angle between the weights of the last fully-connected
layer W,, and the feature representation z;. By fixing the weights norm and the feature
norm to ||W,,|| = 1 and ||z;|| = 1, respectively, and rescaling the ||z;|| to the constant s
[268], the output of the softmax activation function is subject to the cosine of the angle
6,,. The modified softmax loss (L) can be defined, as stated in [268, 159], as follows:

1 e3(cos(9y;))
Lyp = ~log - . (3.8)
ieN es(cos(by,)) + Z es(cos(0;))

In the previous binary example, assume that the input z; belong to the class 1, z; will be
correctly classified if cos(01) > cos(62). The decision boundary, in this case, is cos(61) —
cos(02) = 0. Therefore, training with the modified (cosine) softmax loss emphasizes
that the model prediction depends on the angle cosine between the features and the
weights. However, and similar to conventional softmax loss, modified softmax loss does

64



not explicitly optimize the feature representation needed for face verification. This
motivated the introduction of the angular margin penalty-based losses [80, 268, 159].

Angular margin penalty-based loss In recent works [80, 268, 159], different types of
margin penalty are proposed to push the decision boundary of softmax, and thus enhance
intra-class compactness and inter-class discrepancy aiming at improving the accuracy of
face recognition. The general angular margin penalty-based loss (L ay1) is defined as
follows:

6s(cos(m1 0y, +ma)—ms3)

Lapr = N Z —log _
1EN e5(cos(miby,+ma2)—ms3) + z es(cos(0;))

J=Lj#yi

; (3.9

where m, mgo and m3 are the margin penalty parameters proposed by SphereFace [159],
ArcFace [80] and CosFace [268], respectively. In SphereFace [159], multiplicative angular
margin penalty is deployed by multiplying 6 by m; = « and setting my = 0 and m3 =0
( a > 1.0). The decision boundary of SphereFace is then cos(mi6,,) — cos(f;) = 0.
Differently, CosFace [268] proposed additive cosine margin penalty by setting m; = 1,
my = 0and m3 = a (0 < o < 1 — cos(})). The decision boundary of CosFace is then
cos(By,) —cos(0;) —m3 = 0. Later, ArcFace [80] proposed additive angular margin penalty
by setting up m; = 1, me = e« and m3 = 0 (0 < « < 1.0). The decision boundary of
ArcFace is then cos(6,, + m2) — cos(;) = 0.

Even though, ArcFace [80], CosFace [268] and SphereFace [159] introduced the impor-
tant concept of angular margin penalty on softmax loss, selecting a single optimal margin
value («) is a critical issue in these works. By setting up m; = 1, mo = 0 and mg = 0,
ArcFace, CosFace and SphereFace are equivalent to the modified softmax loss. A reasonable
choice could be selecting a large margin value that is close to the margin upper bound to
enable higher separability between the classes. However, when the margin value is too
large, the model fails to converge, as stated in [268]. ArcFace, CosFace, and SphereFace
selected the margin value through trial and error assuming that the samples are equally
distributed in geodesic space around the class centers. However, this assumption could not
be held when there are largely different intra-class variations leading to less than optimal
discriminative feature learning, especially when there are large variations between the
samples/classes in the training dataset. This motivated us to propose ElasitcFace loss by
utilizing random margin penalty values drawn from a Gaussian distribution aiming at
giving the model space for flexible class separability learning.
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Elastic angular margin penalty-based loss (ElasticFace) The proposed ElasticFace loss
is extended over the angular margin penalty-based loss by deploying random margin
penalty values drawn from a Gaussian distribution. Formally, the probability density
function of a normal distribution is defined as follows:

L dey

fz) =

 oV2r

) (3.10)

where 1 is the mean of the distribution and o is its standard deviation. To demonstrate
and prove our proposed elastic margin, we chose to integrate the randomized margin
penalty in ArcFace (noted as ElasticFace-Arc) and CosFace (noted as ElasticFace-Cos) as
they proved to have clearer geometric interpretation and achieved higher accuracy on
mainstream benchmarks than the earlier SphereFace. ElasticFace-Arc (Lga.,.) can be
defined as follows:

es(cos(ﬁyi +E(m,0)))

1
LeAre = — —log - , (3.11)
N zez]:\f e5(cos(0y, +E(m,0))) + Z es(cos(0;))
J=17#y:
and ElasticFace-Cos (L gcos) can be defined as follows:
1 s(cos(0y,)—E(m,0))
LEcos = Y —log ‘ - , (3.12)
N 1EN es(cos(eyi)—E(m,a)) + Z es(cos(05))
J=13#y:

where E(m, o) is a normal function that return a random value from a Gaussian distribution
with the mean m and the standard deviation o.

The decision boundaries of ElasticFace-Arc and ElasticFace-Cos are cos(6,, + E(m,0)) —
cos(0;) = 0 and cos(0,,) — cos(8;) — E(m, o) = 0, respectively. Figure 3.6 illustrates the
decision boundary of ArcFace, ElasticFace-Arc, CosFace and ElasticFace-Cos. The sample
push towards its center during training using ElasticFace-Arc and ElasticFace-Cos varies
between training samples, based on the margin penalty drawn from E(m, o). During
the training phase, a new random margin is generated for each sample in each training
iteration. This aims at giving the model flexibility in the push for class separability. When
o is 0, our ElasticFace-Arc and ElasticFace-Cos are equivalent to ArcFace and CosFace,
respectively.

ElasticFace+ We propose an extension to our ElasticFace, the ElasticFace+, that observes
the intra-class variation during each training iteration and use this observation to assign a
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margin value to each sample based on its proximity to its class center. This causes the
samples that are relatively far from their class center to be pushed with a larger penalty
margin to their class center. This aims at giving the model space to push the samples
that are relatively far from their class center to be closer to their centers while giving less
penalty attention to the samples that are already close to their center. To achieve that,
the output of the Gaussian distribution function (Equation 3.10) is sorted (descending)
based on cos(6,,) value. Thus, the sample with small cos(6,,) will be pushed with large
value from E(m, o) function, and vice versa.

Loss LFW AgeDB-30 CALFW CPLFW CFP-FP -
Acc (%) | BC | Acc(%) | BC | Acc(%) | BC | Acc(%) | BC | Acc(%) | BC | Sum BC

ArcFace (m=0.55) 99.52 3 94.58 1 93.82 2 89.05 1 95.24 1 8

ArcFace (m=0.5) 99.46 2 9483 |3 93.88 | 3 89.72 | 3 95.36 2 13
ArcFace(m=0.45) 99.43 1 94.66 2 93.80 1 89.42 2 95.53 | 3 9

ElasticFace-Arc(m=0.5, 0=0.0125) 99.53 4 94.80 1 93.68 2 89.72 3 95.43 1 11
ElasticFace-Arc(m=0.5, 0=0.0175) 99.47 1 95.13 | 4 93.67 1 89.53 2 95.54 3 11
ElasitcFace-Arc(m=0.5,0=0.025) 99.52 3 94.95 3 93.78 3 89.50 1 95.44 2 12
ElasitcFace-Arc(m=0.5,0=0.05) 99.52 3 94.82 2 93.90 | 4 89.79 | 4 95.59 | 4 17
ElasitcFace-Arc+ (m=0.5,0=0.0125) | 99.53 4 95.00 2 93.68 1 89.58 | 4 95.40 2 13
ElasitcFace-Arc+ (m=0.5, 0=0.0175) | 99.53 4 95.07 3 93.95 3 89.37 1 95.67 | 4 15
ElasitcFace-Arc+ (m=0.5, 0=0.025) | 99.42 1 95.15 | 4 93.73 2 89.48 2 95.36 1 10
ElasitcFace-Arc+ (m=0.5,0=0.05) 99.45 2 94.83 1 94.00 | 4 89.50 3 95.56 3 13

Table 3.8.: Parameter selection for ElasticFace-Arc and ElasticFace-Arc+. The Borda
count (BC) is reported separately for each of training settings (ArcFace,
ElasticFace-Arc and ElasticFace-Arc+) and each of the evaluation benchmarks.
The final & and m parameters are selected based on the highest BC sum. In
all settings, the used architecture is ResNet-50 trained on CASIA [286)].

Parameter selection The probability density function has its peak around m [211].
Thus, when ElasticFace is integrated into ArcFace [80], we select the best margin value
(as a single value) by training three instances of ResNet-50 [107] on CASIA [286] with
ArcFace loss using margins equal to 0.45, 0.50 and 0.55, respectively, to assure the advised
margin in [80]. Then, based on the sum of the performance ranking Borda count on LFW
[114], AgeDB-30 [192], CA-LFW [296], CP-LFW [295], and CFP-FP [236], we select the
margin that achieved the highest Borda count sum and set it as m for E(m, o) function,
where our goal is to use the most optimal margin. The best margin observed in our
experiment, in this case, is 0.5 (Table 3.8). To select the o value for F(m, o) function,
we conducted additional experiments on four instances of ResNet-50 trained on CASIA
[286] with our proposed ElasticFace-Arc by setting up the o to one of these values 0.0125,
0.015, 0.025 and 0.05. Then, we rank these models based on the sum of the performance
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Loss LFW AgeDB-30 CALFW CPLFW CFP-FP -
Acc (%) | BC | Acc (%) | BC | Acc (%) | BC | Acc (%) | BC | Acc (%) | BC | Sum BC
CosFace (m=0.4) 99.42 1 94.65 3 93.45 1 90.38 3 95.30 1 9
CosFace (m=0.35) 99.55 3 94.55 2 93.78 3 89.95 1 95.31 2 11
CosFace (m=0.3) 99.45 2 94.45 1 93.46 2 90.12 2 95.39 3 10
ElasticFace-Cos (m=0.35,0=0.0125) | 99.45 2 94.72 1 93.83 1 90.12 2 95.47 3 9
ElasticFace-Cos (m=0.35,0=0.0175) | 99.50 3 94.77 3 93.97 4 ]90.10 1 95.30 2 13
ElasticFace-Cos (m=0.35,0=0.025) 99.42 1 94.85 4 93.88 2 90.20 3 95.21 1 11
ElasticFace-Cos (m=0.35,0=0.05) 99.52 4 |1 94.77 3 93.93 3 90.38 4 | 9552 4 18
ElasticFace-Cos+(m=035, 0=0.0125 | 99.38 1 94.50 2 93.67 3 89.85 1 95.20 1 8
ElasticFace-Cos+ (m=035, 0=0.0175) | 99.45 2 94.97 4 |93.48 1 89.98 2 95.23 2 11
ElasticFace-Cos+(m=035, 0=0.025) 99.55 4 94.63 3 93.65 2 90.28 4 95.47 4 17
ElasticFace-Cos+(m=035, 0=0.05) 99.48 3 94.45 1 93.77 4 190.01 3 95.26 3 14

Table 3.9.: Parameter selection for ElasticFace-Cos and ElasticFace-Cos+. The Borda
count (BC) is reported separately for each of training settings (ArcFace,
ElasticFace-Cos and ElasticFace-Cos+) and each of the evaluation bench-
marks. The final o and m parameters are selected based on the highest BC
sum. In all settings, the used architecture is ResNet-50 trained on CASIA [286]

ranking Borda count across all datasets. Finally, the o value is chosen based on the highest
Borda count sum. The best o observed in our experiment, in this case, is 0.05 (Table
3.8). Similarly, we follow the same procedure to select the parameters (m and o) for
ElasticFace-Cos. We first choose the best margin value by training three different instances
of ResNet-50 on CASIA [286] with CosFace using a margin equal to 0.3, 0.35, and 0.40.
The best m observed in our experiment based on the sum of the performance ranking
Borda count across all evaluated datasets, in this case, is 0.035 (Table 3.9). Similar to o
selection approach of ElasticFace-Arc, we train four instance of ElasticFace-Cos to choose
the best o for E(m, o) function. The best observed ¢ in our experiment, in this case, is 0.05
(Table 3.9). For ElasticFace-Cos+ and ElasticFace-Arc+, we followed the exact approach
of parameter selection for ElasticFace-Arc and ElasticFace-Cos. The best observed o for
ElasticFace-Arc+ is 0.0175 and the best observed one for ElasticFace-Cos+ is 0.025 (Table
3.8 and 3.9). These selected parameters are used to train our solutions (training details
in Section 4.4) evaluated in Section 5.5.

Toy example To demonstrate the robustness and the class separability induced by our
proposed ElasticFace and ElasticFace+, we present a simple toy example by training
three ResNet-18 networks [107] to classify eight different identities and produce 2-D
feature embeddings. All the networks are trained with a small batch size of 128 for 11200
iterations with stochastic gradient descent (SGD) and an initial learning rate of 0.1. The
learning rate is reduced by a factor of 10 after 1680, 2800, 3360, and 8400 training
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iterations. To demonstrate a classification case where the classes are not identically varied,
these eight identities are selected to have four identities with small intra-class variation
and another four identities with a large intra-class variation (measured as the average of
all intra-class comparison scores for each identity). These identities were chosen from
all the identities with more than 400 images per identity in the MS1MV2 dataset [80],
we note this selected subset as MS1MV2-400. From these identities, we select the four
identities with the highest intra-class variation and the four with the lowest intra-class
variation. The features for this selection were extracted using an open-source ! ResNet-
100 [107] model trained with ArcFace loss [80], and the comparison is performed by
a cosine similarity. The set of the selected eight identities is noted as MS1MV2-8. We
use MS1MV2-8 to train the toy networks with ArcFace (m=0.5), ElasticArcFace (m=0.5,
0=0.05), and ElasticArcFace+ (m=0.5, 0=0.0175), based on our parameter selection.
Figure 3.7 shows the classification of MS1MV2-8 for each of the experimental settings.
In each of the plots in Figure 3.7a, 3.7b and 3.7c, we calculate the angle between each
consecutive identities to demonstrate the separability between the identities in the arc
space (inter-class discrepancy). The optimal inter-class discrepancy may be achieved if the
angle, in degree, between each of consecutive identities is close to 45 degrees i.e. 360 / 8.
Also, we calculate the mean of the standard deviation of each class feature embeddings
to illustrate intra-class compactness induced by ArcFace, ElasticFace, and ElasticFace+.
The smaller standard deviation (shown at the edge of each class in Figure 3.7), in this
case, indicates higher intra-class compactness. It can be noticed that our EalsticFace and
EalsticFace+ achieved better intra-class compactness and inter-class discrepancy than
ArcFace, while the differences in inter-class variation between EalsticFace and EalsticFace +
are minor (Figures 3.7a 3.7c, and 3.7b).

3.5.2. Experimental setup

Training settings: The network architecture we used to demonstrate our ElasticFace is
the ReseNet-100 [107]. This was motivated by the wide use of this architecture in the
SOTA FR solutions [80, 11, 84, 250, 117]. We follow the common setting [80, 11, 117] to
set the scale parameter s to 64. We set the mini-batch size to 512 and train our model on
one Linux machine (Ubuntu 20.04.2 LTS) with Intel(R) Xeon(R) Gold 5218 CPU 2.30GHz,
512 G RAM, and 4 Nvidia GeForce RTX 6000 GPUs. The proposed ElasticFace models
are implemented using Pytorch [210]. All models are trained with Stochastic Gradient
Descent (SGD) optimizer with an initial learning rate of 1e-1. We set the momentum to 0.9
and the weight decay to 5e-4. The learning rate is divided by 10 at 80k, 140k, 210k, and

'https://github.com/deepinsight/insightface
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Method Training LFW AgeDB-30 CALFW CPLFW CFP-FP
Dataset Accuracy (%) | Accuracy (%) | Accuracy (%) | Accuracy (%) | Accuracy (%)
ArcFace[80] (CVPR2019) MS1MV2 [103, 80] 99.82 (3) 98.15 95.45 92.08 98.27
CosFace[268] (CVPR2018) private 99.73 - - - -
Dynamic-AdaCos[292] (CVPR2019) clean MS1M [103, 292] + CASIA [286] 99.73
AdaptiveFace[156] (CVPR2019) clean MS1M [103, 281] 99.62
UniformFace[84] (CVPR2019) clean MS1M [103, 80] + VGGFace2 [42] 99.8 - - - -
GroupFace[139] (CVPR2020) clean MS1M [103, 80] 99.85 (1) 98.28 (3) 96.20 (1) 93.17 98.63
CircleLoss[250] (CVPR2020) clean MS1M [103, 250] 99.73 - - - 96.02
CurricularFace[117] (CVPR2020) MS1MV2 [103, 80] 99.80 98.32 (2) 96.20 (1) 93.13 98.37
Dyn-arcFace [128] (MTAP2021) clean MS1M [103, 80] 99.80 97.76 - - 94.25
MagFace[185] (CVPR2021) MS1MV2 [103, 80] 99.83 (2) 98.17 96.15 92.87 98.46
Partial-FC-ArcFace [11] (ICCVW2021) MS1MV2 [103, 80] 99.83 (2) 98.20 96.18 (2) 93.00 98.45
Partial-FC-CosFace [11] (ICCVW2021) MS1MV2 [103, 80] 99.83 (2) 98.03 96.20 (1) 93.10 98.51
ElasticFace-Arc (ours) MS1MV2 [103, 80] 99.80 98.35 (1) 96.17 (3) 93.27 (2) 98.67 (2)
ElasticFace-Cos (ours) MS1MV2 [103, 80] 99.82 (3) 98.27 96.03 93.17 98.61 (3)
ElasticFace-Arc+ (ours) MS1MV2 [103, 80] 99.82 (3) 98.35 (1) 96.17 (3) 93.28 (1) 98.60
ElasticFace-Cos+ (ours) MS1MV2 [103, 80] 99.80 98.28 (3) 96.18 (2) 93.23 (3) 98.73 (1)

Table 3.10.: The achieved results on the LFW, AgeDB-30, CALFW, CPLFW, and CFP-FP
benchmarks. On large age gape (AgeDB-30) and frontal-to-profile face com-
parisons (CFP-FP), the ElasticFace solutions consistently extend state-of-
the-art performances. ElasticFace scores very close to the state-of-the-art
on LFW and CALFW. All decimal points are provided as reported in the re-
spective works. The top performance in each benchmark is in bold. The top
three performances in each benchmark are noted with rank number between
parentheses (1,2 or 3).

280k training iterations. The total number of training iteration is 295K, which corresponds
to the number of margin sampling from the normal distribution. During the training,
we use random horizontal flipping with a probability of 0.5 for data augmentation. The
networks are trained (and evaluated) on images of the size 112 x 112 x 3 to produce
512 — d feature embeddings. These images are aligned and cropped using the Multi-task
Cascaded Convolutional Networks (MTCNN) [289] following [80]. All the training and
testing images are normalized to have pixel values between -1 and 1.

Training dataset: We follow the trend in recent works [80, 11, 117, 185] in using the
MS1MV2 dataset [80] to train the investigated models with the proposed ElasticFace loss.
This enables a direct comparison with the SOTA as will be shown in Section 5.5. The
MS1MV2 is a refined version [80] of the MS-Celeb-1M [103] containing 5.8M images of
85K identities.

Evaluation benchmarks and metrics: To demonstrate the effect of our proposed Elastic-
Face on FR accuracy and enable a wide comparison to SOTA, we report the achieved results
on nine benchmarks. These benchmarks are of a diverse nature, where some represent
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a special vulnerabilities of FR. The nine benchmarks are 1) LFW [114], 2) AgeDB-30
[192], 3) CA-LFW [296], 4) CP-LFW [295], 5) CFP-FP [236], 6) 1JB-B [274], 7) lJB-C
[183], 8) MegaFace [136], and 9) MegaFace (R) [80]. The FR performance on LFW,
AgeDB-30, CA-LFW, CP-LFW, and CFP-FP is reported as verification accuracy, following
their evaluation protocol. The performance on IJB-C and IJB-B is reported (as defined
in [274, 183]) as TAR at FAR of 1e-4. The MegaFace and MegaFace(R) benchmarks
report the FR performance as Rank-1 correct identification rate and as TAR at FAR=1e-6
verification accuracy.

We acknowledge the verification and identification performance evaluation metrics
reported in ISO/IEC 19795-1 [123]. However, to enhance the reproducibility and compa-
rability, we follow the evaluation protocols and metrics used in each of the benchmarks as
listed above.

Method Training 1JB-B 1JB-C MegaFace (R) MegaFace
Dataset TAR at TAR at Rank-1 (%) TAR at Rank-1 (%) TAR at
FARle—4 (%) | FARle—4 (%) FAR1e-6 (%) FAR1e-6 (%)
ArcFace[80] (CVPR2019) MS1MV2 [103, 80] 94.2 95.6 98.35 98.48 81.03 96.98
CosFace[268] (CVPR2018) private - - - - 82.72 (1) 96.65
Dynamic-AdaCos[292] (CVPR2019) clean MS1M [103, 292] + CASIA [286] 92.40 97.41 - - -
AdaptiveFace[156] (CVPR2019) clean MSIM [103, 281] - 95.02 95.61 - -
UniformFace[84] (CVPR2019) clean MSIM [103, 80] + VGGFace2 [42] - - - - 79.98 95.36
GroupFace[139] (CVPR2020) clean MS1M [103, 80] 94.93 96.26 98.74 (3) 98.79 81.31 (2) 97.35 (2)
CircleLoss[250] (CVPR2020) clean MS1M [103, 250] - 93.95 98.50 98.73 - -
CurricularFace[117] (CVPR2020) MS1MV2 [103, 80] 94.8 96.1 98.71 98.64 81.26 (3) 97.26
Dyn-arcFace [128] (MTAP2021) clean MS1M [103, 80] - - - - - -
MagFace[185] (CVPR2021) MS1MV2 [103, 80] 94.51 95.97 - -
Partial-FC-ArcFace [11] (ICCVW2021) MS1MV2 [103, 80] 94.8 96.2 98.31 98.59
Partial-FC-CosFace [11] (ICCVW2021) MS1MV2 [103, 80] 95.0 96.4 98.36 98.58 - -
ElasticFace-Arc (ours) MS1IMV2 [103, 80] 95.22 (3) 96.49 (3) 98.81 (1) 98.92 (1) 80.76 97.30
ElasticFace-Cos (ours) MS1IMV2 [103, 80] 95.30 (2) 96.57 (2) 98.70 98.75 81.01 97.31 (3)
ElasticFace-Arc+ (ours) MS1MV2 [103, 80] 95.09 96.40 98.80 (2) 98.83 (3) 80.68 97.44 (1)
ElasticFace-Cos+ (ours) MS1MV2 [103, 80] 95.43 (1) 96.65 (1) 98.62 98.85 (2) 80.08 97.29

Table 3.11.: The achieved results on the 1JB-B, IJB-C, MegaFace (R), and MegaFace bench-
marks. On the earlier three, and the verification accuracy of the fourth,
the ElasticFace solutions consistently extend state-of-the-art performances.
ElasticFace scores very close to the state-of-the-art on MegaFace. MegaFace
has been refined in [80] to MegaFace (R) as it contains many face images
with wrong labels. All decimal points are provided as reported in the respec-
tive works. The top performance in each benchmark is in bold. The top
three performances in each benchmark are noted with rank number between
parentheses (1,2 or 3).

3.5.3. Results

Tables 3.10 and 3.11 presents the achieved results on the nine considered benchmarks.
The main observation is that our proposed ElasticFace solutions scored beyond the SOTA
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in seven out of the nine benchmarks, and very close to the SOTA in the remaining two.
When possible, and to build a fair comparison, the results of previous works are reported
when trained on the MS1MV2 [103, 80] (or a refined variant of MS1M [103]) as the
ElasticFace results are based on training on this dataset. The proposed ElasticFace ranked
first in comparison to the SOTA on the benchmarks AgeDB-30, CP-LFW, CFP-FP, 1JB-
B, IJB-C, MegaFace (R), and MegaFace (verification). In the remaining benchmarks,
ElasticFace solutions ranked second on CA-LFW, third on LFW, and fourth on MegaFace
(identification).

A main outcome of the evaluation is concerning the databases with very large intra-user
variations. These are the large age gape benchmark (AgeDB-30) and the frontal-to-profile
face verification benchmark (CFP-FP). On AgeDB-30, our ElasticFace-Arc solution scored
an accuracy of 98.35%, while the top SOTA performance was 98.32% scored by the
CurricularFace [117]. On CFP-FP, our ElasticFace-Arc+ solution scored an accuracy
of 98.73% and our ElasticFace-Arc scored an accuracy of 98.67%, while the top SOTA
performances were 98.51% scored by the Partial-FC-CosFace [11] solution and 98.46%
scored by the MagFace [185]. This significantly enhanced performance in the extreme
intra-class variation scenarios points out the generalizability induced by the ElasticFace
loss. CA-LFW and CP-LFW also considered age gaps and pose variation, however, with
a lower variation than AgeDB-30 and CFP-FP. In CA-LFW, ElasticFace-Cos+ scored a
close second with 96.18% accuracy, with the lead going to the CurricularFace [117] with
96.20% accuracy. In CP-LFW, our ElasticFace-Arc+ is ranked first with 93.28% accuracy,
while the top SOTA performance was 93.17% accuracy scored by the GroupFace [139]. On
the LFW benchmark [114], which is one of the oldest and nearly saturated benchmarks
reported in the recent works, our ElasticFace-Cos and ElasticFace-Arc+ solutions scored
an accuracy of 98.82%, very close behind the GroupFace [139] with 99.85%.

In Table 3.11, on IJB-B benchmark, our ElasticFace-Cos+ scored a TAR at FAR1e—4 of
95.43%, far ahead of the Partial-FC-CosFace [11] and the GroupFace [139] with 95.0%
and 94.93%, respectively. Similarly, on the IJB-C benchmark, our ElasticFace-Cos+ scored
a TAR at FAR1e—4 of 96.65%, ahead of the Partial-FC-CosFace [11] and the GroupFace
[139] with 96.4% and 96.36% respectively. On the MegaFace (R), our ElasticFace-Arc
scored 98.81% Rank-1 identification rate and 98.92% TAR at FAR1le-6, ahead of the
previous lead solution, the GroupFace [139] with 98.74% and 98.79%, respectively. On
the MegaFace benchmark, our ElasticFace-Cos scored Rank-1 identification rate of 81.01%,
close to the SOTA 82.72% score by CosFace [268], noting that CosFace was trained on a
private dataset. On the same benchmark (MegaFace), our ElasticFace-Arc+ ranked first
with 97.44% TAR at FAR1e-6, while the top SOTA performances were 97.35% scored
by the GroupFace [139]. It must be mentioned that the MegaFace benchmark has been
refined in [80] to MegaFace (R) as it contains many face images with wrong labels as
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reported in [80].

In comparison to the closely defined losses in ArcFace [80], CosFace [268], and Partial-
FC [11] solutions, our ElasticFace models did prove to provide a strong performance
edge by scoring higher recognition performance on most benchmarks. When it comes to
comparing ElasticFace and ElasticFace+, the ElasticFace-Arc and ElasticFace-Arc+ did
achieve very close performances when considering all benchmarks. On the other hand,
the ElasticFace-Cos+ did outperform ElasticFace-Cos on most benchmarks.

We acknowledge that the Partial-FC [11] solution reported additional performance rates
when trained on their new collected database, the Glint360K [11]. However, this database
could not be acquired as it requires an account on a cloud platform, that in itself requires
a SIM card registered in a specific country, which is very restrictive and we do not have
access to. Therefore, and for a fair comparison, we opted to compare our results with the
Partial-FC results when trained on the same dataset that our ElasticFace solution is using,
the MS1MV2 [103, 80] dataset.

The slightly increased training computational cost is a minor limitation of our proposed
ElasticFace. Training the ResNet-100 model on MS1MV2 dataset with CosFace or ArcFace
using the specified machine and training details described in Section 4.4 requires around
57 hours. This training time is increased by around one minute for ElasticFace and by 11
hours for ElasticFace+. The minor increase in the ElasticFace training time is caused by
the sampling of the margin values, while the larger increase in ElasticFace+ training time
is additionally caused by the sorting algorithms.

On a less technical note, we stress that our efforts in the advancement of FR are aimed
at enhancing the security, convenience, and life quality of the members of society, e.g.
enabling convenient access to financial and health services [85] and enhancing the security
of border checks within clear legal frameworks and users consent. We acknowledge and
reject the possible malicious or illegal use of this and other technologies.

3.5.4. Discussion

This section presented an elastic margin penalty loss (ElasticFace) that avoids setting
a single constant penalty margin. Our motivation considers that real training data is
inconsistent in terms of inter and intra-class variation, and thus the assumption made by
many margin softmax losses that the geodesic distance between and within the different
identities can be equally learned using a fixed margin is less than optimal. We, therefore,
relax this fixed margin constrain by using a random margin value drawn from a normal
distribution in each training iteration. In an extended definition, the assignment of these
margin values to training samples corresponds to their proximity to their class centers. We
evaluated our ElasticFace loss, in comparison to SOTA FR approaches, on nine different
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benchmarks. This evaluation demonstrated that our ElasticFace solution consistently
extended SOTA FR performance on most benchmarks (seven out of nine). This was
specifically apparent in the challenging benchmarks with large intra-class variations, such
as large age gaps and frontal-to-profile face comparisons.
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Figure 3.7.: Toy example of 3 ResNet-18 networks trained under different experimental
settings. The 2-D features are normalized. Thus, the feature embeddings
are allocated around the class centers in the arc space with a fixed radius.
The numbers next to each class center indicate the mean of the standard
deviation of each class feature embeddings. The angle in degree are calcu-
lated between each two consecutive classes to illustrate the decision margin
between the classes. One can noticed that feature produced by ElasticFace
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3.6. Summary

This chapter proposed efficient and accurate FR models.

With a focus on enabling FR in use-cases that are extremely limited by computational
complexity, this chapter presented efficient FR architectures, MixFaceNet, for accurate
face verification and identification [23]. This chapter presented three variants of Mix-
FaceNet with different levels of computational complexity. Additionally, MixFaceNets were
extended with channel shuffle operation, aiming at increasing the discriminative learning
ability of MixFaceNet. Under the same level of computational complexity, MixFaceNets
outperformed the recent efficient models proposed in the literature on the mainstream
benchmarks. Section 3.3 provided an answer to RQ1.1 by designing extremely efficient
FR architecture, MixFaceNet, and proving its practical value by presenting its high perfor-
mance on mainstream benchmarks.

This chapter then focused on two aspects. First, it presented a novel approach to
automate FR architecture design. The presented approach utilized the NAS algorithm to
learn an FR-specific lightweight network, namely PocketNets [38]. Extensive experiment
evaluations on mainstream benchmarks have shown that PocketNets offer a SOTA trade-off
between model compactness and verification performance. This chapter responded to
RQ1.2 by providing an ablation study on the NAS training dataset source and an extensive
experiment evaluations of PocketNets on mainstream benchmarks. Second, this chapter
presented a multi-step KD training paradigm in which the knowledge learned by a teacher
model is transferred to the student model in a step-wise manner. The conducted ablation
study and achieved results by the proposed multi-step KD proved the effectiveness of
multi-step KD in achieving higher verification performance compared to conventional KD,
providing an answer to RQ1.3.

Lately, this chapter presented a novel elastic margin-penalty softmax loss, namely
ElasticFace [27]. The proposed ElasticFace deployed random margin penalty values to
give the model space for flexible class separability learning, thus enhancing intra-class
compactness and inter-class separability. This chapter provided an answer to RQ1.4 by
empirically proving the superiority of ElasticFace over over fixed-margin penalty losses on
the mainstream benchmarks, using the same geometric transformation. The next chapter
focuses on a different aspect in this work, efficiently reducing the effect of the masked
face on FR performance.
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4. The emerging challenge of masked face
recognition

Chapter 3 was concerned with designing efficient and high-performing FR models. This
chapter proposes a solution to deal with emerging and unusual challenge for FR posed
by wearing a facial masked during COVID-19 pandemic, as response to RQ2.1. Also, this
chapter present a summary of Masked Face Recognition (MFR) competition designed to
motivate solutions aiming at enhancing the FR accuracy of masked faces. This chapter is
based on the published papers [28, 29].

4.1. Introduction

FR is one of the preferable biometric recognition solutions due to its contactless nature
and the high accuracy achieved by FR algorithms. FR systems have been widely deployed
in many application scenarios such as automated border control, surveillance, as well as
convenience applications [101, 166, 14]. However, these systems are mostly designed
to operate on none occluded faces. After the current COVID-19 pandemic, wearing a
protective face mask has been imposed in public places by many governments to reduce
the rate of COVID-19 spread. This new situation raises a serious unusually challenge for
the current FR systems. Recently, several studies have evaluated the effect of wearing a
face mask on FR accuracy [64, 82, 201, 202]. These studies have reported the negative
impact of masked faces on FR performance. The main conclusion of these studies [64,
82, 201, 202] is that the accuracy of FR algorithm with a masked face is significantly
degraded, in comparison to unmasked face.

Motivated by this new circumstance this work propose a new approach to reduce the
negative impact of wearing a facial mask on FR performance. The presented solution
is designed to operate on top of existing FR models and thus, avoid retraining existing
solutions developed for unmasked FR. Recent works either proposed to train FR models
with simulated masked faces [13] or to train a model to learn the periocular area of the
face images exclusively [151]. Unlike these, our proposed solution does not require any
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modification or training of the existing FR model. This goal is achieved by proposing the
Embedding Unmasking Model (EUM) operated on the embedding space. The input for
EUM is feature embedding extracted from the masked face, and its output is new feature
embedding similar to an embedding of an unmasked face of the same identity, whereas,
it is dissimilar from any other embedding of other identities. To achieve that through our
EUM, a novel loss function, SRT is proposed to guide the EUM during the training phase.
The SRT shares the same learning objective with the triplet loss i.e. it enables the model
to minimize the distance between genuine pairs and maximize the distance between
imposter pairs. Nonetheless, unlike triplet loss, the SRT can dynamically self-adjust its
learning objective by focusing on minimizing the distance between the genuine pairs
when the distance between the imposter pairs is deemed to be sufficient.

The presented approach is evaluated on top of three FR models, ResNet-100 [107],
ResNet-50 [107] and MobileFaceNet [49] trained with the loss function, Arcface loss
[801, to validate the feasibility of adopting our solution on top of different deep neural
network architectures. With a detailed evaluation of the proposed EUM and SRT, The
verification performance gain by the proposed approach is reported on two real masked
face datasets [13, 64] and two synthetically generated masked face datasets. We further
experimentally supported our theoretical motivation behind our SRT loss by comparing its
performance with the conventional triplet loss. The overall verification result showed that
our proposed approach improved the performance in most of the experimental settings.
For example, when the probes are masked, the achieved FMR100 measures (the lowest
FNMR for FMR < 1.0 %) by our approach on top of MobileFaceNet are reduced by ~ 28%
and 26% on the two real masked face evaluation datasets.

In the rest of the chapter, the related works focusing on masked FR are discussed in in
Section 4.2. Then, Section 4.3 presents the proposed EUM architecture and our SRT loss.
Section 4.4 presents the experimental setups and implementation details. Section 4.5.3
presents a summary of MFR competition. Section 4.5 presents and discuss the achieved
results. Finally, a set of conclusions are drawn in Section 4.7.

4.2. Related work

In recent years, significant progress has been made to improve FR verification perfor-
mance with essentially non-occluded faces. Several previous works [205, 205, 127, 285]
addressed general face occlusion e.g. wearing sunglasses or a scarf. Nonetheless, they did
not directly address facial mask occlusion (before the current COVID-19 situation).
After the current COVID-19 situation, four major studies evaluated the effect of wearing
a facial mask on FR performance [64, 82, 201, 202]. The National Institute of Standards
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and Technology (NIST) has published two specific studies on the effect of masked faces
on the performance of FR solutions submitted by vendors using pre-COVID-19 [201] and
post-COVID-19 [202] algorithms. These studies are part of the ongoing FR Vendor Test
(FRVT). The studies by the NIST concluded that wearing a face mask has a negative effect
on FR performance. However, the evaluation by NIST is conducted using synthetically
generated masks, which may not fully reflect the actual effect of wearing a protective
face mask on the FR performance. The recent study by Damer et al. [64] has tackled
this limitation by evaluating the effect of wearing a mask on two academic FR algorithms
and one commercial solution using a specific collected dataset for this purpose from 24
participants over three collaborative sessions. The study indicates the significant effect
of wearing a face mask on FR performance. A similar study was carried out by the
Department of Homeland Security (DHS) [82]. In this study, several FR systems (using
six face acquisition systems and 10 matching algorithms) were evaluated on a specifically
collected dataset of 582 individuals. The main conclusion from this study is that the
accuracy of most best-performing FR systems is degraded from 100% to 96% when the
subject is wearing a facial mask.

Liet al. [151] proposed to use an attention-based method to train a FR model to learn
from the periocular area of masked faces. The presented method showed improvement in
the masked FR performance. However, the proposed approach is only tested on simulated
masked face datasets, and it essentially only maps the problem into a periocular recognition
problem. A recent preprint by [13] presented a small dataset of 269 unmasked and masked
face images of 53 identities crawled from the internet. The work proposed to fine-tune
FaceNet model [234] using simulated masked face images to improve the recognition
accuracy. However, the proposed solution is only tested using a small dataset (269 images).
Recently, a rapid number of researches are published to address the detection of wearing
a face mask [163, 220]. These studies did not directly address the effect of wearing a
mask on FR performance or presenting a solution to improve masked FR.

Motivated by the recent evaluations efforts on the negative effect of wearing a facial
mask on the FR performance [64, 82, 201, 202] and driven by the need for exclusively
developing an effective solution to improve masked FR, this work presents a novel approach
to improve masked FR performance. The proposed solution is designed to run on top of
existing FR models. Thus, it does not require any retraining of the existing FR models as
presented in next Section 4.3.
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4.3. Methodology

This section presents our proposed approach to improve the verification performance of
masked FR. The proposed solution is designed to operate on top of existing FR models.
To achieve this goal, we propose an EUM. The input to our proposed model is a face
embedding extracted from a masked face image, and the output is a so-called "unmasked
face embedding”, which is intended to be more similar to the embedding of the same
identity without wearing a mask. Therefore, the proposed solution does not require any
modification or training of the existing FR solution. Figure 4.1 shows an overview of the
workflow of the proposed approach in training and operational modes.

Furthermore, we propose the SRT to control the model during the training phase. Similar
to the well-known triplet-based learning, the SRT loss has two learning objectives: 1)
Minimizing the intra-class variation, i.e., minimizing the distance between genuine pairs
of unmasked and masked face embeddings. 2) Maximizing the inter-class variation, i.e.,
maximizing the distance between imposter pairs of masked face embeddings. However,
unlike the traditional triplet loss, the proposed SRT loss function can self-adjust its learning
objective by only focusing on optimizing the intra-class variation when the inter-class
variation is deemed sufficient. When the gap in inter-class variation is violated, our
proposed loss behaves like a conventional triple loss. The theoretical motivation behind
our SRT-loss is presented along with the functional formulation later in this section. In
the following, this section presents our proposed EUM architecture and the SRT loss.

4.3.1. Embedding unmasking model architecture

The EUM architecture is based on a fully connected neural network (FCNN). Having an
FCNN architecture, where all neurons are connected in two consecutive layers, we can
demonstrate a generalized EUM design. This is the case because this structure can be
easily adapted to different input shapes, and thus can be adapted on the top of different
FR models, motivating our decision to use FCNN. The model input is a masked feature
embedding (i.e., resulting from a masked face image) of size D (D depends on the FR
network used), and the model output is a feature vector of the same size D. The proposed
model consists of four fully connected layers (FC): an input layer, two hidden layers, and
an output layer. The input size for all FC layers is of size d. Each of the input and the
hidden layers is followed by batch normalization (BN) [121] and Leaky ReL.U non-linearity
activation function [174]. The last FC layer is followed by BN.
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Figure 4.1.: EUM on top of FR model. Given a masked face embedding (anchor), the
proposed SRT aims at guiding EUM to learn to output an embedding similar
to the one of the same identity (positive) and dissimilar from one of the
different identities (negative).

4.3.2. Unmasked face embedding learning

The learning objective of our model is to reduce the FNMR of genuine unmasked-masked
pairs. The main motivation behind this learning goal is inspired by the latest reports on
evaluating the effect of the masked faces on FR performance by the National Institute
of Standards and Technology (NIST) [201] and the recent work by Damer et al. [64].
The NIST report [201] stated that the FNMR are increased in all evaluated algorithms
when the probes are masked. For the most accurate algorithms, the FNMR increased from
0.3% to 5% at FMR of 0.001% when the probes are masked. On the other hand, the
NIST report concluded that FMR appeared to be less affected when probes are masked.
A similar observation comes from the study by Damer et al. [64]. This work reported
that the genuine score distributions are significantly affected by masked probes [64]. The
study also reported that the genuine score distribution strongly shifts towards the imposter
score distributions. On the other hand, the imposter score distributions do not seem to be
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strongly affected by masked face probes. One of the main observations of the previous
studies in [64, 201], is that wearing a face mask significantly increase the FNMR, whereas
the FMR seem to be less affected by wearing a mask. Similar remarks have been also
reported in our result (see Section 4.5). Based on these observations, we motivate our
proposed SRT loss function to focus on increasing the similarity between genuine pairs of
unmasked and masked face embeddings, while maintaining the imposter distance at an
acceptable level. In the following, we briefly present the naive triplet loss followed by our
proposed SRT loss.

175 2.0 2.0
— Triplet loss-d1 — Triplet loss-d1

50 Triplet loss-d2 Triplet loss-d2
~—— SRT loss-d1

—— Triplet loss-d1
Triplet loss-d2
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Figure 4.2.: Naive triplet loss vs. SRT loss distance learning over training iterations. The
plots show the learned d1 (distance between genuine pairs) and d2 (distance
between imposter pairs) by each loss over training iterations. It can be clearly
noticed that the anchor (model output) of the model trained with SRT loss is
more similar to the positive than the anchor of the model trained with naive
triple loss.

Self-restrained triplet loss

Previous works [234, 93] indicated that utilizing triplet-based learning is beneficial for
learning discriminative face embeddings. Let € X represents a batch of training samples,
and f(z) is the face embeddings obtained from the FR model. Training with triplet loss
requires a triplet of samples in the form {z¢,z” 27} € X, where z¢, the anchor, and
z?, the positive, are two different samples of the same identity, and z?, the negative, is
a sample belonging to a different identity. The learning objective of the triplet loss is
that the distance between f(z¢) and f(z!) (genuine pairs) with the addition of a fixed
margin value (m) is smaller than the distance between f(z¢) and any face embedding
f () of any other identities (imposter pairs). In FaceNet [234], triplet loss is proposed to
learn face embeddings by applying the Euclidean distance to normalized face embeddings.
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Formally, the triplet loss ¢; for a mini-batch of V samples is defined as follow:

N
by = % Z max{d(f(z}), f(z})) — d(f(z}), f(27)) + m,0}, 4.1)

where m is a margin applied to impose the separability between genuine and imposter
pairs. An d is the euclidean distance applied on normalized features and it is given by:

d(wi,yi) = % — yill5- (4.2)

Figure 4.3 visualize two triplet loss learning scenarios. Figure 4.3.a shows the initial
training triplet, and Figure 4.3.b and 4.3.c illustrate two scenarios that can be learnt using
triplet loss. In both scenarios, the goal of the triplet loss is achieved i.e. d(f(z¢), f(z])) >
d(f(x%), f(z¥)) + m. In Figure 4.3.b (scenario 1), both distances are optimized. However,

1

in this scenario, the optimization of d2 distance is greater than the optimization of d1
distance. Whereas, in Figure 4.3.c (scenario 2), the triplet loss enforces the model to
focus on minimizing the distance between the anchor and the positive. The optimal state
for the triplet loss is achieved when both distance are fully optimized i.e. d(f(z¢), f(z}))
is equal to zero and d(f(z}), f(z}')) is greater than the predefined margin. However,
achieving such a state may not be feasible, and it requires a huge number of training
triplets with large computational resources for selecting the optimal triplets for training.
Given a masked face embedding, our model is trained to generate a new embedding such
as it is similar to the unmasked face embedding of the same identity and dissimilar from
other face embeddings of any other identities. As discussed earlier in this section, the
distance between imposter pairs is less affected by wearing a mask [64, 201]. Thus, we
aim to ensure that our proposed loss focuses on minimizing the distance between the
genuine pairs (similar to scenario 2) while maintaining the distance between imposter
pairs.

Training EUM with SRT loss requires a triple to be defined as follows: f(z¢) is an
anchor of masked face embedding, EUM (f(x¢)) is the anchor given as an output of the
EUM, f(2?) is a positive of unmasked embedding, and f(z}) is a negative embedding of a
different identity than anchor and positive. This triplet is illustrated in Figure 4.1. We
want to ensure that the distance (d1) between EUM (f(z¢)) and f(z) in addition to a
predefined margin is smaller than the distance (d2) between EUM (f(z¢)) and f(z}).
Our goal is to train EUM to focus on minimizing d1, as d2 is less affected by the mask.

Under the assumption that the distance between the positive and the negative embed-
dings (d3) is close to optimal and it does not contribute to the back-propagation of the
EUM model, we propose to use this distance as a reference to control the triplet loss. The
main idea is to train the model as a naive triplet loss when d2 (anchor-negative distance)
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is smaller than d3 (positive-negative distance). In this case, the SRT guides the model to
maximize d2 distance and to minimize d1 distance. When d2 is equal or greater than
d3, we replace d2 with d3 in the loss calculation. This distance swapping allows the SRT
to learn only, at this point, to minimize d1 distance. At any point of the training, when
the condition on d2 is violated i.e d(d2) < d(d3), the SRT behave again as a naive triplet
loss. We opt to compare the d2 and d3 distances on the batch level to avoid swapping the
distance on every minor update on the distance between the imposter pairs. In this case,
we want to ensure that the d1 distance, with the addition of a margin m, is smaller than
the mean of the d3 distances calculated on the mini-batch of triplets. Thus, our loss is
less sensitive to the outliers resulting from comparing imposter pairs. We define our SRT
loss for a mini-batch of the size NV as follow:

@) = d(f (@), f(2})) +m, 0} if p(d2) < p(d3)

, f(@?)) — pu(d3) + m, 0} otherwise, (4.3)

o {}V SN max{d(f(z2)
SRT — 1 N

L3 max{d(f(«f)
where p(d2) is the mean of the distances between the anchor and the negative pairs
calculated on the mini-batch level, given as 3 ZZN (d(f(x), f(«)). n(d3) is the mean of
the distances between the positive and the negative pairs calculated on the mini-batch level,
given as 4 va (d(f(«?), f(z)). An d is the euclidean distance computed on normalized
feature embedding (Equation 4.2).

Figure 4.2 illustrates the optimization of d1 (distance between genuine pairs) and d2
(distance between imposter pairs) by naive triplet loss and SRT loss over the training
iterations of three EUM models on top of ResNet-100 (Figure 4.2a), ResNet-50 (Figure
4.2b) and MobileFaceNet (Figure 4.2c). Details on the training settings are presented
in Section 4.4. It can be clearly noticed that the d1 distance (anchor-positive distance)
learned by SRT is significantly smaller than the one learned by naive triplet loss. This
indicates that the output embedding of the EUM trained with SRT is more similar to the
embedding of the same identity (the positive) than the output embedding of EUM trained
with triplet loss.

4.4. Experimental setup

This section presents the experimental setups and the implementation details applied in
the work.
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Figure 4.3.: Triplet loss guides the model to minimize the distance d1 between the anchor
and positive (genuine pair) to be smaller than the distance d2 between the
anchor and positive (imposter pair). In Scenario 1 (Figure a) and Scenario 2
(Figure b), the learning goal of triple loss is achieved, where the d1is smaller
than d2 in both scenarios. One can be clearly noticed that d1 is larger in
scenario 1 than scenario 2. The proposed SRT aims at achieving a close
learning objective to scenario 2, i.e., focusing on optimizing d1 when d2 is
sufficient.

4.4.1. Face recognition model

To provide a deep evaluation of the performance of the proposed solution, we evaluated
our proposed solution on top of three FR models - ResNet-100 [107], ResNet-50 [107]
and MobileFaceNet [49]. ResNet is one of the widely used Convolutional Neural Network
(CNN) architecture used by several FR models, e.g. ArcFace [80] and VGGFace2 [42].
MobileFaceNet is a compact model designed for low computational powered devices. Mo-
bileFaceNet model architecture is based on residual bottlenecks proposed by MobileNetV2
[233] and depth-wise separable convolutions layer, which allows building a CNN model
with a much smaller set of parameters in comparison to standard CNNs. To provide fair
and comparable evaluation results, ResNet-50 and MobileFaceNet are trained using the
same loss function, the Arcface loss [80], and the same training dataset, MS1MV2 [80].
The MS1MV2 is a refined version of the MS-Celeb-1M [103] dataset. For ResNet-100,
we use the pretrained model released by [80]. ResNet-100 is trained with ArcFace loss
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on MS1MV2 [80]. Our choice is to employ Arcface loss as it achieved state-of-the-art
performance of several FR testing datasets such as Labeled Face in the Wild (LFW) [114].
The achieved accuracy on LFW by ResNet-100, ResNet-50 and MobileFaceNet trained with
Arcface loss using MS1MV2 dataset are 99.83%, 99.80%, and 99.55%, respectively. The
considered FR models are evaluated with cosine-distance for comparison. The Multi-task
Cascaded Convolutional Networks (MTCNN) solution [289] is employed to detect and
align the input face image. All models process aligned and cropped face image of size
112 x 112 pixels to produce 512 — D embedding feature by ResNet-100 and ResNet-50
and 128 — D embedding feature by MobileFaceNet.

(a) Wide-high coverage

(b) Round-high coverage

(c) Wide-medium coverage

(d) Round-medium coverage

(e) Wide-low coverage (f) Round-low coverage

Figure 4.4.: Samples of the synthetically generated face masks of different shape and
coverage.
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4.4.2. Synthetic mask generation

As there is no large-scale dataset with pairs of unmasked and masked face images, we
opted to use a synthetically generated mask to train our proposed approach. Specifically,
we use the synthetic mask generation method proposed by NIST [201]. The synthetic
mask generation method depends on the Dlib [140] Toolkit for detecting and extracting 68
facial landmarks from a face image. Based on the extracted landmark points, a face mask
of different shapes, heights and colors can be drawn on the face images. The detailed
implementation of the synthetic mask generation method is described in [201]. The
synthetic mask generation method provided six mask types with different heights and
coverage: A) wide-high coverage, B) round-high coverage, C) wide-medium coverage, D)
round-medium coverage, E) wide-low coverage, and F) round-low coverage. Figure 4.4
shows examples of the simulated face mask with different types and coverage levels. To
synthetically generate a masked face image, we first extract the facial landmark points of
the input face image. Then, a mask with a specific color and type can be drawn on the
face image using the z, y coordinates of the facial landmarks points.

4.4.3. Dataset

MS1MV2 dataset [80] is used to train our proposed approach. The MS1MV2 is a refined
version of MS-Celeb-1M [103] dataset. The MS1MV2 contains 58m images of 85k different
identities. We generated a masked version of the MS1MV2 noted as MS1MV2-Masked as
described in Section 4.4.2. The mask type (as described in Section 4.4.2) and color are
randomly selected for each image to add more diversity of mask color and coverage to
the training dataset. The DIib failed in extracting the facial landmarks from 426k images.
These images are neglected from the training dataset. A subset of 5k images are randomly
selected from MS1MV2-Masked to validate the model during the training phase.

The proposed solution is evaluated using two real masked face datasets: Masked Faces
in Real World for Face Recognition (MRF2) [13] and Masked face recognition (MFR)
[64, 62]. We also evaluated our solution on two larger-scale datasets with synthetically
generated masks. We use the synthetic mask generation method described in Section 4.4.2
(proposed by NIST [201]) to synthetically generate masked faces from the Labeled Faces
in the Wild (LFW) [114] and IARPA Janus Benchmark -C (IJB-C) [183]. The mask type
and color are randomly selected for each image in the LFW and 1JB-C datasets to achieve
a greater variety of mask types and colors !. The evaluation datasets were described

!The SRT implementation, training and evaluation codes, pretrained models and the list of mask types
and colors applied on IJB-C and LFW are publicly released for reproducibility of the result https://
github.com/fdbtrs/Self-restrained-Triplet-Loss
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in Chapter 2. In the following, we briefly describe each of the evaluation datasets for
convenience of the reading and to clarify the base for the presented evaluation setting in
Section 4.4.4.

Masked Faces in Real World for Face Recognition (MRF2) MFR2 [13] contains 269
images of 53 identities crawled from the internet. Therefore, the images of the MRF2
dataset can be considered as captured under in-the-wild conditions. The dataset contains
images of real masked and unmasked faces with an average of 5 images per identity.

Masked Face Recognition (MFR) We deploy an extended version of the MFR dataset
[64, 62]. The extended version of MFR is collected from 48 participants using their
webcams under three different sessions- session 1 (reference) and session 2 and 3 (probes).
The sessions are captured on three different days. Each session contains data captured
using three videos. In each session, the first video is recorded when the subject is not
wearing a facial mask in the daylight without additional electric lighting. The second and
third videos are recorded when the subject is wearing a facial mask and with no additional
electric lighting in the second video and with electric lighting in the third video (room
light is turned on). The first session (reference) contains 480 unmasked images and 960
masked images. The second and the third sessions (probe) contain 960 unmasked images
and 1920 masked images.

Labeled Faces in the Wild (LFW) LFW [114] is an unconstrained face verification bench-
mark. It contains 13,233 images of 5,749 identities. The number of comparison pairs in
unrestricted with labeled outside data protocol [114] of LFW is 6000 (3000 genuine and
3000 imposter comparisons).

IARPA Janus Benchmark-C (IJB-C) 1JB-C dataset [183] is one of the largest face
verification benchmark. IJB-C consists of 31,334 still images and 117,542 frames of
11,779 videos of 3531 identities. The 1:1 mixed verification protocol [183] of IJB-C
contains 19,557 genuine and 15,638,932 impostor comparisons.

4.4.4. Evaluation settings

The verification performances are reported for each of the evaluation datasets under seven
experimental settings. Also, for each of the conducted experiments, we report the failure
to extract rate (FTX) to capture the effect of wearing a face mask on face detection. FTX
measure is the proportion of comparisons where the feature extraction was not possible.
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For IJB-C and LFW, we used the bounding box provided by the datasets to align and crop
the face. Therefore, the FTX for LFW and IJB-C are 0.0% in all experimental settings. For
MFR and MRF2 datasets, we reported the FTX for each of the experiment settings. The
conducted experiments are defined as follow:

Unmasked reference-unmasked probe (UMR-UMP) The unmasked references are com-
pared to unmasked probes. For LFW and IJB-C, we followed the evaluation protocol
given by each of these datasets and evaluated them based on the provided comparison
pairs. The number of genuine comparisons is 3000 in LFW and 19,557 in IJB-C. The
number of imposter comparisons is 3000 in LFW and 15,638,932 in IJB-C. The evaluation
of UMR-UMP on the MFR2 dataset is done by performing N:N comparisons between all
unmasked faces resulting in 90 genuine and 9,416 imposter comparisons. For the MFR
dataset, we performed N:M comparisons between the unmasked reference of the first
session (reference session) and unmasked probe of the second and the third sessions
(probe sessions) resulting in 9,600 genuine and 451,200 imposter comparisons. The FTXs
of MFR and MRF2 when the probes and the references are unmasked are 0.0%.

Unmasked reference-masked probe (UMR-MP) The unmasked references, in this case,
are compared to masked probes. For LFW and IJB-C datasets, we utilized the exact
comparison pairs defined in UMR-UMP experimental settings. Different from UMR-
UMP, the probes, in this case, are synthetically masked (as described in section 4.4.2).
We considered the first image in defined pairs as a reference and the second image is
considered as a probe. For the MRF2 dataset, we performed N:M comparisons between
unmasked and masked sets resulting in 296 genuine and 15090 imposter comparisons.
The FTX of MRF2, in this setting, is 0.9497%. For the MFR dataset, we performed N:M
comparisons between unmasked references of the first session and masked probes of the
second and the third sessions. The FXT, in this case, is 4.4237%, and the number of
comparisons is 16,490 genuine and 86,4341 imposter comparisons.

Unmasked reference-masked probe (UMR-MP(T)) The unmasked references are com-
pared to masked probes. Different from UMR-MP, the masked probes are processed by
EUM model trained with conventional triplet loss (T).

Unmasked reference-masked probe (UMR-MP(SRT)) The unmasked references are
compared to masked probes processed by EUM model trained with SRT loss. In UMR-
MP(T) and UMR-MP(SRT), the number of genuine and impostor pairs and the FTXs are
identical to UMR-MP experimental setting.
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Masked reference-masked probe (MR-MP) The masked references are compared to
masked probes. For LFW and IJB-C, we utilized the same comparison pairs described in
UMR-UMP experimental setting. Both reference and probe are synthetically masked. The
number of genuine and imposter comparisons, in this case, is the same as in UMR-UMP
experimental setting. For the MRF2 dataset, we performed N:N comparisons between
masked faces resulting in 639 genuine and 24,010 imposter comparisons. The FTX,
in this case, is 1.2030% for the MRF2 dataset. For the MFR dataset, we performed
N:M comparisons between the masked faces of the first session and the masked faces of
the second and the third sessions resulting in 31,318 genuine and 1,729,424 imposter
comparisons. The FTX, in this case, is 4.4736% for the MFR dataset.

Masked reference-masked probe (MR-MP(T)) The masked references are compared to
masked probes. Both masked references and probes are processed by EUM trained with
conventional triplet loss (T). The comparison pairs and the FTX are the same as in the
MR-MP experimental setting.

Masked reference-masked probe (MR-MP(SRT)) The masked references are compared
to masked probes. Masked references and probes are processed by EUM trained with SRT
loss. The comparison pairs and the FTX for all evaluation datasets, in this experimental
case, are identical to the MR-MP case.

4.4.5. Model training setup

We trained six instances of the EUM model. The first, second, and the third instances,
ResNet-100 EUM(SRT), ResNet-50 EUM(SRT) and MobileFaceNet EUM(SRT), are trained
with SRT loss using feature embeddings obtained from ResNet-100, ResNet-50 and Mo-
bileFaceNet, respectively. The fourth, fifth and sixth instances, ResNet-100 EUM(T),
ResNet-50 EUM(T) and MobileFaceNet EUM(T), are trained with triplet loss using feature
embeddings obtained from ResNet-100, ResNet-50 and MobileFaceNet, respectively as
an ablation study to our proposed SRT. The proposed EUM models are implemented by
Pytorch and trained on Nvidia GeForce RTX 2080 GPU. All models are trained using an
SGD optimizer with an initial learning rate of 1le-1 and batch size of 512. The learning rate
is divided by 10 at 30k, 60k, 90k training iterations. The early-stopping patience parameter
is set to 3 (around 30k training iteration) causing ResNet-100 EUM(SRT), ResNet-50
EUM(SRT), MobileFaceNet EUM(SRT), ResNet-100 EUM(T), ResNet-50 EUM(T) and
MobileFaceNet EUM(T) to stop after 10k, 80k, 70k, 10k, 60k, 10k training iterations,
respectively.
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Figure 4.5.: The achieved log-scale ROC curves by different experimental settings using
MFR and MRF2 datasets. The ROC curves achieved by EUM trained with
SRT in all plots are in red. The ROC curves achieved by EUM trained with the
naive triplet in all plots are in blue. The ROC curves of the considered models
without EUM are in green color. In each plot, the curves of UMR-MP, UMR-
MP(T), and UMR-MP(SRT) cases are marked with a dashed line. The curves
of MR-MP, MR-MP(T), and MR-MP(SRT) cases are marked with a dotted line.
For each ROC curve, the area under the curve (AUC) is listed inside the plot.

4.4.6. Evaluation metric

The verification performance is reported as Equal Error Rate (EER), as well as, FMR100,
and FMR1000, which are the lowest FNMR for a FMR<1.0% and <0.1%, respectively.
Additionally, we calculate and report the operation thresholds at FMR100 (FMR100_Th)
and FMR1000 (FMR1000_Th) for each of the evaluated models and each of the bench-
marks based on UMR-UMP experimental setting (unmasked reference - unmasked probe).
Based on FMR100 Th and FMR1000_Th thresholds, we report the FMR, the FNMR, and
the average of the FMR and FNMR (Avg) at these thresholds for all experimental settings.
This aims to estimate a realistic scenario where the operational threshold is decided on
the conventional UMR-UMP performance. We also report the mean of the genuine scores
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Figure 4.6.: The achieved log-scale ROC curves by different experimental settings using
LFW and IJB-C datasets. The ROC curves achieved by EUM trained with SRT
in all plots are in red. The ROC curves achieved by EUM trained with the
naive triplet in all plots are in blue. The ROC curves of the considered models
without EUM are in green color. In each plot, the curves of UMR-MP, UMR-
MP(T), and UMR-MP(SRT) cases are marked with a dashed line. The curves
of MR-MP, MR-MP(T), and MR-MP(SRT) cases are marked with a dotted line.
For each ROC curve, the area under the curve (AUC) is listed inside the plot.

(G-mean) and the mean of imposter scores (I-mean) to analysis the shifts in genuine
and imposter scores distributions induced by wearing a face mask and to demonstrate
the improvement in the verification performance achieved by our proposed solution. For
each of the evaluation settings, we plot the ROC, showing FMR100 and FMR1000 clearly
by providing a log-scale FMR axis. Further, we enrich our reported evaluation results
by reporting the Fisher Discriminant Ratio (FDR) to provide an in-depth analysis of the
separability of genuine and imposters scores for different experimental settings. FDR is a
class separability criterion described in [214], and it is given by:

(na — pr)?

FDR= GOt o

4.4
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where u and p; are the genuine and imposter scores mean values and o and oy
are their standard deviations values. The larger the FDR value, the higher is the sepa-
ration between the genuine and imposters scores and thus better expected verification
performance.

UMR-UMP UMR-UMP
MFR | Setting EER% | FMR100% | FMR1000% gmg}f O_T?NMR% g% Exiﬂlﬂ? Oo_g];IMR% Avg% G-mean | I-mean | FDR
UMR-UMP 0.0000 | 0.0000 0.0000 1.0000 0.0000 0.5000 0.1000 0.0000 0.0500 0.8534 | 0.0252 | 70.7159
o UMR-MP 0.8914 | 0.8793 2.3347 0.4829 | 1.1886 | 0.8358 | 0.0082 | 6.0461 | 3.0272 | 0.5271 | 0.0203 | 15.0316
= UMR-MP(T) | 1.0430 | 1.0794 | 47726 | 0.3084 | 24257 | 1.3670 | 0.0000 | 17.4773 | 8.7386 | 0.4331 | 0.0188 | 12.0587
s} UMR-MP(SRT) | 0.7702 ] 0.6610 | 2.0558 | 0.4717 | 0.9460 | 0.7089 | 0.0108 | 4.8029 | 2.4068 | 0.5379 [ 0.0221 | 15.9027
% MR-MP 0.8014 | 0.7695 1.3155 4.3230 | 0.5971 | 2.4601 | 0.4031 | 0.8685 | 0.6358 | 0.7314 | 0.0560 | 18.7469
~ MR-MP(T) | 0.9598 | 0.9471 | 2.6348 | 16.0855 | 0.4513 | 8.2684 | 2.4656 | 0.7660 | 1.6158 | 0.7415 | 0.1185 | 15.2544
MR-MP(SRT) | 0.8270 | 0.8015 | 1.4433 | 3.6616 | 0.6482 | 2.1549 | 0.3083 | 0.9994 | 0.6539 | 0.7248 | 0.0486 | 18.3184
UMR-UMP 0.0000 | 0.0000 0.0000 1.0000 | 0.0000 | 0.5000 | 0.1000 | 0.0000 | 0.0500 | 0.8538 | 0.0349 | 55.9594
o [UMRMP | 12492 | 14251  ]3.7780 | 04308 | 1.9709 | 1.2008 | 0.0007 | 10.6246 | 5.3126 | 0.5254 | 0.0251 | 12.6189
n UMR-MP(T) 1.9789 | 2.9533 7.9988 0.5626 | 4.0206 | 2.2916 | 0.0000 | 30.6549 | 15.3275 | 0.4401 | 0.0392 | 9.4412
% UMR-MP(SRT) | 0.9611 | 0.9460 | 2.5652 | 0.5595 | 1.2129 | 0.8862 | 0.0030 | 7.4591 | 3.7310 | 0.5447 | 0.0272 | 13.4045
g |MRMP | 12963 | 1.4145 | 2.6311 | 37683 | 0.8302 | 2.2993 |0.2222 |2.0467 |1.1345 | 07232 |0.0675 | 15.1356
MR-MP(T) 1.3091 | 1.4560 2.8259 96.3681 | 0.0000 | 48.1840 | 62.1757 | 0.1980 31.1868 | 0.8269 | 0.4169 | 13.0528
MR-MP(SRT) | 1.1207 | 1.1367 | 24523 | 3.2837 | 0.8717 | 2.0777 |0.2227 | 1.8775 | 1.0501 | 0.7189 | 0.0557 | 15.1666
UMR-UMP 0.0000 | 0.0000 0.0000 1.0000 | 0.0000 | 0.5000 | 0.1000 | 0.0000 | 0.0500 | 0.8432 | 0.0488 | 37.3820
2 |UMRMP | 34939 | 65070 ] 20.5640 | 0.2723 | 12.3833 | 6.3278 | 0.0088 | 40.4063 | 20.2075 | 0.4680 [ 0.0307 | 7.1499
UMR-MP(T) 5.2759 | 12.7835 28.8175 0.2151 21.7829 | 10.9990 | 0.0149 66.7192 | 33.3671 | 0.3991 | 0.0501 | 5.9623
& | UMR-MP(SRT) | 2.8805 | 4.6331 | 134384 [ 0.3746 | 7.3802 | 3.8774 | 0.0097 | 30.1516 | 15.0807 | 0.5013 | 0.0383 | 8.6322
3 MR-MP 3.5060 | 6.8842 17.3479 4.6039 2.8674 3.7357 0.5465 8.6723 4.6094 0.6769 | 0.1097 | 7.9614
S [MRMP(T) ~ 1742947 179124~ ]16.3772 | 94.0982 | 0.0064 | 47.0523 | 61.3860 | 0.6354 | 31.0107 | 0.8082 [ 0.4716 | 6.6455
MR-MP(SRT) | 3.1866 | 5.6166 13.5290 3.1906 | 3.1867 | 3.1886 | 0.2658 | 9.4802 | 4.8730 | 0.6636 | 0.0837 | 8.0905

Table 4.1.: The achieved verification performance of different experimental settings by
ResNet-100, ResNet-50 and MobileFaceNet models along with EUM trained
with triplet loss and EUM trained with SRT loss. The result is reported
on MFR dataset. The FMR100_ThUMRUMP gre equal to 0.2307, 0.2652 and
0.3246 for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The
FMR1000_ThUMRUMP gre equal to 0.3482, 0.3926 and 0.4476 for ResNet-100,
ResNet-50 and MobileFaceNet, respectively. The lowest EER and the lowest
average error of FMR100 and FMR1000 at the defined threshold for each of
the evaluation cases are marked in bold. One can notice the significant im-
provement in the verification performance induced by our proposed approach
(SRT) in most evaluation cases.

4.5. Result

In this section, we present and discuss our achieved results. First of all, we experimentally
present the negative impact of wearing a face mask on FR performance. Then, we present
and discuss the impact of our EUM trained with SRT on enhancing the separability between
the genuine and imposter comparison scores. Then, we present the gain in the masked
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face verification performance achieved by our proposed EUM trained with SRT on the
collaborative and in-the-wild masked FR. Finally, we present an ablation study on SRT to
experimentally support our theoretical motivation behind the SRT loss by comparing its
performance with the triplet loss.

4.5.1. Impact of masked face on the FR verification performance

Tables 4.1, 4.2, 4.3, and 4.5 present a comparison between the baseline evaluation where
reference and probe are unmasked (UMR-UMP), the case where only the probe is masked
(UMR-MP), and the case where reference and probe are masked (MR-MP). On UMR-UMP
case, the considered FR models, ResNet-100, ResNet-50, and MobileFaceNet, achieve a very
high verification performance. This is demonstrated by scoring 0.0%, 0.0% and 0.0% EER
on the MFR dataset (Table 4.1), 0.0%, 0.0% and 0.0106% on the MRF2 dataset (Table 4.2),
0.2660%, 0.3333% and 0.6333% EER on the LFW (Table 4.3) and 1.5340%, 1.6881% and
2.2396% EER on IJB-C dataset (Table 4.5), respectively, by model ResNet-100, ResNet-50
and MobileFaceNet.

The verification performances of the considered models are substantially degraded
when evaluated on real and synthetically generated masked face images. This is indicated
by the degradation in verification performance measures and FDR values, in comparison
to the case where probe and reference are unmasked. MobileFaceNet achieved lower
verification performance on MR-MP than UMR-MP evaluation setting, as seen in Tables 4.1,
4.2, 4.3, and 4.5. Furthermore, ResNet-50 achieved lower verification performance in the
MR-MP than the UMR-MP setting when it is evaluated on MFR, MRF2, and IJB-C datasets.
For example, on the MFR dataset, the achieved EER by ResNet-50 model is 1.2492%
(UMR-MP). This error rate is raised to 1.2963% for the MR-MP evaluation setting, as
seen in Table 4.1. On LFW, the ResNet-50 model achieved very close performance for the
MR-MP and the UMR-MP evaluation setting. In this case, the achieved EER by ResNet-50
are 1.4667% for the UMR-MP evaluation setting and 1.3667% for the MR-MP evaluation
setting. Furthermore, ResNet-100 achieved lower verification performance for the MR-MP
evaluation setting than the UMR-MP evaluation setting when it is evaluated on MRF2 and
IJB-C datasets. On LFW and MFR, the ResNet-100 model achieved very close performance
for the MR-MP and the UMR-MP evaluation settings. When the FMR and FNMR measures
are calculated based on FMR100 ThUMR-UMP ' the achieved FMR and FNMR are higher on
the MR-MP than the UMR-MP case in most of the settings. When the threshold is set to
FMR1000 ThVMR-UMP 'the achieved FMR and FNMR are lower when both reference and
probe are masked (MR-MP) than in the case where only probes are masked (UMR-MP)
in most of the evaluation settings. Also, one can be noticed that wearing a face mask
(UMR-MP and MR-MP cases) has a higher effect on the FNMR than FMR when these
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measures are calculated based on FMR100 ThUMR-UMP or EMR1000 ThVMR-UMP | Thege
results are also supported by the G-mean, I-mean, and FDR shown in Tables 4.1, 4.2, 4.3
and 4.5.

We also make four general observations: 1) The compact model, MobileFaceNet,
achieved lower verification performance than the ResNet-100 and ResNet-50 model. One
of the reasons for this performance degradation might be due to the smaller embedding
size of MobileFaceNet (128-D), in comparison to the embedding size of 512-D in ResNet-
100 and ResNet-50. Moreover, the size of the MobileFaceNet network (1m parameters) is
extremely smaller than ResNet-100 (65m parameters) and ResNet-50 (36m parameters),
which might affect the generalization ability of the MobileFaceNet model. 2) The con-
sidered models achieved lower performance when evaluated on the MRF2 dataset than
the case when evaluated on the MFR dataset. This result was expected as the images in
the MRF2 dataset are crawled from the internet with high variations in facial expression,
pose, illumination. On the other hand, the images in the MFR dataset are collected in
a collaborative environment. 3) The considered models achieved lower performance on
LFW and IJB-C datasets in comparison to MFR and MRF2 as they are larger scale. The
considered models achieved lower performance when evaluated on IJB-C than the case
when evaluated on LFW. This result was expected as the evaluation protocol of LFW is
simpler than the IJB-C, and the IJB-C has shown to be more challenging than LFW in
multiple studies [80, 42]. 4) The considered models achieved relatively higher G-mean
scores on the UMR-MP than the MR-MP experimental setting. This indicates a higher
similarity between genuine pairs in the MR-MP than the UMR-MP. However, the achieved
verification performances by UMR-MP cases on most of the evaluated datasets are higher
than the achieved ones by MR-MP. One of the contributing factors for the difference in the
performance is that the imposter distribution is shifted more toward genuine distribution
in the MR-MP cases than the UMR-MP ones, i.e. masked face pairs are more similar (in
comparison to unmasked-masked pairs) even if the identities are different. This statement
can be clearly observed from the achieved I-mean values shown in Tables 4.1, 4.2, 4.3,
and 4.5. This shifting in imposter distribution strongly affects the verification performance
of the considered models.

To summarize, wearing a face mask has a negative effect on FR performance. This
observation is experimentally proved by evaluating the verification performance of three
FR models, ResNet-100, ResNet-50, and MobileFaceNet, on two real masked datasets (MFR
and MRF2) and two synthetically generated masked face datasets (LFW and 1JB-C). This
result supports and complements the previous findings in the studies in [64, 82, 201, 202]
evaluating the impact of wearing a mask on FR performance.
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4.5.2. Impact of EUM with SRT on the separability between genuine and
imposter comparison scores

The proposed approach significantly enhanced the separability between the genuine and
imposter comparison scores in the considered FR models and both evaluated datasets.
This improvement can be seen in the increase in the FDR separability measure achieved
by our proposed EUM trained withSRT in comparison to the achieved FDR measures
by the considered FR models, as shown in Table4.1, 4.2, 4.3, and 4.5. This indicates
a general improvement in the verification performance of FR and thus enhancing the
general trust in the verification decision. For example, when the ResNet-50 model is
evaluated on the MFR dataset and the probe is masked, the FDR increases from 12.6189
(UMR-MP) to 13.4045 (UMR-MP(SRT)) using our proposed approach, as shown in Table
4.1. Similar observations can be made when the evaluation dataset is synthetically masked.
For example, when ResNet-100 is evaluated on the synthetically generated masked face
of IJB-C, the FDR increases from 9.7516 (UMR-MP) to 9.9005 (UMR-MP(SRT)) using our
proposed approach, as shown in Table 4.5. This improvement in the separability between
the genuine and the imposter samples by our proposed approach is achieved in most of
the evaluation settings, where the FDR increased in 20 out of 24 experimental settings.

4.5.3. Impact of EUM with SRT solution on the collaborative masked FR

When the considered models are evaluated on the MFR dataset, it can be observed that
our proposed approach significantly enhanced the masked face verification performance,
as shown in Table 4.1. The achieved EER by ResNet-100 is 0.8912% on the UMR-MP case.
This error is reduced to 0.7702% using our approach (UMR-MP(SRT)). The achieved EER
by the ResNet-100 is 0.8014% on MR-MP experimental setting. The achieved EER using
our approach on top of the ResNet-100 is 0.8270% (MR-MP(SRT)). However, this is the
only case that we did not observe improvement in EER when the considered models are
evaluated on the MFR dataset. The achieved EER by ResNet-50 model is 1.2492% based on
UMR-MP experimental setting. This error rate is decreased to 0.9611% by our proposed
approach (UMR-MP(SRT)) indicating a clear improvement in the verification performance
induced by our proposed approach, as shown in Table 4.1. A similar enhancement in
the verification performance is observed by our approach for the MR-MP setting. In this
case, the EER is decreased from 1.2963% (MR-MP) to 1.1207% (MR-MP(SRT)). The
achieved EER by the MobileFaceNet model is 3.4939% (UMR-MP). This error is reduced
to 2.8805% using our proposed approach (UMR-MP(SRT)). Considering the MR-MP
setting, the EER is decreased from 3.506% (MR-MP) to 3.1866% (MR-MP(SRT)) by our
approach. The improvement in the masked FR verification performance is also noticeable
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from the improvement in FMR100 and FMR1000 measures. When the considered models
are evaluated on masked data (UMR-MP and MR-MP) based on FMR100 ThVMR-MP ' the
average of FMR and FNMR was significantly reduced by our proposed approach in all
evaluation settings (UMR-MP(SRT) and MR-MP(SRT)), as shown in Table 4.1. When
the operation threshold is calculated at FMR1000 (FMR1000 ThYMR-MP) 3 significant
reduction in the average of FMR and FNMR with our proposed approach is notable in
most evaluation settings. This result is also supported by ROC curves shown in Figures
4.5a, 4.5b and 4.5c.

UMR-UMP UMR-UMP
MRE2 | Setting EER% | FMR100% | FMR1000% EME‘}/[?OJI}JNMR% g% Eﬂi@?oo’gﬁm% Avg | Gmean | Lmean | FDR
UMR-UMP 0.0000 | 0.0000 | 0.0000 1.0000 | 0.0000 | 0.5000 | 0.1000 | 0.0000 | 0.0500 | 0.7605 | 0.0019 | 46.4218
° UMR-MP 4.0515 | 6.7568 | 7.0946 0.9079 | 6.7568 | 3.8323 | 0.1127 | 7.0946 | 3.6036 | 0.4454 | -0.0000 | 9.3458
= UMR-MP(T) | 4.0515 | 6.7568 [ 9.4595 | ( 0.7820 | 6.7568 | 3.7694 [ 0.0530 | 11.1486 | 5.6008 | 0.3677 | -0.0012 | 8.3377
8 UMR-MP(SRT) | 3.3757 | 5.4054 [ 7.0946 |« 0.9145 [5.7432 |'3.3289 | 0.1127 | 7.0946 | 3.6036 | 0.4587 | -0.0003 | 9.8264
% MR-MP 3.7522 | 3.7559 | 8.4507 43648 | 3.4420 | 3.9039 | 1.0079 | 3.7559 | 2.3819 | 0.6757 | 0.0183 | 6.4714
~ MR-MP(T) | 4.3817 | 9.0767 | 21.5962 | 20.6247 | 2.5039 | 11.5643 | 9.3461 | 3.1299 | 6.2380 | 0.6947 | 0.0834 | 5.8089
MR-MP(SRT) | 3.4416 | 43818 | 8.4507 | 3.8651 |3.1299 |3.4975 | 0.8247 | 4.3818 | 2.6033 | 0.6738 | 0.0099 | 6.4496
UMR-UMP 0.0000 | 0.0000 | 0.0000 1.0000 | 0.0000 | 0.5000 | 0.1000 | 0.0000 | 0.0500 | 0.7477 | 0.0038 | 37.9345
° UMR-MP | - 4.3895 | 6.7568 | 104730 | 0.7025 | 8.4459 | 4.5742 | 0.0795 |10.8108 | 5.4452 | 0.4263 | 0.0005 | 8.2432
5 UMR-MP(T) | 64169 | 7.7703 ~ [ 12.1622° | 0.4241 | 8.7838 | 4.6040 | 0.0000 | 17.9054 | 8.9527 | 0.3567 | -0.0066 | 6.8853
g UMR-MP(SRT) | 4.7274 | 74324 [ 9.4595 | ( 0.8748 | 74324 | 4.1536 [ 0.1193 | 9.1216 | 4.6205 | 0.4553 | 0.0014 | 8.4507
g MRMP | 6.8831 | 100156 | 13.7715 | 4.2316 | 7.8247 | 6.0281 | 1.1662 |9.7027 | 5.4344 | 0.6496 | 0.0301 | 4.7924
MR-MP(T) 6.8831 | 9.7027 [ 14.0845 | 97.8759 | 0.0000 | 489379 | 90.7622 | 0.0000 | 45.3811 | 0.7759 | 0.3663 | 4.8791
MR-MP(SRT) | 6.2578 | 9.0767 | 11.8936 | 2.9738 | 8.1377 | 5.5557 |0.8413 | 9.3897 |[5.1155 | 0.6488 | 0.0144 | 4.9381
UMR-UMP 0.0106 | 0.0000 | 0.0000 1.0000 | 0.0000 | 0.5000 | 0.1000 | 0.0000 | 0.0500 | 0.7318 | 0.0078 | 26.4276
2 UMR-MP | ( 64169 | 16.8919 | 24.3243 | 0.9874 | 16.8919 | 8.9397 | 0.0663 | 27.3649 | 13.7156 | 0.3803 | -0.0019 | 4.6457
g UMRMP(T) ~ | 7.7685 | 15.8784 | 344595 | 0.6759 | 18.9189 | 9.7974 [ 0.0596 | 37.1622 | 18.6109 | 0.3304 | -0.0027 | 4.2067
= UMR-MP(SRT) | 6.079 | 12,5000 | 21.9595 | 0.9675 [ 13.1757 | 7.0716 | 0.0928 | 22.2973 | 11.1950 | 0.4157 | -0.0018 | 5.2918
7 MR-MP 8.4777 | 18.1534 | 28.7950 | 65056 | 10.3286 | 8.4171 | 1.9908 | 14.0845 | 8.0377 | 0.6087 | 0.0509 | 3.2505
s MR-MP(T) | 8.7634 | 17.5274 | 26.2911 | 95.9683 | 0.0000 | 47.9842 | 84.9896 | 0.0000 | 42.4948 | 0.7638 | 0.3966 | 3.5408
MR-MP(SRT) | 7.8232 | 15.0235 | 22.5352 | 3.9733 [9.0767 |6.525 | 1.1745 |14.3975 | 7.7860 | 0.6087 | 0.0241 | 3.5815

Table 4.2.: The achieved verification performance of different experimental settings by
ResNet-100, ResNet-50 and MobileFaceNet models along with EUM trained
with triplet loss and EUM trained with SRT loss. The result is reported us-
ing MRF2 dataset. The FMR100_ThUMRUMP gre equal to 0.1711, 0.2038 and
0.2351 for ResNet-100, ResNet-50 and MobileFaceNet, respectively. The
FMR1000_ThUMRUMP gra equal to 0.2316, 0.2639 and 0.3041 for ResNet-100,
ResNet-50 and MobileFaceNet, respectively. The lowest EER and the lowest
average error of FMR100 and FMR1000 at the defined threshold for each of
the evaluation cases and each of the evaluated models are marked in bold.
One can notice the significant improvement in the verification performance
induced by our proposed approach (SRT) in most evaluation cases.
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4.5.4. Impact of EUM with SRT on in-the-wild masked FR

The achieved evaluation results on the MRF2 dataset by ResNet-100, ResNet-50, and
MobileFaceNet models are presented in Tables 4.2. When probes are masked, the ERR
achieved by the ResNet-100 model is reduced from 4.0515% (UMR-MP) to 3.3757%
by our proposed approach (UMR-MP(SRT)). A similar improvement in the verification
performance is achieved by our solution (MR-MP(SRT)) in the MR-MP evaluation setting,
as shown in Table 4.2.

Using masked probes, the achieved EER by ResNet-50 model is 4.3895% (UMR-MP).
Only in this case, the EER did not improve by our proposed approach (UMR-MP(SRT)). The
achieved EER, in this case, by our proposed approach is 4.7274%. Nonetheless, a notable
improvement in the FMR1000 and the FDR separability measures can be observed from
the reported result. The increase in FDR points out the possibility that given larger and
more representative evaluation data, the consistent enhancement in verification accuracy
will be apparent here as well. A significant improvement in the verification performance is
achieved by our approach when comparing masked probes to masked references. In this
case, the achieved EER is decreased from 6.8831% (MR-MP) to 6.2578% (MR-MP(SRT)).
A similar conclusion can be made from the improvements on the other performance
verification measures and the FDR measure.

Using masked probes, the achieved verification performance by MobileFaceNet is signif-
icantly enhanced by our proposed approach (UMR-MP(SRT)). A similar improvement in
the verification performance is achieved on MR-MP(SRT) case as shown in Table 4.2. For
example, the achieved EER by MobileFaceNet is 8.4777% on the MR-MP case. This error
rate is reduced to 7.8232% using our proposed approach (MR-MP(SRT)).

Considering the FMR100 ThUMR-UMP anq the FMR1000 ThVMR-UMP " the achieved FMR
and FNMR improved is by our proposed solution (UMR-MP(SRT) and MR-MP(SRT)) in
most evaluation cases, especially when the considered operation threshold is FMR100_ThUMR-UMP
This result is also supported by ROC curves shown in Figures 4.5d, 4.5e and 4.5f.

4.5.5. Impact of EUM with SRT on simulated masked FR

In addition to the evaluation of the real masked face dataset presented in Section 4.5.3 and
4.5.4, we evaluated our proposed solution on two large synthetically generated masked
faces datasets: LFW and IJB-C. The achieved verification performance on the synthetically
generated masked face of LFW is presented in Table 4.3. The improvement in verification
performance induced by our proposed solution on the synthetic masked face of LFW is
observable for all evaluation cases.

Table 4.5 presents the achieved verification performance by the considered models on
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UMR-UMP UMR-UMP
LFW | Setting EER% | FMR100% | FMR1000% [-MelO0-Th o o LSO e Avgor—| G-mean | mean | FDR
UMR-UMP | 0.2660 | 0.2667 | 0.3333 1.0000 | 0.2667 | 0.6333 | 0.1000 | 0.3333 | 0.2167 | 0.7157 | 0.0026 | 33.0630
o | OMRMP 1.0000 | 0.9667 | 2.5667 1.0667 | 0.9667 | 1.0167 | 0.0667 | 2.9333 | 1.5000 | 0.5220 | 0.0019 | 13.1746
=1 UMR-MP(T) | 1.7000 | 2.3667 | 4.4333 | ( 0.9667 | 2.5333 | 1.7500 | 0.0333 | 5.9667 | 3.0000 | 0.4115 | 0.0029 | 11.0452
ko] UMR-MP(SRT) | 0.8667 | 0.8667 | 1.6000 | 1.2667 | 0.7667 | 1.0167 | 0.1000 | 1.7333 | 0.9167 | 0.5380 | 0.0024 | 15.0505
% [MRMP 0.9667 | 0.0667 | 24333 3.1000 | 0.7000 | 1.9000 | 0.5000 | 1.2000 | 0.8500 | 05996 | 0.0110 | 14.2278
= MR-MP(T) | 1.7333 | 2.3333 | 10.1333 | 19.4667 | 0.3667 | 9.9167 | 6.7667 | 0.6667 | 3.7167 | 0.6290 | 0.0808 | 10.8161
MR-MP(SRT) | 0.9667 | 0.9667 | 2.0667 | 3.0000 | 0.6667 | 1.8333 | 0.4667 | 1.5333 | 1.0000 | 0.6035 | 0.0053 | 14.6018
UMR.UMP _ | 0.3333 | 0.3000 | 0.4000 1.0000 | 0.3000 | 0.6500 | 0.1000 | 0.4000 | 0.2500 | 0.7023 | 0.0029 | 26.5107
o | UMRMP | 1.4667 | 1.8333 | 3.3000 | 1.0000 | 1.8333 | 1.4167 | 0.1000 | 3.5667 | 1.8333 | 05117 | 0.0014 | 11.8522
3 [ UMRMP(T) | 2.0000 | 2.7000 | 4.9667 | 0.6333 | 33333 | 1.9833 | 0.0667 | 6.6333 | 3.3500 | 04278 | 0.0020 | 10.5553
% UMR-MP(SRT) | 1.1000 | 1.1333 | 2.4000 | ( 0.9667 | 1.1333 | 1.0500 | 0.2000 | 2.2000 | 1.2000 | 0.5427 | 0.0016 | 14.5079
g |[MRMP [ 13667 | 1.7333 | 47333 | 3.0000 | 0.8333 | 19167 [0.9000 |1.9333 | 14167 |0.5893 | 0.0158 | 12.2339
MR-MP(T) | 2.0333 | 2.9667 | 7.2000 10.8667 | 0.7667 | 5.8167 | 40333 | 1.5333 [ 2.7833 | 0.6256 | 0.0525 | 10.2560
MR-MP(SRT) | 1.2333 | 1.4333 | 2.9667 | 2.2333 | 0.9333 | 1.5833 [ 0.6333 | 1.5333 | 1.0833 | 0.6051 | 0.0053 | 13.4416
UMR-UMP __ | 0.6333 | 0.6000 | 1.3000 1.0000 | 0.6000 | 0.8000 | 0.1000 | 1.3000 | 0.7000 | 0.6742 | 0.0051 | 18.2460
g [UMRMP | 3.2333 | 5.9333 | 120333 | 07667 |6.7333 |3.7500 |0.0000 | 18.2667 | 9.1333 | 0.4641 | -0.0011 | 7.5840
S | UMRMP(T) | 3.6667 | 7.1333 | 17.6667 | 0.6000 | 8.7667 | 4.6833 | 0.0000 | 27.4333 | 13.7167 | 0.4023 | 0.0013 | 7.2341
£ UMR-MP(SRT) | 1.8667 | 24667 | 8.1333 | 0.8333 | 2.8667 | 1.8500 | 0.1000 | 9.3667 | 4.7333 | 0.5144 | 0.0006 | 10.2266
% [MRMP 3.3333 | 64667 | 17.9000 | 5.7667 | 2.6333 | 4.2000 | 0.8333 | 7.1333 | 3.9833 | 0.5688 | 0.0505 | 7.7096
S [MRMP(T) 30667 | 5.2000 [ 13.6333 | '93.9000 [ 0.0000 | 469500 | 72.1333 | 0.0667 | 36.1000 | 0.7495 | 0.8970 | '7.7504
MR-MP(SRT) | 2.2667 | 3.5333 | 111000 | '2.3000 | 2.2333 | 2.2667 | 0.4667 | 5.9667 | 3.2167 | 05872 | 0.0091 | 9.6183

Table 4.3.: The achieved verification performance of different experimental settings
by ResNet-100, ResNet-50, and MobileFaceNet models along with EUM
trained with triplet loss and EUM trained with SRT loss. The result is re-
ported using synthetically generated masked faces of the LFW dataset. The
FMR100_ThUMR-UMP are equal to 0.1736, 0.2052 and 0.2449 for ResNet-100,
ResNet-50 and MobileFaceNet, respectively. The FMR1000_ThUMR-UMP gre
equal to 0.2451, 0.2617 and 0.3450 are for ResNet-100, ResNet-50 and Mo-
bileFaceNet, respectively. The lowest EER and the lowest average error of
FMR100 and FMR1000 at the defined threshold are marked in bold. It can be
noticed the significant improvement in the verification performance induced
by our proposed approach (SRT) in most evaluation cases.

the synthetically generated masked face of IJB-C. When the reference and the probes are
synthetically masked, the achieved EER by ResNet-100 is 2.7356% (MR-MP). Only in
this case for synthetically masked face dataset, the EER did not improve by our proposed
approach, where the EER achieved by our approach is 2.9197% (MR-MP(SRT)). However,
when the operation threshold is set to FMR100_ThUMR-UMP "5 potable reduction in the
average of FMR and FNMR can be observed for all evaluation cases. These reported results
on synthetically generated masked face datasets support our achievement on real masked
face datasets. Also, it points out the competence of our proposed solution in improving
the masked face verification performance. A similar observation can be noticed in the
ROC curves in Figures 4.6a, 4.6b, 4.6c¢, 4.6d, 4.6e, 4.6f.
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4.5.6. Ablation study on self-restrained triplet loss

In this section, we experimentally prove and theoretically discuss the advantage of our
proposed SRT solution over the common naive triplet loss. We explore first the validity of
training the EUM model with triplet loss using masked face datasets. It is noticeable that
training EUM with naive triplet is inefficient for learning from masked face embedding as
presented in in Tables 4.1, 4.2, 4.3 and 4.5. For example, when the probe is masked, the
achieved EER by EUM with triplet loss on top of ResNet-50 is 1.9789% (UMR-MP(T)), in
comparison to 0.9611% EER achieved by EUM with our SRT (UMR-MP(SRT)), as shown
in Table 4.1. It is crucial for learning with triplet loss that the input triplet violate the
condition d(f(x%), f(z?)) > d(f(z%), f(2¥)) + m. Thus, the model can learn to minimize
the distance between the genuine pairs and maximize the distance between the imposter
pairs. When the previous condition is not violated, the loss value will be close to zero
and the model will not be able to further optimize the distances of the genuine pairs and
imposter pairs. This motivated our SRT solution.

Given that our proposed EUM solution is built on top of a pre-trained FR model, the
feature embeddings of the genuine pairs are similar (to a large degree), and the ones
of imposter pairs are dissimilar. However, this similarity is affected (to some degree)
when the faces are masked. The learning objective of our approach is to reduce this effect.
This statement can be observed from the achieved results presented in Tables 4.1, 4.2,
4.3 and 4.5. For example, using the MFR dataset, the achieved G-mean and I-mean by
ResNet-50 is 0.8538 and 0.0349 (UMR-UMP), respectively. When the probe is masked
(UMR-MP), the achieved G-mean and I-mean shift to 0.5254 and 0.0251, respectively, as
shown in Table 4.1. The shifting in the G-mean points out that the similarity between
the genuine pairs is reduced (to some degree) when the probe is masked. Training EUM
with naive triplet loss requires selecting a triplet of embeddings that violated the triplet
condition. As we discussed earlier, the masked anchor is similar (to some degree) to the
positive (unmasked embedding), and it is dissimilar (to some degree) from the negative.
Therefore, finding triplets that violate the triplet condition is not trivia. Also, it could
not be possible for many triplets in the training dataset. This explains the poor result
achieved when the EUM model is trained with triplet loss, as there are only a few triplets
violating the triplet loss condition. One can assume that using a larger margin value allows
the EUM model to further optimize the distance between genuine pairs and imposter
pairs, as the triplet condition can be violated by increasing the margin value. However, by
increasing the margin value, we increase the upper bound of the loss function. Thus, we
ignore the fact that the distance between imposter pairs is sufficient with respect to the
distance between genuine pairs in the embedding space. For example, using unmasked
data, the mean of the imposter scores achieved by ResNet-50 on the MFR dataset is 0.0349.
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When the probe is masked, the mean value of the imposter scores is 0.0251, as shown
in Table 4.1. Therefore, any further optimization on the distance between the imposter
pairs will affect the discriminative features learned by the base FR model. Also, there is
no restriction in the learning process ensured that the model will maintain the distance
between the imposter pairs. Alternatively, training the EUM model with our SRT loss
achieved significant improvement in minimizing the distance between the genuine pairs.
Simultaneously, it maintains the distance between the imposter pairs to be closer to the
one learned by the base FR model. It is noticeable from the reported result that the -mean
achieved by our SRT is closer to the I-mean achieved when the model is evaluated on
unmasked data, in comparison to the one achieved by naive triplet loss, as shown in
Tables 4.1, 4.2, 4.3 and 4.5. The achieved result points out the efficiency of our proposed
EUM trained with SRT in improving the masked FR, in comparison to the considered
face recondition models. Also, it supported our theoretical motivation behind SRT where
training the EUM with SRT significantly outperformed the EUM trained with naive triplet
loss.

The proposed solution is designed and trained to manipulate masked face embedding
and not to manipulate unmasked one. Based on this workflow, our EUM solution will
not be used on unmasked faces. This is based on the assumption that the existence of
the mask is known, e.g., by the automatic detection of wearing a face mask that can be
relatively easily detected where most of mask face detection methods proposed in the
literature achieved very high accuracy in detecting masked face (more than 99% [163]).
Despite the fact that our workflow does not assume processing unmasked faces, and for
the sake of experiment completeness, we apply our solution on UMR-UMP cases. The
achieved results showed slight degradation in face verification performance in a number
of the experimental settings. However, this result was expected as the proposed solution
is designed and trained to operate on masked face embedding rather than processing
an unmasked face embedding. In the following, we present the achieved results by
our proposed approach when it is applied to the UMR-UMP case. When ResNet-100
and ResNet-50 are evaluated on the MFR and MRF2 datasets, and the unmasked face
embeddings (UMR-UMP) are processed by EUM with the SRT solution, the achieved EER
and FMR100 are 0.0% and 0.0%, respectively. When MobileFaceNet is evaluated on the
MFR or MRF2 datasets and the unmasked face embedding (UMR-UMP) are processed by
EUM with the SRT solution, the verification performances are slightly degraded. In this
case, the EER increases from 0.0% to 0.0112% EER, when MobileFaceNet is evaluated on
the MFR dataset. When MobileFaceNet is evaluated on the MRF2 dataset, the EER value
increases from 0.0106% to 0.2124%. The achieved FMR100, in this case, is 0.0%. When
the considered models are evaluated on the LFW and the unmasked face embeddings
(UMR-UMP) are processed by EUM with the SRT solution, the verification performances
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obtained by the considered models slightly deteriorate. In this case, the EER and the
FMR100 by the ResNet-100 model decrease from 0.2660% and 0.2667% to 0.3% and
0.2667%, respectively. When the considered model is ResNet-50, the achieved EER and
FMR100 are degraded from 0.3333% and 0.3000% to 0.5333% and 0.5000%, respectively.
For the MobileFaceNet model, the achieved EER and FMR100 are degraded from 0.6333%
and 0.6000% to 1.1667% and 1.2000%, respectively. By applying our approach on UMR-
UMP cases of the IJB-C dataset, the achieved verification performance is degraded from
1.5340% to 1.5595% EER and from 1.6362% to 1.7027% FMR on top of the ResNet-100
model. For the ResNet-50 model, the achieved EER and FMR100 are degraded from
1.6881% to 2.0709% EER and from 1.8663% to 2.4857% FMR. For the MobileFaceNet
model, the achieved EER and FMR are degraded from 2.396% to 2.8379% EER and from
2.7918% to 4.1417%. This performance trend in the UMR-UMP setting is expected as
processing unmasked face embedding by EUM with SRT is not the aim of our proposed
solution and do not match its operational concept, where unmasked faces will not be
processed by the EUM. The conducted experiments are thus only included for the sake of
experiment completeness.

Model Param. (M) | MFLOPs
ResNet100 65.16 24211.78
EUM 1.10 2.10
ResNet100+ EUM 66.26 24213.88
ResNet50 43.59 12639.29
EUM 1.10 2.10
ResNet50+EUM 44.60 12641.30
MobileFaceNet 0.99 474.84
EUM 0.07 0.13
MobileFaceNet+EUM | 1.06 474.97

Table 4.4.: The computational cost of the base FR models and the proposed EUMs
in terms of number of parameters (Param) and computational complexity
(FLOPs). The proposed EUM adds minor computational cost to the base FR
model.

4.5.7. Discussion

In summary, the reported results in this work illustrate how the verification performance
of current FR models proposed in the literature is affected by wearing a face mask and how
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this can be improved by learning to process the masked face embedding to behave more
similarly to an embedding from an unmasked face. This has been demonstrated through
extensive experimental evaluations of three FR models and four masked face datasets. The
evaluation datasets include two real masked datasets captured under different scenarios:
in the wild (MRF2) and collaborative (MFR), and two synthetically generated masked
faces of large-scale datasets: LFW and IJB-C. We have also theoretically and experimentally
demonstrated the competence of our proposed EUM together with SRT in reducing the
negative influence of the masked face on the FR performance. The competence of our
solution in improving the masked face verification performance has been demonstrated
on real masked datasets captured under different scenarios (in the wild and collaborative)
and on synthetically generated masked faces of large-scale datasets.

The proposed EUM model does not require retraining existing FR models or deploying
separate solutions for masked face recognition. Table 4.4 presents the computational cost
of the base FR models and EUMs. It can be noticed that EUMs only add little computational
cost to base FR (around 1%).

From research to industry perspective, the developers of commercial FR solutions could
use our proposed concept to improve the performance of their algorithms when processing
masked face images. Many commercial FR solutions produce face templates to enable
template storage instead of images in large-scale datasets. The advantages of storing
face templates are to enable faster identification searches and matching, by avoiding the
re-generation of embeddings in every search. As our solution operates on embedding
space, the commercial models can benefit from our solution to improve the performance of
their algorithms when facing a masked face image. Examples of such commercial solutions
are Neurotechnology [198] and Cognitec [51] (achieved high accuracies in NIST Ongoing
FR Vendor Test (FRVT)[102]). Such solutions produce face templates to populate the
biometric datasets to enable efficient biometric searches.

4.6. Masked face recognition competition

This section presents a summary of the MFR competition held within the 2021 International
Joint Conference on Biometrics (IJCB 2021) [29]. This competition is designed to motivate
worldwide technical solutions from academia and industry aiming at enhancing the
accuracy of masked FR on real face masks and in a collaborative face verification scenario.
The competition attracted a total of 10 participating teams with valid submissions. The
affiliations of these teams are diverse and associated with academia and industry in nine
different countries. These teams successfully submitted 18 valid solutions. A private
dataset representing a collaborative, multi-session, real masked, capture scenario is used
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UMR-UMP UMR-UMP
UB-C | Setting EER% | EMR100% | FMR1000% - 00-Th o T LRI Avgas | G-mean | Fmean | FDR
UMRUMP | 1.5340 | 16362 | 2.4799 1.0000 | 1.6362 | 1.3181 | 0.1000 | 24799 | 1.2900 | 0.7460 | 0.0034 | 15.7436
o | OMRMP 26026 | 3.3492 | 5.8751 1.0684 | 3.3032 | 2.1858 | 0.1133 | 56502 | 2.8817 | 0.5593 | 0.0050 | 9.7516
=1 UMR-MP(T) | 5.0724 | 83500 | 13.9643 | 0.6437 | 9.2857 | 4.9647 | 0.0333 | 17.0374 | 8.5353 | 0.3966 | 0.0004 | 6.0168
ko] UMR-MP(SRT) | 2.5476 | 3.2520 | 5.7575 | 1.0563 | 3.2214 | 2.1388 | 0.1112 | 5.5837 | 2.8474 | 0.5667 | 0.0038 | 9.9005
% |[vRMP 2.7356 | 3.7685 | 6.9643 | 43300 | 2.3163 | 3.3232 | 0.9488 | 3.7992 | 2.3740 | 0.6751 | 0.0228 | 10.2180
~ MR-MP(T) | 5.2834 | 14.7415 | 42.2509 | 52.8218 | 0.4909 | 26.6563 | 31.5749 | 1.1403 | 16.3576 | 0.7273 | 0.1981 | 6.6082
MR-MP(SRT) | 29197 | 39781 [7.3631 | 3.4202 | 2.7663 | 3.0932 | 0.6837 | 4.4588 | 2.5712 | 0.6604 | 0.0129 | 9.4975
UMRUMP | 1.6881 | 18663 | 3.0782 10000 | 1.8663 | 14332 | 0.1000 | 3.0782 | 15891 | 0.7370 | 0.0061 | 14.6355
o [UMRMP | 2.8634 | 4.2593 | 79971 | 1.0257 | 4.2389 | 2.6323 | 0.1045 | 7.9051 |4.0048 | 0.5505 | 0.0091 | 9.1274
B | UMR-MP(T) | 49547 | 83602 | 15.0995 | 0.5824 | 9.6436 | 51130 | 0.0317 | 19.0878 | 9.5597 | 0.4227 | 0.0005 | 6.3770
g UMR-MP(SRT) | 2.7221 | 3.8401 | 7.4142 | 1.0675 | 3.7685 | 2.4180 | 0.1162 | 7.1944 |[3.6553 | 0.5731 | 0.0061 | 9.5896
g | MRMP | 3.2418 | 49138 | 10.0680 | 5.1556 | 2.6026 | 3.8791 |1.1855 | 4.6275 |2.9065 | 0.6698 | 0.0395 | 9.2267
MR-MP(T) | 4.8065 | 10.6202 | 302398 | 28.2029 | 1.1556 | 14.6793 | 12.5160 | 2.5055 | 7.5107 | 0.7126 | 0.1396 | 7.1907
MR-MP(SRT) | 3.0833 | 46940 | 9.4186 | 3.2926 | 3.0373 | 3.1649 | 0.6722 | 5.3485 | 3.0103 | 0.6585 | 0.0175 | 9.0671
UMRUMP | 2.239 | 2.7918 | 5.0826 10000 | 27918 | 1.8950 | 0.1000 | 5.0826 | 25013 | 0.7150 | 0.0075 | 11.6725
g |[OMRMP T 46539 | 85698 | 17.1908 | 0.9843 | 8.6056 | 4.7949 | 0.0910 | 17.6305 | 8.8608 | 0.4997 | 0.0121 | 6.5141
S [UMRMP(T) | 9.1834 | 214207 | 357315 | 0.2093 | 29.0220 | 14.6611 | 0.0086 | 51.6950 | 25.8518 | 0.3273 | -0.0117 | 3.7926
£ UMR-MP(SRT) | 4.0548 | 7.1995 | 14.5421 | 0.9831 | 7.2506 | 4.1169 | 0.0974 | 14.6495 | 7.3734 | 0.5295 | 0.0056 | 7.2243
= [ MRMP 5.0339 | 9.7305 | 206064 | 10.1750 | 3.4003 | 6.7877 | 2.6584 | 6.7137 | 4.6860 | 0.6624 | 0.0939 | 6.6892
S [MRMP(T) 189175 [21.9972 " [39.7454 | 99.6336 | 0.0205 | 49.8270 [ 96.8945 | 0.0818 | 48.4881 | 0.8281 | 0.5465 | 3.9853
MR-MP(SRT) | 4.6837 | 0.0240 | 18.8782 | 42037 | 49241 | 4.6089 | 0.9800 | 9.1016 | 5.0408 | 0.6353 | 0.0301 | 6.9284

Table 4.5.: The achieved verification performance of different experimental settings
by ResNet-100, ResNet-50, and MobileFaceNet models along with EUM
trained with triplet loss and EUM trained with SRT loss. The result is re-
ported using synthetically generated masked faces of the IJB-C dataset. The
FMR100_ThUMRUMP 5re equal to 0.1804, 0.2143 and 0.2546 for ResNet-100,
ResNet-50 and MobileFaceNet, respectively. The FMR1000_ThUMR-UMP gre
equal to 0.2557, 0.2990 and 0.3493 for ResNet-100, ResNet-50 and Mobile-
FaceNet, respectively. The lowest EER and the lowest average error of FMR100
and FMR1000 at the defined threshold for each of the evaluation cases and
each of the evaluated models are marked in bold. One can notice the signifi-
cant improvement in the verification performance induced by our proposed
approach (SRT) in most of the evaluation cases.

to evaluate the submitted solutions [29]. The evaluation dataset contains 3290 images of
47 identities.

The verification performance of submitted solutions is evaluated under two settings: 1)
Masked vs. not-masked verification pairs (noted as BLR-MP). 2) Masked vs. masked verifi-
cation pairs (noted as MR-MP). Moreover, the competition considered the deployability
of the proposed solutions by taking the compactness of the FR models into account. The
model compactness is reported as the number of trainable parameters. A summary of the
submitted solutions and the achieved results is provided in the following. Details on the
MEFR competition are provided in the appendix of this thesis.
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Algorithms Most of the submitted algorithms used ResNet [107] and SEResNet [110]
architectures as a main backbone for the proposed solution (17 out of 18 models). One
solution opted to use FaceNet [234]. 16 solutions used softmax and margin penalty
softmax losses [80, 78] to train the proposed models. Two solutions used triplet loss
[234]. Most of the submitted solutions (16 out of 18) opted to augment the training
dataset with masked face data. One team submitted two solutions trained using the
periocular area, i.e., the upper region of a face image. The smallest model has 23.8M
of parameters, and the largest one contains 108.9M parameters. None of the submitted
solutions propose a solution that could be applied on top of the existing FR model, as the
proposed EUM with the SRT approach presented in this chapter.

Verification performance The MFR competition used ResNet-100 [107] architecture
pretrained on MS1IMV2 [103, 80] as baseline. Most of the presented solutions achieved a
competitive verification performance compared to the baseline. Ten out of 18 solutions
achieved higher verification performance than the baseline solution for BLR-MP and MR-
MP evaluation settings. The achieved verification performances in terms of FMR100 by
baseline solution were 0.06009 and 0.05925 for BLR-MP and MR-MP evaluation settings,
respectively. The best verification performances by the top-performing submitted models in
terms of FMR100 were 0.05095 and 0.04489 for BLR-MP and MR-MP evaluation settings,
respectively.

4.7. Summary

This chapter presented and evaluated a novel solution to reduce the negative impact of
wearing a protective face mask on FR performance. This work was motivated by the
recent evaluation efforts on the effect of masked faces on FR performance. The presented
solution is designed to operate on top of existing FR models, thus avoiding the need for
retraining existing FR solutions used for unmasked faces. This goal has been accomplished
by proposing the EUM operated on the embedding space. The learning objective of our
EUM is to increase the similarity between genuine unmasked-masked pairs and decrease
the similarity between imposter pairs. We achieved this learning objective by proposing a
novel loss function, the SRT which, unlike triplet loss, dynamically self-adjust its learning
objective by concentrating on optimizing the distance between the genuine pairs only when
the distance between the imposter pairs is deemed to be sufficient. Through ablation study
and experiments on four masked face datasets and three FR models, we demonstrated
that our proposed EUM with SRT significantly improved the masked face verification
performance in most experimental settings, providing an answer to RQ2.1. This chapter

105



also presented a summary of MFR competition designed to motivate solutions aiming at
enhancing the FR accuracy of masked faces.

The next chapter will present the contribution of this thesis aiming at enabling biometric
recognition in virtual and augmented reality applications enabled by HMDs.
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5. Biometrics in head-mounted displays

The previous chapter presented a novel approach to reduce the effect of wearing a face
mask on face recognition verification performance. This chapter focuses on introducing
biometric recognition to VR/AR applications enabled by HMD devices. This chapter is
based on the publications [25, 32, 33, 34, 35].

5.1. Introduction

An essential aspect of security-related and penalization-driven access control applica-
tions is linked to the accurate identification of individuals. With the growing interest
of VR/AR applications such as entertainment applications [259], manufacturing [194],
healthcare [172], law enforcement [246] and education [280], identifying the users
within the associated headset is becoming a critical challenge for VR/AR systems for
secure access. Identification of VR/AR users can further be used to prevent unauthorized
access to the system, enhance user privacy, and guarantee the safety of using the sys-
tem in multi-user environments. For example, in the domain of field policing and crime
scene investigation, Poelman et el. [213] utilized an AR system to enable crime scene
investigators to access remote support from the experts, enabling collaborative spatial
analysis of location. This type of information should only be accessible to authorized users.
Enabling VR/AR technologies in real application scenarios allows sensitive information to
be accessible to the user and, if not carefully handled, can cause a considerable amount of
damage. This sensitive information should be properly and continuously authenticated
to prevent anonymous access to private and sensitive data. These, among many other
application scenarios, raise a question regarding the security mechanism in such headsets.

The current security mechanism in VR and VR use-cases depends on pattern matching or
Personal Identification Number (PIN) to authenticate the user in the VR environments [98].
Such authentication mechanism is limited to individual knowledge and does not allow
continuous authentication while the device is being used without interruption. Kupin et
al. [147] proposed a security approach for VR devices based on biometric data collected
by tracking the behavior of users, achieving 90% identification accuracy. However, this
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approach is limited to specific application scenarios where the user performs a predefined
physical task through a high degree of user cooperation. By design, HMD for AR/VR
applications are commonly built with a camera to enable gaze interaction with the virtual
environment. We assert that such a camera can be used to verify the user identity by
relying on biometric characteristics captured during regular use. Using the HMD camera,
two biometric characteristics - iris and periocular region, can be captured continuously;,
enabling us to employ them for biometric authentication of the users.

While we note this is an inherent advantage, we also draw attention to one of the main
challenges for deploying such solutions, i.e., the limited computational and storage power
of HMD devices. Large segmentation or feature extraction models are not realistically
deployable in such low computational powered and mobile devices. As noted in earlier
works, the performance of iris recognition depends on the precise segmentation of the
iris area, especially in uncooperative capture scenarios [294, 217]. As a second factor,
it has to be noted that common iris recognition approaches require significant coopera-
tion of the user to capture high-quality iris images with relatively widely open eyes to
enable high segmentation accuracy. Within the AR/VR scenarios, the user should not
be required to continuously and intentionally collaborate with the identity verification
sub-system impeding the use of AR/VR, rather the authentication system should run
in the background. Such an interaction results in sub-optimal iris capture, unlike the
traditional iris recognition systems. Considering the minimalistic hardware specifications
available in such applications and the need for reliable segmentation accuracy, one of the
main challenges for iris recognition in HMD is creating an accurate yet efficient (from a
model size perspective) segmentation approach. We also assert that the periocular region
captured during the interaction can supplement and mitigate the lower performance due
to iris alone [207]. As noted in earlier works, especially for non-collaborative biometrics
where the need for user collaboration can be relaxed, the periocular region has proven to
improve the authentication performance when used along with iris [218].

Motivated by such arguments, this chapter investigates and evaluates the feasibility of
using captures from HMD internal cameras for biometric recognition. In the efforts seeking
to answer RQ3.1, RQ3.2, and RQ3.3, this chapter presents three main contributions:

* As a response to RQ3.1, this chapter provides a comprehensive evaluation of three
widely used iris features extractions methodologies with variations in the comparison
process. Furthermore, this chapter evaluates the verification performance of four
well-used periocular feature extraction approaches. This work also analyses the
relative utility of the iris images captured under the non-collaborative environment
by studying the relative low iris area available in the captured images. Based on
this, this chapter provides in-depth analyses on the effect of iris selection on the
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general performance and the expected gap in the sequence of eye captures when a
threshold based on the amount of visible iris is applied. Also, this chapter presents
a new methodology to select the suitable iris for better biometric performance on
HMD devices.

* As a response to RQ3.2, this chapter presents a multi-scale segmentation network
based on a cascade framework that considers the image information at multiple
scales. The largest segmentation model has 6574k parameters. We propose to reduce
the number of parameters to 216K parameters in the second model (Eye-MMS216)
and 80K in the third model (Eye-MMS80) by taking advantage of the fact that
segmentation takes an image from a highly detailed space to a space with a small
number of discrete labels. Both Eye-MMS216 and Eye-MMS80 models achieved
over 91% mean Intersection over Union (IoU) on the four label regions. Despite the
small number of parameters, the compact model performs similarly to the initially
proposed model with 6574k parameters (two percentages lower than the accuracy
of the larger model).

* As aresponse to RQ3.3, this chapter presents a two-stage image generation network
(D-ID-Net) for generating synthetic images that can be used for large-scale training
data generation or presentation attacks (aka. spoofing attacks) in future works. The
first stage (network) is the domain network (D-Net), which transfers the semantic
labels into an eye-like image without specifically addressing the identity issue. The
second stage (network) is the identity-specific network (ID-Net) which induces
identity-related information into the output of the D-NET and generates a realistic
image that corresponds to the initial semantic label and possesses the appearance
of a specified identity:.

In the rest of the chapter, Section 5.2 discusses the related work focusing on issues related
to biometrics in HMD, ocular semantic segmentation, iris, and periocular recognition, as
well as identity preserving image generation. This is followed by a detailed description of
the algorithmic methodology proposed and deployed for the various tasks addressed in this
work. Section 5.4 presents the implementation and experimental details needed to assure
the reproducibility of the work and to enable in-depth comprehension of the achieved
results. Section 5.5 presents and discusses the achieved results for the segmentation,
generation, and the different investigated verification setups. A set of conclusions are
drawn in Section 5.7 to motivate future work on HMD-based biometrics.
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5.2. Related work

This section discusses the related work focusing on biometrics in HMD, ocular seman-
tic segmentation, iris, and periocular recognition, as well as identity-preserving image
generation.

Biometrics in HMD A growing number of applications are integrating AR/VR headsets.
Verifying and maintaining the trust in the identity of the user might be necessary, especially
in security-related applications. An example of that is the foreseen use of AR headsets
for border guards in both crowded border-crossing points and remote locations. This
use case is being developed by the H2020 EU-funded project ARESIBO [5]. In such a
scenario, the information processed and displayed to the user is of highly-secure nature,
and the user identity should be verified without disturbance under controlled settings.
A previous work by Bastias et al. [20] proposed a method for iris reconstruction from
several 2D near-infrared iris images and designed a sensor for 2D image capturing, which
is mounted on a wearable headset. However, the work did not target wearable headsets
or the cameras within the HMD devices, rather it used the setup to create a capturing
mechanism and proposed a consequent verification approach.

Olade et al.[204] discussed multimodal facial biometric authentication and mentioned
the practical need for mapping such approaches to authentication within the HMD, however,
without providing any experimental study that includes HMDs. Kim and Lee [138]
discussed periocular biometric verification in HMDs without providing any details on the
captured device and database structure. Their best-performing comparison approach was
a naive L1 distance between the pixel values of the images, which raises many concerns
on the scalability and generalizability of the solution.

Very recently, the OpenEDS database was released [96], which is a large-scale iris image
dataset captured using a virtual-reality HMD with two eye-facing cameras. Based on the
OpenEDS, Facebook hosted a competition for two main challenges, semantic segmentation,
and synthetic eye generation [6]. The main goal of the competition is to address different
eye-tracking solutions for VR and AR. Although, the main goal of OpenEDS is to enable
eye gaze for VR/AR application, it opens a new opportunity to evaluate iris and periocular
biometric recognition in HMD setups for VR/AR application.

Eye semantic segmentation Previous works that addressed semantic image segmenta-
tion for the ocular region mainly focused on iris or sclera segmentation. Sclera can be a
biometric characteristic, but its segmentation also acts as a way to detect the outer bound-
aries of the iris. This had been motivated mainly by the high interest in iris recognition, as
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one of the most accurate biometrics characteristics [126]. The localization (segmentation)
accuracy of the iris significantly affects the iris recognition performance [168]. Earlier
works have suggested segmenting the iris region by defining its boundaries, e.g., by Hough
transforms [275]. More recent works followed the trend in generic segmentation and
detected the iris region by utilizing Fully Convolutional Network (FCN) [157, 22] or U-Net
[167].

Since 2015 a series of competitions have addressed sclera segmentation in the last five
years [70]. The latest competition [69] focused on variations in the capture angle and
the use of mobile devices. The winning team employed U-Net structure [227] modified
by a channel attention module as described by Yu et al. [287].

Eye-tracking can benefit greatly from multiple region semantic segmentation of the
ocular area. However, only recent activities have targeted this problem and provided
appropriate research databases. One of these is the iBUG Eye Segmentation Dataset [170]
where relatively low-resolution ocular regions are segmented into two labels, iris and
pupil as one class, and sclera as the second class. The work also proposed a segmentation
solution based on a convolution neural network followed by refinement using a conditional
random field. Rot et al. [230] also addressed the multi-region (iris, sclera, pupil, periocular,
eyelashes, and canthus) segmentation issue by building a convolutional encoder-decoder
solution, however, with a database of a limited size. OpenEDS [96] derived a large scale
iris images dataset captured using a virtual-reality HMD with two eye-facing cameras.

Luo et al. [169] have recently created the Eye Segmentation in the Wild dataset,
which is a large scale eye images dataset collected and manually annotated from several
datasets [148, 238, 232, 212, 231, 186, 242]. However, the released dataset does not con-
tain identity labels. Therefore it could not be used for identity verification evaluation. The
work also proposed a multi-region semantic segmentation method based on SegNet [17]
followed by a pre-trained encoder and discriminator to regularise the model during the
training phase. However, the SegNet model contains a relatively large number of trainable
parameters (29.46 million), which is very large for devices with limited computational
power.

Generic image segmentation solutions have achieved increasingly impressive perfor-
mances since the rise of deep learning. Main advances in this regard are segmentation
based on FCN [164], U-Net [227], Feature Pyramid Network [153], Mask R-CNN [105],
DeepLabv3+ [47], Path Aggregation Network [158], and most recently the Context
Encoding Network [288]. However, few works have addressed segmentation solutions
constrained by very limited computational resources (e.g. embedded systems). The latest
of such works is the Fast-SCNN [215] that resulted in a model with 1.1 million parameters,
which is still large for some embedded devices. Other works such as ENet [209] achieved
a significantly small model size (0.37 million parameters). Nevertheless, this reduction in
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the model size notably affected the prediction accuracy.

Iris recognition Iris recognition is one of the most reliable and highly accurate biometric
verification methods [73]. One of the most accurate and widely deployed approaches to
extract iris features was proposed by Daugman [73]. Further, iris recognition approaches
have been proposed in the literature, whether they are derivative of Daugman’s iris features
or based on deep learning techniques. For example, Sun and Tan [251] presented ordinal
measures(OM) as a new type of iris features. Miyazawa [188] proposed an approach
based on Discrete Fourier Transforms (DFT). More recently, an iris recognition approach
was presented by Chen et al. [46], where the authors built a new set of iris features based
on Human-interpreted Crypt Features.

This advancement in iris recognition techniques has driven many security-related
applications to implement biometric identification based on iris recognition algorithms. In
most application scenarios, the iris images are acquired in a collaborative/cooperative
environment under ideal conditions to achieve maximum performance of iris recognition.
In the collaborative application scenario, the acquisition of an iris image requires user
collaboration, where the distance between user and camera is limited, and the user is
looking directly into the camera with open eyes. This has traditionally allowed the systems
to capture less noisy images that also contain a maximized portion of the iris area.An
example of such applications is iris recognition in the border-crossing processes deployed
in many airports [74] e.g., United Kingdom, Canada, and United Arab Emirates. Despite
the fact that these solutions are scalable and efficient in terms of performance [72], the
limitation to collaborative environment and restriction in using Near Infra-Red (NIR)
cameras make these solutions not directly suitable to use-cases where such conditions
are not necessarily feasible, e.g., mobile phones, VR/AR headsets, or in the automotive
domain.

The non-collaborative iris recognition has recently gained interest from different ap-
plications. In such application scenarios, the user is not expected to make an effort and
intentionally present an ideal iris sample to the capture device. An example of that is the
adoption of iris recognition in the automotive domain, where identity information can
help provide security and personalization. For example, Gentex, in collaboration with
Delta ID, developed a biometric identification system based on iris recognition to be used
inside vehicles [97].

Periocular recognition Periocular recognition provides a trade-off between using the
iris or the entire face for identity verification by considering a small area around the eye,
including eyelids, lashes, and eyebrows, as biometric trait [207].
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Periocular recognition is particularly appropriate for a non-collaborative real-world
scenario [132] where the need for user cooperation can be relaxed in comparison to iris
recognition[207]. The performance of iris recognition greatly depends on the precise
isolation of the iris area [200]. Therefore, using periocular area for person identification
avoids the need for highly accurate iris segmentation, which can be a challenge for iris
recognition in less controlled scenarios [129]. Another advantage is that the iris and face
capture typically contain the periocular region, thus it can be easily obtained using the
existing capture setups and can potentially improve the overall performance by fusing
periocular, and iris/face information [277, 9, 221].

Moreover, periocular recognition is highly robust to expression variations [8], and aging
[131, 146] in comparison to face recognition. Also, it enables matching partial captured
face images [133].

Traditionally, periocular recognition methods utilized handcrafted features extracted
from periocular images. Park et al. [207] proposed one of the first works to use the
periocular area as a biometric trait captured under a controlled environment. The work
depends on handcrafted features obtained by three descriptors, Local Binary Patterns
(LBP), Histograms of Oriented Gradients (HOG), and Scale-Invariant Feature Transform
(SIFT), followed by score fusion to build a verification decision. Following the works
of Park et al. [207], several subsequent works were proposed in the literature: Juefei-
Xu et al. [133] utilized LBP to encode discrete transforms enabling translation-robust
descriptor. Mahalingam and Ricanek Jr [175] proposed the use of multi-scale patch-based
LBP feature descriptors. Ross et al. [229] presented a fusion-based scheme to handle
the variability in input periocular images. The introduced method is based on three
descriptors: HoG to model global information, SIFT to extract local edge anomalies, and
probabilistic deformation models to handle non-linear deformations. Woodard et al. [278]
proposed a method based on local appearance-based feature representation by adding
the color histogram to LBP features. Joshi et .al [130] proposed using both eyes for the
periocular recognition task and computing feature representation by calculating the mean
of a bank of complex Gabor filters and then normalizing it using zero-mean and unit
variance normalization.

With the increased interest in deep learning techniques, many methods explored the use
of deep learning techniques in periocular recognition. [218] trained convolution neural
networks (CNNs) to implicitly learn the region of interest (periocular area) while ignoring
the ocular region of the input image. Therefore, the proposed method does not require
an explicit segmentation of the eye image during the recognition phase. Zhao and Kumar
[294] proposed a Semantics-Assisted CNN (SCNN) model that consists of several CNN
models. The main CNN model is trained based on the identity information while the other
models are trained with semantic information such as gender and ethnicity and then joint
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the output of the models at the end to produce a feature representation or perform score
fusion.

Identity preserving image generation The statistical properties of a generated image
should be similar to those of a natural image. The parametric density estimation of natural
image distribution is a function that maximizes the probability of producing an output
similar to the observed data. Traditionally, this challenging problem has been handled
using Restricted Boltzmann Machines [243] and vanilla autoencoders [263]. Due to the
latest developments in deep learning techniques, generative models benefited from deep
architectures and have achieved very promising results. This has lead to several pivotal
techniques based on deep generative models, including Variational Auto Encoder [141],
Generative Adversarial Network (GAN) [100], and Auto-regressive models [260, 261].

Image synthesis from semantic segmentation is a specific application of image-to-image
translation task. The goal of image-to-image translation is to generate a new image
conditioning on certain input. Major works in this direction utilized conditional GAN
architectures (e.g. pix2pix [124]) and CNN architectures [48]. Several works propose to
train GAN in an unsupervised fashion using cycle consistency GAN to handle the absence
of unpaired training data [135, 116, 45]. Chen et al. [48] presented a cascade framework
for high-resolution photographic image synthesizing from semantic layouts.

Generating identity-preserving images was commonly studied in the context of face
images. Most solutions based their works on GAN, with some works targeting pose-
specific generation [43] and others enhancing the identity-preservation by leveraging a
three-player GAN [239]. Antipov et al. [12] proposed a method for identity-preserving
face aging synthesis based on conditional GAN. Li et al. [149] proposed a method for
generating face images from a predefined set of attributes while preserving the input
face identity. Similarly, Bao et al. [19] proposed a method for identity-preserving face
generation by combining identity representation from an initial input image with attribute
representation from a second input image, then synthesizing a new face image from the
combined representation. Huang et al. [115] proposed Two-Pathway GAN (TP-GAN) to
synthesize frontal faces by simultaneously perceiving global structures and local details.
Based on this work, Wang et al. [269] proposed multiple discriminators to synthesize
high-resolution images. Generating an image that would preserve multiple identities was
also addressed in the context of face morphing attacks [67, 56].
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Figure 5.1.: An overview of iris recognition workflow from eye image acquisition to feature
extraction. The image is segmented then the iris area is normalized and
masked for non-iris areas. The mask and normalized image is processed by
a feature extraction process. An extracted feature vector can be compared
to another vector to perform identity verification.

5.3. Methodology

This chapter investigates the possibility of using HMD internal cameras for iris and perioc-
ular biometrics within HMDs where the ocular image is acquired using a camera mounted
within the headset without requiring the user’s collaboration. The performance of iris
recognition methods depends on the accurate segmentation of the iris region. Therefore,
this section starts by presenting a novel compact model for semantic segmentation of
eye regions that aims at enabling deployment in low computationally powered devices.
Then this section provides a comprehensive study on iris recognition approaches within
AR/VR environment (HMD). The generic iris recognition pipeline consists of four main
steps: a) iris image acquisition, b)segmentation and normalization, d) feature extraction,
e) comparison and decision making. These steps are illustrated in Figure 5.1. This is
followed by presenting multiple algorithms that we evaluate for periocular recognition.
This aims at extending the biometric information source from the iris into the whole eye
region to compare its feasibility to HMD biometrics in comparison to iris recognition alone.
Finally, a method for generating realistic and identity-specific eye images from semantic
segmentation labels is presented. The proposed synthesized solution consists of two-stage
networks. The first stage network aims to generate a generic eye image corresponding to
a given semantic segmentation label. The second stage network uses the output of the first
stage network to generate identity-specific eye images. The identity preservation of the
generated images is later evaluated within the presented iris and periocular recognition
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evaluation to gauge the suitability for biometric applications.

5.3.1. Ocular segmentation

The goal of the proposed segmentation solution is to create an accurate segmentation
approach for a given eye region image despite appearance variations. The created model
should be of small size (around or below 1MB) to enable application in the embedded
environments, such as AR/VR applications [96]. In this section, three segmentation models
are presented. The first is built to demonstrate the idea of multi-scale segmentation, while
the second and third aim at maintaining (to various degrees) the performance of the first
model while being significantly smaller (smaller number of learned parameters).

Multi-scale segmentation solutions (Eye-MS) This model aims at extracting more
general information at lower image scales and thus minimizing the model size required to
extract such information. It also processes the image at higher scales to analyze detailed
image information. The presented model architecture is influenced by the cascaded
refinement network introduced by Chen and Koltun [48] as an image synthesis tool. The
proposed architecture is a convolutional neural network that consists of inter-connected
refinement modules. Each module consists of only two convolutional layers (last module
contains 3 convolutional layers), each followed by layer normalization [16] and a leaky
rectified linear function (LReLU) [174]. The first module considers the lowest resolution
space (40x25 in our model). This resolution is increased in the successor modules until
the last module (640x400 in our case), matching the target image resolution. The input
of each module is the output of the previous module bilinearly up-sampled to the proper
input size of the current module, concatenated with the source image down-sampled using
pixel area relation (area interpolation) to the proper input size of the current module. Our
Eye-MS model uses 4 convolutions and a feature map (FM) of the size 256 for the first three
modules and 128 for the last two modules. A summary of the network details is presented
in Table 5.1. Our Eye-MS model has 6574k parameters and 457.3 GFLOPs, making it
relatively smaller than conventional solutions such as the real-time ICNet (6680k) [293]
and SegNet (29460k) [17]. However, such a model size might be quite large for embedded
applications such as in HMD devices.

As we aim at producing an accurate segmentation model, however with a much smaller
size, we point out that we are moving from a higher detailed space (captured eye image)
to a space with lower variation (segmentation of four classes corresponding to ocular
region, sclera, iris, and pupil). Thus, we neglect minor details in the image and focus on
major changes across the image space. This can help us reduce the less important (for
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Module Input size layer Output size
convl (kernel:(4,4), FM:256)

Module 0 | 40x25x1 conv2 (kernel: (4.4), EM:256) 40x25x256
conv3 (kernel:(4,4), FM:256)

Module 1 | 80x50x257 conva (kernel: (4.4), FM:256) 80x50x256
conv5 (kernel:(4,4), FM:256)

Module 2 | 160x100x257 conv6 (kernel:(4.4), FM:256) 160x100x256

Module 3 | 320x200x257 | S00V7 (kernel:(4,4), FM:128) | 4040604198

conv8 (kernel:(4,4), FM:128)
conv9 (kernel:(4,4), FM:128)
Module 4 | 640x400x129 | conv10 (kernel:(4,4), FM:128) | 640x400x1
convll (kernel:(1,1), FM:1)

Table 5.1.: The detailed structure of the multi-scale segmentation network Eye-MS (6574k
parameters). The input of module 0 is the source image down-sampled to
its input size. The input of each of the modules 1, 2, 3, and 4 is the source
image down-sampled (using area interpolation) to the proper input size of the
current module concatenated with the output of the previous module bilinearly
up-sampled to the proper input size of the current module. Each of the layers
1to 10 is followed by LReLU activation and layer normalization (LN).

segmentation) learned parameters. We induce this notion by reducing the feature map
size of the convolutional layers of the Eye-MS model. The proposed compact segmentation
networks are described in the following paragraph.

Miniature multi-scale segmentation networks (Eye-MMS) In the first network, the
feature maps size is set to 32 for the first two modules and 16 for the last three modules.
In the second network, the feature maps are set to size to 64 for the first module and
32 for the last four modules. This reduction in the feature map size leads to a reduction
in the size of the subsequent convolutional layers, therefore, a significant reduction in
the number of learned parameters. The feature map produced by the convolutional layer
represents how strongly the kernel responds to the layer input. Therefore, we design our
architecture so that the feature map size goes from high to low as the network progress
since we are moving from a higher detailed space (captured eye image) to a space with
lower variation (segmentation of four classes), reducing the feature map can still maintain
the lower variation of segmentation information while reducing the number of parameters
significantly at the last layers of the network. At the same time, the larger feature map
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size can capture the high variations of the image at the initial layers. The feature map size
at later layers of the network has more effect on the number of parameters as the input
of these layers is up-sampled to higher resolutions. The first Eye-MMS model contains
80081 learned parameters and 6.2 GFLOPs. The second Eye-MMS model contains 216865
learned parameters and 23.09 GFLOPs. Thus, they will be noted as Eye-MMS80 and
Eye-MMS216. The model architecture is provided in Table 5.3 for Eye-MMS80 and Table
5.2 for Eye-MMS216.

Module Input size layer Output size
convl (kernel(4,4), FM:64)

Module 0 | 40x25x1 conv2 (kernel(4.4). FM:64) 40x25x64
conv3 (kernel(4,4), FM:32)

Module 1 | 80x50x65 conv4 (kernel(44), FM:32) 80x50x32
conv5 (kernel(4,4), FM:32)

Module 2 | 160x100x33 conv6 (kernel(4.4), FM:32) 160x100x32

Module 3 | 320x200x33 | <0nv7 (fkernel(4,4), FM:32) | 5, 000 39

conv8 (kernel(4,4), FM:32)
conv9 (kernel(4,4), FM:32)
Module 4 | 640x400x33 | conv10 (kernel(4,4), FM:32) | 640x400x1
convll (kernel(1,1), FM:1)

Table 5.2.: The detailed structure of the miniature multi-scale segmentation network
Eye-MMS216 (216K parameters). The input module 0 is the source image
down-sampled to its input size. The input of each of the modules 1, 2, 3,
and 4 is the source image down-sampled (using area interpolation) to the
proper input size of the current module concatenated with the output of the
previous module bilinearly up-sampled to the proper input size of the current
module. Each of the layers 1to 10 is followed by LReLU activation and layer
normalization (LN).

All the networks (Eye-MS, Eye-MMS216, and Eye-MMS80) are trained using a L2 loss
at the pixel level between the produced segmentation and the ground-truth label. The
networks were trained with a batch size of one and a learning rate of 10e-4. The output
layer produced a 2-D array of float numbers to enable a smooth learning conversion.
The predicted segmentation is rounded to the nearest integer values to represent the
discrete labels. To neglect any irregularly labeled pixels, we post-process the semantic
segmentation by finding the largest contours around each of the considered labels then
fitting a convex hull around these contours. These hulls represent the borders of each
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Module Input size layer Output size
convl(kernel(4,4), FM:32)

Module 0 | 40x25x1 conv2 (kernel(4.4), FM:32) 40x25x32
conv3 (kernel(4,4), FM:32)

Module 1 | 80x50x33 conva(kernel(4,4). FM:32) 80x50x32
conv5 (kernel(4,4), FM:16)

Module 2 | 160x100x33 conv6 (kernel(4.4). FM:16) 160x100x16

Module 3 | 320x200x17 | S00v7 (kernel(4,4), FM:16) | 404, 960416

conv8 (kernel(4,4), FM:16)
conv9 (kernel(4,4), FM:16)
Module 4 | 640x400x17 | conv1O0 (kernel(4,4), FM:16), | 640x400x1
convll (kernel(1,1), FM:1)

Table 5.3.: The detailed structure of the miniature multi-scale segmentation network
Eye-MMSB80 (80K parameters). The input of module 0 is the source image
down-sampled to its input size. The input of each of the modules 1, 2, 3,
and 4 is the source image down-sampled (using area interpolation) to the
proper input size of the current module concatenated with the output of the
previous module bilinearly up-sampled to the proper input size of the current
module. Each of the layers 110 10 is followed by LReLU activation and layer
normalization (LN).

label.

5.3.2. Iris recognition

This section presents the iris normalization method and the different iris feature extraction
solutions used for our benchmarking, along with their comparison methodology.

Iris normalization: To normalize the iris region, we start by defining a general circular
border that contains the pupil and the iris. The pupil circular region is defined around
its moment center. The circular region has the radius of the closest (from the center of
the moment) iris labeled pixel. The circular border between the iris and the sclera is
also defined as centered around the pupil center of the moment and has the radius of the
distance between this center and the furthest (from the center of the moment) iris labeled
pixel. The iris normalization follows the rubber sheet approach defined in [72], where the
area is unrolled to perform a rectangular image. This normalized image is paired with
a mask map containing the value zero for each pixel not labeled as iris in the semantic
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segmentation results and one for each pixel labeled as iris.

Iris feature extraction and comparison: In order to study the backward compatibility
of the iris images captured using an AR/VR headset, we employ two feature extraction
approaches- handcrafted and deep learning feature extraction approaches. For deep
learning approach, we evaluate a deep representation extracted from iris modality using
DenseNet-201 and DensNetBC-100 models [112]. For the handcrafted feature extraction
approach, we employ three well-established and complementary iris feature extraction
methods owing to the robustness and time-tested applicability for iris recognition in various
constrained, and unconstrained iris recognition [39, 237, 145, 206, 217, 228]. The iris-
codes in the first method are extracted using the classical Gabor features as proposed
by Daugman [72] and we employ the generalized version of the same by employing 1D
Log-Gabor features [181]. In the second approach, we employ Discrete Cosine Transform
(DCT) coefficients of overlapped angular patches from normalized iris images to derive
the iris-codes [190]. Further, in the third approach, we extract the iris-codes using the
Cumulative-Sum-Based Change Analysis [142]. Each of the approaches is explained in
brevity for the convenience of the reader.

1D Log-Gabor Filtered Iriscodes (LG): 1D Log-Gabor Filters [181] extend the idea of
original 2D Gabor feature encoding proposed by Daugman [72] where they can extract
the signal representation jointly in space and spatial frequency. The signal/iris image
is decomposed using a quadrature pair of Gabor filters, with a real part specified by a
cosine modulated by a Gaussian and an imaginary part specified by a sine modulated by a
Gaussian filter. This decomposition yields the real and imaginary filters corresponding
to even symmetric and odd symmetric components, respectively. Further, only the phase
component is retained for encoding the discriminative information in the iris as the
amplitude information, which mainly corresponds to illumination, is discarded. In order
to represent the information in a compact form, the phase information is further encoded in
four distinct levels in a four-quadrant principle. However, noting a zero DC component can
be obtained for any bandwidth by using a Gabor filter which is Gaussian on a logarithmic
scale, Masek et al. [181] proposed to employ the Log-Gabor filters and established
the superior performance. In the lines of Daugman’s approach[72], Masek et al.[181]
also encoded the phase using four-quadrant quantization to be invariant to illumination.
Further, the approach leads to a smaller template of the iris, which is space-efficient
without compromising biometric performance [39, 237, 145, 206].

DCT Coefficients based Iriscodes (DCT): In the lines of the previous approach detailed
above, DCT coefficients extract iris features using a similar principle, specifically in a
non-semantic manner. The DCT based feature extraction is robust not only to illumination
but also against focus-blur [39, 237, 145, 206] which is typically seen in unconstrained
iris capture as in the case of AR/VR headset based iris capture. In this approach of
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DCT based iris-code extraction feature vectors are derived from the zero crossings of
the differences between 1D DCT coefficients calculated in rectangular image patches
of the iris image [190]. Further, averaging across the width of the chosen patches with
appropriate windowing smoothens the data, which helps in mitigating the effects of noise
and other image artifacts such as motion blur, enabling to use of a 1D DCT to code along
the length of each patch along [190]. Given such a formulation, the approach results in
low-computational cost and an optimal noise-robust template/iris-code.

Cumulative-Sum Based Change Analysis for Iriscodes (CSBCA): Unlike the previous two
approaches, Cumulative-Sum Based Change Analysis [142] employs the image directly
without any specific filtering. This approach is based on dividing the entire image into a
number of blocks with a size of 3 pizels x 10 pixels representing a cell on a normalized iris
image. Each cell is further represented by an average intensity of the gray value, and the
cumulative sum over the 5 cells is used to obtain the binary code simply by thresholding
the zero-crossing values [142]. The binary code obtained is robust against the illumination
changes, while the rotation invariance is not well-accounted. Despite the simplicity, the
approach has demonstrated superior performance in many applications of constrained,
unconstrained iris recognition and, including the template protection [224, 225].

Feature C comparison using hamming distance (HD): Given the binary nature of the
iris codes, we employ the Hamming Distance to measure the similarity between the
iris codes. Further, we employ the segmentation masks to obtain robust comparison
scores to account for the noisy part from the iris images that constitute the eye-lashes,
eye-lids, specular reflections, and ambient reflection. For a reference iris-code (IC;eference)
and probe iris-code (ICgpe) With corresponding iris segmentation masks represented
by maskieference @and maskpqhe respectively, the Hamming Distance score is computed as
given below:
|| (IC+eference ® ICprobe) M MaSKyeference M MasKprobe |

|maskreference N Maskprobe|

HD =

Shifted hamming distance (SHD): As noted from the feature encoding methods employed in this
work, the approaches do not account for factors such as rotation invariance and dilation/contraction
of pupils. To account for any adverse impacts of rotation of iris region as observed in the iris images
captured from AR/VR headsets, we also employ the shifted version of the Hamming Distance
comparison as proposed in earlier works [224, 225]. Specifically, we shift the iris codes by 8 bits
in both positive and negative directions to obtain the scores, following which the minimum of the
scores is considered for reporting the performance.

Off-the-shelf CNN features: Along with the set of hand-crafted features, we investigate the
performance of a state-of-the-art pre-trained CNN model on ImageNet [144] database for iris
recognition. Specifically, we apply transfer learning on pre-trained DenseNet-201 [112] model. Our
choice of DenseNet-201 was based on the promising reported accuracy for iris recognition [257].
DenseNet is a convolutional neural network designed for image classification to achieve low
classification error rates while having fewer parameters than the ILSVRC 2015 winner, ResNet
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model [107]. The architecture is based on connecting each convolutional layer to every other layer
in a feed-forward fashion. Thus, each layer ¢*" receives collective knowledge from all preceding
layers xg, x1, ..., 241 and passes on its knowledge to all subsequent layers. Given that each layer
produces k feature maps, the input feature map for ¢*" layer is kg + k x (¢ — 1) where kg is
the number of channels in the input layer and k refers to the growth rate of the network. The
DenseNet-201 contains 201 layers (network depth) and the growth rate is £ = 32. In order to
apply transfer learning, we replace the classification layer (1000 neurons) with a new classification
layer to fit the number of classes in our training dataset (95 identities). The normalized iris images
are resized to 224 x 224 to match the input layer size as illustrated in Figure 5.1. During the
training phase, we did not freeze any weights from the pre-trained layers. Rather, we fine-tuned
the entire model with Softmax classifier on training data from OpenEDs database [96]. In the
testing phase, we removed the classification layer from the model, and the rest of the network was
used as a feature extractor. The features f are extracted from the last convolutional layer which
is of dimension 7 x 7 x 1920. The comparison between features extracted by this method uses
Cosine distance.

Features learning using compact model- DenseNet-BC: Considering the limited computational
resources and storage capacity of HMD devices, we explore feature learning of the DenseNet-BC
[112] model. The employed DenseNet-BC model (depth= 100 and k£ = 12) contains only 0.8m
trainable parameters and 1.8 GLOPs, compared to the 18.5m parameters and 8.6 GFLOPs of the
DenseNet-201 model. Thus, it is more realistic to deploy on low computational power devices.
DenseNet-BC has the same main architecture as DenseNet-201 but with 100 (instead of 201)
layers and a growth rate of k¥ = 12 (instead of 32). Besides, DenseNet-BC added bottleneck(B)
and compression(C) layers to improve the computational efficiency of the DeneNet model. For
implementation details of DenseNet and DenseNet-BC, one can refer to the original work in [112].
To adapt DenseNet-BC for iris images from HMD devices, we trained the model from scratch on
training data of OpenEDs database [96] with Softmax classifier. Similar to the DenseNet-201
model, we resized the normalized iris to 224 x 224 and set the number of classes in the classification
layer to 95 classes. The classification layer is removed during the testing phase, and the feature
f is extracted from the last convolutional layer, which is of the dimension 14 x 14 x 342. The
comparison between features extracted by this method uses Cosine distance.

5.3.3. Periocular recognition

As illustrated in Figure 5.2, the periocular region captured from the HMD devices does not
correspond to cooperative periocular captures. Under such highly uncooperative captures, the
periocular recognition is expected to result in sub-optimal biometric performance as noted in earlier
works for unconstrained periocular recognition[217]. Thus, we design a pipeline for periocular
recognition by first aligning the images captured from the HMD device. With the alignment of
periocular images, we account for multiple distortions arising out of the non-ideal gaze of the
user. Following the alignment of the images, we extract the features using a selected set of feature
extraction approaches, as detailed in this section. Further, we employ a simple distance metric to
measure the similarity of the features to obtain the biometric performance.
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Image alignment: In order to align periocular images, we first define the binarized mask of
the eye image simply by using the coarse segmentation label of the eye image. The segmentation
mask is derived on the basis of the pupil, the iris, and the sclera as one region (label value is 1)
and the background as the second region (label value is 0). We further calculate the moment of
the binary area with label values 1 and z, y coordinate of the moment center. By considering the
moment center as the center of the eye, we transform the ocular image into a new image where
the center of the new output image corresponds to the center of the eye (moment center). The
aligned image is further resized to the original size (640 x 400 pixels) by padding with zero values.
Samples of the aligned and not aligned periocular images are presented in Figure 5.2 for the sake
of illustration.

Not aligned

Aligned

Figure 5.2.: Corresponding samples of images before (top) and after (bottom) alignment.
The centralization of the pupil, iris and sclera combined region can be clearly
noticed in the aligned images.

Feature extraction: Texture information is characterized by a set of patterns or local variations
within images due to structural and intensity changes. The texture feature extraction banks on
mathematical calculations on the pixel intensities of the images in a specific manner. The texture
of the image also captures the description of gradients, orientation, local and global statistical
features based on mathematical formulations in either local or global neighborhoods. Owing to
such properties of extracting useful information from the images, a number of earlier works have
employed texture features for many biometric modalities such as the face and periocular region
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[203, 134, 278]. Motivated by these earlier works exemplifying the use of textural features, we
employ state-of-the-art feature extraction schemes based on the texture descriptors to extract
features from periocular images. Specifically, we explore two category of the texture descriptors -
handcrafted texture [203, 134] and deep feature texture extraction approaches [112]. Given the
aligned periocular image (I,,), we extract the texture features using the following approaches as
detailed below:

Local Binary Pattern (LBP): LBP [203] descriptor works by thresholding intensity values of a
pixel around a specified neighborhood in an image. The threshold is computed based on the
intensity of central pixel intensity in a chosen window or selected pixels. The new binary value of
the neighborhood is computed in a circular symmetric manner by interpolating the locations and
checking against the value of the central pixel. If a particular value in the neighborhood is greater
than the chosen central value, 1 is assigned and 0 otherwise. The set of values in a particular
chosen block is encoded to form the compact pixel value f in the range of 0 — 255 by using a
simple binary to decimal conversion strategy as given by Eqn. 5.1.

Q) = Q(e) * (2) (6.1

1

8
f=
j:
where @ represents the quantized values corresponding to central pixel Q(c) and considered
pixel Q(7) in a neighbourhood. The set of f obtained from LBP is further used as the feature
representation for the periocular image recognition.

Tree Local Binary Patterns (TreeLBP): Tree-Shaped Sampling Based Hybrid Multi-Scale Feature
[171] is a variant of the LBP where a number of different configurations are employed to extract
noise-resistant features are extracted. While in LBP, multiple radius can be explored to extract
the features, different pixel radius r = 2,6, 8 configurations and Tree-Shaped Sampling radius
R =2,6,8 can be used in TreeLBP to extract the multi-scale features.

8
F=2(Q6) - Qo))  (2) (5.2)

rR j=1

where () represents the quantized values corresponding to central pixel Q(c¢) and considered pixel
Q(¢) in a neighbourhood for a radius of » and sampling radius R. The set of f obtained from
TreeLBP is further used as the feature representation for the periocular image recognition.

Binarized Statistical Independent Features: BSIF is another texture extraction method similar to
LBP [134]. BSIF automatically learns a fixed set of filters from a set of natural images, unlike the
hand-configured approach in LBP. The BSIF based technique consists of applying learned textural
filters to obtain a statistically meaningful representation of the image data, which enables efficient
information encoding using binary quantization. A set of filters of patch size | x [ are learned
using natural images, and independent component analysis (ICA) [134] where the patch size [ is
defined as :

l=2*xn+1)

such that n ranges from {1, 2...8}. The set of pre-learned filters from natural images are used to
extract the texture features from periocular images. If a periocular image is represented using
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I(z,y) and the filter is represented by H;(z,y) where i represents the basis of the filter, the linear
response of the filter s; can be given as [134]:

z,y

where z, y represents the dimension of image and filter. The response is further binarized based on
the obtained response value. If the linear filter response is greater than the threshold, a binarized
value of 1 is assigned as given by [134]:

1, ifs; >0
=4 ¢ 5.4
{O, otherwise 5.4

The obtained responses b are encoded to form the compact pixel value f in the range of 0 — 255
by using binary to decimal conversion as provided by Eqn. 5.5. The set of f is used as the feature
representation for the perioclar image recognition.

k
f= ij x 2U=1). (5.5)
j=1

where k£ = 5,6, ...12. We employ a BSIF filter of size 9 x 9 with k = 8 for extracting features in
this work.

Histogram of Oriented Gradients (HOG): The idea behind HOG is to model the local object
appearance and shape through characterizing the local intensity gradients or edge directions. HOG
features are extracted by dividing the image into small spatial regions (also referred to as cells),
and for each cell, a set of a local I-D histogram of gradient directions or edge orientations over the
pixels of the window are accumulated. After normalization, the combined histogram entries from
the entire image constitute the final feature vector of HOG. We employ a cell size of 32 x 32 after
experimenting with a range of cell sizes by considering the entire image to extract features in this
work.

Deep feature extraction: We evaluated the deep feature representation extracted from the peri-
ocular region by utilizing the same models employed for deep iris recognition- DenseNet-201 and
DenseNetBC-100. The models details are described in Section 5.3.2. To adapt these models for
periocular modality, we fine-tuned DenseNet-201 with periocular images from our training dataset
and trained the compact model DenseNetBC-100 from scratch. For both models, we modified the
number of classes in the classification layer to fit the number of identities in our training dataset
(95 identities) and resized the periocular images to 224 x 224 to match the model input layer size.
The classification layer is removed during the testing phase, and the features f are extracted from
the last layer.

Periocular feature comparison: The set of handcrafted features extracted from the periocular
images is compared to obtain the biometric performance using a simple distance metric of >
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Figure 5.3.: Eye image generation approach using D-Net and ID-Net models. One can
notice the identity-related information induced by the ID-Net on the output of
the more generic output of the D-Net.

distance metric in order to align this work with earlier works in this direction of periocular
recognition. The features extracted by deep feature extraction are compared using Cosine distance.

5.3.4. Computational cost

The computational cost of the deep learning approaches depends on the number of trainable
parameters, computational complexity (FLOPs), and inference latency. DenseNetBC-100 contains
0.801 million (m) of trainable parameters and 1.8 GLOPs. The inference time for a single image
is 3.25 milliseconds (ms). DenseNet-201 contains 18.275M trainable parameters and has 8.6
GFLOPs. The inference time for a single image is 6.91ms. Eye-MMS216 contains 0.216m of
trainable parameters and the inference time is 4ms. All evaluations are performed using Tensorflow
framework (Version 1.14) running on Linux OS with Intel(R) Xeon(R) Gold 6130 CPU 2.10GHz
processor. Each extracted feature is stored as a four-byte floating-point resulting in templates of
376.2 kilobytes (KB) and 268.1 KB for DenseNet-201, and DenseNetBC-100, respectively. The
computational efficiency of the deep learning methods is identical for both iris and periocular
verification.

The chosen handcrafted iris verification methods are computationally efficient and optimally
represented for storage purposes. Each of the handcrafted feature extraction is completed within
3ms, and the templates result in 915 bytes, 1022 bytes, and 336 bytes for 1D Log-Gabor, DCT
Coefficient iris-code, and Cumulative-Sum-Based Change Analysis based iris-code, respectively,
when stored in lossless Portable Graphics Format (png) format. The comparison of masked iris
codes using Hamming Distance takes around 2ms, while the shifted version of the same takes
around 6ms.

The computational cost of the methods employed for periocular feature extraction are 0.02
seconds, 0.52 seconds, and 0.072 seconds for HOG, TreeLBP, and BSIF, respectively, and the
comparison of two sets of features for each of them takes 0.02, 0.019, and 0.002 seconds. Further,
the template sizes correspond to 135Kb, 8.97Kb, and 16 bytes for HOG, TreeLBP, and BSIF.
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5.3.5. Identity preserving image generation

The proposed image generation approach aims at generating realistic and identity-specific eye
images from semantic segmentation for potential future applications, such as generating large-scale
training data or generating presentation attack samples. The identity information is generally
available for a limited set of images of a specific identity. Our proposed solution is designed as
a two-stage network. The first network transfers the semantic label to the eye-domain (a more
realistic eye image) that maintains the structure of the label, which we refer to as D-Net. The
second network (ID-Net) induces the identity information by transforming the output of the D-Net
into an image containing identity-specific details. Together, these networks compose our D-ID-Net
solution for identity preserving image generation as shown in Figure 5.3.

Both D-Net and ID-Net share the same architecture (as detailed in Table 5.4) but differ in
the training protocol. Our architecture is a convolutional neural network that consists of inter-
connected refinement modules. Each module consists of only two convolutional layers (the last
module contains 3 convolutional layers), each followed by layer normalization [16] and a LReLU
with non-linearity [174]. The first module considers the lowest resolution space (5x3 in our
model). This resolution is increased in the successor modules until the last module (640x400 in
our case), matching the target image resolution. The input of each module is the output of the
previous module up-sampled to the proper input size of the current module, concatenated with
the source image down-sampled to the proper input size of the current module. Our architecture
uses 3x3 convolutions and a feature map (FM) of the size 512 for the first five modules and 256 for
the last three modules. The presented solution is influenced by the cascaded refinement network
introduced by Chen and Koltun [48]. This model aims at extracting more general information at
lower image scales and processes the image at higher scales to analyze detailed image information.

The D-Net input (source) images are semantic segmentation of the eye-regions (pupil, iris,
sclera, and background) that we represent in the source image with the corresponding pixel values
(20, 90, 160, and 230) to avoid extreme (0 or 256) values in the training process. The target is
the corresponding real images to the semantic labels (for all identities in training). To achieve
the style transformation to the natural image space, we use the contextual loss (CL) [184] as a
training loss. This is accompanied with a pixel-level Euclidean (L2) loss to smooth the training
convergence.

The CL is calculated between image embeddings extracted by a pre-trained VGG19 [241]
network trained on the ImageNet database [77]. The CL is given as:

CLex (9,11, 12) = —log(CX (D" (g), 2" (1))

(5.6)
~log(CX (2" (g), 2" (1)))
where t and g are the target and generated images respectively. C'X is the rotation and scale
invariant contextual similarity [184]. & is a perceptual network which is VGG19 in our work.
@l (z) and ®'2(x) are the embedding vectors extracted from the image = at layers conv3_2, and
conv4_2, respectively. The L2 loss is given as:

b

SIS (i — 9i)°, (5.7)
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Module Input size layer Output size
convl (kernel (3,3), FM:512)

Module 0 | 5x3x3 conv2 (kernel (3.3), FM:512) 5x3x512
conv3 (kernel (3,3), FM:512)

Module 1 | 10x6x515 conv4 (kernel (3.3). FM:512) 10x6x512
conv5 (kernel (3,3), FM:512)

Module 2 | 20x12x515 conv6 (kernel (3.3), FM:512) 20x12x512
conv?7 (kernel (3,3), FM:512)

Module 3 | 40x25x515 conv8 (kernel (3.3), FM:512) 40x25x512
conv9 (kernel (3,3), FM:512)

Module 4 | 80x50x515 convi0 (kernel (3.3), FM:512) 80x50x512
convll (kernel (3,3), FM:256)

Module 5 | 160x100x515 conv12 (kernel (3.3). FM:256) 160x100x256
convl3 (kernel (3,3), FM:256)

Module 6 | 320x200x259 convi4 (kernel (3.3), FM:256) 320x200x256
convl5 (kernel (3,3), FM:256)

Module 7 | 640x400x259 | convl6 (kernel (3,3), FM:256) | 640x400x3
convl?7 (kernel (1,1), FM:3)

Table 5.4.: The detailed structure of the D-Net and ID-Net. Both networks share the same
structure with different training strategies. The input of each of the 7 modules
is the source image and the output of the previous module (not for Module 0),
down-sampled and up-sampled subsequently to the input size of the current
module. Each of the layers 110 17 is followed by LReLU activation and layer
normalization (LN).

where ¢;; and g¢;; are the ground-truth target and generated pixel values respectively at position
(i,7), with value range of [0,255]. Ix and Iy are the height and width of the generated image
(and ground-truth) in pixels. The total loss (T'Lp_ ;) function of the D-Net is:

TLDfNet(ty g) =CLcx (t, g,11, 12) + A L2(t, g), (5.8)
with A = le — 4.

The second stage ID-Net uses the outputs of the D-Net as source images and corresponding real
images as target images. Every ID-Net is trained separately for each identity. The source of the
ID-Net already has the properties of the natural eye image and requires the induction of identity
information. We only use the contextual loss as defined in Equation 5.6 between the source (D-Net
output) and the target (real images) to achieve this. As a result, passing a semantic label through
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(a) Inputimage (b) D-NET (inter.) (c) ID-NET (d) Ground-truth

Figure 5.4.: Samples of the input semantic segmentation, the intermediate generation
by the D-Net, the final generated image by the D-ID-Net, and the ground-truth
images. These samples are selected from different identities to have eye-
glasses with reflection, extreme gaze directions, and eyes opening variations.
The identity-specific details can be noticed when moving from the D-Net
output to the final D-ID-Net output.

the generic D-Net, then the D-Net output through identity-specific (ID-Net) results in the targeted
realistic and identity-specific eye image as demonstrated in Figure 5.4.
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Figure 5.5.: (@) Samples of input images, (b) segmentation produced by our Eye-MS, (c)
segmentation produced by our Eye-MMS216, (d) segmentation produced
by our Eye-MMS8Q0, (e) the ground-truth segmentation, and (f) normalized
iris with using based on selected segmentation model Eye-MMS216. The
images are selected to represent different challenging conditions such as
relatively closed eye, non-central gaze, and an image with glasses. The
images from top to bottom achieved an Iris Mask Ratio (IMR) of 0.47, 0.78,
0.85 respectively, which reflects in the visible proportion of the iris.

5.4. Experimental setup

This section presents the implementation details, evaluation benchmarks and evaluation settings
used in this chapter.

5.4.1. Database

This work uses the OpenEDs dataset acquired using a virtual-reality HMD with two synchronized
eye-facing cameras. OpenEDs dataset contains three different datasets, generation, semantic
segmentation, and sequence dataset.

Segmentation Dataset: The semantic segmentation dataset includes 12759 images of 152
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individuals with a pixel resolution of 640x400. The data is split into 8916 images for training,
2403 images for validation, and 1440 images for test as described in [96]. The test split is not
available publicly yet and thus, is not used in this work. Since the semantic segmentation labels
are available only for training and validation splits, the segmentation model is trained on training
split and evaluated on validation split.

Eye-MMS80 Eye-MMS216 Eye-MS
Region 15 epochs | 40 epochs | 15 epochs | 40 epochs | 15 epochs | 40 epochs
IoU(BG) 0.9857 0.9860 0.9874 0.9898 0.9896 0.9905
IoU(Sclera) 0.8084 0.8201 0.8249 0.8542 0.8519 0.8628
IoU(Iris) 0.9223 0.9273 0.9289 0.9412 0.9408 0.9443
IoU(Pupil) 0.9105 0.9159 0.9181 0.9302 0.9276 0.9346
IoU-mean 0.9068 0.9125 0.9148 0.9289 0.9275 0.9330

Table 5.5.: The performance, given as loU, on different ocular regions and a mean loU to
represent general performance of our proposed models, Eye-MS, Eye-MMS216
and Eye-MMS80, at two different stages of the training process. It is noticed
that despite the significant reduction in the model size the performance is
only slightly effected. BG refers to the background region.

Image synthesis dataset: The generation data includes 152 subjects and 12759 images of
640x400 pixel resolution. The data is split into identity-disjoint training, validation, and testing
splits as described in [96]. As the test split is not publicly available yet and we have not used
it in this work. Training the D-Net in this work uses the segmentation subset of the training
split, containing 8916 images (all with labels) of 95 identities. The D-Net training used the
labels as a source and eye images as a target. The ID-Net aims at inducing identity information
from a set of identity-known images. An ID-Net was trained for each of the 28 identities in the
validation split. This used the generation subset of the validation split, containing 2048 images
per identity. To generate the segmentation labels of these images (required for training), the
images were segmented using the Eye-MS segmentation network. The D-Net processed these
labels to produce the ID-Net source images (with the initial images as targets). Evaluating the
generation performance used the semantic segmentation subset of the validation split with its
labels. This contains the same identities used to train the ID-Nets, but different images. The
segmentation labels are used as input to the D-ID-Net, and the corresponding images are used as
a ground-truth (GT) for the evaluation. Each of the 28 validation identities contained between
28 to 138 labels/images (avg. of 86 per identity). The resulting images are referred to as the
generated images (Gen).

Iris recognition dataset: The deep learning methods are trained on the training split of the
semantic segmentation dataset. The training split includes 8916 images of 95 identities that are
disjoint from the validation set used to report the verification results. We randomly selected a
subset of 190 images (two per identity) of the training split to validate the model for early stopping
to avoid over-fitting the model during training. The handcrafted iris recognition methods used in
this work do not require training. Deep learning and handcrafted feature extraction methods are
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(a) Inputimage (b) Segmentation (c) Normalization

Figure 5.6.: An illustration of normalized iris of different eye images (original, D-NET
generated, and ID-NET generated of the same identity as the original image
on the top). Samples of an input image (a), segmentation produced by our
Eye-MMS216 (b), and the normalized iris images. The first image is a real
image selected from the validation dataset. The second image is produced by
D-NET from the real images segmentation label. The third image is produced
from ID-NET using D-NET output and the corresponding ID-NET model (of the
identity of the original image on the top). One can notice similar iris properties
between the original iris of the same identity and the ID-NET generated iris,
but not the D-NET generated image as expected.

tested and reported on three datasets: a) The first dataset is the validation split of the semantic
segmentation dataset (TDS1). The validation data contains 2403 images of 28 identities. Each of
the 28 validation identities contained between 37 and 128 images captured consecutively and
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on average 86 per identity. b) The second dataset is the synthesized images using D-NET. The
segmentation labels from the validation split of the semantic segmentation dataset (TDS1) are
used as input to D-NET, and the output of D-NET is used as a second testing dataset (TDS2). c) The
third dataset is the synthesized images using ID-NET, where the previous output images of D-NET
are passed to corresponding ID-NET, and the synthesized output images are used as a third testing
dataset (TDS3). The image set of each identity is split into reference images and probe images.
For the three test datasets, the reference images are selected only from the validation split of the
semantic segmentation dataset. The first ten images for each identity are considered as a reference
pool. One of these ten images is considered as the reference image based on the proportion of the
visible iris region, as will be defined later in this section. The consequent five images are neglected
to create a time gap between the reference and probe images. All the consequent images for each
identity are considered as probe images.

Generation quality

Metric RMSE PSNR SSIM
D-Net 9.621 | 15.486 | 0.591
D-ID-Net | 7.235 | 23.347 | 0.678

Table 5.6.: The generation performance given as RMSE, PSNR, and SSIM with respect to
the ground-truth. The improvement induced by the our two-stage D-ID-Net is
demonstrated in all metrics.

Preiocular recognition dataset: The deep learning periocular recognition methods are trained
on the same iris recognition training dataset (prior to segmenting the iris). As the handcrafted
feature extraction approaches do not require training, the periocular recognition methods are also
tested on the same iris recognition testing datasets (prior to segmenting the iris), including TDS1,
TDS2, and TDS3.

5.4.2. Segmentation

Eye-MS, Eye-MMS216, and Eye-MMS80 models were trained on the training split, containing
8916 pairs of eye images and corresponding ground-truth labels. The results are post-processed
as described in Section 5.3.1. The segmentation performance is evaluated here as the Intersection
over Union (IoU) of each of the four segmented regions 7 (pupil, iris, sclera, background) between
the predicted segmentation (P) and the ground-truth label (L) and is given by

5.9

To get an overall performance measure, we also report the IoU,,cqn, the unweighted mean of
the four IoU; values. The results are reported for the model Eye-MS and the miniature model
Eye-MMS80 and Eye-MMS216 after 15 epochs (reached loss: 0.012074 for Eye-MMS80, 0.011019
for Eye-MMS216, and 0.008486 for Eye-MS) of training and after 40 epochs of training (reached
loss: 0.010709 for Eye-MMS80, 0.008320 for Eye-MMS216 and 0.007085 for Eye-MS).
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5.4.3. Image generation

The D-Net and each ID-Net training used a batch size of one, a learning rate of 1e-4, and ran for
10 and 20 epochs for D-Net and ID-Nets, respectively. The generation performance is measured as
the similarity of the generated image to the ground-truth by calculating the Root Mean Square
Error (RMSE):

L

RMSE =
x1Iy

SISt — 9i5)2, (5.10)
A lower RMSE indicates a high similarity to the ground-truth. We also measure two generation
quality metrics, the Peak Signal to Noise Ratio (PSNR) and the Mean Structural Similarity Index
(SSIM). PSNR indicates the ratio of the maximum pixel intensity to the power of the distortion.
SSIM [272] combines local image structure, luminance, and contrast into a single local quality
score. A higher value of SSIM and PSNR indicates that the generated image is more similar to the
ground-truth.

To analyze the degree of identity preservation, we evaluate the data under a verification scenario
using handcrafted and CNN-based features. This is described in detail in the periocular recognition
methodology in Section 5.3.3 and experimental setup in Section 5.4.6.

5.4.4. Iris selection

To analyze the non-cooperative nature of the image acquisition, we analyze the results based on
the amount of visible iris in the image. In order to achieve this, we introduce the IMR as a ratio
of the actual iris area (mask neglected) size to the whole normalized image size. A higher IMR
indicates that a larger proportion of the iris is visible in the image. The IMR is used to select the
reference image from the reference images pool for each identity, i.e., the image with the highest
IMR is selected from each reference pool to be the reference image.

The non-collaborative nature of the process has further motivated us to analyze the iris selection
strategy for the probe images, i.e., selecting iris images to be used for verification from the series
of iris images. We, therefore, threshold the IMR value to neglect images with low IMR. We analyze
the verification performance at different IMR thresholds. However, this thresholding will create a
time (samples) gap in the verification process, which is significant if the verification is performed
in a continuous nature. Therefore, we analyze the amount of gap (measured by the number of
images under threshold between accepted images) in the consequent probe samples introduced
by different IMR thresholds. We also present a histogram of the IMR values in the probe data, the
generated probe samples using D-NET, the generated probe samples using ID-NET, the reference
pool data, and the selected reference samples. Eight IMR thresholds (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
,0.7) are selected to perform our analyses.

5.4.5. Iris verification

We evaluate the verification performance using three handcrafted feature extraction approaches
and two deep learning models. The DenseNet-201 and DenseNetBC-100 models are evaluated
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with cosine-distance for comparison. The LG and the DCT approaches are evaluated with HD
and SHD distance for comparison, resulting in four evaluation settings, noted as LG-HD, LG-SHD,
DCT-HD, and DCT-SHD. A fifth evaluation setup uses the CSBCA features with the HD distance for
comparison, as the nature of the feature extraction does not benefit from the more computationally
expensive SHD distance calculation. Each of these settings is evaluated with each of the IMR
thresholds computed on the probe data. The verification performance is illustrated and reported
as ROC, Area under the curve (AUC), and FMR at fixed FNMR (FMR10, the lowest FNMR for
FMR<10%). Moreover, a general indication of the performance is reported as the Equal Error
Rate (ERR), which is the common value of FMR and FNMR at the decision threshold where they
are equal. The results are reported on the three test datasets, validation split of the semantic
segmentation dataset, synthesized images using D-NET, and ID-NET.

5.4.6. Periocular verification

The verification performance of periocular recognition is evaluated using four handcrafted feature
extraction approaches and two deep learning models. The HOG, LBP, TreeLBP, and BSIF as
handcrafted feature extraction methods, and they are evaluated with y? distance (as recommended
in [75]) for comparison. The DenseNet-201 and DenseNetBC-100 deep learning models are
evaluated with cosine-distance for comparison. The verification performance is illustrated and
reported using common biometric evaluation metric as ROC curves, AUC, FMR at fixed FNMR
(FMR10, the lowest FNMR for FMR<10%), and Equal Error Rate (ERR). Similar to the iris
verification, the result is reported on the three test datasets, validation split of the semantic
segmentation dataset, synthesized images using D-NET, and ID-NET to also prove the identity
preserving nature of the proposed generation approach.

5.4.7. Deep learning models training setup

The investigated models are trained using SGD optimizer with Nesterov momentum 0.9, batch size
of 16, and initial learning rate of v = 0.1. The learning rate is reduced by a factor of 0.1 when the
accuracy on the validation dataset does not improve by a value of 0.1 for five consequent epochs.
The early-stopping patience parameter is set to 10. When the models are trained on normalized
iris, the training process of DenseNet-201 and DenseNetBC-100 models stopped after 22 and 26
epochs, respectively, and after 16 and 23 epochs when they are trained on the periocular region.

5.5. Result

5.5.1. Iris segmentation

Figure 5.5 shows samples of the validation images along with the segmentation result obtained
by our Eye-MS, Eye-MMS216, and Eye-MMS80 models (all three models trained for 40 epochs),
the segmentation ground-truth, and normalized iris with a mask using segmentation produced
by Eye-MMS216 model. One can notice the relatively accurate segmentation of the iris region
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even when the eye is relatively closed, with non-central gaze, or with eyeglasses. To point out the
visual relationship between the iris images and their achieved IMR, the sample images in Figure
5.5 are normalized using segmentation produced by the Eye-MMS216 model and achieved the
following IMR values from top to bottom: 0.47, 0.78, 0.82. This corresponds to the eye image in
the top being relatively closed and thus contains a smaller visible portion of the iris.

Table 5.5 lists the performances, given as IoU, for each individual region (label) and as a mean
over the four regions. This performance comparison is given for Eye-MS, Eye-MMS216, and
Eye-MMS80 and at two different points of the training process. It is noticeable from Table 5.5,
and in all experimental settings that the IoU(background) achieves the highest value. The reason
for this is based on the relatively large area of the background and thus the lower probable ratio
of non-intersection to the union area, between the ground truth and prediction. The IoU(iris)
and IoU(pupil) achieve closer values, with the IoU(iris) slightly overperforming the later. The
IoU(sclera) scores are significantly lower than the other eye regions. The reason for this is the
potential confusion between the sclera and background, especially with images containing highly
reflective glasses.

Table 5.5 also shows that increasing the training to fourteen epochs improves the performance
of all models. The Eye-MMS216 generally performs better than Eye-MMS80 and only slightly
worse than the Eye-MS model while having less than 1/30 of Eye-MS model parameters. The
Eye-MMS80 is the smallest model where the number of its parameters is less than 1/80 of Eye-MS
model parameters and 1/3 of Eye-MMS216 model parameters. However, both models, Eye-MMS80
and Eye-MMS216, have less than 1 MB model size, and they can be run on devices with limited
memory footprint.

DCT-SHD LG-SHD CSBCA DCT-HD LG-HD DenseNet-201 DenseNetBC-100
IMR

EER FMR10 EER FMR10 EER FMR10 EER FMR10 EER FMR10 EER FMR10 EER FMR10

IMR 0.0 | 0.3438 | 0.5359 | 0.3474 | 0.5435 | 0.3952 | 0.7174 | 0.3817 | 0.6739 | 0.3675 | 0.5870 | 0.1063 | 0.1112 | 0.1451 | 0.1769

IMR 0.1 | 0.3438 | 0.5359 | 0.3474 | 0.5435 | 0.3952 | 0.7174 | 0.3817 | 0.6739 | 0.3675 | 0.5870 | 0.1042 | 0.1074 | 0.1377 | 0.1627

IMR 0.2 | 0.3438 | 0.5359 | 0.3474 | 0.5435 | 0.3952 | 0.7174 | 0.3817 | 0.6739 | 0.3675 | 0.5870 | 0.1043 | 0.1069 | 0.1372 | 0.1622

IMR 0.3 | 0.3436 | 0.5355 | 0.3475 | 0.5441 | 0.3949 | 0.7168 | 0.3814 | 0.6727 | 0.3673 | 0.5866 | 0.1038 | 0.1064 | 0.1369 | 0.1618

IMR 0.4 | 0.3404 | 0.5291 | 0.3443 | 0.5383 | 0.3933 | 0.7123 | 0.3789 | 0.6701 | 0.3654 | 0.5826 | 0.0983 | 0.0961 | 0.1311 | 0.1527

IMR 0.5 | 0.3375 | 0.5210 | 0.3415 | 0.5285 | 0.3887 | 0.7022 | 0.3778 | 0.6633 | 0.3639 | 0.5770 | 0.0899 | 0.0793 | 0.1184 | 0.1312

IMR 0.6 | 0.3341 | 0.5071 | 0.3335 | 0.5142 | 0.3731 | 0.6972 | 0.3744 | 0.6529 | 0.3571 | 0.5643 | 0.0783 | 0.0548 | 0.0943 | 0.0937

IMR 0.7 | 0.3113 | 0.4735 | 0.3178 | 0.4743 | 0.3434 | 0.6487 | 0.3644 | 0.6267 | 0.3480 | 0.5387 | 0.0635 | 0.0309 | 0.0725 | 0.0566

Table 5.7.: The iris verification performance in terms of EER and FMR10 for the different
experimental settings and different IMR thresholds. The lowest FMR10 and
EER are in bold for each IMR threshold. One can notice the lower errors
achieved by the DenseNet-201 and DenseNetBC-100 settings.
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5.5.2. Identity preserving image generation

Figure 5.4 presents samples of the input semantic labels, the intermediate results by the D-Net,
our D-ID-Net generated images, and the ground-truth. One can notice the high similarity in the
results provided by the D-ID-Net and the ground-truth under various conditions. The intermediate
D-Net output does not contain detailed information that might relate to an identity but has general
eye characteristics and the structure of the semantic label. The introduction of these details by the
ID-Net is noticeable when comparing the D-Net output with the final D-ID-Net results. Figure 5.6
shows an example of the segmentation and normalization alongside masking for the real sample
image, sample image produced by D-NET, and sample image produced by ID-NET. It can be clearly
noticed the similar identity-related iris properties between the original iris of the same identity
and the ID-NET generated iris, but not the D-NET generated image as expected.

The quality of the D-ID-Net generated images is presented as RMSE, PSNR, and SSIM values
in Table 5.6 all of which are calculated with the ground-truth images as a reference. The D-ID-
Net achieved, as desired, relatively high PSNR and SSIM and low RMSE values, indicating high
similarity to the ground-truth images. The intermediate result of the D-net is also analyzed and
scored worse values of all metrics, indicating the importance of the identity information induced
by the second stage network (ID-Net). It can also be noted that the results of iris and periocular
recognition (presented later in this section) utilizing these generated images allow to concretely
confirm the identity preservation within D-ID-Net.

DCT-SHD LG-SHD CSBCA DCT-HD LG-HD DenseNet-201 DenseNetBC-100
IMR

EER FMR10 EER FMR10 EER FMR10 EER FMR10 EER FMR10 EER FMR10 EER FMR10

IMR 0.0 | 0.4970 | 0.9046 | 0.4925 | 0.9077 | 0.4665 | 0.8385 | 0.4991 | 0.9072 | 0.4854 | 0.8956 | 0.4499 | 0.8535 | 0.4366 | 0.8282

IMR 0.1 | 0.4970 | 0.9046 | 0.4925 | 0.9077 | 0.4665 | 0.8385 | 0.4991 | 0.9072 | 0.4854 | 0.8956 | 0.4527 | 0.8640 | 0.4357 | 0.8262

IMR 0.2 | 0.4970 | 0.9046 | 0.4925 | 0.9077 | 0.4665 | 0.8385 | 0.4991 | 0.9072 | 0.4854 | 0.8956 | 0.4524 | 0.8639 | 0.4355 | 0.8262

IMR 0.3 | 0.4972 | 0.9034 | 0.4923 | 0.9084 | 0.4664 | 0.8381 | 0.4992 | 0.9074 | 0.4852 | 0.8963 | 0.4527 | 0.8638 | 0.4356 | 0.8261

IMR 0.4 | 0.4959 | 0.9030 | 0.4912 | 0.9082 | 0.4644 | 0.8406 | 0.5001 | 0.9066 | 0.4856 | 0.8973 | 0.4525 | 0.8646 | 0.4337 | 0.8242

IMR 0.5 | 0.4959 | 0.9024 | 0.4909 | 0.9088 | 0.4643 | 0.8342 | 0.5024 | 0.9088 | 0.4861 | 0.8975 | 0.4523 | 0.8643 | 0.4322 | 0.8241

IMR 0.6 | 0.4995 | 0.9054 | 0.4919 | 0.9072 | 0.4583 | 0.8363 | 0.5041 | 0.9096 | 0.4846 | 0.9025 | 0.4547 | 0.8675 | 0.4252 | 0.8201

IMR 0.7 | 0.5032 | 0.9111 | 0.4952 | 0.9032 | 0.4525 | 0.8333 | 0.5119 | 0.9079 | 0.4881 | 0.8968 | 0.4581 | 0.8740 | 0.4166 | 0.8166

Table 5.8.: The iris verification performance for the different experimental settings and
different IMR thresholds calculated from different feature extraction methods
on D-NET synthesized images. As expected, the verification results are ran-
dom as the D-NET images contains no identity information.
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5.5.3. Iris selection

Figure 5.7.a presents the histogram of the IMR values scores by the images in the reference pool.
A set of samples scored lower than 0.4 IMR, indicating a low proportion of visible iris. When
the sample with the highest IMR is selected for each validation identity, the lowest IMR value
becomes above 0.7, as seen in Figure 5.7.b. On the other hand, Figures 5.7.c, 5.7.d, 5.7.e show the
histogram of the IMR values achieved by the probe samples, D-NET probe samples, and ID-NET
probe samples, respectively. One can notice that the probe samples contained some images where
the iris was not visible at all, i.e., close eyes. The plots also show that most probe samples had
an IMR between 0.6 and 0.9, where the mean IMR value is 0.710 for the probe samples, 0.709
for the probe samples produced by ID-NET, and 0.713 for the probe samples produced by D-NET.
This points out the high similarity from the IMR perspective between the generated image of both
networks and the original images. Figures 5.7.f shows the histogram of the IMR values achieved
by the training dataset. Considering that the testing and training data are acquired under the
same none-collaborative capturing condition, it can be noticed that some of the training samples
also contained partially closed eyes, and most of them had IMR values between 0.6 and 0.9. An
indication of the IMR visible interpretation is illustrated in Figure 5.5 where the images from top
to bottom achieved an IMR of 0.47, 0.78 and 0.85, respectively.

When samples with low IMR values are neglected, this will produce a sample gap (SG) between
consecutive frames. Having a large SG might affect the applicability to continuous authentication
or, if a large SG is allowed, it will give an attacker the time frame to gain access. Therefore, it is
important to study the amount and frequency of gaps induced by neglecting captures with low
IMR. To do that, we present a thorough analyses in Figure 5.8 for probe samples images, Figure
5.9 for probe samples produced by D-NET, and Figure 5.10 for probe samples produced by ID-NET.
The figures present the occurrences of different gaps in each IMR thresholding setup and for
each testing dataset. In these figures, SGO indicates the occurrences of two consecutive captures
having no neglected captures between them, SG1 indicates the occurrences of two consecutive
captures having one neglected capture between them, and so on for SG2, SG3, etc., while the
SG>10 indicates the total number of occurrences of SG equal to 10 or more. The number on each
block in the figure represents the occurrences of gaps at a certain IMR threshold. For example,
Figure 5.8 shows that at certain 0.6 IMR threshold results in 143 single sample gaps (SG1), 38
two consecutive gaps, 11 three consecutive gaps, etc. Figures 5.8, 5.9 and 5.10 thus show that
increasing the IMR threshold might result in an unwanted sample gaps. However, an IMR threshold
of 0.5 will only result in a few sample gaps above three and a maximum gap of five. Original and
generated samples produced, as expected, similar sample gaps distributions.

5.5.4. Iris recognition

The verification performances of the different evaluated algorithms applied on the three evaluated
datasets are presented as ROC curves in Figure 5.11, Figure 5.12 and Figure 5.13 alongside EER
and FMR10 values in Table 5.7, Table 5.8 ,and Table 5.9. In all presented results, the references
are selected from the real images. In the result shown in Figure 5.11 and Table 5.7, the probes are
selected from the real images, while in the Figure 5.12 and Table 5.8 the probes are selected from
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DCT-SHD LG-SHD CSBCA DCT-HD LG-HD DenseNet-201 DenseNetBC-100
IMR

EER FMR10 EER FMR10 EER FMR10 EER FMR10 EER FMR10 EER FMR10 EER FMR10

IMR 0.0 | 0.4553 | 0.8519 | 0.4489 | 0.8454 | 0.4159 | 0.7645 | 0.4664 | 0.8555 | 0.4528 | 0.8434 | 0.2210 | 0.4110 | 0.2261 | 0.3595

IMR 0.1 | 0.4553 | 0.8519 | 0.4489 | 0.8454 | 0.4159 | 0.7645 | 0.4664 | 0.8555 | 0.4528 | 0.8434 | 0.2201 | 0.4094 | 0.2255 | 0.3573

IMR 0.2 | 0.4553 | 0.8519 | 0.4489 | 0.8454 | 0.4159 | 0.7645 | 0.4664 | 0.8555 | 0.4528 | 0.8434 | 0.2199 | 0.4096 | 0.2257 | 0.3569

IMR 0.3 | 0.4552 | 0.8522 | 0.4491 | 0.8456 | 0.4157 | 0.7641 | 0.4663 | 0.8557 | 0.4527 | 0.8435 | 0.2199 | 0.4103 | 0.2257 | 0.3566

IMR 0.4 | 0.4534 | 0.8507 | 0.4490 | 0.8419 | 0.4127 | 0.7703 | 0.4660 | 0.8548 | 0.4521 | 0.8424 | 0.2171 | 0.4042 | 0.2194 | 0.3502

IMR 0.5 | 0.4537 | 0.8542 | 0.4494 | 0.8397 | 0.4048 | 0.7618 | 0.4647 | 0.8558 | 0.4530 | 0.8419 | 0.2125 | 0.3905 | 0.2103 | 0.3346

IMR 0.6 | 0.4503 | 0.8565 | 0.4460 | 0.8357 | 0.3901 | 0.7542 | 0.4625 | 0.8518 | 0.4508 | 0.8333 | 0.2135 | 0.3792 | 0.1973 | 0.3144

IMR 0.6 | 0.4532 | 0.8511 | 0.4412 | 0.8308 | 0.3739 | 0.7201 | 0.4589 | 0.8495 | 0.4412 | 0.8234 | 0.2176 | 0.3872 | 0.1834 | 0.2921

Table 5.9.: The iris verification performance for the different experimental settings and
different IMR thresholds calculated from different feature extraction methods
on ID-NET synthesized images.

generated images by D-NET and from ID-NET in Figure 5.13 and Table 5.9. Each of the Figures
5.11.a-g, 5.12.a-g, and 5.13.a-g shows the ROC achieved when the processed probe captures
with an IMR below a certain threshold are neglected. It can be clearly noticed that the highest
performance of all the evaluated algorithms is achieved when the probes are selected from the
real images as shown in the Figures 5.11.a-g.

As expected, when the probes are from generated images by D-NET where the output does
not contain identity information, the results of all the evaluated algorithms are almost random as
expected and shown in Figure 5.12. Same conclusion can be made by looking at ERR (around 0.5)
in the Table 5.8. However, when the identity information is introduced to the synthesized images
(ID-NET), the performance of all the evaluated algorithms is improved as shown in Figure 5.13 in
comparison to the case when the probes are from generated images by D-NET.

Method TDS1 TDS2 (D-NET) TDS3 (ID-NET)
ERR FMR10 | ERR FMR10 | ERR FMR10
BSIF 0.3477 | 0.8452 | 0.4635 | 0.8645 | 0.4012 | 0.8285
LBP 0.3558 | 0.8471 | 0.4991 | 0.8891 | 0.4872 | 0.8896
TreeLBP 0.3127 | 0.8246 | 0.4387 | 0.8514 | 0.3284 | 0.8085
HOG 0.2851 | 0.4279 | 0.3688 | 0.7119 | 0.2975 | 0.4630
DenseNet-201 0.0586 | 0.0298 | 0.3719 | 0.7266 | 0.0824 | 0.0581
DenseNetBC-100 | 0.1233 | 0.1390 | 0.4088 | 0.7261 | 0.1189 | 0.1309

Table 5.10.: The periocular verification performance for different experimental settings
and different periocular feature extraction methods on ID-NET synthesized
images, D-NET synthesized images, and the original real validation images.
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Further, one can notice clearly that neglecting captures with low IMR enhances the performance
of all the evaluated algorithms. This can be clearly explained by the complete information included
in an iris image with high IMR and thus the accurate verification result. The same conclusion can
be made when looking at the EER, and FMR10 values in Table 5.7, where increasing the IMR
threshold reduces the different error rates consistently.

Each of the Figures 5.11.h and 5.13.h compares the performance of the different recognition
algorithms under the most strict IMR threshold (IMR>0.7). When the probes are from real images,
it is noticeable from this set of ROC curves and the error rate in Table 5.7 that the deep learning
model significantly better than the rest of the algorithms. Moreover, as expected, the verification
performance of the handcrafted approaches was lower than the deep learning approaches. It
is noticeable that the LG-SHD and DCT-SHD perform significantly better than the rest of the
algorithms, and using the SHD distance to compare iris codes generally achieves better verification
performance than the simple HD distance that does not consider any rotational shifts. When
the probes are from generated images by ID-NET, the CSBCA performs better than the other
algorithms.

In general, when probe images are from real images, the best EER achieved with deep learning
methods was 10.63% when no probe images are neglected and 6.35% when iris images with IMR
lower than 0.7 are neglected. These results indicate that the employed deep learning models
were able to learn the discriminative features in the iris images using a small number of training
samples (8916 training images). Moreover, it can be clearly noticed that the compact model,
DenseNetBC-100 achieved a close verification performance to the DenseNet-201 model. In the
case where the probe images are produced by ID-NET, the best EER achieved with deep learning
methods was 22.10% when no probe images are neglected and 18.34% when iris images with IMR
lower than 0.7 are neglected. For handcrafted feature approaches evaluated on probe images from
real images, the best EER achieved was 34.38% when no probe images are neglected and 31.13%
when iris images with IMR lower than 0.7 are neglected. In the case where the probe images are
produced by ID-NET, the best EER achieved was 41.59% when no probe images are neglected and
37.39% when iris images with IMR lower than 0.7 are neglected. Such EER value is considered
high, which motivates future works on developing application-specific solutions for iris recognition
with HMD considering the computational limitations. These results also show significant detail
preservation of the generated images by the ID-NET, even at the detailed iris level.

5.5.5. Periocular recognition

The verification performances of periocular recognition using different feature extraction ap-
proaches are presented in Figure 5.16a-f, Figure 5.15a-f, and Figure 5.14a-f. In all presented
results, the references are selected from the real images. In the first experiment, the probes are
selected from the real image pool as shown in Figure 5.16. In the second and third experiments, the
probe are selected from the synthesised images as shown in Figure 5.15 for D-NET probe images
and Figure 5.14 for ID-NET probe images. It can be clearly noticed that the highest performance is
achieved by DenseNet-201 when the probes are selected from the real images as shown in Figure
5.16a-f. The result of intermediate D-NET achieved, as expected, is an almost random verification
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decision. However, the results of HOG, DenseNet-201 and DenseNetBC-100 approaches were
slightly better than random. This can be explained by the fact that the deep learning feature
extraction and HOG features, unlike the locally calculated handcrafted features, analyze the image
globally and thus partially describe the global shape. Such results point out that part of the identity
information of the periocular is embedded in its global shape and not only in the detailed local
information. In comparison to iris recognition on images generated by the D-Net (Table 5.8),
one can notice that the deeply learned features on D-Net generated iris images produced close to
random decisions, as the iris shape is rather consistent over different identities. The improvement
in the performance can be noticed when the probes are from generated images by ID-NET as
shown in the Figure 5.14 in comparison to the case where the probes are from generated images
by D-NET. The results clearly indicate the success of ID-NET in generating identity-specific ocular
images, which can further be explored for large-scale training data generation or presentation
attack generation.

Table 5.10 illustrates the performance of the periocular recognition with EER and FMR10. In the
case where the probes are selected from the real images, the best achieved EER was 5.86% with the
fine-tuned DenseNet-201, followed by DenseNetBC-100 with 12.33% EER. When the probes are
from generated images by ID-NET, the performance is slightly degraded, and the best achieved EER
was 8.24% by DenseNet-201, which indicates the high level of the identity-preservation. On the
other hand, when the probes are from generated images by D-NET, all methods achieve random
verification decision, and the best achieved EER was 36.88% by HOG. The overall periocular
verification results provide a baseline and motivate further work on ocular biometrics within HMD,
especially with many emerging VR/AR applications.

5.6. Discussion

With the detailed investigations and analyses, this chapter provided answers to RQ3.1, RQ3.2 and
RQ3.3.

» With the set of extensive experiments conducted in this chapter, it can be concluded that
the iris and ocular images from HMD devices can be used for biometric recognition. This
work demonstrated that the current state-of-art approaches could be used for both iris
and periocular regions. Specifically, deep feature extraction methods achieved promising
verification performances for both iris and periocular images, even when the computationally
light DenseNetBC-100 model is used, where the best achieved EER was 6.35% for iris
verification and 5.86% for periocular verification,

* With the proposed compact models having 216k (Eye-MMS261) and 80k (Eye-MMS80)
parameters, this work has demonstrated the possibility of using compact models for near
accurate segmentation of sub-optimal data captured from HMD devices. The achieved
IoU(mean) was 90.68% by Eye-MMS80 and 91.48% by Eye-MMS261.

* This work presented a two-stages approach for generating identity-preserving ocular images
directly from semantic segmentation. The realistic nature of generated images has been
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established through various quality metrics evaluated on the generated images. To empiri-
cally complement the observation from quality metrics and prove the identity-preserving
nature of the generation, this work also provided and compared the biometric performance
obtained on generated images for both iris and periocular.

5.7. Summary

Motivated by the recent developments in VR/AR technologies and driven by the security needs
within the applications of this technology, this chapter investigates the possibility of using captures
from the internal HMD camera for biometric verification with considerations to low computation
resources. New applications supported by AR/VR technology may need to access critical information
or resources, which requires maintaining a high level of trust in the user’s identity. Such a goal
should be achieved by a verification process that does not require the intentional collaboration
of the user. To conduct the investigations in this chapter, it introduced and investigated several
iris and periocular verification methodologies on the targeted use-case scenario and provided a
detailed evaluation that includes a comprehensive study on iris sample selection and its effect
on verification accuracy, providing an answer to RQ3.1. Moreover, a lightweight segmentation
model that minimizes the computational need of larger networks while maintaining a very close
accuracy is proposed and evaluated, providing an answer to RQ3.2. Variations of Eye-MMS
solution performed very competitively in various segmentation challenges [267, 265]. This chapter
additionally presented an identity-preserving synthetic ocular image (captured within HMD)
generation approach, which produces identity-specific images from an arbitrary ocular semantic
label. This chapter has also demonstrated that the images produced by the proposed approach
maintain to a large degree the identity, in both iris and periocular modalities, in comparison to
the original real data, which provides an answer to RQ3.3.
The next chapter will conclude the thesis and provide a brief outlook on future work.
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Figure 5.7.: Plots (a) to (f) show the histogram of the IMR values scored by the iris
images from the reference pool, the selected references, all probe samples,
all D-Net probe samples, all ID-Net probe samples, and the training dataset,
respectively.
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Figure 5.8.: Statistics of the size and amount of sequence sample gaps (SG) induced by

neglecting probe images that score an IMR value below a certain threshold.
Each block represents the occurrences of a certain gap with a certain IMR
threshold setting. e.g., SGO is the case where two consecutive captures do
not have any neglected capture between them, and SG1 is the case where two
consecutive captures do have one neglected capture between them. With a
higher IMR threshold, the higher sample gaps occur more often.
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Figure 5.9.: Similar to Figure 5.8, this figure shows the size and amount of sequence

sample gaps (SG) induced by neglecting probe images that scores an IMR
value below a certain threshold. The probe images are selected from D-NET
model.
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Figure 5.11.: The achieved ROC curves for the different experimental settings of iris recog-
nition and different IMR thresholds. Each of the plots (a) to (g) shows the
ROC curves achieved by one of the benchmarking settings with different
levels of IMR rejection threshold. Plot (h) shows a comparison of the differ-
ent algorithms at the most strict IMR threshold (0.7). Notice the increased
performance when rejecting samples with low IMR values.
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Figure 5.12.: The achieved ROC curves for the different experimental settings of iris
recognition and different IMR thresholds. The results are shown based on
D-NET synthesized images . Each of the plots (a) to (g) shows the ROC
curves achieved by one of the benchmarking settings with different levels
of IMR rejection threshold. Plot (h) shows a comparison of the different
algorithms at the most strict IMR threshold (0.7).
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Figure 5.13.: The achieved ROC curves for the different experimental settings of iris
recognition and different IMR thresholds. In this experiment, synthesized
images from ID-NET are used. Each of the plots (a) to (g) shows the ROC
curves achieved by one of the benchmark settings with different levels of
IMR threshold. Plot (h) shows a comparison of the different algorithms at
the most strict IMR threshold (0.7).
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Figure 5.14.: The achieved ROC curves for different experimental settings for periocular
recognition. In this experiment, synthesized images from ID-NET are used.
Each of the plots (a) to (e) shows the ROC curves obtained by one of the
benchmark settings.
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Figure 5.15.: The achieved ROC curves for different experimental settings of periocular
recognition. In this experiment, synthesized images from D-NET are used.
Each of the plots (a) to (e) shows the ROC curves obtained by one of the
benchmark settings.
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Figure 5.16.: The achieved ROC curves for the different experimental settings of periocular
recognition. Each of the plots (a) to (e) shows the ROC curves achieved by
one of the benchmark settings.
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6. Conclusion and Future Work

The previous chapters (3, 4 and 5) provided detailed responses to the research questions presented
in Chapter 1. This chapter provides a set of concluding remarks of this thesis and an outlook for
future research.

6.1. Conclusion

This thesis offered theoretical and practical contributions towards the development of efficient
biometrics, which are deemed essential to enabling a wider deployment of biometric technology.
These contributions were motivated by the identified challenges in Chapter 1 and targeted ad-
dressing the research questions posed in this thesis. The research questions were assembled into
three categories based on the targeted challenges, efficient and high-performing face recognition,
the emerging challenge of masked face recognition, and biometrics in head-mounted displays.

Efficient and high-performing face recognition: The first principal research question, RQ1,
was addressed by providing responses to the detailed research questions, RQ1.1, RQ1.2, RQ1.3
and RQ1.4. Towards answering these detailed research questions, this thesis proposed extremely
efficient FR networks, intelligently developed a new family of lightweight face-specific architectures,
designed a step-wise KD approach, and proposed elastic margin-penalty softmax loss.

As a response to RQ1.1, this thesis proposed a set of extremely efficient face recognition models,
MixFaceNets, for accurate face verification on low-end devices. The proposed MixFaceNets utilized
MixConv as the main building block to capture different patterns from convolution input at
various resolutions. Furthermore, MixFaceNets extended the MixConv block with a channel shuffle
operation, aiming at increasing the discriminative ability of MixFaceNets. Through extensive
experimental evaluations on mainstream benchmarks and comparison to the recent SOTA efficient
models, the reported results in Chapter 3 proved the superiority of MixFaceNets over recent efficient
models. In a detailed comparison, MixFaceNets outperformed all efficient models that require
less than 500M FLOPs on all the evaluated datasets, achieving 99.60% accuracy on LFW, 97.05%
accuracy on AgeDB-30, and 93.08 TAR (at FAR1e-4) on IJB-C. With computational complexity
between 500M and 1G FLOPs, MixFaceNets achieved competitive results to the top-ranked models
while using significantly fewer FLOPs and less computation overhead, which proves the practical
value of the proposed MixFaceNets.

With a focus on automated network architecture design, this thesis successfully utilized NAS to
develop a new family of lightweight face-specific architectures, PocketNets. The sanity of using
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NAS for the specific task of FR rather than general object classification was proven in the conducted
ablation study in Chapter 3. In this ablation study, the effect of training dataset sources on the NAS
algorithm was studied and analyzed by comparing the network architectures and the verification
performances of NAS instance learned from a face-specific dataset (PocketNet) to NAS instance
learned from a dataset with general image classes (DartFaceNet). The reported verification results
on nine different benchmarks showed that PocketNet outperformed DartFaceNet with a noticeable
margin on all considered benchmarks, proving the design choice of PocketNets. Additionally, this
thesis proposed a novel training paradigm, the multi-step KD, where the knowledge is distilled from
the teacher model to the student model at different stages of the training maturity to fill disparity
gap in terms of network size between the student and the teacher model. The benefit of the
proposed multi-step KD was empirically proven in a step-wise ablation study, where the verification
performance and model convergence of PocketNets trained with multi-step KD are compared
to PocketNets trained with conventional KD and PocketNets trained without KD. The reported
evaluation results proved the benefit of the proposed multi-step KD in improving the PocketNets
verification performance on nine mainstream benchmarks compared to conventional KD, answering
RQ1.3. In comparison to the recent compact FR models, PocketNets consistently scored SOTA
performances in comparison to the compact models proposed in the literature. For example,
PocketNetS-128 (0.92M parameters) achieved 96.10% accuracy on AgeDB-30, outperforming all
proposed models in the literature that have less than 1M parameters.

This thesis additionally proposed a novel margin penalty softmax loss, namely ElasticFace,
aiming at developing high-performing FR models. The proposed ElasticFace relaxed the fixed
margin penalty restrictions by deploying random margin values drawn from a normal distribution
in each training iteration. Such flexible margin penalty aimed at giving the decision boundary; i.e.,
the boundary between the class embedding in normalized hypersphere, chances to extract and
retract to allow space for flexible class separability learning. Additionally, the concept of flexible
margin penalty in ElasticFace was extended in the proposed ElasticFace+, where the assignment
of the drawn margins to training samples was linked to their proximity to their class centers. The
presented verification results on nine mainstream benchmarks demonstrated the superiority of
ElasticFace loss over its counterparts, ArcFace and CosFace losses, that deployed a fixed margin
penalty, providing an answer to RQ1.4. In comprasion to the recent SOTA high-performing FR
models, ElasticFace has advanced the SOTA FR performance on seven out of nine mainstream
benchmarks. For example, on large age gape benchmark (AgeDB-30), ElasticFace scored an SOTA
accuracy of 98.35%.

The emerging challenge of masked face recognition: The focus of the second category of
research questions targeted the emerging challenge of masked FR. RQ2 was answered by providing
a detailed response to the RQ2.1. Toward this end, this thesis proposed a solution to reduce
the negative impact of masked faces on FR performance. The proposed solution was based on
designing EUM operated on the top (embedding space) of existing FR and proposing SRT loss
to guide the EUM during the training phase to learn to produce embeddings of masked faces
similar to unmasked face embeddings of the same identities. The EUM with SRT approach was
theoretically motivated by the reported evaluation studies on masked FR, stating that wearing face
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masked negatively affects the FR performance, and the genuine score distributions are significantly
affected by masked probes. In contrast, the imposter score distributions seem to be less affected by
masked probes. Motivated by such observations, SRT, unlike triplet loss, is designed in a way that it
dynamically self-adjusts its learning objective by optimizing the distance between the genuine pairs
only when the distance between the imposter pairs is deemed to be sufficient. The effectiveness of
the EUM with SRT approach in reducing the effect of masked faces on FR verification performance
was empirically proven through an ablation study and extensive experiment evaluations on four
masked face datasets and three FR models and four masked face datasets.

Biometrics in head-mounted display: Considering the ever-increasing use of AR/VR tech-
nologies in new fields and the associated developments in HMD devices, this thesis is the first to
introduce biometric recognition to AR/VR enabled by HMD. RQ3 was answered by the detailed
responses to the research questions RQ3.1, RQ3.2, and RQ3.3. These three research questions were
answered by investigating and evaluating the verification performance and computational efficiency
of several iris and periocular verification methodologies on the targeted use-case scenario, devel-
oping multi-label semantic segmentation models, and proposing a two-stage identity-preserving
synthetic ocular image generation approach.

The verification performances of iris and periocular methodologies were reported on a realistic
database captured using HMD internal eye-facing cameras. The overall verification result showed
that the deep learning approaches achieved better performance than handcrafted approaches,
where the best-achieved iris and periocular verification EERs were 10.63% and 5.86%, respectively,
by DenseNet-201. Moreover, a multi-scale eye regions semantic segmentation approach was
proposed as an essential processing step of iris and periocular recognition pipelines. Three
different variants of the segmentation approach were presented Eye-MMS80, Eye-MMS216, and
Eye-MS, containing 80K, 216K, and 6574k parameters, respectively. The achieved IoU (mean) by
Eye-MMS80, Eye-MMS216 and Eye-MS were 0.9125, 0.9289, and 0.9330, respectively. Variations
of these solutions performed very competitively in various segmentation challenges. This thesis
also proposed a two-stage D-ID-Net approach to generate realistic and identity-specific images
from semantic segmentation labels. The first stage of the D-ID-Net approach generates a generic
eye image that corresponds to a given semantic label. The second identity-specific stage induces
identity information into that generic image. The generated images largely maintained the
targeted identity information confirmed by analyzing and reporting their biometric verification
performances compared to the original real data.

Summary To sum up, the previously presented contributions were driven by the research
questions discussed in Chapter 1 and motivated by the need for accurate and efficient biometric
solutions to enable the spread of the technology in embedded domains. In response to the RQ1 ”Can
efficient and high-performing FR approaches be successfully designed?”, this thesis confirmed that
by successfully designing a family of efficient and yet accurate FR models, intelligently utilizing
NAS to design a compact FR model, and proposing a novel margin-penalty softmax loss. To
answer the second principal research question, RQ2 ”"Can the negative impact of face masks on FR
verification performance be effectively reduced?”, this thesis confirmed that by proposing the EUM
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trained with SRT approach to reduce the negative impact of wearing a protective face mask on FR
performance. Towards introducing biometrics to VR/AR applications enabled by HMDs and as a
response to RQ3 ”Can existing VR/AR setups be leveraged for the biometric verification of their
users identities?”, this thesis presented three key contributions. This thesis was the first to introduce
and investigate the biometric verification performance of iris and periocular characteristics on a
realistic database captured from HMDs. Moreover, this thesis successfully designed a compact and
accurate multi-label semantic segmentation model as an essential part of an iris and periocular
recognition pipeline. Furthermore, this thesis proposed a novel identity-preserving synthetic
ocular image generation approach to promote further development of biometric recognition in
new domains.
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6.2. Future Work

The development of efficient biometrics aims at reducing the computational cost of deploying
biometric recognition, which enables wider implementation of biometric recognition in the use-
cases constrained by computational capabilities and operational limitations. This prompts several
future research directions that can build up on the contributions of this thesis. These research
directions can be summarized as follows:

Green Al in biometrics Since 2012, deep learning has become a popular method to solve
several machine learning problems, achieving exceptional accuracy in many computer vision
tasks [107]. Three main aspects drive the rapid progress in deep learning: 1) the innovation
in deep neural network architectures and training algorithms, 2) the availability of large-scale
training datasets, and 3) the massive computational resources available for model training. The
last two points, along with the utilization of high-computational capabilities platforms, enable
training extremely deep architecture and clearly benefit the model accuracy [10]. However, the
environmental and economic costs of training deep learning models have received less attention
and were rarely discussed and reported along with the model accuracy. In general, deep learning
approaches presented in the literature mainly focused on reporting a single metric, the accuracy.
While niche solutions targeting computational efficiency additionally reported the computational
needs to deploy the model, ignoring the environmental (CO2 emissions) and the financial costs
of the model training. Training deep neural models is responsible for tons of CO2 emissions.
A study by Strubell et al. [247] quantified the approximate financial and environmental costs
(CO2 emission) of deep learning-based Natural Language Processing (NLP) models. This study
[247] reported that training one machine translation model that uses NAS was responsible for
an estimated 626,155 tons of CO2 emissions (274,120 hours of training) and its training costs
between $942,973 and $3,201,722 on eight P100 GPUs on a cloud compute (the lower and upper
bounds of GPUs cost varied between the providers), which reflects energy consumption level. Such
high CO2 emissions are around 17 times more than the CO2 emissions caused by an average
American per year (estimated at 36,156 tons of CO2 emissions per year) [247]. Schwartz et al.
[235] proposed the concept of Green Al that considers the price tag, i.e., the cost of training and
deploying deep learning solutions, as an additional metric to the model accuracy. This opens
new research directions for environment-friendly deep learning-based solutions that do not only
focus on the deployment cost but also on the environmental and economic costs of training deep
learning models. Following this motivation, future work can extend the deployments of ”on-the-
top” solutions, in which a small model is designed and trained to operate on the top of an existing
pre-trained model. Thus, it does not require retraining of existing base models or the use of
additional full-scale domain-specific models. An example of "on-the-top” solution is the the EUM
with SRT presented in Chapter 4. This solution can be adapted to solve other biometric problems,
e.g. reducing the performance variation across demographic groups.

Additionally, the concept of Green Al and efficient deep learning models prompts the need for
defining a set of standard evaluation metrics to measure and report the cost of model development,
training, and deployment.
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Standardization of computational cost evaluation and reporting The reported compu-
tational cost metrics in the literature varied between different approaches. Commonly reported
metrics for deploying deep learning-based model are FLOPs, FLOP/S, Multiply Accumulate Opera-
tions (MACs), number of trainable parameters (memory footprint), and inference time (latency)
[49, 23, 284, 179, 150]. For model training computational cost, the commonly reported metric is
the required GPU hours [155, 41]. However, there is no standardized evaluation and reporting
protocol, including metrics, to measure the computational cost of Al solutions in a comparative
manner, similarly to the standards that define biometric performance evaluation and reporting
protocols [123]. A suitable standardization body to work on such direction would be the ISO/IEC
JTC 1/SC 42 committee on Artificial intelligence that commenced operation in 2017.

On a technical note, some of the current metrics that are used to estimate the cost of deploying
a model, such as FLOP/S and inference time, are hardware-dependant and deployment platform-
dependent metrics, making it difficult to compare different approaches based on these metrics
[173]. Other metrics such as FLOPs and the number of trainable parameters are independent of
the deployment hardware, making them more suitable than hardware-related ones to estimate the
computational cost of model deployment [49, 23, 38, 233]. However, the actual operation cost
may depends on the application scenario. For example, some application scenarios may require
continuous authentication e.g. VR/AR applications enabled by HMDs [34], leading to high energy
consumption. Other application scenarios, such as logical access control, operate on demand
and consume less energy than continuous authentication. Moreover, the GPU hours required
for training might not be sufficient to estimate the financial and environmental costs of model
training, as this depends on the training hardware and training settings. Additionally, reporting
the expected CO2 emissions resulting from a model training is highly dependent on the energy
source, e.g. green energy or fossil fuels. This raises the need for a set of evaluation protocols
and metrics for the model development, training, and deployment computational cost to promote
developing environment-friendly and efficient solutions.

Hardware-aware biometrics The design and development choices of biometric systems typi-
cally depend on the targeted use case, the deployment environment, and the available hardware
resources. Application scenarios, such as automated border control (ABC), use dedicated hardware
for biometric recognition [74]. Other use-case scenarios such as verification by mobile and HMD
devices use built-in and multi-purpose hardware for biometric recognition [34]. The models
designed to operate on a specific platform, e.g. mobile devices, may lead to sub-optimal perfor-
mances, in terms of latency, when deployed to another platform, e.g. HMD devices. This promotes
the need for designing hardware-aware biometric solutions. Hardware-aware NAS approaches
have been growing in popularity to design efficient models tailored for specific hardware platforms
[155, 41]. However, such hardware-aware architecture design approaches are rarely utilized to
design biometric recognition approaches.

Multi-task modules The signal processing subsystem of a biometric system consists of several
modules including, feature extraction, quality control, presentation attack detection (PAD), and
segmentation models [123] as described in Chapter 2. These models commonly use different

158



approaches for each tasks. The deployment and operation cost of all models is high compared to
each model separately. One possible future research direction that might help to reduce the overall
cost is to design a multi-task model that can preform all signal processing subsystem operations
using a single efficient model. The proposed efficient face recognition model, MixFaceNet [23], in
this thesis (Chapter 3) has been recently used successfully as a backbone for a PAD solution [87].
Such duplicate use of network architectures can be combined in a single multi-purpose model to
reduce the overall computational costs.

Adaptive biometric solutions The recognition performance of biometric solutions depends
on the quality of the captured sample. The reference samples are usually acquired under a
controlled capture environment. However, this might not always be the case for probe samples,
especially when the probe samples are acquired under uncontrolled scenarios, leading to several
sample degradations such as physical distortion, occlusion, and low resolution. The concept of
the proposed EUM with SRT presented in this thesis could be extended to solve other biometric
challenges such as learning to produce biometric templates of low-quality samples that behave
similarly to the ones of high quality. Additionally, such approach could be further automated to
handle less-granularly defined reasons of biometric performance degradation.

Biometric model compression Model compression techniques such as parameter pruning
and model quantization are established methods to reduce the required computational cost of
deep learning models. Neural network parameter pruning creates sparse neural networks from
dense ones by removing neurons that have a relatively low effect on model accuracy [255]. Model
quantization approaches compress deep neural networks by reducing the number of bits required
to represent each weight [18, 125]. These techniques were not sufficiently studied and applied to
regulate the computational cost of biometric recognition models, which promotes several future
research directions aiming at reducing the computational cost of biometric recognition models
with a minimal reduction in the recognition performance.

159






A. Masked Face Recognition Competitions

Section 4.6 briefly presented the Masked Face Recognition Competitions (MFR) held within the
2021 International Joint Conference on Biometrics (IJCB 2021) [29]. To provide detailed insights
into the recent solutions from academia and industry that are designed to perform well with a
masked face, this chapter provides a thorough description of MFR competition, including the
competition dataset along with the evaluation criteria, the participant teams, the submitted
solutions, and the achieved results.

The MFR competition attracted ten participating teams from nine different countries that
submitted 18 valid submissions. This section provides a detailed description of MFR competition,
starting with a motivation for MFR competition in Section A.1. This is followed by detailed
descriptions of the competition evaluation database, the evaluation criteria, and the participating
teams. Then, in Section A.3, short descriptions of the submitted solutions are listed. Section A.4
presents and discusses the achieved results along with listing the winning submissions. A set of
conclusions are drawn in Section A.5 with a final general conclusion.

A.1. Introduction

Given the current COVID-19 pandemic, it is essential to enable contactless and smooth-running
operations, especially in contact-sensitive facilities like airports. With the ever-enhancing perfor-
mance of face recognition, the technology has been preferred as a contactless means of verifying
identities in applications ranging from border control to logical access control on consumer elec-
tronics. However, wearing masks is now essential to prevent the spread of contagious diseases and
has been currently forced in public places in many countries. The performance, and thus the trust
in contactless identity verification through face recognition can be impacted by the presence of a
mask [99]. The effect of wearing a mask on face recognition in a collaborative environment is
currently a sensitive issue. This competition is the first to attract and present technical solutions
that enhance the accuracy of masked face recognition on real face masks and in a collaborative
verification scenario.

In a recent study, the National Institute of Standards and Technology (NIST), as a part of the
ongoing Face Recognition Vendor Test (FRVT), has published a specific study (FRVT -Part 6A) on
the effect of face masks on the performance on face recognition systems provided by vendors [201].
The NIST study concluded that the algorithm accuracy with masked faces declined substantially.
One of the main study limitations is the use of simulated masked images under the questioned
assumption that their effect represents that of real face masks. The Department of Homeland
Security has conducted an evaluation with similar goals, however on more realistic data [15]. They
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also concluded with the significant negative effect of wearing masks on the accuracy of automatic
face recognition solutions. A study by Damer et al. [64] evaluated the verification performance
drop in 3 face biometric systems when verifying masked vs. not-masked faces, in comparison
to verifying not-masked faces to each other. The authors presented limited data (24 subjects),
however, with real masks and multiple capture sessions. They concluded by noting the bigger effect
of masks on genuine pairs decisions in comparison to imposter pairs decisions. This study has been
extended [62] with a larger database and evaluation on both synthetic and real masks, pointing
out the questionable use of simulated masks to represent the real mask effect on face recognition.
Recent work has evaluated the human performance in recognizing masked faces in comparison to
automatic face recognition solutions [58]. The study concluded with a set of take-home messages
that pointed to the correlated effect of wearing masks on both human recognizers and automatic
face recognition. Beyond recognition, facial masks showed to affect both the vulnerability of face
recognition to presentations attacks and the detectability of these attacks [92].

There were only a few works that addressed enhancing the recognition performance of masked
faces. Li et al. [151] proposed to use an attention-based method to train a face recognition
model on the periocular area of masked faces. This presented improvement in the masked face
recognition performance, however, in a limited evaluation. Moreover, the proposed approach
essentially only maps the problem into a periocular recognition problem. A recent preprint by
[13] presented a relatively small dataset of 53 identities crawled from the internet. The work
proposed to fine-tune FacenNet model [234] using simulated masked face images to improve the
recognition accuracy. Wang et al. [271] presented three datasets crawled from the internet for face
recognition, detection, and simulated masked faces. The authors claim to improve the verification
accuracy from 50% to 95% on masked faces. However, they did not provide any information about
the evaluation protocol, proposed solution, or implementation details. Moreover, the published
part of the dataset does not contain pairs of not-masked vs. masked images for the majority of
identities. A work by Montero et al. [191] proposed to combine ArcFace loss with a specially
designed mask-usage classification loss to enhance masked face recognition performance. Boutros
et al. [26] proposed a template unmasking approach that can be adapted on the top of any face
recognition network. This approach aims to create unmasked-like templates from masked faces.
This goal was achieved on top of multiple networks by the proposed self-restrained triplet loss [26].
On a related matter, a rapid number of works are published to address the detection of wearing a
face mask [21, 163, 270, 220]. These studies did not address the effect of wearing a mask on the
performance of face recognition or present solution to improve masked face recognition.

Besides the exclusive interest in face recognition accuracy, there is a growing interest in com-
pact face recognition models [180]. This interest is driven by the demand for face recognition
deployment on consumer devices and the need to enhance the throughput of face recognition
processes. A major challenge has been organized in ICCV 2019 to motivate researchers to build
lightweight face recognition models [81]. MobileFaceNets are an example of such face recognition
models [49]. MixeFaceNet [23] is a recent example where mixed depthwise convolutional kernels,
with a tailored head and embedding design and a shuffle operation, are utilized to achieve high
recognition accuracies with extremely light models.

Motivated by (a) the hygiene-driven wide use of facial masks, (b) the proven performance decay
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of existing face recognition solutions when processing masked faces, (c) the need to motivate novel
research in the direction of enhancing masked face recognition accuracy, and (d) the requirement
of lightweight models by various applications, we conducted the [JCB Masked Face Recognition
Competition 2021 (IJCB-MFR-2021). The competition attracted submissions from academic and
industry teams with a wide international representation. The final participation toll was 10 teams
with valid submissions. These teams submitted 18 valid solutions. The solutions were evaluated on
a database collected to represent a collaborative face verification scenario with individuals wearing
real face masks. This chapter summarises the MFR competition with a detailed presentation of
the submitted solutions and the achieved results in terms of masked vs. masked face verification
accuracy, masked vs. not-masked face verification accuracy, and the compactness of the recognition
models.

A.2. Database, evaluation criteria, and participants

A.2.1. Database

The evaluation data, the masked face recognition competition data (MFRC-21), simulates a
collaborative yet varying scenario. Such as the situation in automatic border control gates or
unlocking personal devices with face recognition, where the mask, illumination, and background
can change. The database is collected by the hosting institute and not available publicly. The data
is collected on three different, not necessarily consecutive days. Each of these days is considered
as one session. On each day, the subjects have collected three videos, each of a minimum length
of 5 seconds (used as single image frames). The videos are collected from static webcams (not
handheld), while the subjects are requested to look at the camera, simulating a login scenario. The
data is collected by subjects at their residences during the pandemic-induced home-office period.
The first session is considered a reference session, while the other two were considered probe
sessions. Each day contained three types of captures, no mask, masked with natural illumination,
masked with additional illumination. The database participants were asked to remove eyeglasses
only when the frame was considered very thick. No other restrictions were imposed, such as
background or mask type and its consistency over days, to simulate realistic scenarios. The first
second of each video was neglected to avoid possible biases related to the subject interaction with
the capture device. After the neglected one second, three seconds were considered. From these
three seconds, 10 frames are extracted with a gap of 9 frames between each consecutive frame,
knowing that all videos are captured at a frame rate of 30 frames per second.

The final considered portions of the database in the competition are (a) the not-masked baseline
reference from the first session (noted as BLR), (b) the masked reference from the first session
(noted as MR), and (c) the masked face probes from the second and third sessions under both
illumination scenarios (noted as MP). A summary of the used database is presented in Table A.1
and samples of the database are presented in Figure A.1. The database contained 47 subjects, all
of them participated in all the sessions. All the subject provided their informed consent to use the
data for research purposes.

Two evaluation setups are considered, (a) not-masked vs. masked, where all images in BLR are
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compared to all images in MP (noted as BLR-MP), and (b) masked vs. masked, where all images
in MR are compared to all images in MP (noted as MR-MP).

Session 1: | Session 2 and 3:
References | Probes

Data split BLR | MR | MP

Number of Captures | 470 | 940 | 1880

Session

Table A.1.: An overview of the MFRC-21 database structure.

(a) Not-masked baseline faces (BLR) (b) Masked faces (MR/MP)

Figure A.1.: Samples of the MFRC-21 database from the two capture types (BLR and
MR/MP). MR and MP have similar capture settings, MR on the first setting
and MP on the second and third session.

A.2.2. Evaluation criteria

The solutions evaluation will be based on both, the verification performance and the compactness
of the used mode/models. The verification evaluation will be based on the verification performance
of masked vs. not-masked verification pairs, as this is the common scenario, where the reference is
not-masked, while the probe is masked, e.g. in entry to a secure access area. This scenario will be
noted as BLR-MP. However, the performance of masked vs. masked verification pairs is also be
reported. This scenario is noted as MR-MP.
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The verification performance is evaluated and reported as the false non-match rate (FNMR) at
different operation points FMR100 and FMR1000, which are the lowest FNMR for a false match
rate (FMR) < 1.0% and < 0.1%, respectively. The verification performance evaluation of the
submitted solutions is based on FMR100. To get an indication of generalizability, a separability
measure between the genuine and imposter comparison scores is also reported. This is measured
by the Fisher Discriminant Ratio (FDR) as formulated in [214].

To consider the deployability of the participating solutions, we will also consider the compactness
of the model (represented by the number of trainable parameters [83]) in the final ranking. The
participants are asked to report the number of trainable parameters and can be asked to provide
their solutions to validate this number.

The final teams ranking is be based on a weighted Borda count, where the participants will be
ranked by (a) the verification metric as mentioned above (noted as Rank-a), and (b) by the number
of trainable parameters in their model/models (notes as Rank-b). For Rank-a, the solutions with
lower FMR100 are ranked first, and for Rank-b, the solutions with the lower number of trainable
parameters are ranked first. In the final ranking, Rank-a will have 75% weight, and Rank-b will
have 25% weight. Each participant is given a Borda count (BC) for each ranking criteria (BC-a
and BC-b). For example, if solution X is ranked first out of 10 participants in the verification
performance rank-a (BC-a =9) and third out of 10 solutions in model compactness Rank-b (BC-b
= 7) (this corresponds to BC = total number of solutions — rank). Then the weighted Borda count
w-BC = 0.75x9+0.25x7= 8.5. Therefore, the final score of solution X is 8.5, and higher indicates
a better solution. The solutions are ranked from the highest w-BC to the lowest w-BC.

A.2.3. Submission and evaluation process

Each of the teams was requested to submit their solutions as Win32 or Linux console applications.
These applications should be able to accept three parameters, evaluation-list (text file), landmarks
(text file), and an output path. The evaluation-list contains pairs of the path to the reference and
probe images and a label for each of the compared images, indicating if the image is masked
or not. The landmarks provided a bounding box and five landmark locations of the images as
detected by the MTCNN solution [289]. Only the pairs of images with valid detected faces are
provided to the solutions in the evaluation list. From the initial considered data, the face detector
[289] did not provide valid face detections. For the BLR-MP pairs, 4.42% of the pairs contained
invalid detections of faces and thus were not considered in the evaluation. For the MR-MP pairs,
4.75% of the pairs contained invalid detections of faces and thus not considered in the evaluation.
The output of the solution application script is a text file containing comparison scores for each
pair in the evaluation list.

A.2.4. Competition participants

The competition aimed at attracting participants with a high geographic and activity variation.
The call for participation was shared on the International Joint Conference on Biometrics (IJCB
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2021) website, on the competition own website !, on public computer vision mailing lists (e.g.
CVML e-Mailing List), and through private e-Mailing lists. The call for participation has attracted
12 registered teams. Out of these, 10 teams have submitted valid solutions. These 10 teams have
affiliations based in nine different countries. Seven of the 10 teams are affiliated with academic
institutions, two are affiliated with the industry, and one team has both academic and industry
affiliations. Only one of the participating teams has chosen to be anonymous. Each team was
allowed to submit up to two solutions. The total number of validly submitted solutions is 18. A
summary of the participating teams is presented in Table A.2.

Solution Team members Affiliations Type of institution
Al_Simple Asaki Kataoka, Kohei Ichikawa, Shizuma Kubo ACES, Inc, Japan Industry
TYAL Pengcheng Fang, Chao Zhang, Fei Wang TYAL China Industry
MaskedArcFace | David Montero, Naiara Aginako Basilio Sierra, . . . . . .
MTATCRace Marcos Nieto Vicomtech, Spain - University of the Basque Country, Spain Academic
MFR-NMRE-F . s . . P . .
MER-NMRE-B Klemen Grm, Vitomir Struc University of Ljubljana, Slovenia Academic
MUFM Net Sachith Seneviratne, Nuran Kasthuriarachchi, University of Melbourne, Australia - National University of Singapore, Academic
EMUFM Net Sanka Rasnayaka Singapore - University of Moratuwa, Sri Lanka
VIPLFACE-M . L . Institute of Computing Technology, Chinese Academy of Sciences, China, .
VIPLFACE-G Jie Zhang , Mingjie He, Dan Han, Shiguang Shan University of Chinese Academy of Sciences, China Academic
SMT-MFR-1 Mustafa Ekrem Erakin, Ugur Demir, Smart Interaction and Machine Intelligence Lab (SiMiT Lab), Istanbul Academic
SMT-MFR-2 Hazim Kemal Ekenel Technical University, Turkey
LMI-SMT-MFR-1 | Mustafa Ekrem Erakin, Ugur Demir, . 5 . . . - . .
IMI-SMTMFR-2 | Hazim Kemal Ekenel, Klemen Grm, Vitomir $truc Istanbul Technical University, Turkey - University of Ljubljana, Slovenia Academic
IM-MFR Pedro C. Neto, Ana F. Sequeira, Jodo Ribeiro Pinto, | INESC TEC, Portugal - University of Porto, Faculty of Engineering Academic
IM-AMFR Mohsen Saffari, Jaime S. Cardoso (FEUP), Portugal
Anonymous-1 .
Anonymous-2 Anonymous Anonymous mix

Table A.2.: A summary of the submitted solutions, participant team members, affiliations,

and type of institutions (Industry, Academic, or mix). The table lists the
abbreviations of each submitted solution. Details of the submitted algorithms
are in Section A.3.

A.3. Submitted solutions

Ten teams have been registered for MFR 2021 competition and submitted 18 valid solutions. Table
A.2 presents a summary of the registered team members and their affiliation, submitted solutions,
and type of institution of each registered team (Academic, Industry, or mix of both academic and
industry). In the following, a brief description of the valid submitted solutions is provided:

A1_Simple employed ArcFace [80] to train a ResNet model. A1_Simple applied MaskTheFace
[13] method to synthetically generate masked face images in the training dataset- MS1MV2.
Al Simple is trained with cosine annealing LR scheduling to adjust the learning rate. In the
evaluation phase, A1_Simple used the provided landmark facial point and bounding box in the
MFRC-21 to align and crop the face image to 112 x 112. The feature embedding of the presented
solution is of size 512-D. The model is trained with ArcFace loss. During the training phase, three

Thttps://sites.google.com/view/ijcb-mfr-2021/home
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Solution Verification performance Compactness Joint
FMR100 | FMR1000 | FDR Rank-a | BC-a | number of parameters | Rank-b | BC-b | w-BC | Rank

Baseline 0.06009 | 0.07154 8.6899 - - 65155648 - - - -
TYAL 0.05095 | 0.05503 | 11.2005 | 1 17 70737600 14 4 13.75 | 1
MaskedArcFace | 0.05687 | 0.05963 10.4484 | 5 13 43589824 6 12 12.75 | 2
SMT-MFR-2 0.05584 | 0.06268 | 11.2025 | 3 15 65131000 12 6 12.75 | 2
Al_Simple 0.05538 | 0.06113 | 8.5147 | 2 16 87389138 16 2 125 |3
VIPLFACE-M 0.05681 | 0.06279 8.2371 4 14 65128768 10 8 12.5 3
MTArcFace 0.05699 | 0.05860 | 10.7497 | 6 12 43640002 7 11 11.75 | 4
SMT-MFR-1 0.05704 | 0.06003 10.6824 | 7 11 65131000 12 6 9.75 5
VIPLFACE-G 0.05750 | 0.07269 8.1693 9 9 65128768 10 8 8.75 6
MFR-NMRE-B 0.05819 | 0.08344 | 7.9504 | 10 8 43723943 8 10 8.5 7
LMI-SMT-MFR-1 | 0.05722 | 0.06205 9.7384 | 8 10 108854000 17 1 7.75 8
MFR-NMRE-F 0.08125 | 0.17660 | 5.3876 | 12 6 43723943 8 10 7 9
MUFM Net 0.17579 | 0.40489 | 4.4640 | 14 4 25636712 3 15 6.75 | 10
IM-AMFR 0.28252 | 0.47608 3.7414 15 3 36898792 4 14 5.75 11
LMI-SMT-MFR-2 | 0.05848 | 0.07096 | 8.5278 | 11 7 108854000 17 1 5.5 12
Anonymous-1 0.92536 | 0.96596 0.1011 17 1 23777281 1 17 5 13
IM-MFR 0.28447 | 0.47430 3.7369 16 2 36898792 4 14 5 13
EMUFM Net 0.16239 | 0.35681 | 4.5445 | 13 5 76910136 15 3 4.5 14
Anonymous-2 0.97125 | 0.99517 0.0426 18 0 23777281 1 17 4.25 15

Table A.3.: The comparative evaluation of the submitted solutions on the MFRC-21
dataset. The results are presented in terms of verification performance in-
cluding FMR100, FMR1000, and FDR, and the model compactness in terms of
the number of trainable parameters. The FMR100 and FMR1000 are given as
absolute values. The rank of the verification performance (Rank-a) is based
on FMR100 and the rank of the solution compactness (Rank-b) is based on the
number of parameters. Rank-a has 75% weight and Rank-b has 25% weight.
The results are ordered based on weighted Borda count (w-BC).

data augmentation methods are used- random resized crops, random horizontal flip, and color
jittering.

TYAI solution uses Sub-center ArcFace [78] and ir-ResNet152 model to train a masked face
recognition model on Glint360K dataset [11]. The proposed solution randomly augmented half of
the training dataset with a synthetic generated mask using five types of transparent masks. The
input image size of the proposed model is 112 x 112 and the size of the output feature embedding
is 512-D. During the training, additional four data augmentation methods are used: random crop
by resizing the image to 128 x 128 and then randomly cropping it to 112 x 112, random horizontal
flip, random rotation, and random affine. The model uses a Sub-center ArcFace loss to train the
proposed solution.

Mask aware ArcFace (MaskedArcFace) opts to generate a masked twin dataset from
MS1MV2 [103, 80] dataset and to combine them during the training process. Both datasets
are shuffled separately using the same seed and, for every new face image selected for the input
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Verification performance

Solution FMR100 | FMR1000 | FDR | Rank
| Baseline | 0.05925 | 0.06504 [9.68640 |- |
TYAI 0.04489 [ 0.05961 [ 12.36306 | 1
VIPLFACE-M 0.05759 [ 0.06788 | 8.98593 | 2
Al_Simple 0.05771 | 0.06368 | 10.48611 | 3
SMT-MFR-2 0.05792 [ 0.06172 | 11.30901 | 4
MaskedArcFace | 0.05825 | 0.06245 | 10.57307 | 5
SMT-MFR-1 0.05825 | 0.06012 | 11.03444 | 6
VIPLFACE-G 0.05843 | 0.06359 | 9.41466 |7
MTArcFace 0.0585 [ 0.06390 | 10.16996 | 8

LMI-SMT-MFR-1 | 0.05856 | 0.06061 9.90914 |9

LMI-SMT-MFR-2 | 0.05916 | 0.06586 8.87424 | 10
MFR-NMRE-B 0.05970 | 0.12903 8.11963 | 11
MFR-NMRE-F 0.09630 | 0.1989 4.73224 | 12

EMUFM Net 0.15045 | 0.31945 4.45317 | 13
MUFM Net 0.16354 | 0.37607 | 4.43278 | 14
IM-AMFR 0.23507 | 0.40265 3.94744 | 15
IM-MFR 0.23661 | 0.40373 3.94905 | 16

Anonymous-1 0.89481 | 0.97584 | 0.19968 | 17
Anonymous-2 0.9114 | 0.98102 | 0.16569 | 18

Table A.4.: The comparative evaluation results of the submitted solutions. The verifi-
cation evaluation is based on the verification performance of masked vs.
masked verification pairs where references and probes are masked. The
performances are reported in terms of FMR-100, FMR-1000 and FDR. The
FMR100 and FMR1000 are given as absolute values. The reported results are
ordered based on FMR-100.

batch, MaskedArcFace decides whether the image is taken from the original (not-masked) or the
masked dataset with a probability of 50%. MaskedArcFace use ArcFace [80] as the baseline work.
MaskedArcFace selects the dataset recommended by ArcFace (MS1MV2) [103, 80] as the training
dataset, which contains 5.8M images and 85,000 identities. MaskedArcFace uses IResNet-50 as the
backbone among all the network architectures tested in the ArcFace repository as it is it offers good
trade-off between the accuracy and the number of parameters. For the generation of the masked
version of the dataset, MaskedArcFace uses MaskTheFace [13]. The types of masks considered are
surgical, surgical green, surgical blue, N95, cloth, and KN95. The mask type is selected randomly
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Solution Input size | FM Loss function RM | SM
A1l_Simple 112x 112 | 512 | ArcFace No | Yes
TYAI 112x 112 | 512 Sub-center ArcFace | No | Yes
MaskedArcFace | 112x 112 | 512 | ArcFace No | Yes
MTArcFace 112x 112 | 512 ArcFace No | Yes
MFR-NMRE-F 96x 192 | 2048 | CE No | No
MFR-NMRE-B 112x 224 | 2048 | CE No | No
MUFM Net 224 x 224 | 2048 | CE No | Yes
EMUFM Net 224 x 224 | 2048 | CE No | Yes
VIPLFACE-M 112x 112 | 512 ArcFace No | Yes
VIPLFACE-G 112x 112 | 512 ArcFace No | No
SMT-MFR-1 112x 112 | 512 | ArcFace Yes | No
SMT-MFR-2 112x 112 | 512 | ArcFace Yes | No

96x 192 | 2048 | CE No | No
IMESMIMER-L (9959957512 | Arcrace Yes | No

112x 224 | 2048 | CE No | No
IMESMEMER-2 1995975 [ 512 | ArcFace Yes | No

CE, triplet loss
IM-MFR 224%224 | 512 | “* MEE No | Yes
CE, triplet loss

IM-AMFR 224 x 224 | 512 and MI;E No | Yes
Anonymous-1 160x 160 | 512 | CE No | Yes
Anonymous-2 160x 160 | 512 | CE No | Yes

Table A.5.: Basic details of the submitted solutions including, the input image size, the
feature embedding size (FM), the loss function used for training, the use of
real masked faces (RM), and simulated masked faces (SM) in the training
process. The solutions in bold are the ones ranked top in the competition.
Note that all the top-ranked solutions used a version of the ArcFace loss
[80, 78].

with a 50% probability of applying a random color and a 50% probability of applying a random
texture. During the evaluation phase, MaskTheFace uses the provided landmark points and the
bounding box provided by the competition to align and crop face images. The feature embedding
produced by MaskedArcFace solution is of the size 512-D and the input face image is of the size
112 x 112 pixels.
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Multi-task ArcFace (MTArcFace) utilized the same training dataset, loss function, backbone,
and mask generation method as in MaskedArcFace. MTArcFace adds another dense layer in parallel
to the one used to generate the feature vector by IResNet-50, just after the dropout layer. The
new dense layer generates an output with two floats, which correspond to the scores related to
the probability that the face is masked or not, respectively. This way, MTArcFace aims to force
the network to learn when a face is wearing a mask. This information will also be used by the
layer that generates the feature vector. The data preprocessing steps and the size of the feature
embedding are identical to the MaskedArcFace.

Masked face recognition using non-masked region extraction and fine-tuned recog-
nition model (MFR-NMRE-F) Based on the 5-point face landmark detections, the proposed
approach identifies a crop that corresponds to the upper facial region where masks are not visible.
Then, MFR-NMRE-F fine-tuned a VGG2-SE-ResNet-50 face recognition model for the classification
task on these crops using the VGGFace2 [42] training dataset processed with the RetinaFace
[79] detector. For the evaluation, MFR-NMRE-F uses the provided face landmarks provided by
MFRC-21, since they correspond closely to the RetinaFace results obtained on the training dataset.
Using the landmark coordinates, the MFR-NMRE-F solution extracts the upper face region, extracts
feature vectors using the fine-tuned VGG2-SE-ResNet-50 model, and compares features using the
cosine similarity measure. The proposed method is trained using cross-entropy (CE) loss. The
input size of the proposed model is 96 x 192, and the feature embedding size is 2048-D.

Masked face recognition using non-masked region extraction and pre-trained recogni-
tion model (MFR-NMRE-B) identifies a crop that corresponds to the upper facial region where
masks are not visible based on the 5-point face landmark. MFR-NMRE-B utilized a VGG2-SE-
ResNet-50 model pre-trained for the classification task using the VGGFace2 [42] training dataset.
Different from MFR-NMRE-F, the MFR-NMRE-B solution did not fine-tune the feature extraction
model with cropped images. For the evaluation, the proposed method uses the provided face
landmarks provided by MFRC-21. Using the landmark coordinates, the proposed method crops
the upper face region, extracts feature vectors using the VGG2-SE-ResNet-50 model, and compares
features using the cosine similarity measure. MFR-NMRE-B is trained using Softmax cross-entropy
loss. The input size of the proposed model is 112 x 224, and the feature embedding size is 2048-D.

Masked-Unmasked Face Matching Net (MUFM Net) utilizes Momentum Contrast (MoCo)
[104] to create an initial embedding using a ResNet-50 model trained on CelebA dataset [162].
Then, synthetic masked versions of CelebA, Spectacles on Faces [7], Youtube Faces [276] and LFW
[114] are created as defined in [201]. The initial model is fine-tuned using these dataset. For
fine-tuning, MUFM Net uses a siamese network with shared weights with absolute differences
taken at the last bottleneck layer. This difference is fed into a 512 fully connected layer followed
by a single softmax node.The model is fine-tuned with binary cross-entropy loss with 50% of layers
frozen. The input size of the presented model is 224 x 224 pixels.
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Ensemble MUFM Net (EMUFM Net) builds upon MUFM to create an ensemble. First, the
best-performing MUFM models are selected based on the validation accuracy. The selected models
are M1 (obtained after 695K iterations) and M2 (obtained after 885K iteration) These models
are fine-tuned on hard examples drawn from the training set. Three models are fine-tuned- E1
and E2 builds on M1 where 90% and 80% of the layers are frozen, respectively, and E3 builds on
M2 where 50% of the layers are frozen. All these models have an input of size 224 x 224 and an
output embedding of size 2048-D. During the testing phase, the similarity scores of these three
models (E1-3) are averaged to provide the final similarity score.

VIPLFACE-M adopted ResNet-100 [107] and ArcFace loss [80] for face recognition. The
proposed solution uses a refined version of the MS1M dataset [103] for training the proposed
solution. The number of face images in the training dataset is 3.8M of 50K identities. VIPLFACE-M
uses the synthetic mask creation method defined in 2 to add synthetic masks on part of the training
dataset. The number of synthetically masked face images used in training is 500K, and the number
of synthetically masked identities is 50K. During the training phase, the proposed solution uses
random flipping as a data augmentation method. The input size of the presented solution is
112 x 112, and the output feature embedding size is 512-D.

VIPLFACE-G is based on training ResNet-100 model [107] with ArcFace loss [80]. The input
size of the presented solution is 112 x 112, and the feature embedding size is 512-D. The model is
trained on a clean version of MS1M [103] that contains 5.8M of 80K identities. The presented
solution uses random flip to augment the dataset during training.

SiMiT Lab — Masked Face Recognition—1 (SMT-MFR-1) employs LResNet-100E-IR model
[107] trained with ArcFace loss function [80]. The model is originally trained on MS1MV2 dataset
[103, 80]. SMT-MFR-1 solution depends on fine-tuning LResNet100E-IR using two real world
masked face datasets- Real World Occluded Faces (ROF) 3 and MFR2 dataset [13]. MFR2 contains
296 images of 53 identities. ROF dataset is crawled from the internet and contains 678 masked face
images and 1853 not-masked face images of 123 identities. The proposed solution is fine-tuned
using the ROF dataset and a part of the MFR2 dataset (35 identities). The model process input
image of size 112 x 112 to produce feature embedding of size 512-D. During the training, the
training dataset is augmented using a horizontal flip augmentation method.

SiMiT Lab — Masked Face Recognition—-2 (SMT-MFR-2) is conceptually identical to SMT-
MFR-1. Different from SMT-MFR-1, the SMT-MFR-2 model is fine-tuned using the ROF dataset
and the entire MFR2 dataset.

2https://github.com/JDAI-CV/FaceX-Zoo/blob/main/addition_module/
face_mask_adding/FMA-3D/README.md
*https://github.com/ekremerakin/RealWorldOccludedFaces
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LMI - SiMiT Lab - Masked Face Recognition - 1 (LMI-SMT-MFR-1) is a combination
of two solutions- MFR-NMRE-F and SMT-MFR-1. First, the features are extracted separately by
each of the solutions- MFR-NMRE-F and SMT-MFR-1. Then, the comparison scores are calculated
for each solution. To combine the scores, cosine similarity measures are converted to euclidean
distance in MFR-NMRE-F. The output of SMT-MFR-2 is euclidean distance. After this, the scores
are normalized separately for each solution. Then, both scores are multiplied to generate the
ensemble score.

LMI - SiMiT Lab - Masked Face Recognition - 2 (LMI-SMT-MFR-2) is also a combination
of two solutions-MFR-NMRE-B and SMT-MFR-1. LMI-SMT-MFR-2 follows the same scores fusion
method described in the LMI-SMT-MFR-1 solution.

Ignoring masks for accurate masked face recognition (IM-MFR) approach consists of two
different training processes. The first, which aims to build a classification model, uses 6000 training
identities from the VGGFace2 dataset [42] to minimize the cross-entropy while classifying these
images. Each image had a probability of 65% of being masked. All training images are randomly
resized and cropped to 224 x 224 In this solution, the masked creation method [201] uses the
open implementation # by Boutros [26]. After achieving above 96% accuracy in the classification
on the validation set, the last fully-connected layer was replaced with a fully connected layer with
512 outputs units. All the layers, except the newest one, are now frozen. The last layer is trained
with and joint Triplet Loss and MSE for metric learning. The backbone network is a ResNet-50
[107]. The model is trained for 65k iterations.

Ignoring masks for accurate masked face recognition (IM-AMFR) follows the same
training procedure, architecture, and loss function as in IM-MFR. The only difference is the number
of training iterations where the IM-AMFR model is trained for 32k training iterations.

anonymous-1 and anonymous-2 employed FaceNet [234] as base architecture pre-trained
on VGGFace2 [42]. MaskTheFace [13] is used to augment the LFW [114, 113] dataset and create
a masked-face dataset. A masked version of each image in LFW is created. The FaceNet model is
then fine-tuned using the augmented dataset. In the anonymous-1 solution, the model is fine-tuned
using only masked face images. In the anonymous-2 solution, the model is fine-tuned using pairs of
unmasked and masked images. For inference, the last layer of FaceNet consists of 512-dimensional
embeddings, while the input size for both solutions is 160 x 160 pixels. One must note that the
presented approach is reasonable, however, the verification accuracy presented in Section A.4 is
extremely low, which might indicate an implementation error in the submission.

“https://github.com/fdbtrs/MFR/blob/master/FaceMasked.py
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Baseline The baseline is chosen to put the submitted approaches in perspective of state-of-the-art
face recognition model performance. The considered baseline is the ArcFace, which scored state-of-
the-art performance on several face recognition evaluation benchmarks such as LFW 99.83% and
YTF 98.02% by using Additive Angular Margin loss (ArcFace) to improve the discriminative ability
of the face recognition model. We considered ArcFace based on ResNet-100 [107] architecture
pretrained on refined version of the MS-Celeb-1M dataset [103] (MS1MV2).

ROC Curves
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Figure A.2.: The ROC curve scored by the top 10 solutions in the BLR-MP experimental
setting.

A.4. Results and analyses

This section presents comparative evaluation results of the submitted solution. We present first
the achieved results on the BLR-MP evaluation setting and the model compactness. Then, the
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Figure A.3.: (@) The FMR100 scored by the top 14 solutions in the BLR-MP experimen-
tal setting. (b) The FMR100 scored by the top 14 solutions in the MR-MP
experimental setting. (¢) The number of trainable parameters in the top 16
solutions.

achieved results on the MR-MP evaluation setting are presented.

A.4.1. Not-masked vs. masked (BLR-MP)

Table A.3 presents comparative evaluation results achieved by the submitted solutions for BLR-MP
evaluation setting and the model compactness. The results are reported and ranked based on the
evaluation criteria described in Section A.2.2. From the reported results in Table A.3, the following
observations can be made:

* Based on the defined evaluation criteria in Section A.2.2, the top-ranked solution based on
the weighted Borda count is TYAI (rank 1), followed by MaskedArcFace and SMT-MFR-2
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(rank 2) and then A1 _Simple and VIPLFACE-M (rank 3).

* Most of the presented solutions achieved a competitive verification performance, in com-
parison to the baseline. Ten out of 18 solutions achieved higher verification performance
than the baseline solution for the BLR-MP evaluation setting as reported in Table A.3 and
Figure A.2. Figure A.2 presented the achieved verification performances in term of Receiver
operating characteristic (ROC) curves by the top 10 solution on the BLR-MP experimental
setting. The best verification performance in terms of FMR100 is achieved by the TYAI
solution, where the achieved FMR100 was 0.05095 (Table A.3 and Figure A.3a).

* By comparing the verification performances reported in Table A.3 and the loss function
utilized by each of the solutions reported in Table A.5, it is noted that the models trained with
margin-based softmax loss (ArcFace or Sub-center ArcFace loss) achieved higher verification
performance than the models trained with other loss functions including cross-entropy
and triplet loss. This points out the generalizability brought by the nature of the marginal
penalty that forces a better separability between classes (identities) and better compactness
within classes.

* The solutions that achieved competitive FMR100 to the baseline solution have relatively
higher separability between genuine and imposter scores (FDR) than other solutions that
achieved relatively lower verification performance.

* Regarding model compactness, all solutions contain between 23M and 108M parameters
as shown in Table A.3 and Figure A.3c. The top 3 ranked solutions have less than 87M
parameters. This indicates that utilizing a larger and deeper deep learning model does not
necessarily and solely lead to higher verification performance.

* The common strategy to improve the masked face recognition verification performance
by the submitted solutions is to augment the training dataset with a simulated mask. All
submitted solutions depended on training or fine-tuning face recognition model with masked
face images (real or simulated). However, none of the presented solutions propose a solution
that could be applied on top of the existing face recognition model, as in [26]. Furthermore,
none of the presented solutions has clearly benefited from the mask labels included in the
evaluation list. Four of the five top-ranked solutions utilized synthetically generated masks
to augment the training dataset with simulated masked images. Utilizing such a method is
usually easier than other solutions, such as using a real masked training dataset. Collecting
a large-scale training dataset with pairs of not-masked/masked face images is, however, not
a trivial task.

A.4.2. Masked vs. masked (MP-MR)

The verification performance of the experimental setting MR-MP for all submitted solutions is
presented in Table A.4. The achieved verification performance is reported in terms of FMR100,
FMR1000, and FDR. The presented results are ordered and ranked based on the achieved FMR100.
It can be noted from the reported verification performance in Table A.4 that ten out of 18 solutions
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achieved better verification performance than the baseline solution when comparing masked
reference to masked probe (MR-MP). TYAI solution achieved the best verification performance,
followed by VIPLFACE-M and Al_Simple. By comparing the reported verification performance
of BLR-MP evaluation setting (Table A.3) and the reported one of MR-MP (Table A.4), we can
observe the following: a) Most of the solutions have higher separability between genuine and
imposter scores (higher FDR) when both reference and probe are masked (MR-MP) than the case
where only the probe are masked (BLR-MP). b) The top-ranked solutions in the MR-MP evaluation
setting are also ranked among the top solutions in the BLR-MP evaluation setting.

A.5. Summary

Motivated by the pandemic-driven use of facial masks, the Masked Face Recognition Competitions
(MFR 2021) was organized to motivate and evaluate face recognition solutions specially designed
to perform well with masked faces. A total of 10 teams from 11 affiliations participated in the
competition and contributed 18 solutions for the evaluation. The evaluation focused on not-
masked vs. masked face verification accuracy, the masked vs. masked face verification accuracy,
and the face recognition model compactness. Out of the 18 submitted solutions, 10 achieved lower
verification error (FMR100) than the considered baseline. Most of the top-performing solutions
used variations of the ArcFace loss and either real or simulated masked face databases in their
training process. The lowest achieved FMR100 for the not-masked vs. masked evaluation was
5.1%, in comparison to an FMR100 of 6.0% scored by the baseline.
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The author participated in four international competitions [71, 265, 219, 267].

182
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Detection Competition (LivDet-Face) - 2021 [219]

2. The twenty-third place at NIR Iris Challenge Evaluation in Non-cooperative Environments:
Segmentation and Localization [267]

3. The second place at Iris Liveness Detection Competition (LivDet-Iris) - 2020 [71]

4. The thrid and fourth places at SBC 2020: Sclera segmentation benchmarking competition
in the mobile environment [265]
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