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Abstract. This paper presents a case study towards intra-operative visualization
of pre-operative medical images and surgery planning information. We describe
a two stage procedure to provide a surgeon with valuable information during
surgery, by augmenting live video with a 3D visualization of surgery planning.

A first stage consists of automatic determination of the intrinsic parameters of the
video camera by means of one image of a calibration object. It comprises an au-
tomatic ellipse extraction and a solution to the 2D-3D correspondence problem.
With the intrinsic camera parameters known, we perform a second stage to com-
pute the extrinsic camera parameters with respect to the patient under surgery,
allowing us to position and visualize the medical images in the right place.
Techniques are investigated to visualize and manipulate the pre-operative medical
images in order to cope with changes in the surgery scene.

1 Introduction

In an increasing number of surgeries, planning based on three dimensional reconstruc-
tion and visualization techniques is used. However intra-operatively such planning is
shown on a monitor or as printouts besides the operation table. To benefit from this
information the surgeon will have to transfer his field of view systematically back and
forth between the images and the patient, thereby trying to integrate both. This way he
tries to place his instruments as accurate as possible. Although other solutions do exist
(navigation, mechanical drill guides), an integrated visualization of pre-operative and
intra-operative images can alleviate this problem. This integration of real and virtual
images is a typical augmented reality approach (e.g. [1],[2]). Augmented reality sys-
tems aim to place virtual objects in real space in such a way the user can not distinguish
them from the real ones. This requires a modelling of the camera, a registration of the
real world and a natural integration of the virtual objects (e.g. lighting).

Three different steps have to be attended to in an augmented reality system:

— First segmentation is needed to identify real objects in the scene. Possibly several
real objects have to be distinguished (e.qg. in surgery of joints, one may want to keep
track of the two bone structures involved). Segmentation can be simplified through
the use of markers allowing to search the image for known geometries, color, . ...



— Next, the segmentation results (e.g. markers positions, corresponding points in 2
images, ...) are employed to obtain calibration and registration of the camera.

— Finally a virtual camera is fed with the 'real’ camera and object parameters thus
obtained in order to render the virtual objects on the actual camera image.

Other work on transfer of planning by visualization has been reported in [3] and [4].

In their work, it is assumed that patient and intra-operative video camera(s) are not able
to move relatively to each other. The approach discussed here differs in a number of
technical realisations on automatic camera calibration and holds the potential to release
the assumption. Indeedisual matchings an approach to overlay synthetic and real
images in an interactive way, thus coping with (small) movements of the patient with
respect to the camera.

In this paper we will assume that the intrinsic camera parameters do not change
during surgery. This allows to separate the calibration and registration part. During cal-
ibration, performed in a automatic way previously to the actual “surgery”, we determine
the parameters that are proper to the camera (section 2). These parameters are used for
rendering the virtual scene, and for the registration of the pose of the camera relative to
the patient (section 3). In section 4 we will highlight the visualization and user interac-
tion aspects of our implementation.

2 Automatic camera calibration

Basically, camera calibration is the determination of the relation between 3D points and
image coordinates observed by a camera. We can model this relation through several
different models of which the complexity depends on the problem at hand and the limi-
tations that are imposed when solving it. We will first discuss the calibration algorithm
we used and next the procedure to gather 2D image pixels and corresponding 3D points,
used by the algorithm.

2.1 Camera calibration algorithm

From the many algorithms for camera calibration already existing in literature ([5], [6],
[71, [8], [9] and [10] with [7], [8], [9] and [10] even as freeware implementations avail-
able) we are applying the algorithm developed by R. Tsai ([7], [8]) and implemented
by Willson [11].

However our camera model differs a bit, so we first discuss this issue together with
our modifications to the algorithm.

Camera models.Mathematically, the pinhole camera, modelling ideal perspective pro-
jection, is expressed by an equation of the following form:

w; = I(F(.RtI/VZ + T) (1)



wherew; is an image point ;g u]t, W; a 3D point,K an upper triangle matrix,
R a rotation matrix and” a translation vector. The matrix
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is called the calibration matrix and summarizes the intrinsic parameters of a camera.
For a given camera and lens system these parameters are constant; when using zoom
and focus they are likely to change. Not orflyands,., which model the focal length

and aspect ratio, but alsg, andC, will change (cfr Willson [12]). Thes appearing

in K is a skew factor for the pixel skew and is mostly close to zero and further will be
assumed zero.

The matrix R and vector T are determined by the cameras’ extrinsic parameters and
relate only to the position and orientation of the camera corresponding to the registration
part. Zooming and focussing also would affect position and orientation of the camera
(cfr Willson [12]) so we will not use these features.

The model of Tsai extends the pinhole model with radial distortion which is a non-
linear distortion in the image plane proportional to the square of the distance of a pixel
to the center of the imag&’,, C,) and modelled by two radial distortion coefficients
ky andks .

Algorithm. Our renderer uses ideal perspective projection to visualize 3D objects. If
we would fit our data with Tsai’s method the rendering would show not only the normal
fitting error but also an error due to the neglection of the radial distortion coefficients.

Tsai's method uses a two-stage calibration with an analytical calculation followed
by non-linear optimisation. Since the analytical step is independent of the vakie of
or ko, we use the same analytical solution and omit the radial distortion coefficients
in the non-linear optimisation function. This results in a best fit to the pinhole-model
parameters.

2.2 Elliptical region detection and 2D-3D correspondence

For automatic calibration we use the calibration jig shown in figure 1. It consists of two
perpendicular white planes in which circular objects are laid out in a regular pattern.
These objects are "closed” black discs, except for the square configurations of four
"open” black discs that appear on each plane near the lower corner of the jig. The color
of these the open discs is used to distinguish the planes they belong to. In order for our
method to be applicable these eight open discs should be visible to the camera.
Complying to the pinhole model, each disc is projected as an elliptical region. Next,
we describe how to extract the centroids of the elliptical regions and how to find the cor-
respondence between the centroids and the 3D locations of the discs on the calibration

ng.



Fig. 1. The calibration jig consisting of two planar patterns

Elliptical region detection. One approach to the problem of recognizing ellipses is
applying a Hough transform [13]. This would lead to a five dimensional search space
without the guarantee that all the detected features are real ellipses in the image nor
that all ellipses are found. Therefore we chose for a two step implementation. First we
look for all the objects that could correspond to an ellipse; second, we filter all detected
objects such that only the projections of circles remain. This second step is integrated
in the 2D-3D correspondence solution.

To start the first stage the image histogram is normalized in order to be robust to vari-
ations in lighting. After thresholding and erosion/dilation, a region-based segmentation
is done. For every region the bounding box, minor axis, major axis and Euler number
are calculated. Only the regions of which the minor axis and major axis are between
certain boundaries, are retained. We can employ such a constraint because the distance
between camera and object is between known boundaries in a surgery environment.

The coordinate$EC,(i),EC,(i)) of centriod: are the first order moment divided
by the aread of the centriods bounding box [2]:
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the maximum pixel intensity

We identify the eight centers originating from the open discs by their Euler number
equal to0. For each of these the pixels around the center are converted to the HSV-
colourspace. Based on the hue-component and sufficient saturation we can separate the
white from the yellow ones. We then know 4 points from each plane enabling us to
solve the 2D-3D correspondence problem.



2D-3D correspondence.ln order to solve the 2D-3D correspondence, we consider the
image plane and the two planes of the calibration jig as 2D projective planfs

and P, respectively. Then the pinhole projection of e&hontoZ is modelled by a
homographyH; of projective planes. We show that determinifig for j = 1,2 will

solve the 2D-3D correspondence. Suppose the detected centers of the elliptical regions
are described iff asmy, = [ur vk l]t fork = 1...N, whereN is the total number

of detected centers. Suppose the known centers of the circular objects on calibration
jig planej are described iP; asm], = [z} ¢ 1]t for k = 1...N;, whereN; is

the total number of objects on playielt is good to keep in mind that to ea@ln,’;, does
correspond a known 3D point also.

If m in Z corresponds ten’ in P; thenH; satisfies
Am = H;m’ (5)

So if we know “enough” corresponding paira {m/’), we can solve these equations for
Hj;. Suppose there aresuch pairs. Without loss of generality we can assume them to
be (m;, mf) fori = 1,...,r. This leads to a linear system of the following form (in
which arbitrarily\, = 1) with H; = [hy] andk,l =1,...,3:
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So what is the minimum and how can the corresponding pairs be obtained? After
all this whole procedure is meant to find correspondences, but it seems to be dependent
on such correspondences. Firsty> 4, since four non-collinear projective points span
a basis of a projective plane and the mapping of a basis onto a basis determines the
homography. Second due to our design of the calibration jig and the elliptical region
detection, for a given plangfour corresponding pairs are readily determined. So we
start from these four and obtain an estimatefigr This H is used to project an other
knownm{, ontoZ. By taking the elliptical region that is closest to this estimated image
point, we associatm{, with the center of this region and hence withrap. The more
pairs that are obtained in this way the better the approximatidi;drom iteratively
solving the linear system.

Theoretically this solution should be optimized further by a non-linear scheme
([14], [15]). The linear solution is however sufficient for our purpose of establishing
2D-3D correspondences as input for a subsequent camera calibration. Also, false re-
sponses to the elliptical region detection procedure are filtered out in this stage because
no world plane coordinates are corresponding to them.



2.3 Accuracy

To determine the overall accuracy of our method we generated a sequence of 30 syn-
thetical images of our calibration jig. After adding an amount of Gaussian noise, these
images are input to our routine yielding the results in Table 1. The error depicted here is
the difference between a projection of a set of 300 random points with the estimated and
original camera parameters. The fact that we even have an error when no noise is added
can be explained by discretisation errors of the software renderer (Open Inventor) that
generates the synthetical images.

Table 1. Accuracy of the calibration method.

Variance of the nois

No noise 0.01 | 0.1

Mean projection error (in pixels)0.743 0.745(0.813
Standard Deviation (in pixels) 0.155 |0.188(0.182

1%

2.4 Conclusion

The elliptical region detection and the correspondence deliver us with pairs of 2D-3D
coordinates. These are used as input for the modified calibration algorithm giving the
camera’s intrinsic parameters and its extrinsic parameters with respect to the calibration
jig. We only retain the intrinsic parameters which we suppose to be constant throughout
the sequel of the approach and use them to model a software camera.

3 Registration

In order to progress towards visual matching, we give some details on a laboratory setup
(cfr fig. 2) enabling us to temporarily solve the initial registration problem required.

A plastic phantom skull, on which a number of radio-opaque markers are attached,
was CT-scanned. From this CT-volume a 3D surface representation (mimicking the
pre-operative planning) was derived (see figure 2). The same skull is then imaged by a
camera intrinsically calibrated as described above. For the world 3D coordinate system
of the skull, we use the one defined by the CT-image volume.

We need to know the relative position of the skull in the reference frame of the
camera or, vice versa, the position of the camera with respect to the skull. This pose
determination problem can be seen as an extrinsic camera calibration. The implementa-
tion by Willson provides in such a procedure. It requires 7 point matches between world
and image coordinates. These are gathered manually by pointing out the radio-opaque
markers which are very well visible on the video image also. By corresponding the 2D
image coordinates thus obtained to the 3D coordinates of the respective markers from
the CT, the camera pose is determined.

Although the procedure is rather coarse, the quality of the results obtained can be
judged from fig. 4 (Left).



Fig. 2. Top: the laboratory setup we used to test the integrated visualization; Bottom left: the skull
phantom; Bottom right: the 3D surface representation of the CT-volume of the skull phantom



4 Intraoperative visualization and visual matching

The visualization itself is developed in Open Inventor (on SGI Octane). The intrinsic
and extrinsic parameters of the video camera (JVC, KY-F55B) are fed into a software
camera. The viewport of the latter is overlayed on live-video input.

The system can be useful to surgeries where certain pre-operatively determined
distances, angles, etc. have to be measured intra-operatively. The measures the surgeon
needs during surgery are then planned in the CT-image volume and transferred to the
intra-operative video.

We illustrate this procedure by showing a simulation on inserting zygomatic oral
implants (osseo-integrating screws). This system is an extension of the work presented
in [16]. Pre-operatively the surgeon simulates on the CT-image volume different po-
sitions to place the implant and selects the most optimal one (cfr fig. 3). The surgeon
has to position his drill at the precise angle and location determined during planning, in
order to insert the zygomatic implant. During surgery an integrated view of live video
and the rendering of the virtual images by the software camera (cfr fig. 3 ) is shown
on a workstation display. The surgeon can interactively decide which virtual images
he wants to see: the CT-image volume, the planned drill axis, ... (cfr fig. 3 and fig. 4).
Visual matching capabilities are provided: by means of a 3D-mouse the surgeon can
realign the virtual images with his patient after a small movement. This is shown in
figure 4 (Right). Here the skull is slightly rotated and the virtual objects are realigned,
making use of the 3D-mouse.

Fig. 3. Left: the planning of the placement of a zygomatic oral implant; Right: Transfer of the
planned drill axis to the surgery environment

5 Discussion

In this paper we propose a procedure towards visual matching for intra-operative trans-
fer of planning data.



Fig. 4. Left: an integrated view of the skull, a partial CT-surface and markers after the calibra-
tion and registration procedure. Right: after the skull is slightly rotated, the virtual objects were
realigned by visual matching

Visual matching can only be applied when the virtual world is perceived in the
same way as the real world. Modelling of the video camera is a means to fulfill this
requirement. The automatic camera calibration procedure we propose offers a robust,
fast solution to this problem. So it can be applied without much overhead and specific
knowledge in a surgery environment. Furthermore we obtain subpixel accuracy on syn-
thetical images, which is sufficient for our application, and a low sensitivity to noise.

The seperation of extrinsic and intrinsic parameters makes visual matching capa-
bilities like a 3D-mouse possible. In turn, this technique together with the surgeons’
clinical experience permits him to adapt the integrated view to his needs in an intuitive
manner.

At the moment we are further investigating how depth impression can be induced
in order to give the surgeon a better perception of the scene recorded by the camera(s).
Techniques like stereo vision and stereoscopic display of the augmented intra-operative
video images look promissing towards that goal.
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