
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2009)
H. Prautzsch, A. Schmitt, J. Bender, M. Teschner (Editors)

Neighboring-based Linear System for Dynamic Meshes

S. Pena Serna1, J. Silva1,2, A. Stork1,3 and A. Marcos2

1Fraunhofer-IGD, Germany
2University of Minho, Portugal

3TU-Darmstadt, Germany

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract
A linear system is a fundamental building block for several mesh-based computer graphics applications such
as simulation, shape deformation, virtual surgery, and fluid/smoke animation, among others. Nevertheless, such
a system is most of the times seen as a black box and algorithms do not deal with its optimization. Depending
on the number of unknowns, the linear system is often considered as an obstacle for real time application
and as a building block for offline computations. We present in this paper, a neighboring-based methodology
for representing a linear system. This new representation enables a compact storage of the set of equation,
flexibility for ordering the unknowns and a rapid iterative solution, by means of an optimized matrix-vector
multiplication. In addition, this representation facilitates the modification of part of the linear system without
affecting its unchanged part and avoiding the complete rebuild of the system. This specially benefits applications
dealing with dynamic meshes, where the geometry, the topology or both are constantly changed. We present
the capabilities of our methodology in models with different sizes and for different operations, highlighting the
dynamic characteristic of the mesh. We believe that several applications in computer graphics could benefit from
our methodology, in order to improve their convergence and their performance, reducing the number of iterations
and the computation time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.6.3 [Simulation and Modeling]: Applications—G.1.3 [Numerical Analysis]:
Numerical Linear Algebra—Linear systems

1. Introduction

Computer graphics has become a multidisciplinary commu-
nity with a vast variety of research fields. Nowadays it does
not only deal with graphics and interaction, it also addresses
several aspects from engineering, physics, mathematics and
numerical analysis, among others. Because of that, other
communities have been paying attention to the evolution of
computer graphics and at the same time, computer graphics
researchers are adapting techniques from other disciplines
to achieve more interactivity and realism. Although some of
these adaptations are achieving promising results, there are
other techniques which are adopted without major changes,
leading to results, but neglecting a higher degree of integra-
tion and optimization. These drawbacks are encountered in
techniques which are adopted as black boxes, where only

inputs and outputs are considered, without analyzing the in-
ternal process.

A linear system is an example of black boxes ap-
plied in computer graphics. Several mesh-based algorithms
such as simulation, shape deformation, virtual surgery, and
fluid/smoke animation make use of it without major modifi-
cations. These algorithms need to traverse the mesh, in order
to identify the neighborhoods edges-elements and vertices-
elements, to define the dependencies of the equations and to
build the linear system. The same process is done, whenever
a change in the geometry and the topology of the mesh oc-
curs, increasing the computation time and therefore affecting
the overall performance. Nevertheless, there are techniques
in computer graphics, which could lead to improvements in
this process, by means of representing the linear system in a
different form, rather than in a matrix form.

c© The Eurographics Association 2009.

DOI: 10.2312/PE/vriphys/vriphys09/095-103

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/vriphys/vriphys09/095-103

Pena Serna et al. / Linear System for Dynamic Meshes

The exploration of different representation for a linear
system was motivated by our aim to find an algorithm, which
is able to handle the simulation of dynamic meshes (meshes
with continuous geometrical and topological changes) at in-
teractive rates. We first realized that when a local modifi-
cation in the geometry of the mesh occurs, a great part of
the linear system remains unchanged; however the lack of
neighboring information restricts a local modification (up-
date) of the system. Additionally if topological changes oc-
cur, the system will need to add or remove topological enti-
ties, which will imply the addition or removal of equations
(rows and columns) in the system respectively. Hence, we
started investigating strategies, which could easy the update
of the set of equations during geometrical and topological
changes of the mesh.

This investigation led us to find a neighboring-based rep-
resentation of the linear system, which enables a compact
storage of the equations, flexibility for ordering the un-
knowns and a rapid iterative solution, by means of an opti-
mized matrix-vector multiplication. This new representation
was found by studying different applications within the com-
puter graphics community, which provided us some hints re-
garding their utilization of this kind of systems. We also ana-
lyzed how the discretization methods for physical problems
work, as well as different solvers, aiming at understanding
their requirements (section 2). This information helped us
developing a methodology, which can effectively improve
the build, update and solution of linear systems and which
can also reduce the consumption of resources (section 3).
We implemented the methodology, in order to evaluate and
compare its performance. We tested the capabilities of our
methodology in models with different sizes and for differ-
ent operations, highlighting the dynamic characteristic of the
mesh (section 4).

2. Related Work

As we stated in the previous section, we started studying dif-
ferent techniques in computer graphics such as deformable
models ([NMK∗06]), shape modeling ([ACF∗06]), anima-
tion ([MSJT08]) and simulation ([BFMF06]), in order to
understand how linear systems are used within this commu-
nity. The study of these techniques revealed us, that linear
systems are used in a classical way and that there are no op-
timization procedures to minimize its build time. Hence, we
decided to analyze partial differential equations ([Lan03])
and discretization techniques, particularly the Finite Element
Method ([Hug87] and [SG04]), in order to explore the re-
quirements for building linear systems.

Additionally, we wanted to understand how the solution of
a linear system is computed, hence we revised the literature
regarding iterative solvers ([SVDV00]) and specially the
conjugate gradient method ([She94]). Based on this infor-
mation, we realized that we need to concentrate in a physical
problem, since the generated systems could present different

properties concerning symmetry, definiteness, among others,
and depending on this properties, there are solvers which are
better suited than others. Hence, we decided to concentrate
our effort in the solid mechanics problem [Bow09] and to
investigate the build and the solution of the linear system for
this kind of physics.

Augarde et al. [ARS06] explained that in the linear elas-
ticity problem, the Galerkin method causes the stiffness ma-
trix to be symmetric and positive definite. This fact makes
the Conjugate Gradient Method a suitable solver for the lin-
ear system of equations yielded in the linear elasticity prob-
lem. Saad and Vorst presented, in [SVDV00], an in-depth
historical perspective of iterative solutions of linear systems
and they attributed their origin to the work of Gauss in the
early nineteenth century and show how the main contribu-
tions over the years led to the iterative solvers we have nowa-
days.

The studied related work suggested us, that the Conjugate
Gradient method is currently the most appropriate solver
for computing the solution of a linear system of equations
in an iterative form and without using a hierarchy of dis-
cretizations or adaptivity methods. Hence, we decided to im-
plement the Conjugate Gradient Method based on [She94],
where he presented a practical explanation on how the Con-
jugate Gradient works and also showed the building blocks
and its interconnections, i.e. the method of Steepest Descent,
the method of Conjugate Directions and finally their rela-
tions within the Conjugate Gradient method.

As mentioned before, our work was motivated by our aim
to find an algorithm, which is able to handle the simulation
of dynamic meshes at interactive rates. The computer graph-
ics community has not deeply dealt with the simulation of
changing meshes, but there are some interesting approaches.
Bro-Nielsen ([BNC96, BN96]) presented the advantages of
condensed or Fast Finite Elements for deformable models
in surgery simulation, where only the surface of the vol-
umetric model is considered for the simulation. Gissler et
al. [GBT07] proposed recently constraint sets for FE mod-
els, where topological changes (merging and breaking) of
deformable tetrahedral meshes are supported, by means of
replacing mass points by mass portions (in a constraint set)
according to the number of incident tetrahedra.

Klinger et al. [KFCO06] developed a fluid animation ap-
plication, which requires the remesh of the whole model af-
ter every iteration (or mesh change), leading also to a rebuild
of the linear system. Von Funck et al. [vFTS06] developed
an algorithm for shape deformation based on time-dependent
divergence-free vector fields, for which they need to build a
linear system, in order to find the path between steps. They
also implemented a remesh step, since the deformation of the
mesh between steps led to poor quality triangles, which af-
fected the convergence of the linear system. Hence, they also
need to rebuild the linear system after every remesh step.

There are several algorithms dealing with the simula-

c© The Eurographics Association 2009.

96

Pena Serna et al. / Linear System for Dynamic Meshes

tion of physically-based deformable models. For example
Mezger et al. [MTPS08] proposed a real time physically-
based shape editing algorithm based on the simulation of
the mechanical properties of the model with a Finite Ele-
ment Method discretization. However they used computing
meshes with few tetrahedral elements (up to 1500) and the
rebuild of the linear system (for every geometry change, the
topology is constant) did not cause any performance prob-
lem. These kinds of simulations with bigger meshes (around
10.000 tetrahedral elements) will not achieve real time per-
formance.

We believe that several applications in computer graph-
ics could benefit from our methodology, in order to improve
their convergence and their performance, reducing the num-
ber of iterations and the computation time. The methodology
proposed in this paper, will specially contribute to the rapid
simulation of dynamic meshes. To the best of our knowl-
edge, there are no investigations in the same direction as the
proposed in this paper. There have been made several ef-
forts regarding the improvement of solvers, either with new
methods or with parallelization techniques on the CPU or
the GPU, but there is not enough information about the in-
telligent handling and processing of linear systems.

3. Methodology

The algorithm, which we are proposing, aims at effectively
building, updating and solving linear systems, by means of
reducing the processing time and of minimizing the memory
consumption. A linear system represented in the matrix form
is:

Ax = b (1)

where A is the matrix of coefficients, x is the vector of un-
knowns and b is the vector of solutions. Based on the study
of the related work, we have understood the objective of this
system in getting the solution of the problem. The matrix of
coefficients aims at collecting the information for the equa-
tions regarding the connectivity of the vertices (edge topol-
ogy) and of the unknowns (vertices without boundary con-
ditions) themselves. The process for building the matrix of
coefficients is normally based on traversing the given mesh
(element by element), in order to identify the neighboring
elements, which need to contribute to an edge (non diago-
nal positions) or to a vertex (diagonal positions). This pro-
cess is expensive and when the geometry and the topology
of mesh is changed, the matrix of coefficients needs to be
also changed.

Hence, we realized that if we could have the information
concerning the elements around an edge, we could easily
collect and build the information of the non diagonal po-
sitions of the linear system. Moreover, if we store the com-
puted information for every edge (elements around the edge)

within a small edge matrix, we will have enough flexibility
to modify or recompute only the incident edges to a ver-
tex, when the vertex changes, without affecting the rest of
the linear system. Analogically, we can perform the same
strategy for storing the computed information of the diago-
nal positions of the linear system, computing a small diag-
onal matrix for every unknown. These two sets of matrices
are an equivalent representation of the matrix of coefficients,
which we will refer to as the equivalent matrix.

Structure wise, we no longer use the traditional sparse ma-
trix ([SGV05]) to store the matrix of coefficients. Instead,
we have divided it into two vectors (see Figure 1 for a visual
representation). In one vector we store the edge matrices and
on the other we store the diagonal matrices. Every element
of both vectors is a nxn matrix where n is the dimension (1D,
2D or 3D) of the problem.

Figure 1: Graphic representation of a matrix of coefficients
(left). The same matrix of coefficient represented as the
equivalent matrix (left).

The two main characteristics of a matrix of coefficients,
sparsity and symmetry, are used by the equivalent matrix to
minimize memory consumption: only the nonzero values are
stored and only one instance of every edge is stored for ev-
ery pair of connected vertices. In order to explain how our
algorithm uses this characteristics for building the equiva-
lent matrix and for the sake of clarity, we have subdivided
the process into three steps:

1. Constructing the needed neighboring information
2. Computing the set of edge matrices
3. Computing the set of diagonal matrices

These three simple steps enable the minimization of the
space in memory and the reduction of the processing time. In
addition, the new representation of the matrix of coefficients
allows the flexible handling and modification of individual
vertices or edges, without affecting the rest of the matrix.
The example mesh shown in Figure 2 will be used in associ-
ation with Figure 3 and Figure 4 to accompain the explana-
tions given in ’Computing the edge matrices’ and ’Comput-
ing the diagonal matrices’ respectively.

c© The Eurographics Association 2009.

97

Pena Serna et al. / Linear System for Dynamic Meshes

Figure 2: A 2D mesh composed of three elements.

3.1. Build of the equivalent matrix

The equivalent matrix replaces the matrix of coefficients
by a set of small matrices, which can be computed faster
and which requires less space in memory. In order to avoid
traversing the whole mesh, when computing the matrix of
coefficients, we precompute the neighboring information.
We also precompute the element matrices, which are the ba-
sis for computing the edge and diagonal matrices. Normally,
the element matrices are not computed, since the contribu-
tion of the elements is directly considered during the solution
of the system. However, we aim at effectively handling geo-
metrical or topological changes, therefore it is more efficient
to use the element matrices for updating the edge matrices
or the diagonal matrices according to the changes, than re-
computing the needed element matrices every time.

Constructing the neighboring information

We need to construct three kinds of neighboring information:
i) elements around an edge, ii) elements around an unknown
and iii) vertices of an edge. This information is computed
during the initialization process and it is updated, if some
changes to the topology of the mesh are made. The neighbor-
ing information allows us computing the non diagonal and
the diagonal positions of the matrix of coefficients indepen-
dently and it also provides us with the information regarding
the relationship between vertices. We are using a mesh data
structure, which automatically constructs the neighboring in-
formation, however we will explain this process for the sake
of completeness.

During the loading process of the mesh, we initialize three
double arrays (db), where we store the needed information
for the edges (dbEdg), for the unknowns (dbUkn) and for
the vertices of the edges (dbVtsEdg). For every read ele-
ment, we append its index to its six corresponding edges in
dbEdg and to its four corresponding vertices (unknowns) in
dbUkn, and we also add the corresponding pair of vertices
to every one of the six edges within dbVtsEdg. By the end
of the loading process, the neighboring information is also
ready.

Computing the edge matrices

Given the neighboring information of the elements around
an edge (dbEdg) and the element matrices, we can easily
compute the non diagonal positions, by means of travers-
ing the elements around the edge and adding the contribu-
tion of the corresponding element. On Figure 3 it is shown
the computations involved in the build of Edge2. Since both
elements Elem0 and Elem1 share Edge2, the components
of both elements regarding this edge (colored in grey) are
added to the Edge2’s matrix. Note that each element has two
contributions to every used edge and since one is the trans-
posed of the other, only one is added to the edge matrix.
The used contribution is chosen based on the direction of
the edge.

Figure 3: Element contributions to the build of the third edge
matrix (E2).

Computing the diagonal matrices

In a similar way, we compute the diagonal positions of the
linear system. In this case, we use the neighboring informa-
tion regarding the elements around an unknown (dbUkn) and
we consider the contribution of every involved element to the
diagonal. Consider Figure 4, where the build of the diagonal
for vertex V1 is being performed. From Figure 2 it is clear
that vertex V1 is shared by the three elements. Therefore, D1
is calculated by adding up the three contributions to V1 of
the three elements.

c© The Eurographics Association 2009.

98

Pena Serna et al. / Linear System for Dynamic Meshes

Figure 4: Element contributions to the build of the second
diagonal matrix (D1).

The union of the edge matrices and the diagonal matrices
is equivalent to a matrix of coefficients. Although, we need
to consider these two sets of matrices, in order to solve the
system, we can arbitrary decide the order in which we want
to solve it. This flexibility could be advantageous for a rapid
convergence, since it is equivalent to having a linear system
with an optimized ordering of the unknowns, leading to an
improvement of the performance of the solver ([OLHB02,
Bar96,BW98]). Moreover, since the matrices within the two
sets are independent, we can change or update them without
a major effort, because we would only need to recompute a
small set of matrices, avoiding the computation of the whole
set of equations.

3.2. Update of the equivalent system

Every change that is done to the topology of the mesh im-
plies an update to the matrix of coefficients so that the lat-
ter continues to represent the changed mesh. For the sake
of functionality, the implemented update method allows the
processing of more than one change to the mesh per call. Our
method’s procedure is based on adding or removing the con-
tribution of the elements that were affected by the change.
The arrays of edge matrices and diagonal matrices effec-
tively support the addition and removal of vertices or ele-
ments. The arrays are implemented with a buffer according
to the the size of the mesh, enabling addition of new vertices
or elements. In case of removal, the corresponding matrices
are flagged as “removed”, but there are no memory realloca-

tions, in order to avoid this expensive task. The double arrays
for the neighboring information have the same capabilities.
Algorithm 1 shows the steps taken to perform the update:

foreach removed element do1

remove element contribution2

end3

reserve space for new elements4

foreach added element do5

compute element contribution6

add element contribution7

end8

foreach moved node do9

foreach element shared by this node do10

add element to recomputeVector11

end12

end13

foreach element in recomputeVector do14

remove element contribution15

recompute element contribution16

add element contribution17

end18

Algorithm 1: Method to update the equivalent matrix

The algorithm can be subdivided into three phases, rep-
resenting the three possible kinds of changes, which can be
applied to the topology of the mesh:

1. Remove an element (line 1 to 3) - The contribution of
each removed element is subtracted from the correspond-
ing entries in the equivalent matrix, according to the
neighboring information (no memory reallocation is per-
formed);

2. Add an element (line 4 to 8) - Additional space is re-
served (the additional space is obtained from the avail-
able buffer) to incorporate the new elements. The con-
tribution of each added element is computed and added
to the equivalent matrix (to the corresponding entries ac-
cording to the neighboring information);

3. Move a vertex (line 9 to 18) - To avoid recomputing the
contribution of an affected element more than once, an
initial loop is done to find out which elements are affected
by the movement of the vertices. For each affected ele-
ment, its contribution is removed from the equivalent ma-
trix. Then, its contribution is recomputed using the new
vertices positions and finally it is added back to the equiv-
alent matrix.

Note that adding or removing an element contribution to
the equivalent matrix is done by iterating over the edges and
diagonals that are shared by that element. If a vertex is re-
moved, no special operation needs to be considered, since it
implies the elimination (flagged as “removed”) of the cor-
responding diagonal matrix and the edges matrices incident
to that vertex. The neighboring information is also updated,
therefore the following operations will not involve the “re-
moved” vertices.

c© The Eurographics Association 2009.

99

Pena Serna et al. / Linear System for Dynamic Meshes

3.3. Solution of the equivalent system

The implemented algorithm to solve the linear system of
equations is the Conjugate Gradient as it was proposed in
[She94]. The only noticeable change done so far is the way
we multiply the equivalent matrix with a vector. Although,
we have chosen the Conjugate Gradient method for solving
the linear system, our methodology is completely indepen-
dent of the kind of solver. Our algorithm is suitable for other
iterative methods or even direct methods.

Multiplication of the equivalent matrix with a vector

Having the matrix of coefficients stored in the equivalent
matrix form requires a special method for its multiplication
with a vector.

foreach rst in resultVector do1

resultVector[rst] = 02

end3

foreach edge in edgeVector do4

edgeStartVertex = start vertex of this edge5

edgeEndVertex = end vertex of this edge6

resultVector += (edgeVector[edge] * multiVector)7

resultVector += (edgeVector[edge]T * multiVector)8

end9

foreach diag in diagVector do10

resultVector += (diagVector[diag] * multiVector)11

end12

Algorithm 2: Multiplication of the equivalent matrix with
a vector (multiVector) and its result (resultVector).

Algorithm 2 shows the main steps we perform to multi-
ply the equivalent matrix with a vector. We start by setting
the resultVector to zero so that the results of the multiplica-
tions performed over the matrix can be added to it. For every
edge, we find the vertices that form that edge (edgeStartVer-
tex and edgeEndVertex) by consulting the neighborhood in-
formation (dbVtsEdg). This is done to know which is this
edge position in the matrix. Doing so it is known with which
position of multiVector this edge should be multiplied and
in what position of resultVector it should be stored.

Also notice that for every edge two multiplications are
done. This is due to the symmetric characteristic of the ma-
trix. To provide a better understanding of this procedure con-
sider the example shown in Figure 5. Assuming that we are
iterating on edge E1 and that this edge has vertex 0 as a start-
ing vertex and vertex 3 as an ending vertex. In line 7 of the
algorithm we would multiply E1 by V3 and store its result
in R0 (red boxes). And since E1 also connect vertex 3 to
vertex 0 with the same value, in line 8 we store in R3 the
multiplication of the transposed E1 with V0 (green boxes).

After processing all the edges, we iterate on the diagonals.
The process is similar but simpler, for each diagonal relates
a vertex to itself.

Figure 5: Multiplication of the equivalent matrix (repre-
sented as a normal matrix for simplification) with a vector.
The green and red line colored boxes indicate the used val-
ues when the multiplication iterates on edge E1.

4. Results

We have implemented the build of the equivalent matrix
(DEM) and its multiplication with a vector , as proposed
in the previous section. This implementation is not complex
and it can easily be reproduced following the given indica-
tions. Our implementation is single threading and a desk-
top PC Intel Core 2 Quad Q6600 with 3.25 GB RAM was
used to make the measurements. In order to compare the
performance of our algorithm, we have also implemented
the classical form to represent the matrix of coefficients, the
sparse matrix. We programmed four implementations of the
sparse matrix: i) linked lists without the symmetric charac-
teristic (CSM), ii) linked lists with the symmetric character-
istic (SSM), iii) compressed row storage (CRS) and iv) block
compressed row storage (BCRS).

The first two implementations (CSM and SSM) were only
made for the sake of completeness, hence a simple array
of linked lists was employed. The last two implementations
(CRS and BCRS) were done without considering the sym-
metric characteristic, since we wanted faster access during
the multiplication of the matrix with a vector (SPMV). The
implementation of the multiplication with a vector was made
for the four representations as well. For the build process of
CSM, SSM, CRS, and BCRS, we have used the neighboring
information, in other words, we store the needed information
in the representation without traversing the whole mesh. For
the multiplication process, the neighboring information was
not used for CSM, SSM, CRS and BCRS, since each one has
fields for identifying the corresponding position in the mesh.

In order to measure the performance of the five implemen-
tations, we have used two different tetrahedral meshes: i) a
gargoyle with almost 50.000 elements and ii) a hand with
almost 100.000 elements. Table 1 presents the relevant topo-
logical information of the meshes (shown in Figure 6). In
order to present the capabilities of the update process, we

c© The Eurographics Association 2009.

100

Pena Serna et al. / Linear System for Dynamic Meshes

Figure 6: Mesh models for the measurement.

have chosen three operations representing the basic changes
in the mesh (remove an element, add an element and move
a vertex): i) decimate, ii) mirror and iii) scale. The decimate
operation takes a mesh an remove 50% of the elements of
the model. The mirror operation doubles the number of ele-
ments of the mesh. The scale operation moves every vertex
of the mesh. For the test of these operations, we have used
the dragon, the gargoyle and the bunny (Figure 7 shows the
three forementioned operations, one on each model).

Table 1: Topological information of the meshes for the mea-
surement.

Mesh Vertices Edges Elements
Bunny 2.087 12.796 9.997

Gargoyle 13.044 71.873 49.996

Hand 26.649 144.669 99.995

Dragon 26.436 144.285 100.000

We have made two kinds of measurements, one for the
build process and one for the multiplication process. We
have considered 20 multiplications, in order to be able to
measure the time, since the measurement for a single multi-
plication is not very accurate. Table 2 shows the results in
milliseconds for the mesh models and the two processes.
These measurements were made for the five representations
(CSM, SSM, CRS, BCRS and DEM) of the linear system.

Table 2: Measurements for the build and multiplication pro-
cesses (in milliseconds).

Process Build Multiplication
Mesh Gargoyle Hand Gargoyle Hand
CSM 203 456 213 598

SSM 115 265 140 347

CRS 459 901 313 691

BCRS 203 420 83 225

DEM 94 215 78 179

These results show, that our algorithm is faster than the

other four implementations. Our algorithm is for the build
process between 49% and 80% faster than the CSM CRS and
BCRS implementations, since these implementations require
almost two times the space in memory than the SSM and
ours. However, for the multiplication process, the CRS and
BCRS implementations will have an advantage, because of
the direct access, but this is not the case for the CSM, where
the access is more expensive (because of the linked lists).
Although the build process for the SSM implementation is
similar to ours, we are still 18% faster.

In the multiplication process our algorithm performs be-
tween 44% and 75% faster than the CSM, SSM and CRS im-
plementations. The reason for these results is the expensive
access for the linked lists (CSM and SSM). The CRS imple-
mentation is slower than the CBRS implementation, because
it also considers the nonzero entries of the nxn element ma-
trices (n is the dimension of the problem). On the other hand,
the BCRS implementation considers the nxn element matri-
ces as a block, improving the performance during the multi-
plication process. DEM is in this case only 6% faster for the
Gargoyle and 20% faster for the Hand. These results also
show, that the BCRS algorithm does not present a propor-
tional behavior to the number of elements, but our does.

Although the BCRS algorithm could be an interesting al-
ternative for the multiplication process, it will be useless for
topological changes, since it will require the addition and re-
moval of block entries and therefore memory reallocation in
the arrays (the memory is continuous), a special characteris-
tic that DEM can handle very well. In terms of memory con-
sumption, the CSM, CRS and BCRS implementations require
more memory than the SSM and the DEM implementations,
since these do not profit from the symmetric characteristic of
the matrix of coefficients. Only the upper or the lower part
of the matrix of coefficients are stored in the SSM and the
DEM implementations, hence they have the same memory
consumption.

The primary aim of our implementation is to effectively
support geometrical and topological modification of mesh-
based techniques, requiring the utilization of linear systems.
Nevertheless, we have also explored the limits of our im-
plementation in terms of real time performance. Table 3
presents the measurements for 20 iterations (not only the

c© The Eurographics Association 2009.

101

Pena Serna et al. / Linear System for Dynamic Meshes

multiplication) of the conjugate gradient method with a Ja-
cobi preconditioner for three meshes with different sizes.

Table 3: Meshes with real time performance (time in mil-
liseconds).

Mesh Vertices Elements Time FPS
Bunny_10 2.087 9997 16 63

Gargoyle_30 7.944 29.998 47 21

Gargoyle_50 13.044 49.996 99 10

These results reveal that our algorithm can perform in
real time with meshes up to 30.000 elements and at interac-
tive rates with meshes up to 50.000 elements. As mentioned
above, our algorithms aims at effectively handling geometri-
cal and topological changes. Because of that, we store the
pre-computation of the element matrices, in order to eas-
ily update the equivalent system, whenever a change in the
topology (remove or add vertices and elements) or in the ge-
ometry (move vertices) happen. The three implemented op-
erations (decimate, mirror and scale) are extreme examples,
since they employ at least the 50% of the elements or the ver-
tices and this is not a common activity in computer graphics,
where fast performance is expected.

The decimate operation removes half of the elements of
the model, hence only the elements, which are on the bound-
ary of the removal are recomputed (see table 4). Since the
elements on the boundary of the removal are much less than
half of the model, the update process is much faster than the
reconstruction.

Table 4: Measurements for the decimate operation (in mil-
liseconds).

Mesh Initialization Update Reconstruction
Bunny 140 < 1 67

Gargoyle 702 71 359

Dragon 1.427 47 719

The update process for the mirror operation takes approx-
imately 50% of the time of the reconstruction (see table 5),
because it only processes the mirrored elements in compar-
ison with the reconstruction, which processes two times the
number of elements (the original and the mirrored ones).

The update process for the scale operation takes slightly
more time than the reconstruction (see table 6), however
moving the complete set of vertices in a single step is the
worst case scenario, thus any other operation involving mov-
ing vertices will perform much faster than the reconstruc-
tion.

The presented three operations show the performance of
our algorithm for geometrical and topological changes. We

Table 5: Measurements for the mirror operation (in millisec-
onds).

Mesh Initialization Update Reconstruction
Bunny 140 125 276

Gargoyle 702 783 1.416

Dragon 1.427 1.380 2.857

Table 6: Measurements for the scale operation (in millisec-
onds).

Mesh Initialization Update Reconstruction
Bunny 140 140 141

Gargoyle 702 736 703

Dragon 1.427 1.483 1.427

demonstrated that our algorithm is in normal conditions (no
extreme examples) much faster than a complete reconstruc-
tion of the linear system. This is an improvement towards
mesh-based applications such as simulation, shape deforma-
tion, virtual surgery, and fluid/smoke animation, among oth-
ers, where geometrical (and sometimes topological) changes
affect the linear system, which needs to be solved. These
kinds of applications will not only benefit from faster up-
dates, but also from faster solutions, as demonstrated with
the multiplication process.

Hence, our methodology enables interactive rates for dy-
namic meshes with up to 50.000 elements in a single thread.
From the previous results, we have also realized that the
proposed algorithms behave proportional to the size of the
meshes. In other words, the complexity of the algorithms is
O(n).

5. Conclusions and future work

We have presented algorithms, which use the neighboring in-
formation of the mesh to effectively build, update and solve
linear systems. Our algorithms avoid the assembly of the ma-
trix of coefficients and they also reduce the processing time
and the memory consumption. The proposed methodology
also enables the handling of the set of equations with more
flexibility, allowing their iteration and solution in any arbi-
trary order. We have started the exploration of this aspect
and we are evaluating different alternatives, for example:
reverse Cuthill-McKee (RCM), self-avoiding walk (SAW),
out-in ordering (ordering from the boundary to the interior)
or multi layer solving. The last three options are based on
the neighboring information of the mesh, a characteristic,
which we have also exploited in this paper. This flexibility
is a step forward towards the simulation of meshes with dy-
namic topology or dynamic meshes. We will further imple-
ment and refine our algorithms, we want to explore other

c© The Eurographics Association 2009.

102

Pena Serna et al. / Linear System for Dynamic Meshes

Figure 7: From left to right: decimated bunny, mirrored gargoyle and scaled dragon.

iterative solvers and we have already strated with a direct
solver (Cholesky factorization). We want also to investigate
parallelization schemes, either for the CPU or the GPU. We
also plan to develop a framework, where the modification
of meshes and its real time simulation will be feasible, aim-
ing at integrating design and analysis of mechanical objects
within the same environment.

6. Aknowledgement

This work is partially supported by the European projects
3D-COFORM (FP7-ICT-2007.4.3-231809) and FOKUS
K3D (FP7-ICT-2007-214993).

References

[ACF∗06] ALEXA M., CANI M.-P., FRISKEN S., SINGH K.,
SCHKOLNE S., ZORIN D.: Interactive Shape Editing: SIG-
GRAPH 2006 course notes. In SIGGRAPH ’06: ACM SIG-
GRAPH 2006 Courses (2006), ACM New York, NY, USA. 2

[ARS06] AUGARDE C., RAMAGE A., STAUDACHER J.: An
element-based displacement preconditioner for linear elasticity
problems. Computers and structures 84, 31-32 (2006), 2306–
2315. 2

[Bar96] BARAFF D.: Linear-time dynamics using lagrange mul-
tipliers. In SIGGRAPH ’96: Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1996), ACM, pp. 137–146. 5

[BFMF06] BRIDSON R., FEDKIW R., MULLER-FISCHER M.:
Fluid simulation: Siggraph 2006 course notes. In SIGGRAPH
’06: ACM SIGGRAPH 2006 Courses (New York, NY, USA,
2006), ACM, pp. 1–87. 2

[BN96] BRO-NIELSEN M.: Surgery simulation using fast finite
elements. In VBC ’96: Proceedings of the 4th International Con-
ference on Visualization in Biomedical Computing (London, UK,
1996), Springer-Verlag, pp. 529–534. 2

[BNC96] BRO-NIELSEN M., COTIN S.: Real-time volumetric
deformable models for surgery simulation using finite elements
and condensation. In Computer Graphics Forum (1996), pp. 57–
66. 2

[Bow09] BOWER A.: Applied Mechanics of Solids, 1 ed. Taylor
and Francis, August 2009. 2

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques (1998), ACM New York, NY,
USA, pp. 43–54. 5

[GBT07] GISSLER M., BECKER M., TESCHNER M.: Constraint
sets for topology-changing finite element models. In Virtual Re-
ality Interactions and Physical Simulations VRIPHYS (Novem-
ber 9 2007), pp. 21–26. 2

[Hug87] HUGHES T.: The finite element method: linear static and
dynamic finite element analysis. Prentice-Hall Englewood Cliffs,
NJ, 1987. 2

[KFCO06] KLINGNER B. M., FELDMAN B. E., CHENTANEZ
N., O’BRIEN J. F.: Fluid Animation with Dynamic Meshes. In
International Conference on Computer Graphics and Interactive
Techniques (2006), ACM New York, NY, USA. 2

[Lan03] LANGTANGEN H.: Computational partial differen-
tial equations: numerical methods and diffpack programming.
Springer Berlin, 2003. 2

[MSJT08] MÜLLER M., STAM J., JAMES D., THÜREY N.: Real
time physics: class notes. In International Conference on Com-
puter Graphics and Interactive Techniques (2008), ACM New
York, NY, USA. 2

[MTPS08] MEZGER J., THOMASZEWSKI B., PABST S.,
STRASSER W.: Interactive Physically-Based Shape Editing. In
ACM Solid and Physical Modeling Symposium (SPM) (2008). 3

[NMK∗06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN
E., CARLON M.: Physically Based Deformable Models in Com-
puter Graphics. Computer Graphics Forum 25, 4 (2006), 809–
836. 2

[OLHB02] OLIKER L., LI X., HUSBANDS P., BISWAS R.: Ef-
fects of ordering strategies and programming paradigms on
sparse matrix computations. SIAM Review 44, 3 (2002), 373–
393. 5

[SG04] SMITH I., GRIFFITHS D.: Programming the finite element
method. Wiley, 2004. 2

[SGV05] SMAILBEGOVIC F., GAYDADJIEV G. N., VASSIL-
IADIS S.: Sparse matrix storage format. In Proceedings of the
16th Annual Workshop on Circuits, Systems and Signal Process-
ing, ProRisc 2005 (November 2005), pp. 445–448. 3

[She94] SHEWCHUK J.: An introduction to the conjugate gradi-
ent method without the agonizing pain. Computer Science Tech.
Report (1994), 94–125. 2, 6

[SVDV00] SAAD Y., VAN DER VORST H.: Iterative solution of
linear systems in the 20th century. Journal of Computational and
Applied Mathematics 123, 1-2 (2000), 1–33. 2

[vFTS06] VON FUNCK W., THEISEL H., SEIDEL H. P.: Vector
Field Based Shape Deformations. In International Conference
on Computer Graphics and Interactive Techniques (2006), ACM
New York, NY, USA. 2

c© The Eurographics Association 2009.

103

