
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2003)
G.-P. Bonneau, S. Hahmann, C. D. Hansen (Editors)

Visualizing Spatial Distribution Data Sets

Alison Luo1, David Kao2 and Alex Pang1

1Computer Science Department, UCSC
2NASA Ames Research Center

{alison,pang}@soe.ucsc.edu, davidkao@nas.nasa.gov

Abstract
In this paper, we define distributions as a new data type and address the challenges of visualizing spatial distribu-
tion data sets. Numerous visualization techniques exist today for dealing with scalar data. That is, there is a scalar
value at each spatial location, which may also be changing over time. Likewise, techniques exist for dealing with
vector, tensor and multivariate data sets. However, there is currently no systematic way of dealing with distribu-
tion data where there is a collection of values for the same variable at every location and time. Distribution data
is increasingly becoming more common as computers and sensor technologies continue to improve. They have
also been used in a number of fields ranging from agriculture, engineering design and manufacturing to weather
forecasting. Rather than developing specialized visualization techniques for dealing with distribution data, the
approach presented in this paper is to find a systematic way of extending existing visualization methods to handle
this new data type. For example, we would like to be able to generate isosurfaces of 3D scalar distribution data
sets, or generate streamlines of vector distribution data sets. In order to accomplish this goal, we propose the
use of a set of mathematically and procedurally defined operators that allow us to work directly on distributions.
Color images can also be found in www.cse.ucsc.edu/research/avis/operator.html.

1. INTRODUCTION

A host of visualization techniques is available today to vi-
sualize a variety of data types. The data sets may be charac-
terized as both multidimensional and multivariate. Multidi-
mensional data refers to the spatial dimensionality e.g. 0D,
1D, 2D, 3D, of the data, but it may also include time as an
additional dimension. Multivariate data, on the other hand,
refers to the different variables represented at each location.
These variables are usually scalar, but may also be vectors,
tensors, etc. For non-scalars, one may treat the extra terms
as another variable in much the same way that vectors may
be represented by multiple scalar components. While often
used interchangeably in literature, these two properties are
orthogonal. For example, a weather forecast may be 3D, time
varying and contain information about temperature, humid-
ity, pressure, etc. at each location. In practice, such a data set
may be stored in a 5D array: three for space, one for time,
and the last one for the different variables. A notable visual-
ization system that carries this name is Vis5D 7.

This paper focuses on a new data type, a distribution,
which will essentially add an extra dimension that needs to

be visualized. A distribution is simply a collection of n val-
ues about a single variable: D � vi, where i � 1 ��� n. For
example, a probability density function (pdf) is a distribu-
tion containing values that represent frequencies of different
data values. In terms of visualizing distributions, we are all
familiar with bar plots which characterize the statistical dis-
tribution for a single variable at a given location. We are less
familiar with distributions mapped over one, two or three
spatial dimensions. So, the goal of this paper is to describe
a systematic methodology for visualizing distribution data
that are 2D or higher.

Distribution data are distinctly different from multivariate
data in that one can have scalar distribution data where each
member of the collection is a scalar, one can have vector
distribution data where each member of the collection is a
vector, or one can have multivariate distribution data where
each member of the collection is a multivariate vector. Al-
ternatively, one can think of each component of a non-scalar
distribution as separate scalar distributions (see Figure 1).

Rather than developing specialized visualization tech-
niques for visualizing spatial distribution data sets, the ap-

c
�

The Eurographics Association 2003.

29

http://www.eg.org
http://diglib.eg.org


Alison Luo, David Kao, Alex Pang / Visualizing Spatial Distribution Data Sets

Multidimension

Multivariate
(at each location)

Distribution
(for each variable)

scalar

( _ )

n−tuple

( _ , _ , ... , _ )

2−tuple

( _ , _ )

0D 1D 2D 3D

, , , ,...

Figure 1: Multidimensional, time-varying, multivariate dis-
tributions.

proach presented in this paper is on a systematic method-
ology of extending existing visualization techniques to han-
dle the new data type. Thus, one would like to be able to
pseudocolor a distribution field, or generate contour lines or
isosurfaces, or streamlines or volume renderings of distri-
bution fields. To accomplish this, we describe a set of op-
erators that converts distributions to scalars, combines dis-
tributions arithmetically, and possibly more complex oper-
ations on distributions. Because distributions do not always
represent statistical information, different types of operators
may be called for depending on what is appropriate for the
application that generated distribution data. We discuss a
few of these operators from various fields including: signal
processing, information theory, and statistics. The intent is
to demonstrate how one may go about designing operators
rather than providing an exhaustive list.

The rest of the paper is organized as follows: Section 2
provides additional motivation on why it is important to be
able to deal with distribution data sets, Section 3 highlights
three distribution data sets that are used to demonstrate the
visualization techniques in this paper and Section 4 presents
extensions to a number of well known visualization tech-
niques to support distribution data sets. For each visualiza-
tion technique, we present and discuss the relevant operators
necessary to handle distribution data.

2. MOTIVATION

Distribution data can be found in raw census data, real es-
tate sales data, agriculture, bioinformatics, sensitivity analy-
ses, terrestrial models, weather forecasts, and ocean circula-
tion models to name a few. More specific examples include:
modeling of vegetation and land cover types using condi-
tional simulation 3, data assimilation into ocean circulation
models 12, target state estimation using Bayesian techniques
16, studying gene sequences and gene expression levels from
micro-arrays 4, and to some extent, query by image features
6 and music content 13 � 17 into digital libraries. These appli-
cations all provide a rich set of data.

Another reason why distribution data is interesting is be-

cause it is another way to represent uncertainty. Rather than
using a scalar value or value pairs such as standard deviation
or min-max range values to represent uncertainty, the entire
distribution itself can be the representation of uncertainty.

Despite all the potential benefits of distribution data, their
prevalence is not immediately obvious. We believe the pri-
mary reason is due to the fact that they are difficult to visu-
alize when they are spread out over a field. Currently, spatial
distribution data are generally summarized using a few ag-
gregate statistics and presented that way because there is just
no visualization method currently available that will depict
spatial distribution data. Such methods of displaying these
data also hides the fact that they are distributions.

If the distribution data exists only at a single “point”, then
the visualization is relatively straightforward by using func-
tion plots or bar charts. However, as the spatial dimension of
the data set increase from a point to 1D, 2D, 3D and time-
varying, then the visualization task very quickly becomes a
problem.

We have looked at this problem for 2D distribution data
sets using a statistical approach 10. Density estimates were
constructed for the distribution at each pixel over a 2D do-
main. From that, parametric statistics such as mean and stan-
dard deviations, as well as higher moment statistics were
collected. These were then displayed using different visual
mappings such as color, height, glyphs, etc. over the domain.
This approach works well if the distributions can be charac-
terized fairly well with a few statistical parameters e.g. if
the distributions can be well modeled by a Gaussian distri-
bution. However, as the modality or the number of peaks in
the distribution deviate from the norm, then the parametric
statistics approach has a severe limitation in expressing the
shape of the distributions. An alternative method proposed
was to treat the density estimates over the 2D field as a 3D
scalar volume (2D for space, 3rd dimension for data range,
and scalar values representing frequencies) and apply stan-
dard volume visualization algorithm. This worked better but
doesn’t allow us to scale to higher dimensional distribution
data sets.

Employing multivariate visualization techniques on the
2D distribution data met with very limited success. A case in
point is the use of glyphs e.g. Chernoff faces or star glyphs to
represent multivariate information. The most natural glyph
to represent distributions would be bar charts. Figure 2 illus-
trates how this looks like for 2D distribution data (described
in Section 3 as sg2). One obvious limitation is the difficulty
of scaling this approach to high resolution data sets. A rela-
tively low resolution 100x100 grid of distribution can barely
be handled by this approach, even when it is displayed at
quarter resolution. The lower resolutions are derived by ag-
gregating the samples of neighboring points together to form
a new distribution. While preserving the raw data points, one
also loses the spatial variability between neighboring distri-
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(a) quarter resolution (b) 1/100 resolution

Figure 2: Bar chart glyphs representing distributions are drawn over each distribution. (a) shows the original 100 x 100 grid
displayed as a 50 x 50 array of histograms, while (b) shows the same data as a 10 x 10 array of histograms.

butions. Another limitation to this and other multivariate ap-
proach is the difficulty in scaling to higher dimensions.

In short, there are clearly many applications with distribu-
tion data. The most common practice has been to summarize
the distribution data and work with a scalar summary. An-
alyzing and visualizing the distribution data in its entirety
is the challenge that this paper tries to address. In the next
section, we present some distribution data sets used in this
paper.

3. DATA FOR EXPERIMENT

We describe three different distribution data sets used in this
paper. Our first data set is a 2D scalar distribution field.
This data set is a synthetic example constructed using a
small region in the Netherlands imaged by the Landsat The-
matic Mapper 3. Consider the case in which the biophysical
variable to be mapped across this region is percent forest
cover. Assume there are ground-based measurements of for-
est cover from 150 well-distributed locations throughout this
region as well as space-based measurements from Landsat of
a spectral vegetation index. This spectral vegetation index is
related to forest cover in a linear fashion but with signifi-
cant unexplained variance. Further assume that the ground
area represented by a field measurement is equal to the area
represented by one pixel. A distribution data set was gen-
erated using this information: sg2, generated using a con-
ditional simulation algorithm 2 taking into account ground
measurements only; and sg3 generated using conditional
co-simulation 2 using both ground measurements and the
coincident satellite image. The data set consists of 101 �
101 pixels and 250 realizations. Values range from 0 to 255,
rescaled from percent forest cover.

Our second data set is a 3D time-varying scalar distribu-
tion field output from ocean modeling. The model covers
the Middle Atlantic Bight shelfbreak which is about 100 km
wide and extends from Cape Hatteras to Canada. Both mea-

surement data and ocean dynamics are combined to produce
a 4D field that contains a time evolution of a 3D volume
including variables such as temperature, salinity, and sound
speed. To dynamically evolve the physical uncertainty, an
Error Subspace Statistical Estimation (ESSE) scheme 12 is
employed. This scheme is based on a reduction of the evolv-
ing error statistics to their dominant components or sub-
space. To account for nonlinearities, they are represented by
an ensemble of Monte-Carlo forecasts. Hence, numerous 4D
forecasts are generated and collected into a 5D field. For
each physical variable, the dimension of the data set is 65� 72 � 42 voxels with 80 values at each point. We refer to
this data set as ocean.

Our third data set is a 3D time-varying multi-
variate distribution data set representing an ensem-
ble weather forecast. The data set is referred to as
sref which stands for short-range ensemble forecast-
ing and is courtesy of NOAA, and available through
http://wwwt.emc.ncep.noaa.gov/mmb/SREF/SREF.html. The
ensemble is created from two different models: ETA and
RSM, with 5 different initial and boundary conditions each
producing an ensemble or collection of 10 members at each
location where the two models overlap. Unfortunately, the
two models are not co-registered and have different projec-
tions and spatial resolutions. Thus, for the purpose of this
paper, we just use the 5 member ensemble from the RSM
model. The resolution of the RSM model is 185 � 129 and
has 254 physical variables at each location. The forecast is
run twice a day, and for 22 different time steps during each
run. Velocity is available at every location in the model.
However, only horizontal wind components are recorded.
While not an ideal distribution data set because of the low
number of samples, it provides us with velocity distribution
data to demonstrate streamlines and pathlines visualization
of steady and unsteady vector distribution data.
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4. VISUALIZATION AND OPERATORS

We now describe how to extend five standard visualization
to support distribution data sets. These are pseudocoloring,
streamlines, pathlines. contour lines and isosurfaces. With
each method, we discuss the basic requirements in order to
extend it, and also present different ways of extending it. In
all cases, the key idea is designing operators that can con-
vert distribution data types to other types and/or allow them
to be combined with other data types. Based on these ex-
amples, a methodology is established for how other visual-
ization methods can be extended to support distribution data
sets.

4.1. Pseudocoloring

One of the most basic visualization techniques is pseudocol-
oring. The main requirement is to map a scalar value to a
color value. Typically a range of scalar values are mapped
to a range of color values. Disregarding the importance of
designing a proper colormap for now, the key task in order
to pseudocolor distributions is to convert a distribution to a
scalar value. Assuming an operator exists for this task, the
scalar value representing the distribution can then be used
to index the color table. Note that the mapping need not be
linear. It could be nonlinear or even discontinuous. Alter-
natively, a distribution can be converted to a few scalars, say
three, rather than a single scalar. In this case, the three scalars
can be mapped to different color models such as HSV com-
ponents. This class of operators converts a distribution to a
single scalar or a vector of a few scalar components.

s � ToScalar � D � (1)
v � ToVector � D � (2)

In choosing an operator to convert a distribution to a
scalar, it is important to know what features of the distri-
bution need to be shown. We describe some statistical op-
erators that summarize a distribution to a few scalars. The
central tendencies of a distribution often show what the most
likely values are. The spread of a distribution captures vari-
ability or uncertainty. Additional measures such as kurtosis
describes the “flatness" of the distribution and skewness de-
scribes the asymmetry. The equations for these statistical
summaries can be found in statistics textbooks 9. In addi-
tion to standard statistical summaries, one can also devise
other more descriptive means of expressing the shape of a
distribution. For example, capturing the modality or number
of peaks in a distribution, and the height and width of each
peak 11. Figure 3, 4 and 5 demonstrate how these ToScalar()
and ToVector() operators are used over 2D distribution data
sets. It should also be noted that these examples are illustra-
tive and are by no means exhaustive.
4.2. Streamlines

Streamlines is one of the workhorse visualization techniques
for steady state flow fields. They are generated by integrat-
ing the path of massless particles as they are carried instan-
taneously through the field. For illustration purposes, we use

Figure 3: Pseudocolor rendering of the mean of the sg2
data. Mean is obtained using a ToScalar() operator defined
in Equation 8.

the simplest Euler integration outlined below:
Pi � 1

� Pi 	�
v∆t (3)
Where P is the position, 
v is the velocity and ∆t is the in-
tegration step. If the velocity field is a velocity distribu-
tion field, we need to extend the concept of multiplying and
adding scalars with distributions. The result of multiplying a
scalar with a distribution is another distribution where each
term or sample has been scaled.

D � � Scale � s  D � � s � D (4)
Note that this is carried out for each velocity component.
Here, D � is the new distribution for one of the velocity com-
ponents. Likewise, adding a scalar to a distribution simply
offsets the distribution by the scalar amount.

D � � Add � s  D � � s 	 D (5)
Again, note that each component of the position P is added
to the corresponding distribution component. After one in-
tegration step of Equation 3, the right hand side is now a
distribution. So, we need to apply one of the ToScalar() op-
erators described earlier to each of the components of P in
order for us to assign the results to the left hand side.

In the example below, we use a 2D slice from the sref
forecast data. There are five velocities at each location in
the 2D field. Each velocity has two components, u and v.
We show the results using three different ToScalar() opera-
tors: mean, minimum, and maximum. Note that these opera-
tors are applied to the distribution of new positions (the right
hand side).

Minimum � D � � min � v1  v2 ������� vn � (6)
Maximum � D � � max � v1  v2 ������� vn � (7)

Mean � D � � 1
n

i � n

∑
i � 1

vi (8)

Figures 6 and 7 represent one possible interpretation of
the vector distribution data. Each realization is essentially
treated as a possible scenario and a hence a streamline is

c
�

The Eurographics Association 2003.

32



Alison Luo, David Kao, Alex Pang / Visualizing Spatial Distribution Data Sets

Figure 4: Pseudocolor rendering of the three parameters
from sg2 obtained using a ToVector() operation that ex-
tracted the mean, standard deviation, and skewness of the
distribution. Mean is mapped to hue using the same color
range as in Figure 3, standard deviation is inversely mapped
to value, and the absolute value of skewness is inversely
mapped to saturation. The locations of the ground truth
points are also easily visible as brighter, fully saturated
points. Places with higher standard deviations are showing
up as darker regions, especially prominent across the arch
and the lower, middle region. The color map on the left has
the value held constant at one, while the color map on the
right has the saturation also held constant at one.

generated independently from each realization. Another pos-
sible interpretation is to take all the different realizations to-
gether and treat the vector distribution at each point as a pdf
of the velocity at that point. Given that 5 samples is generally
insufficient for an accurate pdf, we continue with the follow-
ing discussion to illustrate how one might proceed with such
an interpretation assuming an adequate population is avail-
able.

The alternative interpretation basically says that starting
from a given position, one has a pdf which specifies where
one might end up after one integration step. As a conse-
quence, the new location is going to be a distribution of
likely positions. We therefore look at another way of ex-
tending Equation 3 to work with distributions by raising the
data type of positions from scalars to distributions. The ini-
tial seeding point P0 is determined as usual, but is converted
into a distribution by simply replicating it so that it has the
same number of samples as the distributions in the velocity
distribution field. We then define a different addition opera-
tor that works on two distributions:

R � AddD � P Q � � P � Q (9)
The result of AddD() is another distribution R. Again, there

Figure 5: Discontinuous color map of output from a bump
hunting algorithm on the sg2 data set. The number of bumps
(or modality) of a distribution is mapped to different colors.
The output of the bump hunting algorithm 11 presented here
is a procedural ToScalar() operation. The arch observed in
Figured 4 is also noticeable here. The reddish region in-
dicates that the distributions at those locations are more
bumpy (higher modality).

Figure 6: Streamlines of the sref RSM models on Octo-
ber the 24th of 2002. The background field is colored with
the mean velocity magnitude using the same color map as in
Figure 3. The white streamlines are traditional streamlines
calculated independently over each vector field realization.
One can see why they are referred to as spaghetti plots in
meteorology. The black streamline uses Equation 8 to con-
vert the distribution at each component of Pi � 1 to a scalar.
It also corresponds to what one might expect as the average
streamlines of all the spaghetti plots.

is more than one way to define such an operation. We de-
scribe two possible definitions of � . The first is due to
Gerasimov et al. 5 which we refer to as “convolution addi-
tion”, and the second one is due to Gupta and Santini 6 which
we refer to as “binwise addition”. Figure 8 and 9 demon-
strate these two operations on the ensemble weather forecast
data set.
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Figure 7: Same as Figure 6 but showing the spaghetti plots
with the streamlines generated using Equations 6 and 7.
The two blue streamlines correspond to the envelope of the
spaghetti plots.

Figure 8: Streamline visualization using the convolution ad-
dition operation. The distribution of positions at the end of
each time step is rendered as a transparent circle encom-
passing those points.

4.2.1. Convolution addition:

This addition is statistically meaningful when P and Q are
pdfs. Let P be the pdf of random variable X and Q be the
pdf of random variable Y . The addition of these 2 indepen-
dent pdfs results in another pdf which can be interpreted as
the probability distribution for the sum of both random vari-

Figure 9: Streamline visualization using the binwise addi-
tion operation. It is rendered with transparent circles as in
Figure 8, and has the same seed point as the previous three
streamline images.

Figure 10: The white swath represents streamline trajecto-
ries, while the yellow swath represents pathline trajectories
of the ensemble. Both swaths use binwise addition.

ables. The relationship is defined in 5 as:

PX � Y � t � ��� ���
� � P � t � v � Q � v � dv (10)

where t � X 	 Y and v � Y .

4.2.2. Binwise addition:

This addition does not require that the distributions be pdfs,
but do require that both be evaluated over the same range of
X values. At each evaluation point, the frequencies of both
variables are simply added up. If the distribution is a his-
togram, then corresponding bins are added together to form
the frequency of bin in the resulting distribution. This is de-
fined in 6 as:

R � X � � P � X � 	 Q � X � (11)
Another application where such operations can be seen is in
signal processing. A composite signal R � t � of two signals
P � t � and Q � t � can be obtained from the above operation. In
this case, t � X .

4.3. Pathlines

Pathlines trace the path of a particle over a time varying flow
field 1. A particle’s path is determined by solving the differ-
ential equation for a field line:

dP � dt � V � P � t �� t � (12)
where P is the particle’s location and V the particle’s velocity
at time t. Integrating this equations yields

P � t 	 dt � � P � t � 	 � dt

t
V � P � t �� t � dt (13)

The integral can be evaluated numerically using a simple
Euler integration, multi-stage methods (e.g. Runge-Kutta,
Bulirsch-Stoer), or multi-step methods (e.g, backwards dif-
ferentiation). Note that this equation is essentially the same
as Equation 3 with the exception of a time varying V field.

Pathlines from ensemble time varying flow data are illus-
trated in Figure 10. Note that pathlines can be rendered with
polylines or as transparent circles as with streamlines. Re-
call that the sref data has 22 time steps for each forecast
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run. These time steps are 3 hours apart and a bit too large of
a time step for integration purposes. Using a single forecast
run, we need to do temporal interpolation of the ensemble
flow field. For the example in Figure 10, we introduce 30 ad-
ditional time frames between each 3 hour time step using the
interpolation strategy for distributions described in Equation
19. This allows an integration step size of 0.1 hours.

4.4. Contour Lines

An isolevel or contour line is a curve linking all the points
with the same value. On a gridded data set, bilinear interpo-
lation is usually performed to obtain a better approximation
to where the curve will intersect a cell based on the relation-
ship between the corner values and the reference value for
the contour. In the same vein, we would like a contour line
over a 2D distribution field to link all the points in the field
with the same distributions.

There are two ways to do this. The first approach is
to convert each distribution to a scalar value using one of
the ToScalar() operators described earlier, and then apply a
scalar contouring algorithm. The second approach is to con-
tour the 2D distribution field directly. The latter requires two
basic changes. First, the reference scalar value for locating
the contour line must be extended to become a reference dis-
tribution. That is every distribution in the field will be com-
pared against this reference distribution, just as every scalar
in a 2D scalar field is compared with the reference scalar.
Secondly, there must be a way to measure similarity between
two distributions. This allows us to compute the distances
between each distribution in the 2D grid against the refer-
ence distribution. We call this class of distance measures our
similarity operators.

s � Similarity � D1  D2 � (14)

Again, we provide a non-exhaustive list of illustrative ex-
amples of how this class of operators may look. Here, we
introduce three such operators: Euclidean distance operator,
Kolmogorov-Smirnov operator and Kullback-Leibler opera-
tor. They measure the similarities or differences between two
distributions. Let P � x � and Q � x � be two distributions of the
random variable x. The Euclidean distance is defined as:

Euclidean � P Q � � � � ���
� � � P � x ��� Q � x ��� 2dx �

1
2

(15)

The P � x � and Q � x � may be evaluated at discrete locations
e.g. from a histogram, or at continuous locations from a den-
sity estimate 11 � 15.

The Kolmogorov-Smirnov (KS) distance between two
distributions is defined as the maximum distance between
their corresponding cumulative distribution functions (cdf)
18.

KS � P Q � � max � cd f � P � x ����� cd f � Q � x ��� � (16)

We can also find a distance measure in information the-
ory. This is the Kullback-Leibler (KL) distancealso called
relative entropy, and is defined as :

KL � P Q � � � ���
� � P � x � log

P � x �
Q � x � dx (17)

Here, P and Q are treated as pdfs. From the formulation,
we note that the KL distance is always non-negative. When
the two pdfs are identical, their KL distance is zero. The
greater the KL distance, the bigger the difference between
the two pdfs. The conventional KL distance becomes infin-
ity when Q � x � is zero. To avoid this problem, an alternative
formulation proposed in 8 is to add small non-zero values
to the pdfs. The KL distance is also not symmetric. That is,
KL � P Q �"!� KL � Q  P � . Siegler et al. 14 proposed a symmetric
KL (SKL) distance which is defined as:

SKL � P Q � � KL � P Q � 	 KL � Q  P � (18)
In the following examples, We combine these two solutions,
non-zero padding and symmetrization, to produce the SKLZ
distance.

We use the marching squares contouring algorithm where
each vertex distribution is compared against the reference
distribution. Based on the results of that comparison, a deter-
mination is made whether a contour line will cross an edge
or not. If a line must cross an edge, we still need to determine
the intersection. Linear interpolation does not work here, be-
cause the distance does not change linearly between any two
given points in 2D space. So we subdivide the edge into 10
sections and find the section whose distribution is closest to
the reference distribution. That is, we generate 9 intermedi-
ate distributions that are linear combinations of the distribu-
tions at the ends of the edge to be intersected using:

Interp � P Q  s � � Scale � 1 � s  P �#� Scale � s  Q � (19)

where Scale() is defined in Equation 4 and � is the binwise
addition described in Equation 11.

4.5. Isosurfaces

Extending isosurfaces to deal with distribution data is a
straightforward extension of how contour lines were ex-
tended. We illustrate how this can be done using the 3D dis-
tribution of sound speed from the ocean data set. Finding
an accurate intersection of a polygon and an edge of a vol-
ume cell can be quite costly because using the strategy out-
lined in the previous section, we have to effectively increase
the spatial resolution by 3 orders of magnitude. Therefore,
we forego finding accurate polygon-edge intersections in the
following example. We still use a Similarity() operator such
as the SKLZ distance measure to compare the distribution at
each vertex against the reference distribution. This produces
a scalar value that we then pass to a standard marching cubes
algorithm.
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Figure 11: Contours of distribution data sg2 using SKLZ op-
erator. The distribution to the right is the reference distribution
used to find the contour lines. That is, points along the contour
lines have distributions very similar to the reference distribution
according to the SKLZ similarity measure. Color corresponds to
the output of the SKLZ similarity measure.

Figure 12: Similar to Figure 11 except a different reference dis-
tribution is used. The reference distribution is made up by ag-
gregating all the samples of all the pixels in the data set. The
dots correspond to locations of the ground truth points. Color
corresponds to the output of the SKLZ similarity measure.

Figure 13: Volume rendering of the ocean data after a
ToScalar() operation to obtain the standard deviation of the dis-
tributions. The darker region lies above the continental shelf
break where more mixing is happening, thus, the higher stan-
dard deviations in the region.

Figure 14: An isosurface using a reference distribution within
the mixing region. The surface represents regions in the data
where the distributions are very similar to the reference dis-
tribution shown on the right. Not surprisingly, it corresponds
quite well with Figure 13. Color can also be used to display
other properties of the distributions by using an appropriate
ToScalar() operator. Here we color the surface by the standard
deviation of the distribution at each location.

5. EVALUATION OF OPERATORS

In the preceding section, we described how existing visu-
alization algorithms can be extended to handle distribution
data sets using different types of operators. Within a given
type of operator, such as ToScalar(), Similarity(), etc., there
is usually more than one possible operator definition. It is
therefore natural to ask how to select the right operator. The
choice of the right operator clearly depends on the applica-
tion at hand, and possibly the properties of the distribution
e.g. number of samples, statistical nature, etc. It also depends
on what features in the data, or distribution data, are being
highlighted. Discussion on the selection procedure among

choices of operators for a specific application is beyond the
scope of this paper. Instead, we discuss one generic method
that compares alternative operators. The assumption is that
the user has identified meaningful properties and would like
to know which operator is best at detecting them. The op-
erators are evaluated using power tests. The power of a sta-
tistical test is the probability of rejecting the null hypothesis
when it is false. In other words, it is the probability that the
test will do what it was designed to do. To illustrate how the
power test works, assume that the user has selected three op-
erators to evaluate: the Kullback Leibler (KL), Kolmogorov-
Smirnov (KS) and an Euclidean distance operator (ED). Fur-
ther assume that the distribution property of interest is skew-
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ness. Thus, we would like to evaluate these three operators
with regard to their sensitivity to changes in skewness. For
a controlled test, we create different pdfs from a Chi-square
distribution with different shape parameters.To further iso-
late the differences among these pdfs to skewness, the distri-
butions are transformed so that they all have the same mean
of 0 and standard deviation of 1. These are used as input to
the power test.

Given two distributions P and Q, the null hypothesis in
this context is true when the two distributions are the same.
The alternative hypothesis is true when they are different.
Each pdf derived from a χ2 distribution is compared
against the pdf derived from a normal distribution with zero
skewness. We carry out the test as follows:

1. Evaluate each of the χ2 pdfs at 250 equally spaced
points. Transform each one such that the mean is 0 and
the standard deviation is 1.

2. Construct a cdf for each of these.

3. For each cdf, obtain 2500 samples through uniform
sampling. This produces a fairly accurate reconstruction
of the input distribution. Now, generate 100 such recon-
structions for each cdf.

4. Calculate distances (using KL, KS, ED) between
distributions from the same input distribution (same
skewness). Here the null hypothesis is true. Each com-
parison produces a scalar distance measure, where the
distances should be relatively small.

5. Calculate distances (using KL, KS, ED) between each
skewed distribution and the normal distribution. Here the
alternative hypothesis is true. Each comparison produces
a scalar distance measure, where the distances should be
relatively larger than those in the null hypothesis.

6. Plot the two groups of distances to produce Figure 15.
A plot like this is generated for a given Similarity()
operator and one skewed distribution. The area under
the black curve and to the right of the yellow line is the
discriminating power, and provides a single data point
for the plot in Figure 16.

The following observations can be made from Figure 16.
First, the KL operator is the most powerful distance mea-
sure among the three operators for detecting differences in
skewness. It is followed closely by the ED operator. The per-
formance of the KS operator is not monotonically improving
with skewness. Secondly, as the skewness increases, the Chi-
square distributions become more and more distinguishable
from the normal distribution. Therefore, the power of the test
goes up monotonically, except for KS operator.

The power test can also be applied to arbitrary distribu-
tions such as those from the three test data used in this paper.
However, the test is quite costly, and it does not replace the

knowledge and experience of the user in deciding whether a
particular operator is meaningful for the desired task or not.

6. CONCLUSION

We presented a methodology for visualizing spatial distribu-
tion data sets. It is based on operators and we demonstrated
how it is used to extend some basic visualization techniques
to handle distribution data sets. The methodology is flexible
and can grow by allowing one to take advantage of develop-
ments in other domains such as signal processing, statistics,
etc. The flexibility comes at a price in terms of requiring
care and some learning in proper interpretation of the result-
ing images. However, it opens up the visualization research
field by first adding distributions to the list of data types that
we can visualize, and second by allowing us to extend vi-
sualization techniques to support distribution data sets, and
finally to perhaps find visualization techniques with distribu-
tion data foremost in mind. For us, one of the main benefits
is that uncertainty represented as a distribution can now be
visualized relatively directly with extensions to standard al-
gorithms.

A key point for discussion is that we have introduced a
broad set of operators from different fields. Their judicious
use requires some knowledge and experience. More impor-
tantly, how does one know which operator to use for a given
data set and how does one interpret the resulting images?
We do not have any guidelines or rule of thumb to offer at
the present time, but this is part of our plan to evaluate the
different options available and to be able to recommend ap-
propriate ones later on.

Other future work plans include feature extraction of dis-
tribution data, specially time-varying distribution data, as
this holds great promise in helping to visualize such rich and
large data sets. We also plan to explore how other visual-
ization techniques aside from those presented here can be
extended to work with distribution data sets. Finally, we also
plan to explore how scattered data interpolation techniques
can be extended to handle distribution data sets.
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