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Abstract
This paper addresses 3D shape classification and retrieval in terms of supervised selection of the most significant
features in a space of attributed graphs encoding different shape characteristics. For this purpose, 3D models
are represented as bags of shortest paths defined over well chosen Extended Reeb graphs, while the similarity
between pairs of Extended Reeb graphs is addressed through kernels adapted to these descriptions. Given this
set of kernels, a Multiple Kernel Learning algorithm is used to find an optimal linear combination of kernels
for classification and retrieval purposes. Results are comparable with the best results of the literature, and the
modularity and flexibility of the kernel learning ensure its applicability to a large set of methods.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.6]: Methodology and
Techniques—Information storage and retrieval [H.3.3]: Information search and Retrieval—

1. Introduction

The fast advancement of tools for acquisition and storage of
3D models has led to a rapid increase of the number and size
of the models available on the internet and domain-specific
databases. Organizing these 3D models is becoming an acute
issue for numerous applications, including CAD, medical
imaging, molecular biology, architecture or game design. In
this scenario, one fundamental problem is how to select and
combine different features. Often objects that are in a same
class share characteristics that are only implicitly available:
the challenge is then to recognize from a large set of features,
the subset that better characterizes the class itself. Shape fea-
tures are often of different scales and therefore their combi-
nation is not a matter of linear combination. In this paper
we propose an effective 3D shape classification and retrieval
method that selects the most significant shape features from
a larger set. The construction of the representative set can be
regarded as a machine learning task that uses a supervised
learning technique to capture the high-level semantic con-
cepts of the classes. To deal with a semantic representation
able to couple global and local features, we adopt a shape de-
scription that combines the overall shape structure (coded in
a topological graph) with a local geometric description (the
spherical harmonic indices of the shape parts).

The 3D shape classification and retrieval problem is ad-
dressed as a search in a space of attributed graphs encoding
different shape characteristics through a similarity measure
able to handle both the graph structure and the geometric
attributes associated to nodes and edges. The most efficient
linear combination of features is then computed using super-
vised learning. More precisely, 3D models are represented
by bags of shortest paths defined over a set of Extended Reeb
graphs (ERGs) computed from a set of functions. For each of
these functions, the similarity between pairs of correspond-
ing ERGs are computed using a so called kernel, implicitly
defining the similarity between the models. Given this set of
kernels, a Multiple Kernel Learning algorithm is used to find
an optimal linear combination for classification and retrieval
purposes. This linear combination can be class-specific or
computed for a whole database. Results are comparable with
the literature, and the modularity and flexibility of the kernel
learning ensure its applicability to a large set of methods.

The paper is organized as follows. Section 2 reviews
3D shape classification and feature selection methods. Sec-
tion 3 introduces the elements of our method, i.e. ERGs
and kernel on graphs, while section 4 develops the method
we propose, base on multiple kernel learning. Section 5
presents and analyses the classification and retrieval perfor-
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mance of the optimal kernel over two benchmark datasets
[GBP07, GM08].

2. State of the art

For efficient comparison and similarity estimation, 3D mod-
els can be represented with a set of meaningful descriptors
that encode the salient geometric and topological character-
istics of their shapes. The objects in the database are then
ranked according to their distance to the descriptors of the
query model, see [BKS∗05, TV08] for an overview of 3D
shape retrieval methods.

The use of data-driven approaches to learn the salient
features of a 3D model and the similarity measure that is
suitable to the data set can improve significantly the per-
formance of classification and retrieval algorithms. Even
though several methods for shape comparison have been pro-
posed, only few methodologies address the issue of iden-
tifying descriptions that capture the shape features shared
by a class of models [Lag10, MCHB07]. On one hand, a
solution to learn inter-class distances is to manually feed
the retrieval system with relevance feedback techniques
[NWS07, GFSF10]. On the other hand, to automatically ad-
dress the selection of class features, machine learning tech-
niques like boosting and support vector machines, have been
adopted either using images [TV04] or shape descriptions
[HLR05]. For instance the AdaBoost algorithm [FS95] has
been used in [Lag10] to select relevant views of 3D objects
with respect to the light field descriptor.

Other classifiers based on semi-supervised learning, di-
mensionality reduction, and probability have been success-
fully exploited for shape classification. For instance, in
[HLR05] Support Vector Machine is used to cluster 3D mod-
els with respect to semantic information. In [OK06] shape
classifiers are obtained as a linear combination of individ-
ual classifiers and using non-linear dimensionality reduc-
tion. In [SF06], relevant local shape descriptors are selected
through a multivariate Gaussian distribution and collected to
define a priority-driven search for shape retrieval. [MPSF11]
uses Adaboost and SVM as tools to automatically select the
frequencies of the Laplacian spectrum of 3D shapes that are
relevant for classification. There a selection of the eigenval-
ues is used to represent each class by means of those features
that characterize the class members and that are discrimina-
tive with respect to non-member 3D objects. Unfortunately,
there is not an explicit correspondence between the eigen-
values and the geometric meaning of the features selected
by the boosting algorithm.

On the contrary, our aim is to automatically build a new
composite description from a set of elementary kernels. In
recent years, several methods have been proposed to com-
bine multiple kernels instead of using a single one. These
different kernels may correspond to using different notions
of similarity or may be using information coming from mul-
tiple sources (different representations or different feature

(a) (b)

Figure 1: An ERG (a) and the corresponding object parti-
tion (b). Blue=minimum, red=maxima and green=saddles.
Different colors in the model (b) represent the different parts
(each part corresponds to a node or an edge).

subsets). In particular [GA11] provides a taxonomy of exist-
ing methods for Multiple Kernel Learning and review sev-
eral algorithms.

3. Background

In this section we overview how to extract a graph-based de-
scription from a 3D shape, namely an Extended Reeb graph,
and to define kernels on these descriptions. In the following,
G = (V,E,δV ,δE) is an undirected, labelled graph of nodes
V and edges E where δV : V → Rp, δE : E → Rd associate
to every node and edge numerical attributes. We assume that
there are no multiple edges from one node to another in G
and that G contains no negative cycles.

3.1. Extended Reeb graph

The Extended Reeb graph (ERG) is a 3D shape descriptor
that fulfils the graph requirements on G of being an undi-
rected and labelled graph. Like other methods based on the
Reeb graph [Ree46], the ERG reflects in the graph coding
the invariance properties of a real function f defined on the
shape. When f is differentiable, nodes of the graph corre-
spond to critical points of f , see [BGSF08] for an overview
of Reeb graph-based descriptions. The ERG approximates
the topological structure of the Reeb graph on the basis a
sampling of the image of f . The characterization of f in
terms of maxima, minima and saddles depends on the be-
haviour of f along the level sets: the nodes of the ERG corre-
spond to areas instead of critical points while its arcs are de-
tected tracking the evolution of the level sets [Bia05]. Then,
we couple the topological information stored in the ERG
with a geometric representation of the parts of the model that
correspond to nodes and edges of the graph. Figure 1 depicts
the ERG and the model parts associated to nodes and edges.

From the storage point of view, each node v of G corre-
sponds to one critical area (a maximum, a minimum or a
saddle-like area) and each edge e = (v1,v2) is associated to
the surface portion bounded by the regions r1 and r2 associ-
ated to v1 and v2, respectively. For each node, the attributes
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δV (v) and δE(e) correspond to the spherical harmonic val-
ues [FMK∗03] of the related parts. If the regions r1 and r2
corresponding to v1 and v2 are adjacent (i.e., r1 and r2 share
a boundary element), δE(e) = 0. In case of multiple edges
(e1, . . . ,en) between v1 and v2, the attributes δE(ei) codes
the spherical harmonic indices related to the surface portions
(e.g., the rear segments of the chair in Figure 1(b)).

The most interesting aspect of this descriptor is its para-
metric nature: changing f allows different descriptions of the
same surface that highlight different "local" features while
preserving the "global" topological structure of the surface.
Here, we focus on ten scalar functions, see Section 4.1.

3.2. Graph similarity and kernel on graphs

The problem we face here is to find, given two such graphs
G and G′, a similarity measure that can be geometric, topo-
logical or can manage both of these notions, provided that
sufficient information is carried out in the graphs. Several
methods are available, most of them derived from graph
matching techniques. Recently, several authors proposed as
an alternative to define matching techniques based on ker-
nels [KTI03,VSKB10] and used them either for retrieval and
indexing [PFJFG10], classification [ABK06] or scene anal-
ysis [FSH11]. Analogously, we base the similarity of graphs
on the similarity of their representations by bag of paths.

The idea of building kernel between graphs originated
from [GFW03] and was further extended by [BK05]
and [KTI03] in the case of marginalized kernels. Defining
a kernel only from the values of δV and δE is possible, but
it does not manage the graph structure. Then, the main prin-
ciple is to define a specific kernel for both nodes and edges,
and to gather the corresponding results into a high level ker-
nel, defining a dot product between graphs.

Given G = (V,E,δV ,δE), a path p is a sub-graph of G de-
fined by a sequence of l nodes p = (v1 · · ·vl) such that for
each i,(vivi+1) ∈ E. The length of p is defined as l(p) =
f (δV (vi),vi ∈ p,δE(e),e ∈ p), where f is a real function de-
fined on the set of nodes and edges. p is said to be the short-
est path between vi and v j if for all path p′ between these
two nodes, l(p)< l(p′).

The kernel formulation is expressed in terms of bag
of paths [KJ03]. Graphs G = (V,E,δV ,δE) and G′ =
(V ′,E′,δV ′ ,δE′) are described as bag of paths H and H′,
and the similarity K(G,G′) between G and G′ is assessed
through the similarity between H and H′, using a predefined
kernel Kc on paths :

K(G,G′) = ∑
h∈H

∑
h′∈H′

Kc(h,h′)P(h|G)P(h′|G′)

where P(h|G) (respectively P(h′|G′)) is the probability of
walking along h (resp. h′) on G (resp. G′). The Kc function
is computed from two basic kernels KV and KE defined on V

and E. In the case of Gaussian kernels:

∀(v,v′),KV (v,v
′) = e−

1
2 (δV (v)−δV′ (v′))T

ΣV (δV (v)−δV′ (v′))

∀(e,e′),KE(e,e
′) = e−

1
2 (δE (e)−δE′ (e

′))T
ΣE(δE (e)−δE′ (e

′))

where ΣV = diag
(

1
σi

)
(resp. ΣE ) is diagonal, and σi is the

bandwidth of the ith label of v (resp e).
Then if h = (v1 · · ·vl),h

′ = (v′1 · · ·v′l), with vi−1vi = ei and

v′i−1v′i = e′i : Kc(h,h′) = KV (v1,v
′
1)

l

∏
i=2

KV (vi,v
′
i)KE(ei,e

′
i)

The probabilities p(h|G) can easily be computed with

P(h|G) = pS(v1)
l

∏
i=2

pT (vi|vi−1)pE(vl), where pS is the

probability of initial visit, pE is the ending probability and
pT is the transition probability between nodes in G. In the-
ory, it is thus possible to compute probability values even
for a large number of nodes, and [KTI03] proposed a recur-
sive scheme and a convergence criteria allowing an efficient
computation. Nevertheless, if it is possible to define an in-
finity of paths in an unoriented graph, some of them are not
relevant and do not need to be explored. We propose then to
filter out the set of all paths and use only the shortest paths of
length less or equal to a maximal length Lmax. The resulting
kernels are easy to compute, retain expressivity and are still
positive definite. Finally, considering shortest paths between
vertices naturally prevents from tottering phenomenon.
We propose to replace the set of all paths by the set of short-
est paths of maximal length Lmax and to compute K by only
retaining the best comparison values for all shortest paths,
leading to the max matching kernel formulation [SRB07]:

K(G,G′) =
1
2
[
K̂(H,H′)+ K̂(H′,H)

]
where K̂(H,H′) = 1

|H| ∑
h∈H

max
h′∈H′

Kc(h,h′), and H (resp. H′)

is the set of shortest paths in G (resp. G′) of maximal length
Lmax. But since this definition does not induce a definite pos-
itive kernel, we use an approximation proposed in [HB04]:

max
h′∈H′

Kc(h,h′)≈ ∑
h′∈H′

Kdc(h,h
′)

with Kdc = exp
(
− dc(h,h′)2

2σ2

)
, a kernel defined by the dis-

tance dc induced by Kc, σ > 0.

4. Learning kernels from functions

Our approach automatically correlates kernels with respect
to the classes of a database. If we think to each kernel as
an user’s filter of the features of a dataset, the selection of
the kernels that better hold retrieval implicitly defines the
class complexity and the invariants that characterize it. In
our framework it is thus possible to compute a class-specific
function (a kernel) and for each class to learn a kernel using
MKL and a one class SVM. The set of descriptions is not
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Figure 2: The set of real functions in our framework. Colors
represent the function, from low (blue) to high (red) values.

necessarily orthogonal and admit redundancy and overlap-
ping in the feature space [TV04].

4.1. Real functions

The role of a single function f is to convey the most sig-
nificant shape information and act as a filter of the features
that will be stored in the shape descriptor [BDF∗08]. The
set F = { f : S→ R| f continuous} is infinite, anyway an ap-
propriate selection of the functions is necessary to make the
descriptor suitable for shape matching issues: for instance,
the function f has to be invariant from object rotation, trans-
lation and scaling. In the large number of functions available
in the literature, we are considering:

• the distance from the barycentre B of the object, Bar(p) =
dE(p,B), p∈ S and dE represents the usual Euclidean dis-
tance (Figure 2-a);

• the distance from the axis ~α, MSA(p) = dE(p,~α) where

~α =
∑p∈S(p−B)‖p−B‖

∑p∈S ‖p−B‖2 , where B is the barycentre of S (Fig-
ure 2-b);

• the function MSANorm(p) = ‖~α× (p−B)‖, p ∈ S, ~α is
the same as above and B is the barycentre (Figure 2-c);

• an average of the geodesic distances, Geodesic(p) =
∑v∈S g(v,p)

maxv∈S g(v,p) , where g(v, p) is the geodesic distance be-
tween a sampled vertex v and p, in the experiments we
consider a uniform re-sampling R of S made of 256 ver-
tices and v ∈ R, [HSKK01] (Figure 2-d);

• the first three (ranked with respect to the decreasing
eigenvalues), non-constant eigenfunctions of the Laplace-
Beltrami operator of the mesh computed according to
[BSW08], LAPLi, i = {1,2,3}, (Figure 2(e-g));

• a mix of the first three eigenfunctions of the Laplace-
Beltrami operator obtained according to the rule:
MIXi+ j−2 = (LAPLi)

2 − (LAPL j)
2, i = {1,2}, j =

{2,3}, i 6= j (Figure 2(h-j)).

The choice of these functions is motivated by the different
behaviour they have with respect to different aspects, each

one reflecting either intrinsic or extrinsic shape features. For
instance, the distance from the barycentre highlights the dis-
tribution of the object with respect to its barycentre. There-
fore such a function is rotation invariant with respect to rota-
tions around the barycentre but sensitive to pose variations.
Similarly the distances from the principal shape axis and its
orthogonal are independent of axis rotations and indepen-
dent of axis symmetries. On the contrary the geodesic-based
and the Laplacian-based functions are isometry-invariant
and therefore pose invariant because they approximate the
intrinsic Riemannian metric of the surface [BBK06]. In this
way, protrusions and hollows are emphasized, also at differ-
ent scales in the case of Laplacian-based functions, and the
graph representation is independent of the different articula-
tions of the objects.

The mix of the different properties (rigid or isometry in-
variant) guarantees that different shape features are coded.
Although the insertion in the loop of new functions would
influence the type of invariance detected from the method
without modifying the global framework of our method.

4.2. The simpleMKL algorithm

We focus on the case where the kernel is learnt to be a convex
combination of given base kernels. Following [ASYS08],
we indeed think that "no single descriptor is capable of pro-
viding fine grain discrimination required by prospective 3D
search engines". We then design the algorithm such that sev-
eral structural/feature based kernels can be combined to en-
hance the retrieval result.

Although there are not large differences in terms of ac-
curacy of the Multiple Kernel Learning algorithms reviewed
in [GA11], there is difference between them in complexity
as given by the number of stored support vectors, the spar-
sity of the solution as given by the number of used kernels,
and training time complexity. We therefore adopt the sim-
pleMKL [RBCG08] algorithm.

Multiple Kernel Learning (MKL) was first introduced
in [LCB∗04], and was subject to enhancements, extensions
and algorithms in e.g [SRSS06, RBCG08]. The idea be-
hind MKL is to look for a different solution of the learn-
ing problem: classically the solution is written in the form

f (x) =
l

∑
i=1

α
∗
i K(x,xi)+b∗, where α

∗
i and b∗ are some coef-

ficients to be learned from examples xi and K(., .) is a given
definite kernel associated with a reproducing kernel Hilbert
space (RKHS) H. [LCB∗04] proposed to consider that K(., .)
is a convex combination of basis kernels Km

K(x,y) =
M

∑
m=1

dmKm(x,y), with dm ≥ 0,
M

∑
m=1

dm = 1,

where M is the total number of elementary kernels. MKL
learnt both the α

∗
i and dm in a single optimization problem,
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and [RBCG08] proposed to solve the equivalent problem:

Minimize
{ fm},b,ξ,d

1
2 ∑

m

1
dm
‖ fm ‖2

Hm +C∑
i

ξi

subject to yi ∑
m

fm(xi)+ yib≥ 1−ξi,∀i,

ξi ≥ 0,∀i,

∑
m

dm = 1,dm ≥ 0,∀m,

where Hm are the RKHS associated to each Km(., .) and each
fm belongs to a different Hm. It is assumed that one looks
for a decision function of the form f (x) = ∑m fm(x). This
problem can be extended to a one class problem, and we
used this approach in the following using as Km the kernels
on ERG computed from the functions detailed in section 4.1.

5. Results

The results shown in this Section mainly focus on the capa-
bility of the method of learning the most relevant features of
each class rather than in the absolute retrieval and classifica-
tion performance of this specific technique.

5.1. Datasets

We evaluate the performance of our method on two datasets:

• The database of the SHape REtrieval Contest SHREC’07-
[GBP07]. The collection is composed of 400 watertight
mesh models, subdivided into 20 classes of 20 elements
each. Ground truth was manually established so that the
classes exhibit sufficient and diverse variation, from pose
change to shape variability in the same semantic group.

• The database of 646 watertight models of the SHREC’08-
[GM08] contest. These models were classified, and re-
leased as training, testing and query data. To reflect both
functional and geometric similarity this dataset has three
different levels of categorization: from coarse to fine. At
the coarse level, objects are classified according to seman-
tic criteria, besides their shape; at the intermediate level,
the classes are subdivided according to both functionality
and shape features; while at the fine level, the classes are
further partitioned on the basis of the geometric similarity.
For instance, at the coarse level some objects were clas-
sified into the furniture class. At the intermediate level,
these same objects were further divided into tables, seats
and beds. At the fine level, the objects were classified into
chairs, armchairs, stools, sofa and benches.

The ERG graphs were extracted from these models using
functions defined in section 4.1 and all labelled using the
spherical harmonics on both nodes and edges. In our exper-
imental settings the ERGs are computed automatically di-
viding the image of the function f in 16 intervals uniformly
distributed. The kernel similarity measure was applied on
these labelled graphs for the retrieval process. In the follow-
ing, each model in each dataset was used in turn as a query

against the remaining part of the database. For a given query,
the goal of the track was to retrieve the most similar objects.

5.2. Parameters estimation

The ERG graphs we processed have a maximal number
of nodes less than 100. We conducted several experimen-
tal studies on the SHREC databases, using a leave-one-out
cross validation procedure, to determine the best Lmax value,
from 0 (only nodes are considered) to the number of nodes in
the graph. As the considered path length increased (a struc-
tural information was added in the graph description), the
retrieval rate and the quantitative indexes increased then de-
creased when a given path length was reached. Any value
of Lmax ranging in [[3 · · ·7]] gave both good retrieval results
and low complexity, and we performed all our experiments
with Lmax = 5, i.e. the similarity of graphs is based on bag
of shortest paths of maximal length equal to 5.

The other parameters that have to be estimated are related
to the matrices ΣE and ΣV that appears in the definition of KV
and KE in Section 3.2. These parameters express the band-
widths σi of the ith spherical harmonics of v (resp. e). Accu-
rately defining these bandwidths is crucial since they allow
to define the intensity of the corresponding kernel. Several
methods can be used to determine these values. However, to
be database-specific, we choose a cross validation approach
and we apply a leave-one-out procedure dataset to determine
the best values for the bandwidths.

Several experiments were performed using as training set
a percentage ranging from 10% to 50% of the models in each
class. We present in this article the results obtained using
half of the elements in each class but roughly the same re-
sults were obtained with the 20% of the models. With the
25% of the class, there was no overfitting and most of the
other 75% of models was successfully retrieved thus having
a good generalization capacity.

5.3. Results on SHREC’07

Each class of the SHREC’2007 database was processed sep-
arately using a one class SVM inside MKL. MKL thus
faces a 2-class classification problem, and outputs the cor-
responding optimal convex combination of elementary ker-
nels. In the experiments reported in this Section, the learn-
ing step was performed using 10 models per class (out the
20 available for each class). Figure 3 presents the weights
of this convex combination for all classes. The choice of the
weights mostly depends on the intra-class variability. Any-
way, LAPL1 and MIX1 are the most present functions for all
the classes because many non-rigid deformations are present
in the classes. Rigid functions such as barycentre and MSA
are more discriminative when the intra-class variability is
smaller.. e.g. armadillo, faces, etc.

Figure 4 shows the optimal kernel matrix provided by the
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Figure 3: Weights of the elementary kernels for each class
of the SHREC’07 database

Figure 4: Kernel matrix on the SHREC’07 database

weights learned. The overall performance in terms of re-
trieval and classification rates over the whole SHREC’2007
dataset is comparable or overcome the results on the litera-
ture [GBP07] and a flat averaring of the functions [BBar].
In quantitative terms, ADR=8.82, NN= 100, FT=,0.88,
ST=0.96 , where by ADR we mean average dynamic recall,
NN is the nearest neighbour classifier, FT is the first tier and
ST is the second tier.

The experimental results show that the optimal kernel is
based on a convex combination of a few single kernels. The
comparison of the performance of the optimal kernel with
respect to the single ones was done analysing the sensitivity
and the specificity over each class. Figure 5-a presents the
sensitivity computed for both each elementary kernel and
for the learned one (red bold curve). Figure 5-b shows the
same results for the specificity. These two quantitative in-
dexes were improved for almost every class, with a dramatic
improvement for the specificity.

5.4. Results on SHREC’08

The results in Figure 6 show the choice of the weights for
the optimal kernel on the SHREC’2008 dataset. In general,
we see that the distance from the barycentre is the most rel-
evant in all the three levels of categorization. Anyway, as far

(a)

(b)

Figure 5: Sensitivity (a) and specificity (b) on the SHREC’07
database. Results for the elementary and the learned kernels

as the classification is finer also the average geodesic dis-
tance, the distance from the main shape axis (MSA) and the
mixed Laplacian-based functions come into the play. From
our point of view, this fact is explained from the high intra-
class variability of the shapes at the coarse level, where also
functional variations are admitted and isometric invariants
are not enough to characterize the class. On the contrary at
the finest level of detail, a class is often made by a single
shape and its non-rigid deformations: in this case, the de-
scriptions based on eigenfunctions or geodesics are invariant
to these shape variations and better characterize the intra-
class variability.

The optimal kernels can also be computed and Figure 7
presents the kernel obtained from the third level on the train-
ing set. This kernel was used for classification purposes on
this training set and classification performances were com-
parable to the one provided in [GM08].
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First level Second level Third level

Figure 6: Weights of the elementary kernels for each class
of the SHREC’08 database for the 3 levels of categorization.

Figure 7: Optimal kernel of the SHREC’2008 dataset - third
level of categorization on the training set.

In the experiments on the specificity and sensitivity of
the learned kernels with respect to the single ones on the
SHREC’2008 dataset we noticed a significant improvement
in the quantitative results; Figure 8 presents the specificity
curves of the single kernels and the learned one (red bold
curve).

Figure 8: Specificities of the SHREC’08 dataset - 3rd level
of categorization. The learned kernel is the red bold curve.

6. Conclusions

Combining several information in order to enhance the re-
sult of an algorithm is a quite common strategy in com-
puter science. Examples include combination of classifiers
(boosting methods) or combination of heterogeneous data
(information fusion) in several domains (e.g. medical imag-
ing, remote sensing). We adopt here this kind of strategy by
computing several functions on model meshes, that provide
complementary and redundant information for the retrieval
process. We then deduce similarity measures using kernels
on the Extended Reeb Graphs, and combine them to allow a
final decision function.

Such a strategy offers several advantages. It is evolutive
(it allows other functions to be included in the process-
ing pipeline), modular (only informative subsets of func-
tions can be used) and adaptive (the aggregation rule can
be changed, and even learned using a learning set extracted
from the original database). Differently from an aggrega-
tion of the kernels based on averaging or voting rules like
that in [BBar], learning through the MKL strategy explictly
yields a selection of the most relevant features without jeop-
ardizing the retrieval and classification performances. These
are good with respect to the reference methods, and most of
the time outperform the state-of-the-art, with the advantage
of being evolutive and modular. In addition, the use of ker-
nel similarity measures based on the representation of graphs
in terms of a bag of shortest paths with bounded maximal
length allows an efficient computation.

Finally, our experiments highlight that only a fraction of
the kernels is necessary to effectively retrieve and classify a
shape and this selection is database dependent, varying ac-
cording the intra- and extra-class variability of the shapes.
We plan to further experiment the method on larger and het-
erogeneous datasets, in order to experimentally validate the
assumption that some kernels better capture the "semantic"
aspects of the class and others, e.g., geodesics, are better
suited to detect intra-class variability aspects.
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