
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Sketch-Based Interfaces and Modeling 2007, Riverside, CA, August 02-03, 2007.

© 2007 ACM 978-1-59593-913-5/07/0008 $5.00

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2007)
M. van de Panne, E. Saund (Editors)

SilSketch: Automated Sketch-Based Editing
of Surface Meshes

Johannes Zimmermann Andrew Nealen Marc Alexa

TU Berlin

Abstract

We introduce an over-sketching interface for feature-preserving surface mesh editing. The user sketches a stroke
that is the suggested position of part of a silhouette of the displayed surface. The system then segments all image-
space silhouettes of the projected surface, identifies among all silhouette segments the best matching part, derives
vertices in the surface mesh corresponding to the silhouette part, selects a sub-region of the mesh to be modified,
and feeds appropriately modified vertex positions together with the sub-mesh into a mesh deformation tool. The
overall algorithm has been designed to enable interactive modification of the surface – yielding a surface editing
system that comes close to the experience of sketching 3D models on paper.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling - Modeling packages; I.3.6 [Methodology and Techniques]: Interaction techniques; General
Terms: Sketch Based Modeling, Deformations, Laplacian Surface Editing, Differential Geometry, Sketching

1. Introduction

The process of generating 3D shapes in engineering or con-
tent creation typically goes through several design reviews:
renderings of the shapes are viewed on paper or a screen, and
designers indicate necessary changes. Oftentimes designers
sketch replacements of feature lines onto the rendering. This
information is then taken as the basis of the next cycle of
modifications to the shape.

We present a surface mesh editing system motivated by
design reviews: given nothing but the over-sketch of a fea-
ture line, it automatically deforms the mesh geometry to ac-
commodate the indicated modification. Building on existing
mesh deformation tools [SLCO∗04, NSACO05], the main
feature of our work is the automatic derivation of all nec-
essary parameters that these systems require as input in real-
time.

In particular, Laplacian Surface Editing [SLCO∗04], but
also most other recent mesh deformation techniques (e.g.,
[YZX∗04,BPG06]) require the selection of: handle vertices,
the displacement for these handle vertices and a region of
interest (ROI), representing the part of the mesh to be mod-
ified to accommodate the displaced handle vertices. For our
system, we need to compute this information from the over-
sketched feature line alone; and we do this in fractions of a

second. The steps described below comprise our system (see
also Fig. 1) – breaking down the problem into these steps
and performing each step in few milliseconds are the main
contributions of our work:

1. Based on the screen projection of the shape, a subset of
pixels lying on potential feature lines is identified. These
pixels are then segmented and converted to image-space
polylines as the set of candidate feature lines.

2. The user-sketch is matched against all polylines to find
the corresponding part on a feature line.

3. Based on the correspondence in image-space, a set of
handle vertices in the surface mesh is selected. The
image-space projection of these vertices covers the de-
tected part of the feature line.

4. New positions for the handle vertices are derived from
the displacements in image-space between the projection
of the handle vertices and the user’s sketch; these are the
necessary displacements.

5. A part of the surface mesh around the handle vertices,
computed by region growing, is defined as the ROI.

Note that in steps 3,4, and 5 we compute the necessary
input for shape deformation, while steps 1 and 2 are required
to identify the input, based only on the user-sketch.

http://www.eg.org
http://diglib.eg.org

Zimmermann, Nealen, Alexa / SilSketch: Automated Sketch-Based Editing of Surface Meshes

Figure 1: Algorithm pipeline. Top row, from left to right: a) user-sketch, b) image-space silhouettes, c) retained silhouettes after
proximity culling, d) handle estimation; Bottom row, left to right: e) correspondences and ROI estimation by bounding volumes,
f) setup for Laplacian Surface Editing, g) and h) deformation result. Note that the user only sees a), g) and h).

2. Related Work and System Design

Sketch-based interfaces are a very popular method for
creation and deformation of 3D surface meshes [IMT99,
KSvdP07, KS07]. Deriving the parameters for mesh de-
formation from sketches only is not new: Kho and Gar-
land [KG05] derive ROI and handle vertices from sketching
onto the projected shape, essentially implying a skeleton for
a cylindrical part. A second stroke then suggests a modifi-
cation of the skeleton, and the shape is deformed according
to the deformed skeleton. However, according to Hoffman
and Singh [HS97], we recognize objects mainly by a few
feature lines, namely silhouettes and concave creases. Since
the process of paper-based sketching relies exactly on these
features, we feel it is more natural to use them as the basis
for our over-sketching mesh deformation tool. This line of
thought is similar to Nealen et al. [NSACO05]. They have
enhanced Laplacian Surface Editing techniques to work in
the setting of prescribing new silhouettes. In particular, this
requires positional constraints defined on mesh edges and
finding the correspondence between a pre-selected silhouette
of the mesh and the over-sketched silhouette. In their system
the user manually selects the ROI and a part of one of the
silhouettes as a pre-process. In our system, all these manual
selections are now automated; the user only provides a sin-
gle stroke, from which handle and ROI are estimated (Figs. 1
and 2).

We have also observed that computing silhouettes from
the mesh representation (i.e. in object-space) has problems:

ROI

Handle

Target Op

Handle

Target Op Target Op

ROI ROI

Handle

Figure 2: Required user interaction (from left to right):
Nealen et al. [NSACO05], Kho and Garland [KG05], and
our approach .

the silhouette path on the mesh might fold onto itself when
projected to image-space, i.e. a point of the silhouette in
image-space could map to several pieces of the silhouette on
the mesh. As a result, the mapping from the sketch to handle
vertices could be ill-defined. More generally, the complex-
ity of the silhouette path on the surface is not necessarily
reflected in its image-space projection, making a reasonable
mapping from the sketch to vertices on the mesh difficult.

Figure 3: Depth map discontinuities, Normal map discon-
tinuities, combined discontinuities, shaded scene (left to
right).

Because of these problems we detect silhouettes in image-
space, and then try to identify vertices in the mesh that would
map onto the detected region in image-space. Image-space

24

© Assocation for Computing Machinery, Inc., 2007.

Zimmermann, Nealen, Alexa / SilSketch: Automated Sketch-Based Editing of Surface Meshes

Figure 4: Handle estimation due to the similarity of handle
candidate (red) and targeted deformation (green).

silhouettes are usually obtained using edge detection filters
on the depth map and/or normal map of the shape [Her99].
Typically, the conversion from raster-based edge pixels to
vector-based polylines is then achieved by applying some
morphological operations (e.g. thinning) and finally tracing
(e.g. chain codes). We have decided to restrict the set of fea-
ture lines to discontinuities in the depth map. This approach
shows a feasible trade-off between quantity of feature lines
vs. their significance (see Fig. 3).

Matching a segment of a silhouette in image-space to the
user-sketch requires a metric, defining the distance between
polylines. This metric should resemble human perception
of similarity. We have found that the important features are
proximity to the candidate feature lines and intrinsic shape
(see Fig. 4). By intrinsic shape we mean similarity regard-
less of position and orientation in space. To maximize this
intrinsic shape similarity we use a method by Cohen and
Guibas [CG97].

We determine the handle mesh vertices corresponding to
the silhouette segment by selecting vertices which are close
to the handle in image-space. The displacements for these
vertices are derived from displacements in image-space.

We consider defining the ROI as a form of mesh segmen-
tation, for which various geometry-based methods are de-
scribed (see [KT03, JLCW06]), and even image-based ap-
proaches are conceivable (see [HJBJ∗96, PP93]). Whereas
image-based approaches obviously suffer from occlusion,
geometry-based methods are only restricted by the require-
ment for interactive response times. Generally, topologi-
cally growing the ROI from the handle vertices is a feasible
method.

Once we have defined handle vertices, their transformed
target positions and the region of interest, the application of
Laplacian Surface Editing is straightforward. Note that the
user only provides 2D input and we have found that preserv-
ing the scale in depth leads to more intuitive results than scal-
ing isotropically in 3D. Interestingly, several of the refine-
ments of Laplacian Surface Editing (such as [SLCO∗04]) fa-
vor isotropic scaling. For this reason we are currently using
an approach in the spirit of [LSCOL04], where local trans-
formations of each frame are estimated a priori. We like to
stress that other mesh deformation tools could be used as
well.

3. Interface

Our user interface consists of a single rendering window
with an orthogonal projection, embedded controls for nav-
igation, and the capability of drawing viewport-aligned
strokes (enabled by default). Holding some meta key acti-
vates the embedded navigation controls, with which the user
can drag the mesh along the horizontal and vertical axis, ro-
tate it by tapping beside it and dragging the mouse, and scale
the current projection by clicking and dragging two invisible
sliders on the left and right screen boundaries.

If the user has determined an appropriate view, placing a
sketch near the silhouette implies a deformation. The sys-
tem identifies the appropriate parameters (see following sec-
tions) and then displays the result. The user has the option to
approve this deformation or to apply refinements by overs-
ketching the new silhouette path.

4. Algorithm

The user sketches the desired deformation result as a view-
dependent polyline. This polyline simply consists of tracked
mouse events, and we apply the Douglas-Peucker algo-
rithm [DP73] to obtain a simplified version. In the following
sections we detail the steps of our algorithm.

4.1. Image-Space Silhouettes

In this section, we describe how to retrieve image-space 2D
polylines that describe discontinuities in the depth map (and
therefore silhouettes) of the scene using two steps of detec-
tion and extraction. We developed a method that exploits the
properties of a synthetic scene (= absence of noise) to speed
up our algorithm, rather than relying on well established
methods like the Canny edge detector [Can86] or morpho-
logical operations.

4.1.1. Silhouette Detection

We determine discontinuities in the depth map by applying a
4-neighborhood Laplacian edge detection filter on each pixel
p, along with some threshold θp:

sil(p) := D2
xy[depth(p)] > θp (1)

We retrieve only edge pixels that describe the foreground
of a discontinuity, since we define the depth range of the
scene to (near, far) [0, 1] and use θp as a threshold for the
signed filter response. Depending on the choice of θp (we
recommend 0.005), the binary images retrieved consist of
continuous silhouette paths (Fig. 5, left). Note though, that
these paths can be more than a single pixel wide, especially
in areas of high curvature.

4.1.2. Silhouette Extraction

For the subsequent handle estimation (Sec. 4.2), we need to
convert the silhouette pixel paths into a set of image-space

25

© Assocation for Computing Machinery, Inc., 2007.

Zimmermann, Nealen, Alexa / SilSketch: Automated Sketch-Based Editing of Surface Meshes

polylines. Aiming for simplicity and speed, we developed a
greedy segmentation algorithm, which relies only on local
criteria for silhouette tracing.

The basic idea of tracing connected components of the sil-
houettes is that silhouette pixels in the image are neighbors
on a silhouette segment if they have similar depth. In other
words, two neighboring silhouette pixels a and b are depth
continuous if

cont(a,b) := ‖depth(a)−depth(b)‖< θn. (2)

Remember that the silhouette pixels form a path that could
be wider than a single pixel, making the conversion to a poly-
line ambiguous. Some approaches use the morphological op-
eration of thinning to correct this problem. However, apply-
ing morphological operations on the binary silhouette image
may result in silhouette paths that are continuous in 2D, but
discontinuous in depth. This is illustrated in Fig. 6b: the sil-
houette terminates on pixel fc if n7 is removed by erosion,
and ‖depth(fc)−depth(n0)‖ exceeds θn. In this case, n7 is
exactly the pixel that stitches the silhouette together. Instead
of developing depth sensitive morphological operations , we
solve this issue by using a local tracing criterion.

The idea for the local tracing is to favor silhouette paths
with lower curvature in image-space, i.e. straight silhouettes
are favored over ones with sharp corners. The criterion is
implemented as a priority map relative to the direction from
which we entered the current silhouette pixel (see Figs. 6
and 7: a smaller number in the mask around fc indicates
higher priority). Based on the priority mask, silhouette edge
paths are formed by selecting from depth continuous silhou-
ette pixels.

However, correctly identifying endpoints of silhouette
paths requires extra attention. A silhouette path ends in sur-
face creases; and it might appear to end in sharp creases of
the silhouette (see Fig. 5). It also ends in image-space when
the silhouette is obstructed by another part of the surface, in
which case it connects to another silhouette (see Fig. 7). Our
basic tracing algorithm would correctly identify endpoints
in surface creases, however, it might also classify sharp cor-

Figure 5: Depth map with binary overlay from Eqn. 1 (left),
degenerated silhouette feature (top, right), silhouette caused
by a surface crease (bottom, right).

ners as endpoints and could connect unconnected parts of
the silhouettes if they happen to have almost similar depth.
To avoid terminating in sharp corners, we remove the tips of
silhouettes. Note that surface creases are surrounded by pix-
els with almost similar depth in the depth image, while tips
of the silhouette are not (see Fig. 5). So we remove tips by
repeatedly removing silhouette pixels if they have less than
two depth continuous 8-neighbors in the depth image (see
Fig. 6, second image). As an additional criterion for identi-
fying connected silhouette pixel we use consistency of the
surface normals along the silhouette (see Fig. 7). As we are
only interested in the orientation of the normals, it is suffi-
cient to consider the gradients of the depth map.

In detail, our silhouette extraction algorithm creates sil-
houette polylines S : {(v1,d1), ...,(vn,dn)} described by ver-
tices vi ∈R2 and depth values di ∈R, by scanning the binary
silhouette image row by row, and extracting feature paths for
any encountered silhouette pixel fc : (vc,dc) according to the
following algorithm:

1. Create S = ∅.
2. Append fc to S.
3. Determine next silhouette pixel fn, where

a) fn is adjacent to fc,
b) fn is depth continuous to fc according to Eqn.2,
c) fn maintains the orientation of depth map gradients

w.r.t. the current tracing direction (see Fig. 7), and
d) the tracing direction turn caused by fn is minimal.

4. Mark fc as a non-silhouette pixel.
5. Assign fn to fc.
6. Repeat on 2. until fc = NIL.

Note that a) and b) are determined by Eqns. 1, and 2
respectively, whereas c) ensures continuity of the normals
along the silhouette paths (Fig. 7). Furthermore, d) is the
tracing criterion, navigating the tracing algorithm through
silhouette paths wider than a single pixel.

Since scanning the silhouette image row by row typically
encounters a silhouette somewhere inside its path, the trac-
ing algorithm is applied twice for any initial pixel, in oppo-
site directions.

4.2. Handle Estimation

To derive the actual handle polyline (a subset of all silhouette
polylines), we introduce an estimation metric which reflects
the likelihood that an arbitrary silhouette segment is a good
handle w.r.t. the user-sketch (target polyline). As pointed out
before, this scoring function relies on both proximity and
similarity.

First, we substitute the silhouette polylines by simplified
delegates (polylines as well, see [DP73]), and reduce the sil-
houettes by culling according to a proximity criterion (see
Figs. 1b and 1c).

26

© Assocation for Computing Machinery, Inc., 2007.

Zimmermann, Nealen, Alexa / SilSketch: Automated Sketch-Based Editing of Surface Meshes

2

0 1

33

2

1

fc

n
4

n
0

n
1

n
2

n
3

n
5
n
6

fc
n
7

Figure 6: Tracing the silhouette path near a degenerate feature (from left to right): a) Elephant’s ear, b) tracing step (fc → n7)
with priority map, neighborhood index (bottom left) and a degenerate feature in light grey (which is removed in a pre-processing
step), c) final silhouette path, d) extracted silhouette.

01 1

2 2

3 3

B

A

A

Bfc

n
4

n
0

n
1

n
2

n
3

n
5

n
6

fc
n
7

Figure 7: Maintaining depth map gradient orientation. Path
A shows how our tracing algorithm maintains depth map
gradient orientation with respect to the tracing direction
(gradients shown as arrows per pixel) . If we disregard these
gradients, the tracing algorithm will track a bogus silhou-
ette, in this case path B, due to the preferred tracing direc-
tion. Note though, that the silhouette part from path B, which
is missing in path A, will be a separate silhouette segment af-
ter all silhouettes have been traced.

The criterion on similarity is derived from the Poly-
line Shape Search Problem (PSSP) described by Cohen
and Guibas [CG97]. First, we compute Turning Angle
Summaries (TASs) {(s0, t0), ...,(sn, tn)} from the edges
{e0, ...en} of the target and silhouette polylines by concate-
nating tuples of edge lengths si and cumulative turning an-
gles ti, where

si =‖ ei ‖, ti =
{

](e0,0) if i = 0
](ei−1,ei)+ ti−1 if i > 0

(3)

Please note that these summaries lack the representation
of absolute coordinates, but they do retain the polyline arc-
length. Furthermore, rotating a polyline relative to its head
results in a shift of its TAS along the turning angle axis,
whereas isotropic scaling results in stretching its TAS along
the arclength axis (see Fig. 8).

We match the target polyline onto a single silhouette poly-
line, described by its (isotropic) scale α and position (shift)
β, by matching their Turning Angle Summaries (Fig. 8). The
match result MPSSP : (α, β, γ, R∗mod) is described by a
prescribed α and β, an optimal rotation γ, and the match-
ing score R∗mod . Optimal rotation and matching score are
computed by a modified version of the scoring function
from [CG97]. Using finite sums of differences, I1 and I2 de-
scribe the linear and squared differences between the piece-
wise constant TASs Ψ(s) of the target and Θ(s) of the sihou-
ette polylines (Fig. 8):

I1(α,β) =
∫ β+α

s=β

(
Θ(s)−Ψ

(s−β

α

))
ds,

I2(α,β) =
∫ β+α

s=β

(
Θ(s)−Ψ

(s−β

α

))2
ds.

(4)

Given the arclength l of the target polyline, we compute op-
timal rotation

γ = γ∗(α,β) =
I1
αl

, (5)

and matching score

R∗mod(α,β) =
1
αl

(
I2(α,β)

αl
−

(I1(α,β)
αl

)2
)

. (6)

Cohen and Guibas retrieve matches for all segments
(α,β) by using a topological sweep algorithm [EG86]
to match the respective Turning Angle Summaries in
scale/position space. However, since this approach needs
O(m2n2) time for m silhouette edges and n target edges, we

27

© Assocation for Computing Machinery, Inc., 2007.

Zimmermann, Nealen, Alexa / SilSketch: Automated Sketch-Based Editing of Surface Meshes

0

π /2

-π /2

π

t

s

scale α, shift β

rotation γ

Ψ(s)

Θ(s)

Figure 8: Top: the short, green target polyline, red silhou-
ette, and best-match (blue/thick) shown as a subset of the red
silhouette polyline. Bottom: arclength vs. cumulative turning
angle representations of target Ψ(s), silhouette Θ(s), and
best-match polylines (bottom).

decided to probe only a discrete number of sample segments
in Eqn. 6 in O(m + n) time per segment. Specifically, we
match the target polyline to sample segments of a silhouette
polyline by discretely sampling α and β respectively.

For the proximity criterion we compute the distances of
corresponding endpoints of the two polylines, retrieving a
near and far value Proxnear, Prox f ar. Then we apply a fi-
nal scoring function on the obtained per-silhouette match re-
sults:

R := 1/(1+w1Proxnear +w2Prox f ar +w3R∗mod)2 (7)

Iterating over all silhouettes, we select the segment with
the highest score, and extract the deformation handle from
the respective full-res silhouette by using (α,β) of its match-
ing record MPSSP.

4.3. Finding Handle/Target Correspondences

Given the polylines of deformation handle and target, we
need to determine the corresponding mesh vertices and their
transformed positions respectively.

Using both the image-space handle pixels, as well as
the corresponding depth map, we construct an object-space
bounding volume for each handle pixel (see Fig. 9). A mesh
vertex is classified as a handle vertex if it lies in the union of
these bounding volumes.

The transformed positions for these handle vertices are
computed by mapping their handle-relative positions onto

3 pixels

3 pixels

x

y
3 pixels

ε

eye

x
z

Figure 9: Mesh vertices that are classified as handle mem-
bers (blue circles) using one bounding volume (red box) for
each image-space handle pixel. Left: view from the editor,
right: view from top (silhouette indicated as a red line in
both views).

s'

d'

s
d

Figure 10: Mapping of handle relative arclength position s
and diplacement d (red) onto the target polyline (green).

the target polyline. Specifically, we determine the posi-
tion (s,d) for each handle vertex, where the arclength posi-
tion s is given by its orthogonal projection of length d. Both
handle and target polylines are parameterized uniformly in
[0,1] and the target position (s′,d′) is scaled accordingly.

4.4. ROI Estimation

To complete the deformation setup, we have to select the fi-
nal ROI of the mesh according to some context sensitive cri-
terion. We grow the ROI from the handle vertices. To control
the expansion, we constrain the ROI to lie within a union of
bounding volumes, which consists of one volume per handle
vertex.

Specifically, we create a union of spheres, where each
sphere center is located at the position of the respective han-
dle vertex. Each sphere radius is set to the Euclidean distance
dh,s between handle vertex and its transformed position. We
have experimented with a variety of functions rs = f (dh,s),
but have found that using rs = dh,s already yields satisfying
results: when the user sketch is far from the handle, using
a larger sphere results in a larger ROI, yielding more de-
formable material (Fig. 11), which is a reasonable heuristic.
To determine the ROI, we define the handle vertices to be
the initial ROI vertex set, and grow this set by subsequently
adding vertices of the mesh that are (a) adjacent to the cur-
rent ROI border, and (b) are inside the union of spheres.

28

© Assocation for Computing Machinery, Inc., 2007.

Zimmermann, Nealen, Alexa / SilSketch: Automated Sketch-Based Editing of Surface Meshes

Figure 11: Automatic ROI selection (from left to right): a) After the user places a sketch, the handle is estimated and corre-
spondences are established. b) From these correspondences, the ROI is grown within the union of spheres, starting from the
handle vertices (dark/red region, lower lip). c) Shows this for the camel lip example. d) We use the obtained vertex sets handle,
transformed handle and ROI as input to the LSE algorithm. See text for more details.

Figure 12: The MANNEQUIN modeling session.

5. Results

The modeling session shown in Fig. 12 illustrates ease of
use: after the user places a stroke, the system responds in-
teractively, presenting a deformation which generally corre-
sponds to the users intent. All algorithmic details, which are
shown in various figures in this paper, are absent from the ac-
tual user interface. For more interactive modeling sessions,
please see our accompanying video.

Table 1 shows some timings obtained on a Intel Core 2
Duo 6600 processor with 2.4 GHz and 2GB memory. Ex-
tracting and segmenting the image-space silhouettes (col-
umn Sil) takes between 5-20% of the processing time.
Handle estimation and finding handle/target correspondence
(column Handle) depends on the density of silhouettes, as
well as the number of model vertices (=5-25% overall). The
column LSE size shows the dimensions of the sparse linear
system (= number of ROI vertices), which is factored (Fa-
cLSE) and solved (SolveLSE) every time the user places a
new stroke. This works interactively for ROIs up to a few
thousand vertices. Of course we can also reuse the factor-
ization as described in [NSACO05]. Note that in all cases,
our algorithms (Sil + Handle + ROI) use less time than LSE
setup, factorization and solve (FacLSE + SolveLSE).

6. Discussion

Each of the steps in our approach presents a trade-off be-
tween fidelity and speed. And while the requirement of real-

time interaction certainly restricts the algorithmic possibili-
ties, it should also be clear that almost all over-sketches are
generically ambiguous, even in the case of communication
among humans – so it is unlikely that an algorithm could
consistently guess correctly according to the user’s expecta-
tion.

We find that the extraction and segmentation of feature
lines (silhouettes) works in almost all practical cases. It
might be interesting to extend the extraction to disconti-
nuities in the normals of the shape, or even to more sub-
tle feature lines such as suggestive contours [DFRS03]. An-
other set of feature lines, though invisible from the rendering
but known to more experienced users, are the projections of
skeleton curves used in models rigged for animation. The
information deduced by our system could then be fed into
modeling systems controlled by skeletons.

Figure 13: Left: ambiguous handle estimation at the
CAMEL’s tail. Right: unnatural deformation of the ELE-
PHANT’s leg due to the limitation of LSE regarding large
rotations.

29

© Assocation for Computing Machinery, Inc., 2007.

Zimmermann, Nealen, Alexa / SilSketch: Automated Sketch-Based Editing of Surface Meshes

Model Feature Sil∗) Handle∗) ROI FacLSE SolveLSE∗) Sum LSE size Figure
Bunny Ear 109 297 15 1032 500 1953 4911 x 4911 1
CamelHead Lip 110 250 15 250 140 765 1533 x 1533 11
Mannequin Nose 188 219 15 485 156 1063 2013 x 2013 12

Ear 94 62 16 609 156 937 3627 x 3627 12

all timings in msec; ∗) unoptimized code

Table 1: Some timings of our system.

Matching the user-sketch against the feature lines works
nicely, however, it might be interesting to experiment with
different functions for measuring proximity and shape sim-
ilarity to overcome ambiguous handle estimations (see
Fig. 13 left). More fundamentally, matching is performed
only against connected segments of the feature lines. The
user might want to sketch something that the system has
identified as different parts of the feature lines. It is unclear
to us how to extend the matching process to this case.

The ROI is selected based on proximity between user-
sketch and feature line in image-space. This turned out to
be simple and effective, yet it disregards apparent features
of the shape. We believe the results could be improved by
including information such as curvature and other features
in image-space into our region growing approach. Another
way of improving on the selection of the ROI would be to
involve the user, perhaps by defining a special stroke indi-
cating parts that may not move.

Looking at the deformation example in Fig. 13 (right), it
is clear that LSE is not a universally applicable deformation
tool. However, it should be feasible to use the information
gathered by the handle estimation such as rotation and scale
of the best handle match in the deformation step.

Finally, as the system is almost generic with regard to the
type of surface representation and the deformation tool, it
would be very interesting to also try this approach in other
settings.

References

[BPG06] BOTSCH M., PAULY M., GROSS M.: PriMo: coupled
prisms for intuitive surface modeling. In Eurographics Sympo-
sium on Geometry Processing (2006), pp. 11–20.

[Can86] CANNY J.: A computational approach to edge detection.
IEEE Trans. Pattern Anal. Mach. Intell. 8, 6 (1986), 679–698.

[CG97] COHEN S. D., GUIBAS L. J.: Partial matching of pla-
nar polylines under similarity transformations. In SODA: ACM-
SIAM Symposium on Discrete Algorithms (1997).

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S.,
SANTELLA A.: Suggestive contours for conveying shape. ACM
Trans. Graph. 22, 3 (2003), 848–855.

[DP73] DOUGLAS D., PEUCKER T.: Algorithms for the reduc-
tion of the number of points required to represent a hne or its
caricature. The Canadian Cartographer, 10(2) (1973), 112–122.

[EG86] EDELSBRUNNER H., GUIBAS L. J.: Topologically

sweeping an arrangement. In STOC ’86: Proceedings of the eigh-
teenth annual ACM symposium on Theory of computing (1986),
pp. 389–403.

[Her99] HERTZMANN A.: Introduction to 3D non-photorealistic
rendering: Silhouettes and outlines. In Non-Photorealistic Ren-
dering. SIGGRAPH 99 Course Notes. (1999).

[HJBJ∗96] HOOVER A., JEAN-BAPTISTE G., JIANG X., FLYNN
P. J., BUNKE H., GOLDGOF D. B., BOWYER K. K., EGGERT
D. W., FITZGIBBON A. W., FISHER R. B.: An experimen-
tal comparison of range image segmentation algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelligence 18, 7
(1996), 673–689.

[HS97] HOFFMAN D. D., SINGH M.: Salience of visual parts.
Cognition, 63 (1997), 29–78.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: A
sketching interface for 3D freeform design. In Proceedings of
SIGGRAPH (1999), pp. 409–416.

[JLCW06] JI Z., LIU L., CHEN Z., WANG G.: Easy Mesh Cut-
ting. Computer Graphics Forum 25, 3 (2006), 283–291.

[KG05] KHO Y., GARLAND M.: Sketching mesh deformations.
In Proceedings of the 2005 Symposium on Interactive 3D Graph-
ics and Games (2005), pp. 147–154.

[KS07] KARA L. B., SHIMADA K.: Sketch-based 3d-shape cre-
ation for industrial styling design. IEEE Computer Graphics and
Applications 27, 1 (2007), 60–71.

[KSvdP07] KRAEVOY V., SHEFFER A., VAN DE PANNE M.:
Contour-based modeling using deformable 3d templates. Tech
Report TR-2007-13, CS, 2007.

[KT03] KATZ S., TAL A.: Hierarchical mesh decomposition
using fuzzy clustering and cuts. In ACM SIGGRAPH (2003),
pp. 954–961.

[LSCOL04] LIPMAN Y., SORKINE O., COHEN-OR D., LEVIN
D.: Differential coordinates for interactive mesh editing. In
International Conference on Shape Modeling and Applications
(2004), pp. 181–190.

[NSACO05] NEALEN A., SORKINE O., ALEXA M., COHEN-
OR D.: A sketch-based interface for detail-preserving mesh edit-
ing. ACM Trans. Graph. 24, 3 (2005), 1142–1147.

[PP93] PULLI K., PIETIKÄINEN M.: Range image segmentation
based on decomposition of surface normals. In 8th Scandinavian
Conference on Image Analysis (SCIA’93) (Tromso, May 1993).

[SLCO∗04] SORKINE O., LIPMAN Y., COHEN-OR D., ALEXA
M., RÖSSL C., SEIDEL H.-P.: Laplacian surface editing. In
Proceedings of the Eurographics/ACM SIGGRAPH Symposium
on Geometry processing (2004), pp. 179–188.

[YZX∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B.,
SHUM H.-Y.: Mesh editing with Poisson-based gradient field
manipulation. ACM Trans. Graph. 23, 3 (2004), 644–651.

30

© Assocation for Computing Machinery, Inc., 2007.

