
Prefetching in a Texture Cache Architecture

Homan lgehy

Computer Science Department

Matthew Eldridge Kekoa Proudfoot

Department of Electrical Engineering Department of Electrical Engineering

Stanford University

Abstract
Texture mapping has become so ubiquitous in real-time graphics
hardware that many systems are able to perform filtered texturing
without any penalty in fill rate. The computation rates available
in hardware have been outpacing the memory access rates, and
texture systems are becoming constrained by memory bandwidth
and latency. Caching in conjunction with prefetching can be used
to alleviate this problem.

In this paper, WC introduce a prefetching texture cache archi-
tecture designed to take advantage of the access characteristics of
texture mapping. The structures needed are relatively simple and
arc amenable to high clock rates. To quantify the robustness of
our architecture, we identify a set of six scenes whose texture
locality varies over nearly two orders of magnitude and a set 01
four memory systems with varying bandwidths and latencies.
Through the use of a cycle-accurate simulation, we demonstrate
that even in the presence of a high-latency memory system, our
architecture can attain at least 97% of the performance of a zero-
latency memory system.

CR Categories and Subject Descriptors: 1.3.1 [Computer
Graphics]: Hardware Architecture.

1 INTRODUCTION
Texture mapping has become ubiquitous in real-time graphics
hardware over the past few years. The accelerators found in every
segment of the market, from the consumer level to the graphics
supercomputer level, have on-chip support for performing the
costly operations associated with texture mapping. The use of
texture mapping is so pervasive that many systems are built to
perform the necessary operations without any penalty in fill rate.

Texture mapping is expensive both in computation and mem-
ory accesses. Continual improvement in semiconductor technol-
ogy has made the computation relatively affordable, but memory
accesses have remained troublesome. Several researchers have
proposed and demonstrated texture cache architectures which can
reduce texture memory bandwidth. Hakura and Gupta examine
different organizations for on-chip cache architectures which are
useful for exploiting locality of reference in texture filtering, tex-

(homan,eldridge,kekoa) @graphics.stanford.edu

ture magnification, and to a limited extent, repeated textures 151.
Cox, Bhandari, and Shantz extend this work to multi-level cach-
ing 131, They demonstrate that on-chip caches in conjunction with
large off-chip caches can be used to exploit all of the aforemcn-
tioned forms of texture locality as well as inter-frame texture lo-
cality. Thus, memory bandwidth requirements can be dramati-
cally reduced for scenes in which the working set of a frame fits
into the off-chip cache.

A second troublesome point about texture memory access
(which is not addressed by Hakura or Cox) is the high latencies 01
modern memory systems. In order to address this problem, sev-
eral systems have been described that make use of large pipelines
which prefetch the texel data [1, 7, I I]. Two of the systems [I, 71
do not use any explicit caching, although their memory systems
are organized for the reference patterns of texture filtering, but
one system [I I] does employ prefetching as well as two levels of
caching, one of which holds compressed textures. However, the
algorithm which combines the prefetching with the caching is not
described. Several other consumer-level architectures exist which
undoubtedly utilize some form of prefetching, possibly with
caching. Unfortunately, none of these algorithms are described in
the literature.

In this paper, we introduce a texture architecture which com-
bines prcfetching and caching. Our architecture is designed to
take advantage of the peculiar access characteristics of texture
mapping. The structures needed for implementing the prefetching
algorithm are relatively simple, thus making them amenable to the
high clock rates associated with texture mapping. To quantify the
robustness of our prefetching texture cache architecture, we iden-
tify a set of six scenes whose texture locality varies over nearly
two orders of magnitude and a set of four memory systems with
varying bandwidths and latencies. Through the use of a cycle-
accurate simulation, we demonstrate that the texture prefetching
architecture can successfully hide nearly all of the latency of the
memory system over a wide range of configurations. The space
ovcrhcad of this architecture is reasonable, and the resulting tex-
ture system is always able to attain at least 97% of the perform-
ance of a zero-latency memory system.

2 MIP MAPPING
Texture mapping, in its most basic form, is a process by which a
2D image is mapped onto a projected screen-space triangle under
perspective. This operation amounts to a linear transformation in
2D homogeneous coordinates. The transformation is typically
done as a backward mapping-for each pixel on the screen, the
corresponding coordinate in the texture map is calculated. The
backward mapped coordinate typically does not fall exactly onto a
sample in the texture map, and the texture may bc minified or
magnified on the screen. Filtering is applied to minimize the
effects of aliasing, and ideally, the filtering should be efficient and
amcnablc to hardware acceleration.

133

Reconstructed
Sample

Figure 1: Mip Mapping. An image is filtered recursively
into quarter-sized images. Trilincar interpolation recon-
structs a sample hy linearly interpolating hetwcen two adja-
cent levels of the mip map, each of which is sampled with
hilincar filtering on the four closest texels in that level of the
mip map.

Mip mapprng [I21 is the filtering technique most commonly
implemcntcd in graphics hardware. In mip mapping, an image
pyramid is constructed from the hasc image which serves as the
hottom of the pyramid. Each successive level of the pyramid is
constructed by resampling the previous lcvcl of the pyramid by
half in each dimension, as illustrated in Figure I. For each
screen-space fragment, the rasterization process computes a tex-
ture coordinate and an approximate texcl-to-pixel ratio (also
known as the level-of-detail value). This ratio is used to compute
the two closest corresponding mip map levels, and a hilinear in-
terpolation is performed on the four nearest texcls in each of the
two adjacent Icvcls. These two values are then combined with
linear interpolation based on the level-of-detail value, and the
resulting trilinearly interpolated sample is passed to the rest of the
graphics pipeline. If a fragment falls beyond either end of the mip
map pyramid, the algorithm performs hilinear filtering on the one
closest level of the mip map.

The popularity of mip mapping can be attributed to three char-
acteristics. First. mip mapping reduces many aliasing artifacts.
Although it is by no means an ideal tilter, especially since it often
blurs cxcessrvely, the results are quite acceptahlc for interactive
applications. Second, the computational costs of mip mapping,
though by no means cheap, arc rcasonahle and fixed for each
fragment, Finally, mip mapping is efficient with respect to mem-
ory. The additional space required for the pyramid representation
is only one-third the space occupied by the original image. Fur-
thermore, because the level-of-detail computation is designed to
make one step in screen space correspond to approximately one
step in the appropriate mip map level, the memory access pattern
of mip mapping is very coherent.

3 CACHING AND PREFETCHING
For the past few decades, many aspects of silicon have been expc-
riencing exponential growth. However, not all aspects have
grown at the same rate. While memory density and logic density
have seen tremendous growth, logic speed has experienced mom
moderate growth, and memory speed has experienced slight
growth. These lactors have made the cost of computation on a
chip very cheap, hut memory latency and bandwidth sometimes
limit performance. Even with the advent of memory devices with
high-speed interfaces [4], it is easy to build a texturing system that
outpaces the memory it accesses. The problem of directly ac-
cessing DRAM in a texture system is aggravated hy the fact that
memory devices work hest with transfers that do not match the
access patterns of texture mapping: DRAM provides high hand-
width when moving large contiguous blocks of memory, but a
fragment’s texture accesses typically consist of several small non-
contiguous memory rcfcrences.

An obvious solution to this problem is caching. Many issues
are resolved by integrating a small amount of high-speed, on-chip
memory organized to match the access patterns of the texture
system. According to our measurements (detailed in Section 5.1)
as well as data found in other literature 13, 51, it is quite rcason-
able to expect miss rates on the order of I .5% per access. Many
texture systems arc capable of providing the computation for a
trilinearly mip mapped fragment on every clock cycle. Thus,
hccausc there are eight texture accesses per cycle, the per-
fragment texel miss rate is 12%. Even if these misses could he
scrviccd in a mere 8 cycles each, a calculation of the average
memory access time shows that overall performance is cut in half
Clearly, this is not acceptable.

While caching can alleviate the memory bandwidth problem, it
does not solve the memory latency problem. The latency problem
with relation to texture caching is a special one. In current inter-
active graphics interfaces, texture accesses arc read-only for large
amounts of time, and address calculation for one texture access is
never dependent on the result of another texture access. Thus,
there are no inherent dependencies to limit the amount of latency
that can be covered. This means that a prefetching architecture
should be capable of handling arbitrary amounts of latency.

3.1 Traditional Prefetching
In the absence of caching, prefetching is very easy. When a
fragment is ready to be textured, the memory requests for the
eight texel accesses are sent to the memory system, and the frag-
ment is queued onto a fragment FIFO. When the replies to the
memory requests arrive, the fragment is taken off the FIFO, and
the fragment is textured. The time a fragment spends in the FIFO
is equal to the latency of the memory system, and if the FIFO is
sized appropriately, fragments may be processed without ever
stalling. For greater efficiency, part of the fragment FIFO can
actually be a fragment processing pipeline [I, 71. Note that this
non-caching prefetching architecture assumes that memory replies
arrive in the same order that memory requests are made, and that
the memory system can provide the required bandwidth with
small memory rcqucsts.

One straightforward way to combine caching with prefetching
is to use the architecture found in traditional microprocessors that
use explicit prcfetch instructions. Such an architecture consists of
a cache, a fully associative prefetch address buffer, and a memory
rcqucst buffer. A fragment in such a system is processed as fol-
lows: first, the fragment’s texel addresses arc looked up in the
cache tags, and the tragment is stored in the fragment FIFO.
Misses are forwarded to a prefetch buffer that is made fully asso-
ciative so that multiple misses to the same memory block can bc
combined. New misses arc queued in the memory request buffer
before being sent to the memory system. As data returns from the
memory system, it is merged into the cache. When a fragment
reaches the head of the fragment FIFO, the cache tags arc checked
again, and if all of the texels arc found in the cache., the fragment
can be liltercd and textured. Othcrwisc, additional misses arc
gcncrated, and the system stalls until the missing data returns
from memory. Fortunately, the architecture works even in con-
junction with an out-of-order memory system.

There are three problems with using the traditional microproc-
essor prcfctch architecture for texture mapping. First, if the prod-
uct of the memory request rate and the memory latency being
covered is large compared to the size of the caches utilized, a
prcfetched block that is merged into the cache too early can cause
conllict misses. Second, in order to support both reading and

134

prefetching of texels at the full fragment rate, tag checks must be
performed at twice the fragment rate, increasing the cost of the tag
logic. Finally, as the product of the memory request rate and the
memory latency increases, the size (and therefore the associativ-
ity) of the prefetch buffer must be increased proportionally.

3.2 A Texture Prefetching Architecture
While some of the problems with the traditional microprocessor
prefetching architecture can he alleviated, we have designed a
custom prefetching architecture that takes advantage of the special
access characteristics of texture mapping. This architecture is
illustrated in Figure 2. Three key features differentiate this archi-
tecture from the one described in Section 3. I. First, tag checks
are separated in time from cache accesses, and tag checks are
performed only once per texel access. Second, because the cache
tags arc only checked once and always describe the future con-
tents of the cache, a fully associative prefetch buffer is not
ncedcd. And third, a reorder buffer is used to buffer memory
requests that come back earlier than needed.

The architecture processes fragments as follows. As each
fragment is generated, each of its texel addresses is looked up in
the cache tags. If a tag check reveals a miss, the cache tags are
updated with the fragment’s texel address immediately and the

Rasterizer 1

Fragment
FIFO

Request
FIFO

Texture
Memory 4J System

I
Cache
Blocks

Texture Applicator

Figure 2: A Texture Prefetching Architecture.

address is forwarded to the memory request FIFO. The cache
addresses associated with the fragment are forwarded to the frag-
ment FIFO and are stored along with all the other data needed to
process the fragment, including color, depth, and filtering infor-
mation. As the request FIFO sends requests for missing cache
blocks to the texture memory system, space is reserved in the
reorder buffer to hold the returning memory blocks. This guar-
antee of space makes the architecture robust and deadlock-free in
the presence of an out-of-order memory system. A FIFO can be
used instead of the reorder buffer if responses from memory al-
ways return in the same order as requests sent to memory.

When a fragment reaches the head of the fragment FIFO, it
can proceed only if all of its texels are present in the cache.
Fragments that generated no misses can proceed immediately, but
fragments that generated one or more misses must first wait for
their corresponding cache blocks to return from memory into the
reorder buffer. In order to guarantee that new cache blocks do not
prematurely overwrite older cache blocks, new cache blocks are
committed to the cache only when their corresponding fragment
reaches the head of the fragment FIFO. Fragments that are re-
moved from the head of the FIFO have their corresponding texels
read from the cache and proceed onward to the rest of the texture
pipeline.

Our simulated implementation can handle eight texel reads in
parallel, consisting of two bilinear accesses to two adjacent mip
map levels. To support these concurrent texel reads, we organize
our cache tags and our cache memory as a pair of caches with four
banks each. Adjacent levels of a mip map are stored in alternating
caches to allow both mip map levels to be accessed simultane-
ously. Data is interleaved so that the four accesses of a bilinear
interpolation occur in parallel across the four banks of the respec-
tive cache. Cache tags are also interleaved across four banks in a
fashion that allows the tag checks for a bilinear access to occur
without conflict. The details of this layout can be found in Figure
3 of Section 5.

In order to make our architecture amenable to hardware im-
plementation, we impose two limitations. First, the number of
misses that can be added to the request FIFO is limited to one
miss per cache per cycle. Second, the number of cache blocks
that can be committed to the cache from the reorder buffer is
similarly limited to one block per cache per cycle. These commits
match up to the requests-groups of misses that are added to the
request FIFO together are committed to the cache together. This
means that each fragment may generate up to four groups of
misses. Because our implementation can only commit one of
these groups per cycle, a fragment that has more than one group
of misses will cause the system to stall one cycle for every group
of misses beyond the first.

4 ROBUST SCENE ANALYSIS
When validating an architecture, it is important to use benchmarks
that properly characterize the expected workload. Furthermore,
when validating interactive graphics architectures, an architect
should look beyond averages due to various characteristics of the
human perceptual system. For example, if a graphics system
provides 60 Hz rendering for the majority of the frames, but every
once in a while drops to I.5 Hz for a frame, the discontinuity is
distracting, if not nauseating. In designing a system, the graphics
architect must evaluate whether or not sub-optimal performance is
acceptable under bad-case conditions. Accordingly, a robust set
of scenes that cover a broad range of workloads, from good-cast
to bad-case, should be utilized to validate a graphics architecture.

135

4.1 Texture Locality
The effectiveness of texture caching is strongly scene-dependent.
For example, the size and distribution of prtmitivcs aft&t tcxturc
locality. Texture locality is also affected by what we call the
scene’s 14niq~4~~ rc~.rc~/ (o,fr~~gnrent rtrrio. Every scene has a number
of tcxela that are accessed at least once; thcsc tcxels are called
rcnicpw rc>xc~/.s. Unless caches arc big enough to exploit inter-tiamc
locality (this requires several megabytes 131). every unique ~exel
must bc fetched at least once by the cache, imposing a lower limit
on the required memory bandwidth. If WC divide this number by
the number 01‘ h-agmcnts rendered for a scene. WC can calculate
the unique texel to fragment ratio. Note that this value is dcpend-
ent on the screen resolution. A good-case scent will have a low
ratio, and a had-case scene will have a high ratio. Ideally, the
number of texcls fetched hy the cachtng architecture per fragment
will be close to the scene’s unique tcxel to fragment ratio.

Three factors affect the unique texel to fragment ratio of a
scene. First, when a texture is viewed under magnification, each
tcxcl gets mapped to multiple screen pixels, and the ratio dc-
crcascs. Second, when a texture is rcpcatcd across a surface, the
ratio also decreases. This temporal cohercncc can be exploited hy
a cache large enough to hold the repeated tcxturc. Third, when a
mip map texture is viewed under minilication, the ratio becomes
dependent on the relationship between texel area and pixel area.
This relationship is characterized by the level-of-detail value 01
the mip mapptng computation that aims to keep the footprint of a
backward-mapped pixel equal to the size of a texel in a mip map
Icvel. Although this value is normally calculated automatically,
the application programmer may bias it in either direction, thus
moditying the scene’s unique texcl to fragment ratio.

A more surprising effcc~ that occurs even without biasing is
characterized by the tracttonal portion ol’thc Icvcl-of-detail value.
The lcvcl-of-detail value determines the two levels of the mip
map I‘rom whtch samples arc taken; the tractional portion is pro-
portional to the distance from the lower, more detailed level.
Given a texture mapped polygon that is parallel to the screen, a
fractional portion close to zero implies a texel area to pixel arca
ratio of nearly one in the lower mip map level and a quarter in the
upper mip map Icvcl, yielding a tcxcl to fragment ratio near I .2.5.
Likewise, a fractional portion close to one implies a tcxcl area to
pixel area ratio of tour in the lower mip map level and one in the
upper mip map level, yielding a tcxel to fragment ratio near 5.
The ratios arc lower for polygons that are not parallel to the
screen. Normally, WC expect a wide variation in the tcxel to
fragment ratio due to the tractional portion of the level-of-detail
V;ilUC However, most scenes exhibit worst-case behavior for

short amounts of time, and a few scenes exhibit worst-cast bc-
havior for large amounts of time.

4.2 The Benchmark Scenes
In order to validate our texture caching architecture, we chose six
real-world sccncs that span a wide range of texture locality.
These six sccncs originated from three traces of OpenCL [IO]
applications captured by g/.struce, a tool implemented on top ol
the OpcnGL Stream Codcc. In the future, we expect to see more
texture t’or a given screen resolution; this will increase the umquc
tcxcl to fragment ratio. To simulate this effect, each of the traces
was captured twice. once with the textures at original size, and
once with the textures at double resolution. Table I summarizes
our six scenes, and high resolution images can he found in the
Color Plate. Our workloads span nearly two orders of magnitude
in the unique tcxcl to fragment ratio (0.033 to 2.83). This is in
contrast to the ratios in the scenes used by Hakura (0.2 to I. I) [5]
and the animations used by Cox (0. I to 0.3) [31. These workloads
result from the fact that applications programmers choose the way
they use texture according to the needs of the application and the
constraints of the tar@ systems. WC now give a brief summary
of each scene and highlight the points relevant to texture caching:

n cpukc☺ This is a liamc from the OpenGL port of the
video game Quake. This application is cssen-
tially an architectural walkthrough with visibil-
ity culling. Color mapping is performed on all
surfaces which arc, tar the most part, large
polygons that make use of repeated texture. A
second texturing pass blends low-resolution
light maps with the base tcxturcs to provide rc-
alistic lighting effects. Approximately 40%1 01
the base textures are magnilicd, and 100% of the
light maps are magniticd.

9 c@ir2.x In order to account fbr increasing texture rcso-
lutions nccdcd fbr larger screen resolutions
(Quake’s content was geared towards smaller
scr-eens), the texture maps in yuclka were
zoomed by a (actor of two to create quakr2x.
This results in a scene which magnifies only the
light maps.

n ,/li,qhl This sccnc from an SGI llight simulator demo
shows a jet flying above a tcxturcd terrain map.
The triangle size distribution centers around
moderately sized triangles. and most textures are
used only once. A significant portion of the
tcxturc (38%) is magnified.

136

Texture
Cache-Sized
Superblock Block 6D Blocking

+ Texture Base Address

Shk,ck S0ll.W

4

@J m

TWA

Address

0 I 0 I

2 3 2 3

0 1 0 I

2 3 2 3
Bank lnrerleaving of Bank Interleaving of

Tags tu Blocks in Superblock Texels in Block
Tag Tag Sub-Block Cache
Index Bank Onset Bank

Figure 3: Texture Data Organization. In our architecture, textures are stored using a 6D blocking pattern. Each mip map level is di-
vided into cache-sized superblocks, with each superblock further divided into blocks. Each block is a rectangular, linearly-addressable
region of the original mip map level. Each of eight texcl addresses is computed by adding an offset (formed by permuting the texel’s
coordinates) to a corresponding texture base address. The eight resulting texel addresses, four from each of two adjacent mip map
levels, arc then directed to two caches, each of which has four banks and services alternating levels of the mip map. Within each su-
perblock, tags are interlcavcd on a block basis, causing all 2x2 texel accesses to fall onto one, two, or four adjacent blocks, with each
block’s tag stored in a separate bank of the tag memory. This interleaving is accomplished by permuting the bits of the block index,
yielding a tag bank and a tag index for each tcxel address. Similarly, tcxels are interleaved within each block, causing all 2x2 texel
accesses to fall into separate banks of the cache memory even if the texels of the 2x2 access do not all fall into the same block. A
permutation of the block offset results in a cache hank and a sub-block offset for every texel address; used in conjunction with the
block index, these values locate each texel in the cache memory. Note that both of these permutations extract the least significant bit
of the corresponding s and t fields to determine the tag or cache bank.

1 Jig ht2.r As texture systems become more capable of
handling larger amounts of texture, applications
will use larger textures to avoid the blurring arti-
fact of filtered magnification. In flighRn, the
textures of Jlight were zoomed by a factor of
two. This results in a scene which only magni-
fies 13% of the texture.

This scene comes from an OpenGL-based
QuickTime VR [2] viewer looking at a pano-
rama from Mars. This huge panorama, which
measures 8K by 1 K, is mapped onto a polygonal
approximation of a cylinder made of tall, skinny
triangles. Even though all of the texture is mag-
nified, the lack of repeated texture keeps the
number of unique tcxcls per fragment high.

The texture of qtvr was scaled up to l6K by 2K.
This increases the number of unique tcxcls ac-
cesses by the scene since all the texture is mini-
lied. Furthermore, the fractional portion of the
level-of-detail value is always high in qtvr2x be-
cause the panorama is viewed more or less head-
on at just the wrong zoom value. Note that these
same effects would occur if qtvr was run at
quarter-sized screen resolution, and that qtvr2x
is by no means a hand-tailored pathological

case. In fact, it was while gathering trace data
on qtvr that we first observed the texture locality
effects of a level-of-detail fraction close to one.
This scene is representative of a bad-case frame
in a real-world application.

5 MEMORY ORGANIZATION
In designing our prefetching cache architecture, careful attention
was paid to choosing the proper parameters for the cache and the
memory system. To narrow our search space, we leveraged Ha-
kura’s findings on blocking [S]. First, Hakura demonstrates the
importance of placing texture into tiles according to cache block
size. This addressing scheme is referred to as 4D blocking. Fur-
thermore, rastcrization should also occur in a 2D blocked fashion
rather than in scan line order. And finally, tiles should be organ-
izcd in a 2D blocked fashion according to the cache size in order
to minimize conflict misses. This is called 6D blocking. In ac-
cordance to with these guidelines, we employ 6D blocking for
texture maps according to the cache block size and the cache size,
and WC rasterize triangles in 8 pixel by 8 pixel blocks. The layout
of texture data is illustrated in Figure 3. Figure 3 also illustrates
how texture data is banked in both the cache tags as well as the
cache memory in order to allow conflict-free access for bilinear
interpolation. Note that for the purposes of this study, all texture
data is stored as 32-hit RGBA values.

137

5.1 Cache Efficiency
Since we have decided to provide a separate cache for each of the
bilinear accesses which needs to occur during every trilinear tex-
ture access, three cache parameters need to be chosen. The first
choice is the cache block size. A small block size increases miss
rates, but keeps bandwidth requirements low. A large block size
can decrease miss rates, but bandwidth requirements and latency
can skyrocket. An additional factor that needs consideration is
that modern DRAM devices require large transfer sizes to sustain
bandwidth. Hakura found that 16 texel tiles (64 bytes) work well,
and most next-generation DRAM chips can achieve peak effi-
ciency at such transfer sizes [4].

Given a 16 texel block size, we are left with choices for cache
associativity and cache size. Figure 4 shows the miss rates for our

six test scenes. We see that increasing associativity does not de-
crease the miss rate significantly. Intuitively, this make sense
since having a separate cache for alternate levels of a mip map
minimizes conflict misses. Thus, a direct-mapped cache is quite
acceptable if we use 6D blocking when alternate levels of the mip
map are cached independently. According to Hakura, if a unified
cache is used for trilinear accesses (and thus the bilinear accesses
do not occur simultaneously), a 2-way set associative cache is
appropriate. In the more general case of multi-texturing, m inde-
pendent n-way set associative caches are well suited towards pro-
viding texture accesses at the rate of m bilinear accesses per cycle
to m*n textures (in this scheme, trilinear accesses count as two
accesses to two textures). Since we are limiting our study to a
single trilinear access per cycle, two independent direct-mapped
caches are appropriate.

2 0.4-
ii

quake
0.3- - 65 5

bs
2 0.2 -

-4f

i 2 4 S lb 32 64 Ii8

total cache size [KB]

I 2 4 8 I6 32 64 I28

total cache size [KB]

i 2 4 S 16 32 64 Ii8

total cache size [KB]

X quake x flight X qtvr - l-way
l quake2x l tlight2x 0 qtvr2x --- 2-way

- - 4-way

- - quake - - flight - - qtvr
- quake2x - flight2x - qtvr2x

Figure 4: Cache Efficiency. Block size was set to 4 by 4 Figure 5: Bandwidth Variation. Even though the requtred
texels, and the six workloads were sent through the cache memory bandwidth can be low on average, this value can
simulator with various cache sizes and cache associativities. vary widely over time. The graphs above show this variation
Results are reported in terms of cache block misses per with a pair of direct-mapped 8 KB caches. Each data point is
fragment rather than in terms of misses per access since most a windowed average over 30,000 fragments in quake and
texturing architectures have clock cycles based on fragments. 10,000 fragments in flight and qtvr. The variance in the re-
The cache block miss rate corresponds to a memory band- quired bandwidth is quite extreme in the cases of quake and
width requirement which can be expressed in terms of texels quake2n as the application transitions from applying color
fetched per fragment. maps to applying light maps.

quake

z 0.4 -

ii qtvr 0.3 - -6 - 2 2
c!l
b 0.2-

-4jj

a
g O.l-

-2 k

.I
Y

z 0.0 _Lw--..^..- w-5.-Ae”c”----.. 03 2

138

Figure 4 also illustrates the effects of modifying the total cache
size on the miss rates of the various scenes. We see that for
scenes in which texture locality is not dependent on repeated tex-
tures (f2i$zr, JZightZx, ytvr, qtvr2x), the miss rate curves flatten
somewhere between a total cache size of 4 KB and I6 KB. This
cache size represents the working set for filtering locality when
rasteriztion is done in 8 by 8 blocks. On scenes that contain re-
peated texture (such as quuke and quuke2x) the miss rates are
lower, but the miss rate curves tlattcn later (at 32 KB and I28 KB,
respectively). These points correspond to the working set sizes of
the repeated textures in each scene. The miss rate realized once
any of the curves flattens corresponds closely to the unique texcl
to fragment ratio of the respective scene.

We chose to use a I6 KB cache (composed of two direct-
mapped 8 KB caches) for our study. According to our workloads,
this size is large enough to exploit nearly all of the coherence
found in scenes which demonstrate poor locality (such asJliRht2.x
and qtvr2x). and even though a larger size could help in scenes
with repeated textures (such as quake and quake2x). these scenes
already perform very well. This cache size is in consensus with
the cache sizes proposed in other texture cache analyses [3, 51.
Though we stress that different choices can also be reasonable, for
the rest of the paper, we assume a cache architecture with two
direct-mapped 8 KB caches (interleaved by mip map level) with
64-byte blocks.

5.2 Bandwidth Requirements
In formulating bandwidth requirements, we can relate the number
of texels of memory bandwidth required per fragment to the cache
miss rate by the cache block size. These equivalent measures are
shown as left- and right-axes in Figure 4. One key point of Table
I and Figure 4 is that even though caching can work well some-
times, there are cases when the bandwidth requirements are ex-
tremely high. In the case of qtvr2x, nearly 3 texels have to be
fetched for each fragment no matter what size on-chip cache is
utilized. This is quite high considering that eight texels are re-
quired to texture a trilinearly mip mapped fragment. However,
this should not be seen as an argument for not having a cache: the
cache still provides a way of matching the access patterns of mip
mapping with the large block requests required for achieving high
memory bandwidth. If a system wants to provide high perform-
ance robustly over a wide variety of scenes, it needs to provide
high memory bandwidth even with the use of caching. If a sys-
tem’s target applications have high texture locality, or if cost is a
primary concern, a memory system with lower memory band-
width can be employed.

Figure 4 can also be a bit misleading because the average
bandwidth requirement does not tell the whole story. From the
data, one could falsely infer that a memory system which provides
enough bandwidth to supply I texel per fragment will perform
perfectly on quake2x since, according to the graph, only 0.63
texels per fragment are required given the I6 KB cache size.
Figure 5 illustrates why this is not the case. The average cache
miss rate does not properly encapsulate temporal variations in
bandwidth requirements. Even though the average bandwidth
requirement is 0.63 texels per fragment over the whole frame,
large amounts of time exist when the system needs double that
bandwidth, and large amounts of time exist when the system does
not need most of that bandwidth (i.e., when light maps are drawn).
Because of the large separation in time between these two phases,
a system cannot borrow from one to provide for the other, and
thus the overall performance will decrease.

period

latency

iz 7 rdr i.

so loll 20 20 so 150 2so

Table 2: Memorv Models. The values reported here are in
terms of a fragment clock cycle of 200 MHz, which corre-
sponds to 5 nsec. The memory period determines the rate at
which 64 byte blocks of memory can be provided. Thus,
bandwidths of I, 2,4, and 4 texels per fragment are provided
on up, rdram, rdram2x, and numu, respectively.

5.3 Memory Models
In order to validate our texture prefetching architecture more pre-
cisely, we now explore the bandwidths and latencies provided by
memory systems. For our study, we examine an architecture
which can sustain the texturing performance projected for the near
future. Current high-end architectures such as the SGI InfiniteRe-
ality [9] provide approximately 200 million trilinear fragments per
second from a single board. Low-end professional-level archi-
tectures provide approximately 30 million trilinear fragments per
second [7], as do many consumer-level graphics accelerators.
Given these rates, we decided to set our nominal fragment clock
rate at 200 MHz, meaning that under optimal memory conditions,
the architecture provides a trilinearly sampled fragment every 5
nanoseconds. Based on this fragment clock rate, we decided to
simulate four memory models, summarized by bandwidth and
latency histogram in Table 2.

9 rdram

n rdram2x

- numa

This models a system in which the texture cache
requests blocks from system memory over ln-
tel’s Advanced Graphics Port [6]. The AGP 4X
standard can provide a sustained bandwidth of
800 MB/set. Because system memory is shared
with the host computer, we estimate that the la-
tency of agp varies between 250 nsec and 500
nsec.

Direct RDRAM from Rambus [4] will serve as
our baseline dedicated texture memory. These
devices provide extremely high bandwidth (a
sustainable I .6 GBlsec) with reasonable latency
(90 nsec) at high densities for commodity prices.
We estimate that on-chip buffering logic adds IO
nsec of latency to this memory.

In order to sustain the high and variable band-
width requirements of scenes such of JlightZx
and qrvr2x, a texture architecture may choose to
utilize 2 RDRAM parts for double the band-
width of rdram at the same latency.
Although not based on any existing specitica-
tion, we use the numa memory model to exam-
ine the feasibility of our prefetching architecture
in novel and exotic texture memory architec-
tures. The bandwidth of this memory model is
the same as the bandwidth of rdram2x, but the
latency of such a system is extremely high and
highly variable. It can range anywhere between
250 nsec and 1.25 usec. This latency is in the
range of what can be expected if texture is dis-
tributed across the shared memory of a NUMA
multiprocessor [S].

139

agp rdram rdram2x numa 6-0

no prefetch n prefetch

agp rdram rdram2x numa (b)
l.O- II - .--- - II ----- --I I

B ‘1 I-
3
8 0.5-
P
ii
b

0.0
Yc5g$!
2 Y

; $j
‘s;

scs:-es
2 y .?g 2

9 6
5 ;

BAJ=A
.I?p

k gj YcG:cS ? gj

O- 2
2% ‘r $2

z 5 CT
‘r 2

CT z 2 ‘r
22,a
= 2 gy 5

2 2 g zw
o- m

s is 5
CT u-

w uncovered latency w limited bandwidth n pipeline stall useful work

Figure 6: Prefetching Performance. In (a), we compare our prefetching architecture and one in which no prefetching takes place
against an idea1 architecture (one in which a fragment is generated on every clock cycle) on a logarithmic scale. On many contigura-
tions, the prefetching architecture is able to achieve near-ideal performance (as indicated by the near-total absence of a dark gray bar).
Configurations which do not achieve near-ideal performance are bandwidth-limited, as illustrated in (b). This graph characterizes the
architecture’s execution time by useful work, pipeline stalls, limited memory bandwidth, and uncovered latency across the four mem-
ory models and the six scenes. For all of the cases in which near-ideal performance was not attained, memory bandwidth is by far the
limiting factor. Thus, the architecture is able to hide nearly all of the latency of the memory system with little overhead.

6 PERFORMANCE ANALYSIS
A cycle-accurate simulator was written to validate the robustness
of the prefetching texture cache architecture proposed in this pa-
per. We analyze the architecture by running each scene with each
memory model. First, the architecture is compared against an
ideal architecture and an architecture with no prefetching. We
then account for all of our execution time beyond the ideal execu-
tion time.

Figure 6a presents the execution time for each of the scenes
with each of the memory models on both our architecture and an
architecture with no prefetching. Performance is normalized to
the ideal execution time of I cycle per fragment. In all cases, our
architecture performs much better than an architecture lacking
prefetching. However, we do not achieve an idea1 I cycle per
fragment across many of the scenes when running the agp and
r&urn memory models.

In order to account for lost cycles, we enumerate four compo-
nents of our architecture’s execution time:

I. A cycle is required to move each fragment through the
texture pipeline.

2. If either cache has more than one miss for any fragment,
the pipeline must stall.

3. The pipeline may stall due to insufficient texture memory
bandwidth.

4. Cycles may be lost to uncovered latency in the prefetch-
ing architecture.

Each of these components can be calculated as follows. The
number of cycles spent moving fragments through the pipeline is
simply the number of fragments in the scene. The number of
pipeline stalls attributed to multiple misses per fragment can be
measured by counting the number of misses per cache per frag-
ment beyond the first miss. Stalls occur infrequently, and our
experiments show the performance lost to such pipeline stalls is
typically less than 1%. Performance lost to insufficient memory
bandwidth is determined by the execution time of the trace with
the memory latency set to zero. Finally, when the scene is simu-
lated with our memory latency model, any additional cycles not
attributed to the first three categories are counted as uncovered
latency in our architecture. Experimental results show that most
of the latency of the memory system is indeed covered by our
architecture, with at least 97% utilization of hardware resources
using nominal sizes for the fragment FIFO, the memory request
FIFO, and the reorder buffer. Most of the performance difference
from an ideal system is caused by insufficient memory bandwidth.
The breakdowns of the execution times for our configurations are
presented in Figure 6b.

140

quake2xonagp

- - pipeline stall
- - - limited bandwidth
- - uncovered latency

fragment

Figure 7: Time-Varying Execution Time Characterization.
As predicted in Section 5.2, the performance of a workload
can vary greatly over time if not enough memory bandwidth
is provided. The graph above characterizes the execution
time of the quake2x workload on the agp memory system.
Even though the I texel per fragment bandwidth of agp by
far exceeds quake2x’s average requirement of 0.63 texels per
fragment, performance suffers due to the time-varying
bandwidth requirements of quake2x.

6.1 Intra-Frame Variability
A typical scene provides both an overall memory bandwidth de-
mand over the course of the frame (several milliseconds) as well
as localized memory bandwidth demands over several microsec-
onds, as illustrated in Figure 5. Figure 7 shows how this trans-
lates into lost performance. The performance of the quake2.x
scene on the agp memory system is very different in the first and
second half of the frame due to switching between color map
textures and light maps. As predicted in Section 5.2, the fragment
rate while drawing the color texture is limited by memory band-
width while the pipeline runs at full speed while drawing the light
maps. This does indeed cause an overall performance penalty
even though the I texel per fragment bandwidth of agp far ex-
ceeds the average texel per fragment bandwidth requirement of
quake2.x. Figure 7 also illustrates that the performance of our
architecture closely tracks the performance of a zero-latency
memory system over time.

6.2 Buffer Sizes
The data in Figure 6 and Figure 7 was derived with a specific set
of buffer sizes for each memory model. These sizes are presented
in Table 3, and in all cases the buffers are reasonable in size when
compared to the I6 KB of cache employed.

We determined the sizes of the three buffers-the fragment
FIFO, the request FIFO, and the reorder buffer-by inspection
and then validated them by experimentation. The fragment FIFO
primarily masks the latency of the memory system. If the system
is not to stall on a cache miss, it must be able to continually serv-
ice new fragments while previous fragments are waiting for tex-
ture cache misses to be tilled. Thus, the fragment FIFO depth
should at least match the latency of the memory system. The
fragment FIFO also provides elasticity between the burstiness of
texture misses and the constant rate at which the memory system
can service misses, and therefore should be larger than just the
memory system latency. The memory request FIFO also provides

elasticity between the potentially bursty stream of miss addresses
generated by the fragments and the fixed rate at which the mem-
ory system can consume them. The size of this buffer was deter-
mined primarily by experimentation. Finally, in order to provide
a robust, deadlock-free solution which can handle out-of-order
memory responses, our architecture requires that a reorder buffer
slot be reserved when a memory request is made. Since a mem-
ory response will not be received and applied to the cache at least
until after the memory latency has passed, the reorder buffer
should be sized to be at least the ratio of the memory access time
(latency) to the memory cycle time (period) entries deep.

The above guidelines were used to determine the approximate
buffer sizes for each memory model, and then the choices were
adjusted by measuring the performance of the system. We fine-
tuned the buffer sizes by holding two of the buffer sizes constant
and varying the third. If the buffer is sized appropriately, the
performance of the overall system should decrease significantly
when the buffer is made much smaller, and performance should
increase very slowly if the buffer is made larger. The data for this
process with the flight2x workload is shown in Figure 8. This
process provided useful information in the cases of the rdram and
rdram2x memory systems. The fragment FIFOs were originally
sized to be 32 entries deep. However, simulation revealed that
this did not provide enough elasticity, and increasing the FIFO
depth to 64 entries improved performance by several percent.
Similarly, simulation revealed that performance increased slightly
when the reorder buffer size was increased to 8 slots and I6 slots
for rdram and rdram2x, respectively.

7 FUTURE WORK
In formulating a model for measuring the performance of our
prefetching texture cache architecture, we assumed that the entire
scene is rasterized by a renderer which is able to provide a frag-
ment to the texture subsystem on every clock cycle. In a real
system, this may not be the case. When triangles are smaller,
caching does not work as well; but smaller triangles may also
imply a lower fill rate (i.e., the scene is geometry limited), thus
alleviating some of the penalty associated with the caching. A
more detailed analysis of bandwidth requirements in a rasteriza-
tion architecture should take this effect into account.

Another issue not addressed by our paper is the effect of par-
allel rasterization. Rasterization work may distributed amongst
multiple processors in some fashion (e.g., pixel interleaved, trian-
gle interleaved, tiled) that reduces the effectiveness of caching.
Again, this affects the bandwidth requirements of a prefetching
texture cache architecture. An additional possibility to explore

Fragment Request Reorder
FIFO Size FIFO Size Buffer Size

am
128 slot 8 slot 8 slot
2.0 KB 64 byte 576 byte

rdram 64 slot 8 slot 8 slot
1.0 KB 64 byte 576 byte

rdramfx 64 slot 16 slot 16 slot
1.0 KB 128 byte 1.1 KB

nutna 256 slot 16 slot 64 slot
4.0 KB 128 byte 4.5 KB

Table 3: Buffer Sizes. The numbers in each entry represent
the sizes of the various buffers used in the various memory
systems. Fragment FIFO entries are I6 bytes, memory re-
quest FIFO entries are 8 bytes, and reorder buffer entries are
72 bytes.

141

rdram

rdramfx

numa

1 4 16 64 256 1 4 16 64 256 4 16 64 256

Figure 8: 1 Ill : Effects of Varying Buffer Sizes. The graphs above show the effects of varying buffer sizes on theflighr2.r workload
across the different memory models. For each graph, one buffer size is varied while the other two are held fixed (at the values speci-
tied in Table 3). The results are reported in fragments per cycle (fpc), and the dot on each graph represents the final values used for
the architecture on each memory model. The memory models whose fragments per cycle values do not approach 1 .O are bandwidth-
limited.

Fragment FIFO Size Request FIFO Size Reorder Buffer Size

1 4 16 64 256 1 4 16 64 256 4 16 64 256

1 4 16 64 256

1 4 16 64 256 I 4 16 64 256 4 16 64 256

with parallel rasterization is shared texture memory and its effect
on latency.

8 CONCLUSION
In this paper, we have presented and analyzed a prefetching tex-
ture cache architecture. We designed the architecture to take ad-
vantage of the distinct memory access patterns of mip mapping.
In order to validate the architecture, we presented a measurement
of texture locality and identified six workloads that span over two
orders of magnitude in texture locality. By examining the per-
formance of these workloads across four different memory mod-
els, we demonstrated the architecture’s ability to hide the memory
latency with a 97% utilization of the available hardware re-
sources.

Acknowledgements
We would like to thank Pat Hanrahan, Gordon Stall, Milton Chen,
and the rest of the Stanford Graphics Lab for their reviews of this
paper and their insights about this work. We thank Phil Lacroute
for providing g&race. Financial support was provided by Silicon
Graphics, Intel, and DARPA contract DABT63-95-C-0085-
POOO06.

References
[I] B. Anderson, R. MacAulay, A. Stewart, and T. Whitted. Accom-

modating Memory Latency In A Low-Cost Rasterizer. Proceed-
ings of the I997 SIGGRAPH/Eumgruphics Workshop on Gruphics
Hardware, pages 97-102, 1997.

[2] S. E. Chen. QuickTime VR: An Image-Based Approach to Virtual
Environment Navigation, Compufer Gruphics (SIGGRAPH 95
Proceedings), volume 29, pages 29-38, 1995.

[3] M. Cox, N. Bhandari, and M. Shantz. Multi-Level Texture Cach-
ing for 3D Graphics Hardware. Proceedings of fhe .&’ Internu-
rional Symposium on Computer Architecture, 1998.

[4] R. Crisp. Direct Rambus Technology: The New Main Memory
Standard. IEEE Micro, pages 18-28, NovlDec. 1997.

[5] Z. Hakura and A. Gupta. The Design and Analysis of a Cache Ar-
chitecture for Texture Mapping. Proceedings of the 24” Internu-
rional Symposium on Computer Architecture, 1997.

[6] Intel Corporation, Accelerured Graphics Port Interjace Specifica-
fion, revision 2.0, Intel Corporation, 1998.

[7] M. Kilgard. Realizing OpenGL: Two Implementations of One Ar-
chitecture. Proceedings of the 1997 SIGGRAPH/Eurogruphics
Workshop on Graphics Hardware, pages 45-56, 1997.

[8] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. Proceedings of the 24’” Annual Symposium on
Computer Architecture, 1997.

[9] J. Montrym, D. Baum, D. Dignam, and C. Migdal. InfiniteReality:
A Real-Time Graphics System. Computer Graphics (SIGGRAPH
97 Proceedings), volume 3 I, pages 293-302, 1997.

[IO] J. Neider, T. Davis and M. Woo. OpenGL Programming Guide.
Addison-Wesley, 1993.

[ll] J. Torborg and J. Kajiya. Talisman: Commodity Real-Time 3D
Graphics for the PC. Computer Graphics (SIGGRAPH 96 Pro-
ceedings), volume 30, pages 57-68, 1996.

[121 L. Williams. Pyramidal Parametrics. Computer Graphics
(SIGGRAPH 83 Proceedings), volume 17, pages l-1 1, 1983.

142

