
IEEE/ EG Symposium on Volume and Point-Based Graphics (2008)
H.-C. Hege, D. Laidlaw, R. Pajarola, O. Staadt (Editors)

Adaptive Sampling and Rendering of Fluids on the GPU

Yanci Zhang† Barbara Solenthaler Renato Pajarola

Visualization and MultiMedia Lab, University of Zürich

Abstract
In this paper, we propose a novel GPU-friendly algorithm for the Smoothed Particle Hydrodynamics (SPH) simula-
tion for weakly compressible fluids. The major goal of our algorithm is to implement a GPU-based SPH simulation
that can simulate and render a large number of particles at interactive speed. Additionally, our algorithm exhibits
the following three features. Firstly, our algorithm supports adaptive sampling of the fluids. Particles can be split
into several sub-particles in geometrically complex regions to provide a more accurate simulation. At the same
time, nearby particles deep inside the fluids are merged to a single particle to reduce the number of particles.
Secondly, the fluids are visualized by directly computing the intersection between ray and an isosurface defined
by the surface particles. A dynamic particle grouping algorithm and equation solver are employed to quickly find
the ray-isosurface intersection. Thirdly, based on the observation that the SPH simulation is a naturally parallel
algorithm, the whole SPH simulation, including the adaptive sampling of the fluids as well as surface particle
rendering, is executed on the GPU to fully utilize the computational power and parallelism of modern graphics
hardware. Our experimental data shows that we can simulate about 50K adaptively sampled particles, or up to
120K particles in the fixed sampling case at a rate of approximately 20 time steps per second.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Model-
ing]: – Physically Based Modeling; I.3.3 [Picture/Image Generation]: – Bitmap and Framebuffer Operations; I.3.7
[Three-Dimensional Graphics and Realism]: – Color, shading, shadowing, and texture I.3.7 [Three-Dimensional
Graphics and Realism]: – Animation

1. Introduction

Physically based fluid simulation is an increasingly impor-
tant technique in engineering applications, movie and game
industry. Creating and rendering realistic fluids at interactive
frame rates remains a challenging and interesting problem.
The SPH method [Mon92, MCG03] is a very successful ap-
proach used in computer graphics to simulate fluids. Com-
pared to other physics-based fluid simulation methods such
as mesh-based methods [CMT04, KFCO06] or height-field
approximations [IGLF06], SPH may be the best choice to
simulate splashes, spray, as well as very large or unbounded
simulation domains.

With the increasing demand for more complex animations
and therefore simulations with more particles, improving the
simulation and rendering efficiency becomes a very impor-
tant issue. There are several techniques that can be exploited

† email: [zhang,solenthaler]@ifi.uzh.ch, pajarola@acm.org

to address this problem. The first is to adaptively sample
the fluid. With this technique, the computational resources
can be focused on the simulation regions with interesting
fluid flow behavior without compromising the visual qual-
ity of the animation. The second is to utilize the computa-
tional power and parallelism of the GPU. Note that the SPH
method itself is basically a data-parallel algorithm. There are
only a few data dependencies in the standard SPH simula-
tion which can be removed by appropriately replacing some
of the formulas. This makes it possible to map the entire
SPH simulation onto the GPU. The third is to render the fluid
on the GPU, thus avoiding the slow data exchange between
graphics and system memory.

In this paper, we present a new GPU-friendly technique
for the SPH simulation. The most important feature of our
algorithm is that the entire SPH simulation, including adap-
tive sampling as well as rendering of the fluid particles, is
executed on the GPU. According to our knowledge, this is
the first fully GPU-based system which can accomplish all

c© The Eurographics Association 2008.

137

http://www.eg.org
http://diglib.eg.org


Y.Zhang, B.Solenthaler and R.Pajarola / Adaptive Sampling and Rendering of Fluids on the GPU

the above mentioned tasks. The main contributions of this
paper can be summarized as follows:

1. Full GPU implementation: The data dependencies in
the SPH simulation are removed so that it can efficiently
be mapped onto the GPU. At the same time, the com-
putational model of SPH is changed from gathering to
distributing to make SPH more GPU-friendly.

2. Adaptive sampling of fluid particles: The particles in
certain regions of interest can be split into multiple sub-
particles such that the computation can be focused on
these regions. At the same time, the number of particles
can be reduced by merging suitable particles, e.g. those
deep inside the fluid.

3. Efficient visualization: Each surface particle is visual-
ized as a metaball [Bli82]. The intersections between rays
and the isosurface defined by the particle metaballs are
directly computed on the GPU by a dynamic particle
grouping algorithm and efficient equation solver.

2. Related Works

The Lagrangian SPH method, originally designed for the
simulation of stars [Mon92], is a powerful alternative
to grid-based Eulerian methods. The basic idea of SPH
[MCG03] is to use a set of particles to sample and repre-
sent the fluid and define a method to smoothly interpolate
the sampled attribute fields by a blending kernel function.

SPH-based adaptive sampling is studied in [OVSM98]
where particles are split to several sub-particles according
to their physical attributes. Most recently, Adams et al. pro-
posed a method [APKG07] to resample the fluid based on
extended local feature size, which can significantly reduce
the number of particles and simulation time. In the standard
SPH simulation, the ideal gas equation is used to relate pres-
sure and density. This results in high compressibility, which
is not a desirable feature for the simulation of liquids. Some
adaptions have been made to enforce incompressibility. Ex-
amples include [Mon92,BT07], where a new formula for the
computation of pressure is adopted.

In order to fully utilize the computational power and par-
allelism of GPUs, several GPU implementations of the SPH
simulation have been proposed recently. One of the most dif-
ficult challenges of a GPU implementation is to find an effi-
cient way to completely perform the required neighborhood
search on GPU. Amata et al. [AIY∗04] proposed a semi-
GPU implementation in which they executed the neighbor
search on the main CPU and subsequently transferred the
neighbor information to the GPU for each time step. A hier-
archical dynamic quadtree structure is employed in [KH06]
to accelerate the query for closest particles. Harada et al.
[TH07] defined a 3D grid so that the neighbor particles
searching can be implemented by executing texture lookups
for neighboring voxels.

With respect to the rendering of fluids, most related work

is the rendering of isosurfaces. One of the most often used
methods is the Marching Cubes algorithm [LC87] which ex-
tracts a polygonal mesh of an isosurface from a 3D scalar
field. There are several approaches focusing on the GPU
implementation of the Marching Cubes algorithm. For ex-
ample, Dyken et al. implemented a high-speed Marching
Cubes algorithm on the GPU, based on the interpretation of
Marching Cubes as a stream compaction and expansion pro-
cess [DZTS07]. [MSD07] presented a screen-space meshes
method which only generates triangle meshes for the front
most layer of the fluid. For SPH simulation, the metaball
approach proposed in [Bli82] potentially provides a better
solution, because the concept of metaballs is closely re-
lated to the concept of SPH. Both of them employ a ker-
nel function to represent and interpolate point attributes that
are smoothed out over a small volume of space. Kooten et
al. [KvK07] proposed a GPU algorithm to sample the meta-
balls’ implicit surface by constraining free-moving particles
to this surface.

3. SPH Fluid Model

In this section, we briefly describe the standard SPH model
[Mon92] and subsequently show how these equations can be
adapted to allow for a GPU implementation with adaptive
particle resolution.

In SPH, the fluid is discretized by particles carrying field
quantities A. These quantities can be evaluated at any po-
sition r by summing up the weighted contributions of the
neighboring particles b: A(r) = ∑b

mb
ρb

AbW (r−rb,h), where
mb is the mass of particle b, ρb its density, and W (r− rb,h)
the weighting kernel with smoothing length h. In the stan-
dard formulation, m as well as h are constant throughout the
simulation. At each particle position, the density can be com-
puted by

ρa = ∑
b

mbW (rab,h), (1)

where rab = ra− rb. The pressure P of a particle is given
by the modified gas state equation [DC96] Pa = k(ρa−ρ0)
where ρ0 is the rest density of the fluid and k its stiffness. The
pressure and viscous forces acting on a particle are directly
derived from the Navier-Stokes equations and can be written
as [Mon92]

Fa =−∑
b

mamb(
Pa

ρ2
a

+
Pb
ρ2

b
+Πab)∇W (rab,h). (2)

For a more detailed description on how the viscosity Πab
can be computed and about SPH in general we refer to
[Mon92, Mon05].

Some changes have to be made to the standard SPH model
such that it becomes more suitable for the simulation of
adaptively sampled fluids and an efficient GPU implemen-
tation. The major adaptions include: 1) computing adaptive
smoothing lengths to support particles with different masses;

c© The Eurographics Association 2008.

138



Y.Zhang, B.Solenthaler and R.Pajarola / Adaptive Sampling and Rendering of Fluids on the GPU

2) modification of the formula for density computation to
remove data dependency in SPH; 3) modification of the for-
mula for pressure computation to make the fluid more in-
compressible; 4) mass correction to make the SPH simula-
tion more stable.

• Kernel Support: A fixed kernel support radius is not suit-
able in our method due to the fact that the adaptive sam-
pling will generate particles of different masses. Equa-
tion 3 from [Mon92] is adopted to compute the smoothing
support h according to the particle’s mass m and density
ρ.

h = σ(
m
ρ )1/3, (3)

where σ is a constant ∼ 1.3.
• Density: Equation 1 will introduce some problems in the

simulation because the density will drop near the bound-
ary of the fluids and the resulting pressure will be instable.
In our method, Equation 4 is adopted to compute the den-
sity [Mon92], where vab = va− vb:

dρa
dt

= ∑
b

mbvab∇aWab (4)

Equation 4 has two important advantages over the stan-
dard method. Firstly, it does not have the problem of com-
puting densities for surface particles because it only com-
putes the density change rate. Secondly, Equation 4 results
in only one computation pass, whereas the standard SPH
requires two because the densities in Equation 2 depend
on the results from Equation 1. Equation 4 removes this
data dependency by assigning an initial density to each
particle and then the computation of density change rate
can be combined with the computation of force. This fea-
ture is advantageous for a GPU implementation.

• Pressure: Equation 5 is employed to compute the pres-
sure, which is quite sensitive to density changes [Mon92,
BT07]. A relatively small density change can cause large
pressures, and this is helpful to make the fluids incom-
pressible.

P = B((
ρ
ρ0

)7−1) (5)

The pressure constant B can be defined as B = ρ0c2
s

7 where
cs is the speed of sound in the fluid. Please refer to
[Mon92, BT07] for more details.

• Mass correction: We may get particles with significant
mass differences in the adaptive particle sampling. As
shown in Figure 1, suppose a particle p2 with large mass
in the neighborhood region of particle p. Even their dis-
tance being fairly large, p2 may still have a big influence
on p because of its big mass value. In order to solve this
problem, a mass correction is made before particles con-
tribute to their neighbors. Notice that the neighborhood
region of a particle p is a sphere whose radius rp is de-
fined by the smoothing kernel radius hp: rp = 2hp. In our

method, the corrected mass mc of p2 derived from Equa-
tion 6 is proportional to the volume V of the spheres’ in-
tersection region.

mp2

mc
=

4
3 π(2hp2)

3

V
, (6)

where V is computed according to Equation 7.

V =
π(rp2 + rp−d)2(d2 +2d(rp + rp2)−3(rp− rp2)

2)
12d

,

(7)
where d is the distance between p and p2.

p

p1 p2

Figure 1: Mass correction. The corrected mass is computed
according to the volume of the spheres’ intersection part.

4. Adaptive Sampling

Adaptive sampling is a powerful method to improve the sim-
ulation effectiveness. In our algorithm, particles can be split
into multiple sub-particles in geometrically complex regions
to provide a more accurate simulation as well as a better vi-
sualization. At the same time, nearby particles deep inside
the fluid can be merged to a single particle. This merging
reduces the number of particles which in turn improves the
efficiency of the computation.

Adaptive sampling of dynamic fluids is a very compli-
cated problem. [APKG07] presented a good method to solve
this problem. Unfortunately, this method cannot directly be
adopted in our algorithm because it contains many expensive
operations which are difficult to map onto the GPU. Our goal
is to achieve an algorithm to simulate and render fluids on
the GPU interactively, so we have to make a good trade-off
between physical accuracy and performance.

4.1. Splitting

In our algorithm, the geometrically complex regions are de-
fined as the surface regions of the fluids. The particles near
the fluid surface are potential candidates for splittable par-
ticles. In order to detect splittable particles, surface parti-
cles have to be identified first. Particle p is considered a part
of the surface if its distance to the center of mass χp of its
neighborhood exceeds a certain threshold. The mass center
χp can be defined by Equation 8, where xi is the position of
particle i in p’s neighborhood, and mci is the corrected mass
computed from Equation 6.

χp = ∑mci xi

∑mci

(8)

c© The Eurographics Association 2008.

139



Y.Zhang, B.Solenthaler and R.Pajarola / Adaptive Sampling and Rendering of Fluids on the GPU

Equation 8 alone, however, is not enough to define the sur-
face particles in some extreme cases. Considering a point p
inside a splash, it may be close to its mass center χp because
the neighbors of p distribute quite symmetrically in space.
This problem can be solved by adding the criterion ∑ mci

mp
< δ

to mark the surface particle, where δ is a user-defined param-
eter.

A surface particle is not always a splittable particle be-
cause we do not want to keep subdividing the surface into too
small sub-particles. The splitting operation is stopped once
the mass of a surface particle is smaller than some thresh-
old εm. We will discuss how to define εm later in Section 5
based on our GPU-friendly data structure. Hence from the
discussion above, a splittable particle is defined as a surface
particle whose mass is bigger than εm.

One splittable particle p is split into four sub-particles
located at the corners of a tetrahedron centered at p. The
physical attributes of the newly generated sub-particles pi
(i = 1,2,3,4) are derived from their parent particle p in the
following way:

• The positions of the new sub-particles can be derived
from a local coordinate system $ centered at p. The Z-
axis of $ is defined as normalize(xp − χp), and X , Y -
axis can be derived from X = normalize(−Z.z,0,Z.x) and
Y = cross(X ,Z). The distance d from p to pi is defined as
αhp where α is a user-defined constant;

• The mass of pi is one fourth of the mass of p;
• The density and velocity of pi is set to the same corre-

sponding values of p;
• The smoothing kernel length of pi is computed from

Equation 3;

4.2. Merging

Similar to the splitting operation, a special type of particles
called inner particles are marked to define the merging do-
main. Based on the notion that inner particles are deep inside
the fluid, they can be defined similarly to the definition of the
surface particles. Particle p is considered to be an inner parti-
cle if it is a non-surface particle and its distance to the center
of mass χp of its neighborhood is below a certain threshold.
For a set of nearby inner particles pi, they will be merged
to a single aggregate particle pmerged whose attributes are
derived in the following way:

• The mass of pmerged is ∑mi;
• The position, density and velocity of pmerged is set to the

weighted average of the corresponding attributes of pi,
where their masses are used as the weight factor;

• The smoothing kernel length of pmerged is again computed
from Equation 3;

Note that merged particles have a bigger mass, resulting in
increased pressure on other particles preventing them from
coming too close, and hence the merging process is stopped.

5. GPU Implementation

The SPH simulation can be parallelized well because there
are almost no data dependencies. Since a modern GPU has
significant parallel computing power, it makes sense to im-
plement the entire SPH algorithm on the GPU to achieve
great improvements in simulation performance. In our algo-
rithm, all SPH simulation stages, including the adaptive sam-
pling and rendering of particles, are executed on the GPU.

In order to implement the SPH simulation on the GPU,
some modifications have to be made to the computation. As
shown on the left of Figure 2, the computational model of the
standard SPH method is a gathering process, as the contri-
butions from neighbors are summed up as discussed in Sec-
tion 3. The basic idea of the GPU implementation, which is
a distribution process, is illustrated on the right of Figure 2.
This process can actually be viewed as a 3D splatting oper-
ation. Each particle distributes its contribution to its neigh-
bors, and the contribution is accumulated at the neighbor.
After all particles are processed, the attributes of particles
can be computed from the accumulated values. The advan-
tages of distribution over gathering will be discussed in more
detail later in Section 7.

Figure 2: Gathering vs. distribution.

5.1. Data Structure

The main challenges of our GPU implementation are: 1)
GPU does not directly support 3D splatting so that it has
to be converted to some other GPU-supported operations.
2) a dynamic data structure is required to store the particles
because the adaptive sampling keeps producing new and re-
moving old particles.

The basic idea to address the first issue is to convert
the spherical 3D splat into several 2D splat slices. The 2D
splatting operation is well studied in point-based graphics
[GP07]. In order to fulfill this conversion, a 3D grid called
bucket space is defined to cover the simulation space. Each
particle is mapped to the closest voxel, and its physical at-
tributes such as position, velocity, density and mass, are
stored in the closest voxel. Notice that the physical attributes
recorded in the voxel are the original ones instead of the
voxelized values, so there are no discretization errors in the
mapping process. The 3D grid can further be interpreted as
a stack of 2D slices along the Y -axis, and these slices are put
together to form a big 2D texture called slice space texture.
Based on this data structure, a 3D splat can easily be decom-
posed into multiple 2D splat slices, as shown in Figure 3. For

c© The Eurographics Association 2008.

140



Y.Zhang, B.Solenthaler and R.Pajarola / Adaptive Sampling and Rendering of Fluids on the GPU

instance, a 3D splat centered at p has an influence region that
should be a sphere whose radius is defined by p’s smoothing
length. The decomposition of a 3D splat is naturally done
by the intersections between this sphere and the 2D slices of
the bucket space, forming multiple 2D splats with different
radii.

Figure 3: The decomposition of one 3D splat into several
2D splats. Red dots in the right image represent the 2D splat
centers in slices of particle p. Black and white dots represent
the particles that are inside and outside the influence region
of p respectively.

A hardware feature called stream-output stage introduced
in Direct3D 10 is exploited to implement the dynamic data
structure to store particles. The purpose of the stream-out
stage is to write vertex data streamed out of a geometry
shader stage to another vertex buffer. Based on this, two ver-
tex buffers V1 and V2 are employed in our method. Suppose
the original particles are stored in V1, and after the adaptive
sampling performed in a geometry shader, the new set of
particles is written to V2. V1 and V2 are swapped for the next
time step. More details will be discussed in Section 5.3

5.2. Adaptive Sampling on the GPU

As mentioned earlier, the splitting operation should be
stopped if the particle mass is smaller than εm. εm can be
derived based on our GPU data structure as follows. Be-
cause each particle is assigned to the closest voxel cell in the
bucket space, the basic requirement of the splitting operation
is to prevent that newly generated sub-particles are mapped
to the same voxel. This in turn means that the subdivision
exceeds the resolution limitation of the bucket space data
structure. Based on this observation, the distance between
the new sub-particles ds =

√
8
3 αh should be larger than

√
3s

where s is the grid size of the bucket space. Combining this
with Equation 3 we get:

√
8
3

ασ(
εm
ρ )1/3 ≥

√
3s⇒ εm ≥ ρ(

√
9/8s
ασ )3 (9)

With this, the implementation of the splitting operation

on the GPU is straightforward. It is performed in a geom-
etry shader at the end of every time step, after the particle
attributes have been updated. Then, the output of the split-
ting operation is directed to another vertex buffer by stream-
output stage.

The merging operation itself is simpler than splitting, but
its GPU implementation is more tricky because of the fol-
lowing issues. The first problem is how to efficiently find all
nearby inner particles. The straightforward solution to this
would be to search the neighborhood for each particle af-
ter it has been mapped to the bucket space. This, however,
is very inefficient since it requires computing distances be-
tween particles. Our strategy is to change the rasterization
rule for inner particles. Instead of mapping inner particles
to the closest voxel in the bucket space, they are mapped to
the closest voxel with even coordinates. As shown in Fig-
ure 4, inner particles pi (i = 1,2,3,4,5) in red color are not
mapped to their corresponding closest voxel marked by the
dark particle with a cross, but instead are mapped to the clos-
est voxel with even coordinates (4,4) so they can be merged
into a single particle. This strategy has the same effect as a
coarser grid definition would have for the mapping of inner
particles.

Figure 4: Merging of particles on the GPU in the bucket
space texture data structure.

The second issue is how to merge particles. A two-pass al-
gorithm with two set of textures TB1 and TB2 is employed to
address this issue. In the first pass, all particles are mapped
to their closest voxel by using TB1 as an accumulation buffer.
If more than one particle is mapped to the same voxel, their
attributes will be accumulated in TB1. For example, the mass
of particles will be accumulated to ∑mi, and other attributes
A, such as density and velocity, will be mass weighted and
accumulated ∑miAi. The subsequent second pass is an im-
age pass to normalize the density and velocity by the accu-
mulated mass as ∑ miAi

∑ mi
and the result will be written to TB2.

The third challenge of the GPU implementation is how
to remove the obsolete particles. Suppose four particles pi
(i = 1,2,3,4) are being merged to a single particle. Only
one particle representing the merged particle can be kept
and the other three have to removed. An extra texture TID
called PrimitiveID texture is introduced to solve this prob-
lem. A unique primitive ID for each particle is employed and
stored in TID. This unique ID can directly be adopted from
SV_PrimitiveID or SV_VertexID, which are two system-

c© The Eurographics Association 2008.

141



Y.Zhang, B.Solenthaler and R.Pajarola / Adaptive Sampling and Rendering of Fluids on the GPU

supplied values in Direct3D 10. When TID is updated, the
depth test function is set to pass all fragments so that only
the last written fragment is kept for a single texel in TID. In
the subsequent stages, the primitive ID for each particle will
be compared to the ID recorded in TID. The particles will be
discarded as obsolete if their ID does not match.

While our splitting strategy can guarantee that no newly
generated sub-particles from the same parent particle will be
mapped to the same voxel, sub-particles from different par-
ent particles or some non-inner particles may still be mapped
to the same voxel. This is shown in Figure 4, where two
green particles s and t are mapped to the same bucket cell.
This situation suggests that the particle positions exceed the
resolution limit of our data structure. Simply increasing the
grid resolution cannot completely solve this problem. Our
strategy to address this issue is to merge them to a single
particle. Fortunately, this case does not happen frequently at
all, because the pressure force Equation 5 is very sensitive
to density changes. A relatively small density change can
cause large pressures which prevent two particles coming
too close.

5.3. Simulation Stages
Based on the above discussions, we eventually arrive at
a four-pass rendering algorithm for GPU-accelerated SPH
simulation as shown in Figure 5.

1. Distributing particles: Each particle is rasterized as one
texel in the bucket slice space texture TB1. If multiple par-
ticles are mapped to the same texel, their attributes are ac-
cumulated, using their mass as the accumulation weight.
At the same time, the unique primitive ID of each particle
is also computed and recorded in texture TID.

2. Merging particles: This is an image processing pass to
normalize the attributes of merged particles and output
results to another texture TB2.

3. 3D splatting: The 3D splat is first decomposed into a set
of 2D splats in the geometry shader. Then the contribu-
tion from the particle to its neighbors covered by a set
of 2D splats is computed and accumulated at the corre-
sponding texels of its neighbors.

4. Updating and splitting particles: This rendering pass
solves two tasks: First, the attributes of each particle are
computed in the vertex shader according to the values
stored in the textures. Note that obsolete particles are
discarded by comparing their primitive ID to the value
recorded in TID. Additionally, a splitting operation is per-
formed in the geometry shader. All particles that satisfy
the splitting criteria are split into four sub-particles. The
remaining set of original particles and the newly split
sub-particles are streamed out into a vertex buffer.

5.4. Optimization: Early Z-Culling
Note that a fine 3D grid is preferred to represent the sim-
ulation domain because it results in a smaller threshold εm,

Figure 5: Overview of the GPU implementation of the SPH
simulation. VS, GS, FS stand for vertex, geometry and frag-
ment shader respectively.

according to Equation 9, that allows the adaptive sampling to
produce smaller particles. The side effect of a fine 3D grid is
that it introduces more empty voxels with no corresponding
particles, especially near particles with larger mass. These
empty voxels potentially waste memory and computation
time.In the ideal case, the fragments corresponding to the
empty voxels should be prevented from being processed.
The early Z-culling technique can help us to achieve this,
by using the following steps:

1. The Z-buffer is initialized to value 0;
2. In the distribution pass, the depth function is set to allow

all fragments to pass the Z-test. Each particle is assigned
a constant depth value d1(0 < d1 < 1). After this pass,
voxels containing real particles have a depth value of d1,
while empty voxels still hold a value of 0.

3. In the 3D splatting pass, the depth function is set to only
allow fragments with smaller depth values to pass the Z-
test. Fragments generated during this 3D splatting are all
assigned another constant depth value d2(1 > d1 > d2 >
0). Hence the early Z-culling will discard all fragments
corresponding to empty voxels.

6. Rendering Surface Particles

In our algorithm, each surface particle is represented as a
metaball [Bli82], and the fluid is rendered by directly com-
puting the intersection between a ray and the isosurface de-
termined by the surface metaball particles. In order to im-
prove the rendering efficiency, an extra rendering pass is ex-
ecuted before computing the ray-isosurface intersection. In
that extra pass, surface particles are identified and stored in
a second vertex buffer. Rendering is only performed on the

c© The Eurographics Association 2008.

142



Y.Zhang, B.Solenthaler and R.Pajarola / Adaptive Sampling and Rendering of Fluids on the GPU

second vertex buffer, and thus, non-surface particles do not
enter the rendering pipeline. This is also accomplished by
exploiting the stream-output stage feature.

6.1. Metaball and Isosurface Function

The metaball function Equation 10 is defined on the nor-
malized distance x = d

rs
, where d is the distance to the cen-

ter of the metaball and rs is the support radius. Note that
rs should be defined as a function of the smoothing kernel
length h of the corresponding particle. However, we simply
use rs = c1h, where c1 is a user-defined constant.

f (x) = He−
x2

2σ2 (10)

Based on the metaball function, the isosurface function F
is defined as Equation 11, with C as user-defined threshold.

F = ∑He−
x2
i

2σ2 = C (11)

In our algorithm, C is defined as the value of the meta-
ball function at c2rs, where c2 is also a user-defined constant
(c2 = 0.85 in our implementation). In order to achieve good
rendering results, the two parameters H and σ in Equation 10
have to be chosen carefully. H and σ are designed to meet
the following requirements:

1. The value of the metaball function in regions outside of
the support radius should be fairly small with respect to
C, so that those regions can be safely ignored for the com-
putation of ray-isosurface intersections. This requirement
can be satisfied by setting σ according to Equation 12,
with c3 = 10, as this means that the metaball function
value at the support radius is only one tenth of the isosur-
face value C.

f (c2)
f (1)

= c3 ⇒ σ =
√

1− c2 ∗ c2
2 lnc3

(12)

2. In order to reduce the errors in the computation of ray-
isosurface intersections, the derivative value near c2rs
should be set to a high enough value c4. This requirement
is accomplished by setting H according to Equation 13

f ′(c2) = c4 ⇒ H =
c4σ2

c2e−
c2

2σ2
(13)

6.2. Ray-Isosurface Intersection

The computation of the intersection between the ray E + Rt
and the metaball isosurface can be formulated to solve Equa-
tion 14, where E is eye point and R is the normalized ray
direction.

F(t) = ∑He
− (E+Rt−pi)

2

2σ2r2
si = C (14)

The basic idea to solve this equation is to search along
the ray using a binary search algorithm. Given tlow and

thigh which satisfy F(tlow) <= C and F(thigh) >= C, it can
be guaranteed that the solution t for Equation 14 lies be-
tween tlow and thigh. If the isosurface function value at tmid =
(tlow + thigh)/2 is below C, tlow is replaced, otherwise thigh.
This iteration continues until the solution for Equation 14 is
found.

Similar to the situation in point-based rendering where
one pixel is always covered by multiple splats, there are al-
ways multiple metaballs Mi that have contributions to the
isosurface function at point x. The most difficult problem
in the evaluation of the isosurface function F at point x is
that we do not know which metaballs are involved. This can
be solved by a dynamic point grouping algorithm as pro-
posed in [ZP07]. The basic idea is to separate the overlaps
between points/metaballs by partitioning them into multiple
non-overlapping groups and render each group to a different
texture as shown in Figure 6. The dynamic grouping algo-
rithm is GPU-based and can handle dynamic particles, so
costly particle-readbacks to CPU can be avoided. Please re-
fer to [ZP07] for more details.

Figure 6: Metaballs are divided to multiple non-overlapping
groups and each group is rendered to a different texture.
Based on this technique, all metaball sets Mi that have con-
tributions to point p on the isosurface can be recorded.

The basic fluid visualization algorithm contains two ren-
dering passes. At first a geometry pass is executed to par-
tition particles into K non-overlapping groups. Each group
then is rendered to a different texture. At the same time, the
intersections between ray and spheres defined by each par-
ticle are computed and will be used to create the initial tlow
and thigh for the intersection between a ray and isosurface.
Then, an image pass is executed to compute the final inter-
sections in the fragment shader.

In the first pass, two spheres Sp and S′p are defined for
each surface particle p, and the intersections between a ray
and these spheres are computed. Both Sp and S′p are centered
at p, but with different radii, rs and c2rs respectively. rs is the
support radius for particle p and c2 is the same constant de-
fined in Section 6.1. Surface particle p is rendered as a quad
Q covering the sphere Sp. Rays with form E +Rt are casted
from the eye point for all fragments covered by Q, where
E and R are the eye point and the normalized ray direction
respectively. Note that because of Equation 12, a fragment

c© The Eurographics Association 2008.

143



Y.Zhang, B.Solenthaler and R.Pajarola / Adaptive Sampling and Rendering of Fluids on the GPU

can be safely discarded if its corresponding ray has no inter-
section with Sp, and according to the definition of S′p, it can
be guaranteed that the intersection t′p between the ray and S′p
satisfies F(t′p) >= C. This can be used to define the initial
thigh in the next stage. A two metaball example is as shown
in Figure 7, where the red curve represents the isosurface
defined by p1 and p2, and the blue and green circles stand
for Spi and S′pi respectively. Note that (tp1 , t

′
p1) and (tp2 , t

′
p2)

will be written to different textures because of the dynamic
particle grouping.

In the second pass, the set of intersections (tpk , t
′
pk )(k =

1,2..,K) generated in the first pass can be read from textures
for pixel a. The initial tlow and thigh can be derived from
thigh = min t′pk and tlow = min(tpk ). Only the set of metaballs
Mi satisfying ti ≤ thigh is involved in solving Equation 14.
For the example shown in Figure 7, thigh = t′p1 , tlow = tp1 ,
and both p1 and p2 will be involved in the ray-isosurface
intersection computation because of tp1 < thigh, tp2 < thigh.

Figure 7: Computation of ray-isosurface intersection.

In most cases, the intersections between a ray and the two
spheres S and S′ can be found so that the initial tlow and thigh
can be defined. If there is no intersection between the ray
and S/S′, one of the following two situations applies:

• If the ray has no intersection with sphere S, it is guaran-
teed that there is no intersection between a ray and the
isosurface.

• If the ray intersects with S but not with S′, only the initial
tlow can be defined. In order to try to find the initial value
for thigh, we search along the ray, starting with tlow. Itera-
tively, tlow is increased by a small amount tlow = tlow + ∆
and the isosurface function F is evaluated at the new tlow.
If F(tlow) > C, the initial thigh is set to current tlow and the
division search can be started. If no value t that satisfies
F(t) > C has been found after several steps, we assume
that there is no intersection between a ray and the isosur-
face.

7. Results and Discussions

The method proposed in this paper has been implemented on
a PC with a NVIDIA Geforce 8800GTX GPU.

We tested our algorithm with three differently-sized parti-
cle sets. The simulation results are as shown in Table 1. The
first column shows the initial size of the particle set. During
the simulation, the number of particles varies because of the
adaptive sampling of the fluids. The average number of par-
ticles is shown in the second column. The performance of
our algorithm is measured by the number of time steps that
can be executed in one second. The third and fourth columns
show the number of time steps that can be executed in one
second without and with rendering of the fluid respectively.
Note that for smooth rendering it is not necessary to render
the particles every time step. In our tests, we only render the
particles every 20 time steps.

ini-size avg-size sim sim+visualize
3,003 7,463 129.71 49.01
6,992 14,002 75.61 37.28

19,964 52,746 19.34 8.21

Table 1: Simulation data for three differently-sized particle
sets.

More detailed experimental results are shown in Figure 8.
The top image shows how the number of particles varies in
the simulation period. It can be seen that the number of par-
ticles increases from 20K to 75K in the first few time steps
because of the adaptive sampling. The middle image shows
the number of time steps that can be executed in one second.
It depends on the number of particles, and the performance
of early Z-culling also has some impact on it. The bottom
image shows the average, maximum and minimum density
during the simulation. It can be seen that the average den-
sity is quite stable in the whole simulation period. Even the
maximum and minimum densities are quite close to the rest
density due to the density computation method described in
Equation 4. Two screenshots are as shown in Figure 9.

Figure 8: Detailed experimental data. Top: Number of parti-
cles. Middle: The number of time steps that can be executed
in one second; Bottom: Density.

c© The Eurographics Association 2008.

144



Y.Zhang, B.Solenthaler and R.Pajarola / Adaptive Sampling and Rendering of Fluids on the GPU

Figure 9: Screenshots for adaptive sampling. Red and green
particles represent surface and inner particles respectively.

7.1. Simulation Performance

With respect the the simulation performance, we compare
our method to the most recent results from [TH07], which
can simulate 60K particles at about 17 time steps per sec-
ond. Table 1 shows that our method is close to theirs. Notice
that their method does not support adaptive sampling which
is quite expensive on the GPU. For example, a dynamic data
structure obviously has some performance penalty if com-
pared to a static data structure. Additionally, all attributes
in the SPH simulation have to be computed on the fly be-
cause of the adaptive sampling, whereas many of them are
constants in a fixed sampling method.

In order to have a fair comparison to [TH07], we dis-
abled the adaptive sampling and related computations. Four
differently-sized particle sets are employed to test our fixed
sampling version algorithm. The results are as shown in Ta-
ble 2. It can be seen that our GPU implementation is about
2.5 times faster than [TH07]. As shown in the last row of
Table 2, the performance can be further improved by run-
ning the simulation at half-floating-point precision (FP16) at
the cost of physical accuracy. The differences of running the
simulation at the precision of 32-bit floating point (FP32)
and FP16 are as shown in Figure 10. It can be seen that most
of the particles behave similarly.

Figure 10: The differences between running simulation at
FP32 and FP16 precision. Most of the particles behave quite
similarly. Top row: FP32 mode. Bottom row: FP16 mode

The reasons for the improved performance compared to
[TH07] are:

1. Our distribution model has a big advantage over the gath-
ering model used in [TH07]. In the gathering mode,
neighborhood searching is necessary, which is accom-
plished by executing a large number of texture lookups
over the nearby texels. In our distribution mode, an early
z-culling technique can be employed to cull the empty
texels so that no computations are wasted.

2. Because of Equation 4, data dependencies are removed
so that the density computation in our method can be ex-
ecuted in the same pass as the computation of the force.

size 6,992 19,964 61,336 127,452
FP32 388.00 126.69 43.16 21.18
FP16 513.01 172.59 57.76 27.12

Table 2: The simulation performance of our fixed sampling
method. The numbers in the last two rows represent the num-
ber of time steps that can be simulated in one second.

The biggest drawback of our GPU implementation is that
our method consumes lots of memory. Uniform grids are
employed to store all the physical attributes as well as the in-
termediate results. Actually most of the grid cells are empty,
which introduces a huge waste of graphics memory. Using
low resolution grids of course reduces the memory cost, but
also put more limits on particle splitting and makes more
particles to be merged.

7.2. Rendering
The rendering results are shown in Figure 11. In the two
images in the top row, some artifacts are visible due to the
low number of particles. To reduce the bumpy appearance, a
fairly big metaball radius has to be used, at the cost of very
thick surfaces. With more particles, our rendering algorithm
can produce more realistic results, as shown in the two im-
ages of the bottom row.

Compared to the Marching Cubes algorithm whose ren-
dering quality relates heavily to the subdivision grid size,
our method does not require space subdivision. Additionally,
our method has a performance advantage over the Marching
Cubes algorithm because its complexity only depends on the
fluid surface area, and not on the fluid volume. Compared to
the point-based rendering algorithm that treats each particle
as a 2D splat, our method produces better rendering results
because the point-based method requires estimating the nor-
mal vector for each splat, which is quite instable. Unfortu-
nately, there are also some drawbacks in rendering particles
as metaballs. The support radius of the metaballs has to be
chosen carefully, otherwise some bumpy artifacts will ap-
pear. Employing a big support radius will alleviate the prob-
lem, but may result in too thick fluid volume.

8. Conclusions
In this paper, we have presented a novel algorithm to sim-
ulate and visualize particles on the GPU. The efficiency of

c© The Eurographics Association 2008.

145



Y.Zhang, B.Solenthaler and R.Pajarola / Adaptive Sampling and Rendering of Fluids on the GPU

Figure 11: Rendering results. Top row: Rendering with only
a few surface particles. Bottom row: Rendering with more
surface particles.

the SPH simulation is improved by combining adaptive sam-
pling of the fluids and ray-isosurface intersection computa-
tion in a GPU-based algorithm.

Unfortunately, some problems remain when using our
method and they will be addressed in the future work. Us-
ing a 3D uniform grid to represent the simulation domain is
costly in terms of texture memory. A possible solution to this
problem would be the use of an adaptive data structure. Ad-
ditionally, improvements to our rendering algorithm might
reduce bumpy appearance and thick fluid volume for low
number of particles.

9. Acknowledgements

This work was partially supported by the Swiss National Sci-
ence Foundation Grant 200021-111746/1.

References

[AIY∗04] AMADA T., IMURA M., YASUMOTO Y., YAMABE Y.,
CHIHARA K.: Particle-based fluid simulation on gpu. In ACM
Workshop on General-Purpose Computing on Graphics Proces-
sors (2004).

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.:
Adaptively sampled particle fluids. In Proceedings ACM SIG-
GRAPH (New York, NY, USA, 2007), ACM Press, pp. 48–54.

[Bli82] BLINN J. F.: A generalization of algebraic surface draw-
ing. ACM Trans. Graph. 1, 3 (1982), 235–256.

[BT07] BECKER M., TESCHNER M.: Weakly compressible sph
for free surface flows. In Symposium on Computer Animation
(2007), pp. 209–217.

[CMT04] CARLSON M., MUCHA P. J., TURK G.: Rigid fluid:
animating the interplay between rigid bodies and fluid. In Pro-
ceedings ACM SIGGRAPH (2004), pp. 377–384.

[DC96] DESBRUN M., CANI M.-P.: Smoothed particles: A new
paradigm for animating highly deformable bodies. In Eurograph-
ics Workshop on Computer Animation and Simulation (1996),
pp. 61–76.

[DZTS07] DYKEN C., ZIEGLER G., THEOBALT C., SEIDEL H.-
P.: GPU Marching Cubes on Shader Model 3.0 and 4.0. Research
Report MPI-I-2007-4-006, Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany, August
2007.

[GP07] GROSS M. H., PFISTER H. (Eds.): Point-Based Graph-
ics. Series in Computer Graphics. Morgan Kaufmann Publishers,
2007.

[IGLF06] IRVING G., GUENDELMAN E., LOSASSO F., FEDKIW
R.: Efficient simulation of large bodies of water by coupling
two and three dimensional techniques. In Proceedings ACM SIG-
GRAPH (New York, NY, USA, 2006), ACM Press, pp. 805–811.

[KFCO06] KLINGNER B. M., FELDMAN B. E., CHENTANEZ
N., O’BRIEN J. F.: Fluid animation with dynamic meshes.
In Proceedings ACM SIGGRAPH (New York, NY, USA, 2006),
ACM Press, pp. 820–825.

[KH06] KYLE HEGEMAN NATHAN A. CARR G. S. P. M.:
Particle-based fluid simulation on the gpu. In International Con-
ference on Computational Science (4) (2006), pp. 228–235.

[KvK07] KEES VAN KOOTEN GINO VAN DEN BERGEN A. T.:
Point-based visualization of metaballs on a gpu. GPU Gems III
(2007).

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3d surface construction algorithm. In Proceed-
ings ACM SIGGRAPH (New York, NY, USA, July 1987), vol. 21,
ACM Press, pp. 163–169.

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Symposium
on Computer Animation (2003), pp. 154–159.

[Mon92] MONAGHAN J.: Smoothed particle hydrodynamics.
Annu. Rev. Astron. Physics 30 (1992), 543.

[Mon05] MONAGHAN J.: Smoothed particle hydrodynamics.
Rep. Prog. Phys. 68 (2005), 1703–1759.

[MSD07] MÜLLER M., SCHIRM S., DUTHALER S.: Screen
space meshes. In SCA ’07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation
(Aire-la-Ville, Switzerland, Switzerland, 2007), Eurographics
Association, pp. 9–15.

[OVSM98] OWEN J., VILLUMSEN J., SHAPIRO P., MARTEL H.:
Adaptive smoothed particle hydrodynamics: Methodology ii. As-
trophys. J. Suppl. Ser. 116 (1998), 155–209.

[TH07] TAKAHIRO HARADA SEIICHI KOSHIZUKA Y. K.:
Smoothed particle hydrodynamics on gpus. In Computer Graph-
ics International (2007).

[ZP07] ZHANG Y., PAJAROLA R.: Deferred blending: Image
composition for single-pass point rendering. Comput. Graph. 31,
2 (2007), 175–189.

c© The Eurographics Association 2008.

146


