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Abstract
A high-level approach to describe the characteristics of a surface is to segment it into regions of uniform cur-
vature behavior and construct an abstract representation given by a (topology) graph. We propose a surface
segmentation method based on discrete mean and Gaussian curvature estimates. The surfaces are obtained from
three-dimensional imaging data sets by isosurface extraction after data presmoothing and postprocessing the
isosurfaces by a surface-growing algorithm. We generate a hierarchical multiresolution representation of the iso-
surface. Segmentation and graph generation algorithms can be performed at various levels of detail. At a coarse
level of detail, the algorithm detects the main features of the surface. This low-resolution description is used to
determine constraints for the segmentation and graph generation at the higher resolutions. We have applied our
methods to MRI data sets of human brains. The hierarchical segmentation framework can be used for brain-
mapping purposes.

1. Introduction

One of the great challenges in neuroscience in the coming
decade is to unify information collected in different brains
of the same species. For example, one would like to collate
the many studies from functional magnetic resonance imag-
ing (fMRI) across subjects into a common neuroanatomi-
cal atlas. Or it may be desirable to combine studies of neu-
roanatomical connectivity obtained from different animals
into a canonical brain in order to reveal the overall trends
in connectivity between areas. However, doing this requires
solving a difficult correspondence problem - namely, map-
ping the details of an individual brain onto the atlas (or vice-
versa).

The major structural feature of the cerebral cortex is the
pattern of folds - sulci and gyri - that constitute the surface
of the cortex, see Figure 1. To map the cortex of one brain
into another, one should thus detect the sulci and gyri of the
brain’s boundary. From a geometric modeling perspective,
this means that we have to extract the boundary surfaces of
three-dimensional features or shapes from the reconstructed
three-dimensional high-resolution data set and segment the
surfaces into regions of interest. The segmented surfaces can

Sulci

Gyri

Figure 1: Boundary of brain in 2D image slice.

be used to map annotations from a brain atlas to the patient
brain.

We describe a pipeline of steps leading from volume data
to segmented boundary surfaces of three-dimensional fea-
tures. The motivation and driving force for this project is
brain mapping. Similar problems occur in many other ap-
plications. In fact, the individual steps address various prob-
lems dealt with in computer graphics and scientific visual-
ization, and many of them can be regarded independently
from the other steps.
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For extracting the boundary surfaces of the three-
dimensional regions of interest from the given volume data,
we use standard isosurface extraction algorithms. However,
scanned data can be very noisy, especially when using MRI
techniques. Thus, some effort needs to be spent in construct-
ing a “smooth” and “clean” isosurface.

Such a cleaned-up isosurface is then used for further ex-
amination. We exploit curvature estimates to characterize the
behavior of the surface. Since on the highest resolution the
behavior of the surface changes a lot due to much spurious
details, we use a hierarchical representation of the extracted
surfaces. When changing to a coarser resolution, fine details
get lost and only the main surface characteristics are main-
tained. For example, when looking at a brain’s boundary the
small bumps on the gyri vanish, and on each of the gyri the
surface shows a uniform curvature behavior.

The characterization leads to surface segmentation algo-
rithms. Furthermore, the characterization can be used for
topological analysis of the surface, which we can then store
in a graph. If we compare two similar data sets and extract
the same clean isosurface from both of them, their surface
segmentations and topology graphs can be used to compare
their global shapes and, ultimately, map one of the surfaces
to the other. A multiresolution mapping generates correspon-
dences between the topology graphs on a coarsest resolution
and then goes step by step to the highest resolution while
mapping the added, more detailed information locally. In
such a way, we can automatically map annotations from a
brain atlas to a patient brain.

2. Related Work

Automated feature recognition and brain labeling have been
studied for over twenty years, leading to a large number of
approaches. An exhaustive survey of the field is beyond the
scope of this paper. We restrict ourselves to the description
and discussion of techniques closely related to our work. For
more detail, we refer to Thompson et al.38.

First approaches used rigid models and spatial distribu-
tions. Talairach and Tournoux36 defined a stereotactic at-
las, expressed in an orthogonal proportional grid system that
they rescaled to a patient brain, assuming one-to-one cor-
respondences with specific landmarks. However, the use of
proportional transformations are not sufficient to perfectly
describe inter-subject variabilities, i. e., variabilities from
one brain to another. Evans et al.7 used a template match-
ing procedure with the definition of regions of interests,
which are transformed to match a given MRI data. To deal
with inter-subject variability and user interaction, these rigid
models were treated with more elastic transformations 2, 5, 10.
Lancaster et al.19 described a method to hierarchically sub-
divide the atlas into finer regions, i. e., from the cortex to the
lobes to the gyri. Then, specific rules of segmentation are
applied, coupled with the Talairach coordinates. Instead of

subdividing the atlas, local referential frames are used in the
method of MacDonald et al.24 to describe the spatial distri-
bution of the small folds. The main drawback of rigid models
is that the static structure does not adjust very well to inter-
subject variations.

Deformable models were introduced as a means to deal
with the high complexity of the brain surface by providing
atlases that can be elastically deformed to match a patient
brain. Extending the concept of snakes18 from the 2D case,
these surface-based deformation algorithms 4, 9 achieve fea-
ture matching by minimizing a cost function. This cost func-
tion is an error measure defined by a sum measuring defor-
mation and similarity. Some approaches rely on the segmen-
tation of the main sulci, guided by a user 6, 37, 39, while others
automatically generate a structural description of the sur-
face. Automatic segmentation can be achieved by different
methods, including transformations of the medial axis of the
sulci 35 or generation of the skeleton of the features 27. San-
dor et al.33 parametrize the atlas with B-spline surfaces ob-
tained from mathematical morphology and edge detection.
Then, controlled by cost minimization, the atlas surface is
deformed to match the patient brain.

Even though active surface methods can provide good re-
sults, the highly non-convex shape of the cortical surface
can prevent a correct segmentation. Moreover, standard tech-
niques support neither robust segmentation nor explicit visu-
alization. For example, skeleton techniques succeed in trac-
ing the folds but do not provide sufficient graphical infor-
mation. Thus, more recent techniques used in brain mapping
integrate high-level representations. This high-level descrip-
tion of the human cortex can involve graphs, multiresolution
representation, or parametric/statistical models of the sulci.

The method described by Le Goualher et al.20 mixes graph
representations and a parametric representation using an ac-
tive ribbon method. The nodes of the graph are the sulci,
and the edges are the relations between them. An operator
selects the correct label to assign a node from a spatial dis-
tribution of the ribbons. Although the method provides auto-
matic feature detection, the user needs to manually select the
matching sulci. The approach described by Rivière et al.30

uses a graph representation guided by the minimization of
a global function that computes the likelihood of assigning
a name to a fold. Likelihood is computed from a learning
database. However, for recognizing/analyzing a sulcus, the
sulcus needs to be oversampled. Identification of small sul-
cus splits may fail. Cachier et al.3 treat the geometric prob-
lems resulting from the convexity of the surface by integrat-
ing the method of Rivière et al.30 and feature-point matching.
Their technique minimizes a registration function that takes
into account geometric and intensity information. Registra-
tion of sulci is done differently for upper and lower brain re-
gions. Lohmann et al.22 first segment the folds with a region-
growing algorithm and then label these regions, called sul-
cal basins, using a point-distribution model of the atlas and
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Figure 2: Processing pipeline from a volume data set to a segmented and topologically analyzed isosurface.

a patient brain. However, matching point positions of brain
data sets can lead to a wrong identification when high inter-
subject variation exists. Hellier et al.14 segment folds with
an active-ribbon method and a non-rigid registration. Geo-
metric distances between features are minimized, but wrong
identification is still possible.

Level set methods, described, for example, by Malladi et
al.25, are widely used techniques for highly convex shapes.
These approaches, based on local energy minimization,
achieve shape recognition requiring little known information
about the surface. However, initialization must be done close
to the desired boundary, and it often requires user interaction
for seed placement. Several approaches have been proposed
to automatically tune the seeding process and adapt the ex-
ternal propagation force, see Baillard et al.1, but small fea-
tures can still be a problem. Using a multiresolution repre-
sentation of the cortical models, Jaume et al.17 progressively
match patient and atlas meshes. Folds are annotated accord-
ing to size at a given resolution. The choice of the resolution
is crucial though. It is not guaranteed that same features will
show up at same resolution for different brains.

Considering all drawbacks from known approaches, we
decided to use high-level representations for our approach
and integrate several techniques to address all arising prob-
lems for accurate segmentation/labeling. Our segmentation
method runs without any user intervention or initialization,
since it is based on constant shape properties extracted by
local curvature estimates (automatic segmentation). Many
other techniques for mesh segmentation have been proposed,
see, for example, 26, 40. The segmentation criteria often de-
pend on the application. Our geometric approach ensures

that the segmentation is not dependent on feature sizes and
allows us to detect small and narrow sulci (insensitive to
feature sizes). Our topological description, represented by a
graph of features (at different resolutions), copes with inter-
subject variability. Even though shape and position of fea-
tures are different for different human cortices, the general
layout is similar (inter-subject stability). Feature coloring,
detection/visualization of sulci, and topology graph repre-
sentation provide different graphical tools to understand and
exploit the complex cortical surface (visual understanding).

3. General Framework

The input of our processing pipeline is a sequence of im-
ages (possibly at high resolution), all perfectly aligned. The
data generated by MRI techniques fulfill this condition. If
the images are not aligned, one has to apply tools for regis-
tering the data, see Shulga and Meyer 34. Figure 2 shows our
data-processing pipeline.

Depending on the method used for scanning the brain, the
volume data can contain various amounts of noise. In the
case of noisy data, we apply a smoothing filter to the vol-
ume data. The smoothing filter is supposed to remove only
high-frequency noise and should not affect relevant major
geometrical features. Therefore, we have used local smooth-
ing operators.

After data preprocessing, we extract a model from the
volume data by using standard isosurface-extraction meth-
ods. An isosurface might consist of many components. In
our experiments with brain data sets, we usually obtained
one component representing the boundary of the brain, and
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many small and isolated “island” components due to still
existing noise. We use a surface-growing algorithm to con-
struct a “clean” version of the isosurface consisting only of
one component. In Section 4, we describe the steps used for
extracting clean isosurfaces from volume data.

Characterizing the surface curvature behavior on this
high-resolution isosurface leads to small regions of different
type. To reduce this effort, we generate a multiresolution rep-
resentation of our isosurfaces. Its generation is described in
Section 5. On a coarse level of representation, only the main,
global features of an isosurface are maintained, whereas de-
tails are suppressed.

In Section 6, we describe a method, based on operators
for Gaussian and mean curvature estimation, to characterize
and classify the surface.

This classification can be used to segment the isosurface
at a coarse level of detail, see Section 7. The segmentation
also describes the topological behavior of the surface, which
is stored in a graph.

4. Extracting a Clean Isosurface

Let f be the discrete trivariate scalar function representing
a given volumetric data set. For human brain data sets, f
describes the volumetric reconstruction of the brain from a
stack of two-dimensional cortical MRI images. When ex-
tracting isosurfaces with a marching cubes-like algorithm,
see Lorensen and Cline 23, we observed significant noise in
the data set. Especially in the direction of the z-axis some
blocky-looking artifacts appear. To deal with this problem,
we apply a smoothing filter to the function f . We use a three-
dimensional discrete Gaussian filter defined by a mask of
size 3× 3× 3. The weight of each coefficient of the filter is
chosen according to the size of the features (gyri and sulci)
of the brain data. The size of the filter determines its local-
ity. For resolutions obtained with standard MRI techniques,
a 3 × 3 × 3 filter is capable of removing high-frequency
noise without affecting the characteristics of the function f .
For higher-resolution data sets, a filter with a larger domain
should be considered. Alternatively, one could also apply
other smoothing methods such as geometric partial differen-
tial equations 32. Figure 3 shows the surface extracted from
the original data (left) and from the smoothed data (right).
Since our segmentation is based on curvature estimates, it is
desirable to work with a smooth surface of the cortex.

It is crucial to pick the “right” isovalue for isosurface ex-
traction. To validate the surfaces extracted from the MRI im-
ages, we designed a tool showing the level of agreement be-
tween original 2D slice images and the generated surfaces.
We show different original 2D slices of the brain data set and
visually superimpose them to an image of an extracted iso-
surface. For an original gray-scale MRI image slice, a cross
section (red contour) of the extracted isosurface is shown.
Depending on the isovalue, different surfaces are generated

Figure 3: Isosurface without and with smoothing original
data.

(i. e., white matter, gray matter, etc.). This tool allows us to
more accurately extract a “good” boundary surface. More-
over, it allows the neuroscientist to choose the “best” iso-
value representing the cortex. Figure 4 shows results.

Position

Iso−value

26.1 89.1 115.2

Figure 4: Matching of structures as seen in original 2D MRI
slices and extracted isosurfaces.

Having determined a good isovalue, the corresponding
isosurface extraction produces one large main component
and many small components. The small components are pro-
duced due to still existing noise that could not be eliminated
by the low-pass filter. Figure 5 (left) shows these isolated
components.

Figure 5: Removal of isolated components due to noise.
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Since the small isosurface components are irrelevant for
segmentation of the cortex, we remove them by using a
surface-growing algorithm. The surface-growing generates
a half-edge data structure. The algorithm distinguishes be-
tween the different components and picks the largest one,
representing the human cortex. The resulting surface is
shown in Figure 5 (right).

5. Multiresolution

The surface of the human cortex is highly non-convex de-
spite the “smoothness” of the isosurface. Even within a
gyrus or a sulcus there are several bumps, i. e., the surface
changes its curvature behavior. To isolate the main features,
our method uses a multiresolution representation of the cor-
tical surface. It is important to detect the main folds and not
the small variations on a gyrus. If we segment the surface
at a high resolution, the generated topology graph would be
too complex to use for mapping. For example, the mapping
could find a correspondence between a fold on a gyrus and
a real sulcus. A way to preserve the main folds while elimi-
nating details is to create a low-resolution representation of
our model of the cortex.

Starting from the original model that represents the high-
est resolution, we simplify the triangular mesh iteratively.
At each step, the surface is segmented to extract the prin-
cipal sulci and gyri. This approach leads to a hierarchy of
segmentations. The segmentation at a low resolution defines
constraints for more complex features detected at the higher
resolutions. Figure 6 illustrates this process.

A
P Patient brain

Atlas brain

Higher resolution

Lower resolution

Mapping

A A A

P P P

Figure 6: Multiresolution mapping.

To obtain a multiresolution representation, we use a sim-
plification algorithm based on the progressive representation
introduced by Hoppe 16. Alternatively, it is possible to use
the algorithm of Hamann 13 based on triangle elimination.
The only operation of Hoppe’s simplification algorithm ap-
plied to a triangular mesh is an edge collapse. Although col-
lapsing an edge is a simple operation, it can modify both
topology and geometry. To ensure consistency of our mesh,
we use consistency checks from Hoppe et al.15, which are
based on topological analyses in the neighborhood of the
collapse.

For each edge of the mesh an error corresponding to the
cost of its collapse is computed and stored. According to

this value an ordered heap of edges is created. During mesh
simplification, the method considers the top edge, checks
for consistency, and, if possible, collapses it. This process
is highly dependent on the error metric used to decide which
edge to collapse. Many metrics have been proposed for edge
collapse algorithms over the past decade 8, 11, 16, 21, 31. Most
of these metrics try to preserve sharp edges and details. We
instead want to remove details even in regions of high cur-
vature. Thus, our error metric is only based on edge length,
and our goal is to create an even distribution of vertices on
the surface. After a valid collapse, the 1-ring neighbor of the
edge must be updated, see Figure 7.

Edge to collapse

Vertex resulting
2−ring neighboor

1−ring neighboor

Faces to remove

Figure 7: Modification of mesh in neighborhood of col-
lapsed edge.

Topology (i. e., adjacency between triangles) and geome-
try (i. e., position of the resulting “collapse” vertex) are mod-
ified by an edge collapse. An edge collapses to its midpoint.
We decided not to optimize the position to keep computa-
tion costs low. Also, choosing midpoints keeps the risk of
self-intersections low. It is our experience that the surface
is still well preserved even when approaching rather coarse
resolutions, see Figure 8.

100% of original data 10% of original data

Figure 8: Multiresolution surface representation.

6. Discrete Curvature and Surface Characteristics

A surface’s behavior can be described by dividing the sur-
face into disjunct regions of elliptic paraboloid behavior
(in the following called elliptic behavior) and hyperbolic
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paraboloid behavior (in the following called hyperbolic be-
havior). Let p be an arbitrary point on the surface. The sur-
face’s behavior at p can be determined by considering the
curves on the surface that pass through p in the direction of
the principal curvatures, see Figure 9. The regions of elliptic
behavior can further be classified into convex and concave
regions by considering the direction of the surface normal
at p. When considering the cortex of a human brain, the gyri
contain convex elliptic regions, and the sulci contain concave
elliptic regions, whereas the blending area between gyri and
sulci is a hyperbolic region.

Figure 9: Elliptic and hyperbolic behavior.

When dealing with triangle meshes, the principal curva-
ture directions cannot be uniquely determined. Therefore,
we use estimates for so-called discrete mean and Gaussian
curvature. Many approximation schemes for curvature es-
timates meshes have been developed such as 12, 28. We use
some operators that were derived recently by Meyer et al.29.
In our application, we do not use the length of the operators
to determine the values for mean and Gaussian curvatures.
We only use direction and sign of the operators.

6.1. Mean Curvature

We use mean curvature estimates to distinguish between
concave and convex regions. Meyer et al.29 derived a vec-
tor operator K(xi) whose length is a discrete version of the
mean curvature at a vertex xi of a triangular mesh. Since we
are only interested in the direction of K(xi), we simplify its
definition and use an operator Kdir(xi). The vector Kdir(xi)
for a vertex xi is computed by a weighted sum of difference
vectors emanating from xi and ending at the vertices of xi’s
1-ring. The weight of the vector associated with edge ei j be-
tween xi and its neighbor x j depends on the cotangents taken
from the opposite angles of its adjacent faces. Its definition
is

Kdir(xi) =
Ni

∑
j=1

(cot α j + cot β j)(x j −xi) ,

where Ni is the number of neighbors constituting the 1-ring
of xi, and α j , β j are the opposite angles of ei j with respect to
its adjacent faces, see Figure 10. We use Kdir(xi) to define
the Boolean operator mean(xi), which distinguishes between

x  j

x  ix  i

x  j−1

x  j

eij

x  j+1β α j
j

Figure 10: Parameters used by mean curvature operator.

convex and concave regions. It is defined as

mean(xi) =

{

convex if Kdir(xi) · ni ≤ 0
concave if Kdir(xi) · ni > 0

,

where ni is a discrete approximation of the normal vector
at xi. In concave areas the operator Kdir(xi) and the normal
vector ni point in roughly opposite directions, whereas in
convex areas they point in roughly the same direction, see
Figure 11. This operator enables us to use a first classifi-
cation of the surface. The blue regions shown in Figure 11
refer to gyri, the red regions refer to sulci. The same col-
ors are used in Figure 13(a), where we show an example of
classifying a cortical surface based on mean curvature.

n n

nKK K

Figure 11: Exploiting the mean curvature operator to dis-
tinguish between convex and concave regions.

6.2. Gaussian Curvature

To further distinguish between elliptic and hyperbolic re-
gions, i. e., separate local extrema from blending regions,
we consider Gaussian curvature. We use an operator κG(xi),
whose length is a discrete approximation of the Gaussian
curvature, see 29. We use κG(xi) to create another Boolean
operator Gauss(xi), which is true if the vertex xi is a local
extremum (i. e., minimum for a sulcus or maximum for a
gyrus). The operator compares 2π with the sum of inner an-
gles θ j of all the adjacent faces of a vertex xi, see Figure
12. In the planar case, the angles sum up to 2π. When xi is
an extremum, a plane through xi exists, where all neighbor
vertices of xi lie on one side of that plane, see Figure 12.
Thus, the angles sum to a value smaller than 2π. When xi
is not an extremum and we compute the best fitting plane in
the least-squares sense through xi, the neighbor vertices lie
above and below that plane. In this situation, the angles sum
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up to a value larger than 2π. Hence, we are only interested
in the sign of the operator κG(xi) and define it as

κGsign(xi) = 2π −

Ni

∑
j=1

θ j ,

where θ j is the angle between the difference vectors x j −xi
and x j+1 − xi from vertex xi to its neighbors x j and x j+1,
see Figure 12.

xi

θ j

Figure 12: Data stencil used for Gaussian curvature estima-
tion.

In summary, our Boolean operator used to define surface
type is

Gauss(xi) =

{

elliptic if κGsign(xi) > 0
hyperbolic if κGsign(xi) ≤ 0

.

On Figure 13(b) we show a cortical surface classified based
on Gaussian curvature. Red regions indicate elliptic, blue re-
gions hyperbolic behavior.

7. Segmentation

By combining the operators mean and Gauss, we segment
a surface. Exploiting both Boolean operators leads to four
different cases, see Table 1. By detecting the extrema with
Gauss in an area known to be either a sulcus or a gyrus,
we can explicitly localize the minima of a sulcus and the
maxima of a gyrus. These points are of particular interest
to us as they are the seed points for generating a topology
graph. Following these regions simplifies the segmentation
and makes it more accurate. Figure 13(c) illustrates this idea
by encoding surface types with colors according to Table 1.

mean(xi) convex convex concave concave

Gauss(xi) hyperb. elliptic hyperb. elliptic

color green yellow blue red

Table 1: Possible combinations of surface types according
to curvature.

The segmentation indicates where we can place “criti-
cal” points, and it implies a topological representation of
the surface. We store topological information in a topology

graph.The topology graph construction relies on the segmen-
tation for the construction of its nodes and uses a contour-
growing algorithm to generate the relationships (edges).

Our graphs describe the topological relations between
sulci. We have chosen to use the sulci as nodes, as they
are typically used to recognize diseases; also they are sur-
rounded by the major gyri.

A node is constructed by collapsing all the adjacent ver-
tices lying on the same sulcus (i. e., its triangulation) at a
fixed resolution. For each node, we determine its position
and its size by averaging the positions of the vertices be-
longing to the sulcus and by computing the size of the area
covered by the sulcus. A relation (edge) between two sulci
indicates that they are close to each other. This information
is obtained by growing a contour starting from the boundary
of a sulcus S0. When the growing contour intersects another
sulcus Si, a relation between S0 and Si is created.

The creation of the graph is constrained by an appropriate
number of contour-growing steps and a minimally expected
size for sulci. These constraints provide us with more level-
of-detail control, but they are independent from the model.
Figure 14 shows a very detailed graph containing all small
folds and many relations (left) and a graph showing only
major sulci (right).

Figure 14: Topology graphs for different levels of detail.

Figure 15 shows the results of hierarchical segmenta-
tion and topology graph generation for four different human
brain data sets. The first row shows the segmentations of the
sulci, highlighted in red, and the second row shows the auto-
matically generated topology graphs. All surfaces were gen-
erated by extracting isosurfaces using an isovalue of approx-
imately 90 and by reducing resolution to approximately 20%
of the original number of vertices. All graphs have nearly the
same number of nodes and same number of edges.

Although the positions of the nodes are not the same
for the different models, their general layout is similar. The
topology graphs can be used for a high-level description and
for matching features between atlas and patient brains.
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(a) Discrete mean curvature. (b) Discrete Gaussian curvature. (c) Segmentation of cortical surface
(color scheme according to Table 1.)

Figure 13: Classifying regions based on discrete curvature estimations.

8. Conclusion and Future Work

We have described a method to segment surfaces based on
discrete mean and Gaussian curvature estimates. The sur-
faces are extracted from three-dimensional imaging data by
isosurfacing. To obtain smooth isosurfaces, we apply three-
dimensional smoothing in a preprocessing step and a “clean-
up” surface-growing algorithm in a postprocessing step. The
choice of isovalue can be validated with a tool that com-
pares visually the original 2D slice data with an extracted
isosurface. We generate a hierarchical representation of the
isosurface, which allows us to segment the surface at various
levels of detail.

Figure 16 (right) shows that segmenting a surface at low
resolution (8% of the original number of vertices) leads to
an extraction of the major surface features/characteristics,
whereas Figure 16 (left) shows that the segmentation al-
gorithm, when applied to the surface at a high resolution
(100%), does not necessarily produce more relevant struc-
ture information but includes small features, which do not
contribute very much to the overall shape. Considering this
observation, we can use low-resolution segmentations to
generate simple topology graphs of the surface.

Our segmentation and graph generation approach is fully
automated, i. e., does not require user interaction. By com-
bining geometry- with topology-based techniques, our ap-
proach is insensitive to varying feature sizes (within one ob-
ject) and high inter-subject variation (when comparing two
objects). For a better visual understanding, we provide visu-
alization tools on several levels of resolution and abstraction.

Figure 16: Surface segmentation at different resolutions.

Concerning future research, we will use topology graphs
to find an automatic method for brain mapping. Once a
global brain mapping is derived for a coarse level of detail, it
is possible to consider higher resolutions and determine lo-
cal mappings of surface regions. The initial global mapping,
and the segmentation it is generated from, may provide con-
straints for the local, fine-detail mapping.
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Position

Iso−value

26.1 89.1 115.2

Matching of structures as seen in original 2D MRI slices and extracted isosurfaces. Discrete Mean and Gaussian cur-
vature.

Segmentation of cortical surface. Surface segmentations and associated topology graphs for four different human brain data
sets.
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