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Abstract

We introduce a new 3D shape descriptor which maps the surface features onto an arbitrary template surface using
mean-value interpolation. A compact numerical shape descriptor is extracted using manifold harmonics on the
template. We show that mean-value interpolation is a strong alternative to the often used projection. The utility of
using different templates is established by showing that concatenating descriptors coming from different templates

improves retrieval quality.

1. Introduction

Content based 3D shape retrieval has drawn considerable at-
tention of researchers. Existing surveys [IJL*05, BKS*05,
TV08,SB07,BDFF*08] not only describe, compare, and test
the proposed approaches but also introduce their classifica-
tions. Without trying to provide another comprehensive clas-
sification method nor claiming any novelty, let us set up the
context for our approach by highlighting three components
that frequently go into the construction of some numerical
shape descriptors. The discussion afterward should clarify
our use of this specific component delineation and naming.

The first component is the selection of surface feature. By
surface feature we mean any function on the surface that cap-
tures a property relevant to shape description. Examples in-
clude the constant function (restriction of the surface’s char-
acteristic function to the surface itself), distance to the cen-
ter of mass, curvature, components of the normal vector, and
many others. We refer to the selected function as the feature
function.

The second component is mapping the feature function
to, perhaps, a different domain. The feature function is used
to construct a new function defined on some predetermined
domain; we call this domain as the mapping domain, and
the new function as the mapped feature function. The exist-
ing approaches use spheres, planes, the 3D space (surface’s
bounding volume), the surface itself as mapping domains.
The mapped feature function is usually constructed by some
kind of projection. When the mapping domain is the surface
itself, the mapped feature function is just set equal to the
feature function.
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The third component is signal processing to extract a
concise, noise-robust numerical shape descriptor from the
mapped feature function. The type of processing depends on
the mapping domain: for sphere one may use the Spherical
Harmonic Transform, for a plane or a box volume — 2D or
3D Fourier transform, ball volume — 3D Zernike Transform.
Essentially, in all of these cases the mapped feature function
is expanded in a series in terms of the relevant basis, and the
expansion coefficients are used as the shape descriptor.

To provide examples, let us analyze a few existing de-
scriptors in the described terms. Consider the descriptor of
[SVO1] where rays are shoot from the origin (center of mass
of the mesh) to determine the distance to the farthest inter-
section point with the mesh. The rays can be parameterized
by the unit sphere, and as a result one obtains a function de-
fined on the sphere. Next, the spherical harmonic transform
is applied to this function to extract the numerical shape de-
scriptor. In our terms, the feature function is the distance
from the mesh point to the origin; the mapping domain is
the unit sphere; mapped feature function is obtained by pro-
jecting the feature function onto the sphere, and if two mesh
points project to the same sphere point, one resolves the am-
biguity by selecting the larger function value; finally, the sig-
nal processing component is performed using the spherical
harmonic transform.

The depth-buffer descriptor [HKSV02] places a normal-
ized mesh into a unit cube, and generates six gray-scale im-
ages on each face of the cube by parallel projection. The
grayness value is set based on the distance from the cube
face to the model. Coefficients obtained by applying the
2D Fourier transform to each of the six gray-scale images
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are used as descriptors. In our terms, for each of the cube
faces, the feature function is the distance from mesh point
to the face; mapping domain is the cube face; the mapped
feature function is obtained by projecting the feature func-
tion onto the face, and if two mesh points project to the
same face point, one resolves the ambiguity by selecting the
smaller function value; the signal processing component is
performed using the 2D Fourier transform.

These examples can be multiplied especially by noting
that our second and third components roughly correspond to
the object abstraction and numerical transformation compo-
nents of [BKS*05]. After such a consideration the following
picture emerges: numerical descriptors tend to use a map-
ping domain different from the original surface, and in al-
most all of such cases the mapping domain is one of the
primitive geometries.

This observation is not surprising. In fact, when the map-
ping domain is not a primitive geometry one is limited to
using a histogram, and histograms, except when a few judi-
ciously chosen features are combined to obtain a joint dis-
tribution [ASSY07], do not capture as much information as
the expansion coefficients obtained using signal processing.
Indeed, expansion coefficients can be used to reconstruct
the original function up to some precision. Thus, one is led
to use mapping domains that are equipped with well es-
tablished signal processing tools, which limits the possible
choices to simple geometries.

However, it was suggested by Mademlis et. al
[MDTSO08b] that since ellipses approximate elongated
shapes better than spheres, they were more appropriate to
serve as mapping domains than spheres. Indeed, Mademlis
et. al. showed experimentally that using ellipsoidal harmon-
ics gives better retrieval results than the spherical harmonics
of [KFRO3].

Our main contribution is to take this suggestion of
Mademlis et. al. further by allowing the use of any fixed sur-
face — ‘template” — as the mapping domain. We achieve this
using two ideas: first, to obtain the mapped feature function
we propose to replace projection by mean-value interpola-
tion; second, we use the Laplace-Beltrami eigenfunctions
— manifold harmonics in the terminology of [VLO8] — to
perform signal processing on the mapping domain. In other
words, interpolation is applied to extend the feature func-
tion from the model surface to the template surface, then,
we expand the new function in terms of the template’s man-
ifold harmonics, consequently extracting the low-frequency
expansion coefficients as the shape descriptor.

It may be tempting to altogether bypass mapping to a
fixed template, and expand the feature function in terms of
the manifold harmonics of the original surface. However,
it is very difficult to match the manifold harmonics com-
ing from different surfaces; see [JZ06] for problems en-
countered when dealing with eigenfunctions. The use of a
fixed template avoids this problem by making sure that the

extracted expansion coefficients are in correspondence and
their comparison is meaningful. Let us note, however, that it
is possible to match some other spectral properties directly,
and there exist shape descriptors based on the eigenvalues
[RWPO06] and eigenfunction distance histograms [Rus07] of
the Laplace-Beltrami operator.

Mean-value interpolation [Flo03,FKR05,JSWO05] is a first
order polynomial precision interpolation scheme that can be
used to extend a piecewise linear function from a surface
mesh to the entire ambient Euclidean space. Our reliance
upon mean-value interpolation to obtain the mapped fea-
ture function rather than projection can be justified as fol-
lows. For projection, a correspondence between the model
and template surface points is established, and the feature
function values are transferred to the template using this cor-
respondence. Since the correspondence is generally not one-
to-one, the resulting mapped feature function can be discon-
tinuous when there are overlaps. Therefore, its expansion in
terms of manifold harmonics will be subject to the Gibbs
effect, rendering the low-frequency expansion coefficients —
the ones used as the shape descriptor — inadequate for rep-
resenting the function. In addition, when different templates
are used, we expect projection to lead to high redundancy,
limiting the gains of concatenating descriptors obtained from
different templates. Indeed, if there are no overlaps, the value
sets of the mapped feature functions on various templates
will be the same, with only difference being how the values
are distributed over the template surfaces.

In contrast, the mean-value interpolation has the following
benefits. First, the relative positions and distances between
the template and the model surface influence the mean-value
interpolant greatly, which leads to less redundancy between
interpolants obtained for different templates. Second, the
mean-value interpolant is continuous. Third, in principle, a
mesh can be reconstructed if the mean-value coordinates —
mean-value interpolation is based on these — are given every-
where in the space; consequently, one may reasonably ex-
pect that interpolation based on mean-value coordinates im-
plicitly injects even more shape information into the mapped
feature function.

Our experimental results confirm that mean-value inter-
polation provides a strong alternative to projection, and
that manifold harmonic expansion coefficients are useful
as shape descriptors. We also show that concatenating de-
scriptors coming from different templates improves retrieval
quality.

2. Construction

We describe the construction of the template based shape de-
scriptor stage by stage, following the component description
of Introduction. Models in the search database are assumed
to be given as triangle meshes; we will use the terms sur-
face, surface mesh, and mesh interchangeably. We let S de-
note any surface in the database. All models in the database
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are assumed to be normalized to achieve translation, rotation
and scale invariance of the resulting shape descriptor. The
standard normalization is used: first, the origin is shifted to
the center of mass of the surface mesh; second, continuous
PCA of [VSRO1] is used to orient the mesh; third, the mesh
is isotropically scaled to have a unit variance. The effective-
ness of such a normalization has been corroborated in the
literature [BKS*05].

A fixed surface T' will be used as the mapping domain;
we refer to it as the template. The template can be one of
the surfaces in the database, or any other closed manifold
surface mesh chosen arbitrarily.

2.1. Selection

A variety of possibilities exist as a choice for the surface fea-
ture — distance to the center of mass, curvature, components
of the normal vector, and many others. We denote the fea-
ture function by f, where f : S — R is a real-valued function
on the model surface. Let us mention that due to the inter-
polation schemes employed, f cannot be the characteristic
function of the surface. In fact, it restricts to a constant func-
tion on the surface, and the interpolation schemes we con-
sider extend the constant function to a constant function ev-
erywhere, making impossible extraction of any meaningful
information. Linear functions of the x,y,z coordinates can-
not be used for a similar reason — they also extend to a linear
function everywhere when mean-value interpolation is used.
To focus our discussion, we follow [SVO1] and choose the
feature function to be the distance to the center of mass — the

origin: f(p) = |p|.p € 5.

2.2. Mapping

In this step, one constructs the mapped feature function us-
ing the feature function of the surface, namely we define
a new function f : T — R based on the given function
f S — R. For comparison we will consider two schemes:
Shepard interpolation and mean-value interpolation.

Given a set of scattered points p; where the values f(p;)
are known, the Shepard interpolant [She68, GW78] is de-
fined as follows

R Wi )
f(P) — Zl l(p)f(pl)7
Y Wl(p)

where w; are user assigned weights. The most commonly
used weights are of the following form

peR3

—Q
wi(p) = |p— pil
where o is a positive parameter. Shepard interpolant has the
zeroth order precision meaning that the constant functions
are reproduced, i.e. if f is a constant function, then f is also
constant.

)

In our experiments, to obtain points p; we uniformly sam-
ple the area of the model surface, and evaluate the feature
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function at these points. The mapped feature function is eval-
uated at the vertices of the template mesh 7" using Shepard
interpolation with the values of o = 1,2, 3.

Mean-value interpolation [Flo03,FKR05,JSWO05] is an in-
stance of more general barycentric interpolation. For an ar-
bitrary triangulated surface mesh with vertices vi,vy, ..., vu,
the functions b; : RP SR i= 1,...,n are called barycen-
tric coordinates if they satisfy the following three properties:
partition of unity,

i=

affine combination
n
Z b i (p )Vi =D,
i=1

and Lagrange property
bi(vj) = 8ij.

Due to these properties, the barycentric coordinates can be
used for interpolation: given function values f(v;) on the
mesh vertices, one extends it to the whole space by setting
for each p € R,

f(p) = i‘ibi(p)f(w)

The barycentric interpolant has the first order precision
meaning that the linear functions of coordinates x,y,z are
reproduced, i.e. if f is a linear function, then f is also linear.

In our experiments, we use mean-value coordinates be-
cause they are fastest to evaluate. We compute the feature
function values at the vertices of the model mesh, and then
evaluate the mapped feature function at the vertices of the
template mesh using mean-value interpolation. Our imple-
mentation of mean-value coordinates follows the pseudo-
code presented in [JSWO05].

For both barycentric and Shepard interpolation, the rel-
ative positions and distances between the template and the
model surface influence the interpolant greatly, leading to
less redundancy between interpolants obtained for different
templates. It is also important to notice that due to the La-
grange property, one can reconstruct the mesh vertices if
the barycentric coordinates are given everywhere. In addi-
tion, the triangle faces can be reconstructed by finding the
triplets of non-zero barycentric coordinates such that all re-
maining barycentric coordinates are zero. Therefore, a tri-
angular mesh can be reconstructed from its barycentric co-
ordinates, which leads us to believe that interpolation done
using barycentric coordinates injects even more surface in-
formation into the interpolated feature function.

2.3. Signal Processing

Signal processing is important to shape description at least
due to two factors. First, for shape description it is crucial to
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reduce the amount of noise so that only the essential prop-
erties of the shape are captured. Second, compact numerical
shape descriptors are naturally provided by signal process-
ing. Both goals are achieved by expanding a given function
in a series and using the expansion coefficients of the low-
frequency components as the shape descriptor. Keeping only
the low-frequency part not only results in a compact descrip-
tor, but also is essentially equivalent to smoothing the func-
tion — making the descriptor more robust to noise.

The relevant signal processing bases for simple geome-
tries — plane, sphere, space — are well known and are exten-
sively used. However, we need to perform signal processing
on the template surface 7 that can be any closed manifold
triangle mesh. As has been corroborated in the literature,
most recently in [VLOS], Laplace-Beltrami eigenfunctions
provide the sought basis in this setting. For example, the
spherical harmonics used so often in shape retrieval are noth-
ing but the Lapalce-Beltrami eigenfunctions of the sphere.

We first review the continuous setting for Laplace-
Beltrami operator. For a closed compact manifold surface 7',
let A denote its Laplace-Beltrami differential operator. Con-
sider the equation

Ad = A9.

A scalar A for which the equation has a nontrivial solution is
called an eigenvalue of A; the solution ¢ is called an eigen-
function corresponding to A. Note that A = 0 is always an
eigenvalue — the corresponding eigenfunctions are constant
functions.

The eigenvalues of the Laplace-Beltrami operator are
non-negative and constitute a discrete set; we can put them
into non-decreasing order: A; =0 <A < A3 < ... <A <
.... The eigenfunction corresponding to A;, normalized to
have the unit L, norm will be denoted by 0;.

Since the Laplace-Beltrami operator is Hermitian, the
eigenfunctions corresponding to its different eigenvalues are
orthogonal: (¢;,0;) = [7¢;¢; = 0. Thus, the eigenfunctions
of Laplace-Beltrami operator give an orthogonal basis for
the space of functions defined on the surface. As a result, a
given function g on the surface can be expanded in terms of
the eigenfunctions

g=cidpr+cdo+--, (D

where the coefficients are given by
ci = (g,0:) =/ 8%i-
T

It is known that low-frequency eigenfunctions (small A) dis-
play less oscillation on the surface. Thus, similarly to the
standard Fourier analysis, truncating the series expansion
results in smoothing. Put differently, the expansion coeffi-
cients corresponding to the beginning of the series capture
the essential properties of the function; for a discussion see
[BNSO06].

Due to its relevance to the metric to be used with the shape
descriptor, let us mention that if two functions g and g’ have
expansions g = ¥, c;0; and g’ = ¥; c/¢;, then the Ly norm of
the difference between g and g’ can be evaluated as

Js=¢7
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where we have used the orthogonality of the eigenfunctions.
This equality should be kept in mind to justify our later use
of Euclidean distance between the feature vectors.

In the discrete setting the Laplace-Beltrami operator of a
manifold triangle mesh without boundary is given by a ma-
trix, and its eigenvectors are used to expand a discrete func-
tion given on the mesh. For a mesh function g , the value of
Ag(p;) at the vertex i is approximated as

Ag(pi) ~ rl mij (8(pj) —8(pi)); ()
' JEN()
where the summation is over all vertex indices j adjacent to
vertex i. It is customary to refer to r; as the point-areas. For
the Laplacian we use, m;; # 0 only if i and j are adjacent,
and the equality m;; = mj; holds for all i, j.

Let us stack up the values of the function at mesh vertices,
g(pi), to construct the column-vector g. Now, the above
formula can be written as a matrix-vector multiplication
Ag ~ Lg. The involved matrix L — the discrete Laplacian—
has the entries as follows

Yim/ri ifi=j,
Lijj={ —m;j/r; ifiand jadjacent,
0 otherwise.

Now the Laplace-Beltrami eigenvalues/eigenfunctions are
replaced by the eigenvalues A; and eigenvectors V; of the ma-
trix L.

Since the point-areas r; associated with mesh vertices vary
from vertex to vertex, the discrete Laplacian matrix L is
not symmetric. However, finding L’s eigenvalues and eigen-
vectors in all cases can be reduced to a symmetric eigen-
value problem. In fact, consider the diagonal matrix R with
Rj; = rj; denote by M the matrix whose entries are given by
M,'j = mjj if i # j, and Mj; = l;;r;. Notice that L = RilM.
Now we can easily check that L is similar to the symmetric
matrix K = R™2MR™?. Thus, the eigenvalues and eigen-
vectors of L can be evaluated from those of K: if w; is an
eigenvector of K with eigenvalue A;, then V; = R? w; is the
eigenvector of L with the same eigenvalue A;.

Another crucial point is that the eigenvectors of L are or-
thogonal. However, the orthogonality here is in terms of the
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R-inner (dot) product:
RN T
<V,‘7VJ'>R =V Rv]' = 8,']'.

Finally, the series expansion of the mesh function g, which
is represented by vector g, is given as

g=Y civi, ci=(&.V)r=§ Rv:.
i

In our experiments we use the Laplacian of [MDSBO02]:
m;; are the cotangent weights, and points areas r; are given
in terms of vertex Voronoi areas. The template mesh is only
processed once to extract its first N eigenvectors and also the
diagonal matrix R — only these are needed to obtain the ex-
pansion coefficients ¢;. We use the value of N = 20. Since
the template surfaces we consider have about 500 vertices,
the processing takes less than a few seconds. Storing R (ap-
prox. 500 non-zero entries) and the eigenvectors consumes
about 500 x N 4500 = 10,500 floating numbers.

When computing the shape descriptor for the surface S,
we obtain the mapped feature function f : T — R as de-
scribed in the previous subsection. We also compute the fea-
ture function of the template, fr. The function that is ex-
panded in terms of the eigenvectors is g = f /fr. Since N
eigenvectors and the matrix R have already been computed
and stored, we only need to do the vector-matrix multiplica-
tions to extract the needed coefficients ¢;,i = 1, ..., N, which
is done extremely fast. Finally, our feature vector consists of
N floating numbers, namely FV = (cy, ¢y, ...,cn), and as ex-
plained in the continuous setting, the Euclidean distance is
the appropriate measure of distance to use between feature
vectors. Notice that when § and T coincide, g = f/fr = 1,
and the feature vector is of the form FV = (a,0,...,0). We
scale all feature vectors to achieve a = 1.

3. Experiments and Discussion

For our experiments we use the Watertight Benchmark
[GBPO7] which consists of 400 closed surface models, di-
vided into 20 equal object classes. Some of the classes in-
clude both different objects and articulations of the same ob-
ject. all objects are normalized by shifting the origin to the
center of mass, scaling to obtain unit variance, and rotating
using PCA.

We use feature vector size of N = 20; similarity is mea-
sured by Euclidean distance. The templates used in the ex-
periments, except the sphere, were chosen randomly and are
depicted in Figure 1. These were obtained from models in
the benchmark by decimating using QSlim [GH97]. This
was done to make the computation of shape descriptors less
time consuming.

Our implementation was done in MATLAB, except mean-
value and Shepard interpolation part that was done in C++
and called within MATLAB as needed. To give an idea about

(© The Eurographics Association 2009.

Figure 1: Randomly chosen template surfaces used in the
study. These are obtained by simplifying the benchmark
models identified by numbers — top row: 306, 13, 359; bot-
tom row: 236, 266, 388.

the timing: evaluating the shape descriptor based on mean-
value interpolant takes on average slightly less than 1 minute
per template.

We conduct a series of “leave-one-out” experiments: ev-
ery model in the benchmark is queried against all other mod-
els. The ranked result lists generated by the queries are used
to compute five retrieval statistics: nearest neighbor (NN),
first tier (FT), second tier (ST), discounted cumulative gain
(DCG), and average dynamic recall (ADR).

In our first experiment we compare the effects of us-
ing projection versus mean-value and Shepard interpolation.
Since the mapping domain is the sphere, the descriptor ob-
tained using projection is equivalent to that of [SVO1]. Shep-
ard interpolation can be controlled through the use of the pa-
rameter 0, so we experimented with three choices as shown.
The choice was based on the fact that the long distance be-
havior of mean-value interpolant is similar to that of Shepard
interpolant with ot = 2.

The statistics summarized in Table 1 show that barycentric
interpolation and projection show very similar retrieval per-
formances. Surprisingly, on the other hand, Shepard inter-
polation performs considerably worse than the mean-value
interpolation. It is natural to link this to the difference in
the order of approximation provided by these interpolation
schemes, yet we believe this fact should be investigated fur-
ther. We also note that the expression for Shepard interpo-
lation has connections to physical force potentials, so the
ramifications of our observations to force field based shape
descriptors [MDTS08a, GLLO7] can be interesting.

In our second experiment we investigate the effect of us-
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Figure 2: The average ADR values for each class shown by template used.

Mapping NN FT ST DCG | ADR
Projection 76.8 | 314 | 456 | 68.3 | 555
Mean-value 735 | 323 | 452 | 68.0 55.7
Shepardov=1 | 61.0 | 25.0 | 39.3 | 61.5 | 46.3
Shepardoe=2 | 71.3 | 269 | 41.8 | 64.8 | 50.4
Shepardov=3 | 72.0 | 27.3 | 40.7 | 65.0 | 50.8

Table 1: Comparison of various mapping methods. All num-
bers are percentages.

ing different templates with mean-value interpolation. Table
2 shows the statistics for the templates depicted in Figure
1. The table also shows the retrieval results of combined de-
scriptor obtained by simply concatenating the feature vectors
for all the templates. The improved retrieval resulting from
such combination shows that the descriptors corresponding
to different templates are independent. This point is further
corroborated by Figure 2 which shows the average ADR per
each class for every template used. Let us note that the tem-

Template NN FT ST | DCG | ADR
Sphere 73.5 | 32.3 | 452 | 68.0 55.7
Pliers 725 | 345 | 49.6 | 68.6 55.6
Horse 78.8 | 34.8 | 484 | 70.0 57.9
Teddy-bear 77.0 | 35.1 | 49.2 | 69.7 58.0
Fish 78.8 | 35.8 | 499 | 70.5 58.3
Hand 80.5 | 356 | 49.6 | 709 58.3

All combined | 81.3 | 39.0 | 55.1 | 73.3 61.6

Table 2: Using variety of templates for shape retrieval.

plates have also been processed by the normalization applied
to the whole benchmark, so they span similar spatial regions.
Consequently, the descriptors could have been made much
more independent if the templates were differently posed.

4. Summary and Future Work

We have introduced a new shape descriptor which maps
the surface features onto an arbitrary template surface using
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mean-value interpolation, and extracts a compact numerical
feature vector using manifold harmonics of the template. We
have shown experimentally that mean-value interpolation is
a strong alternative to the prevalently used projection. The
usefulness of using different templates was shown, and their
independence established.

In the future work we plan to investigate the dependency
between the nature of the template and the produced retrieval
results. We believe that there does not exist “an ideal” tem-
plate that would be optimal for all kinds of shape reposito-
ries. In fact, the main flexibility offered by our approach is
that one can choose optimal templates based on the shape
database at hand — protein shapes can benefit from differ-
ent templates than mechanical engineering parts. Designing
approaches for selecting/generating these optimal templates
for a given shape database is an interesting direction for fu-
ture work. We also would like to investigate the possibility
of constructing an intrinsically rotationally invariant shape
descriptor using similar ideas.
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